
Progressive Hiding of a 3D Object into its Texture
Image

Emmanuel Garcia, Jean-Luc Dugelay, Vanessa Lopez Eslava
Institut Eurécom

2229 route des crêtes, BP 193
06904 Sophia Antipolis, France

Abstract— This paper presents an original data-hiding appli-
cation where the payload is intimately related to the host data.
On the one hand we want to preserve this relationship so that
each part of the payload is hidden in the related part of the host.
On the other hand we want to ensure that a degradation of a
part of the host data implies a proportional degradation of the
related part of the hidden data.

I. INTRODUCTION

Three-dimensional video objects belong to the so-called
category of new objects in watermarking and/or data-hiding
[4], [5].

In this paper we propose an algorithm to hide the geometry
of a 3D object into its texture image. The result is that only
the image is needed to transmit and build back the 3D object
(see Fig. 1).

Data-hiding algorithms embed one document into another
one [1], [2], [3], but usually there is no natural relation
between them [7]. On the contrary our algorithm does not
merely hide 3D information in an image without relating
the one to the other, as if the 3D information were only an
anonymous payload: since pixels of the texture are in a one-
to-one correspondance with points of the surface of the object,
there is a natural relationship between geometry and texture,
as if the geometry were a 4th band for the three color bands
of the texture, and we want to hide and interlace this 4th band
into the three others.

By preserving the spatial relationship between payload
(=geometry) and cover (=texture), if part of the texture is
destroyed, the corresponding geometry is also destroyed, but
the geometry corresponding to the untouched part of the
texture remains recoverable and intact.

In addition to this property we want to perform the data-
hiding in such a way that a degradation of the cover implies
a proportional degradation of the payload. Overall the success
of our scheme depends on the achieved degree of spatial syn-
chronization and degradation correlation between the payload
and the cover.

Note that some applications have one of these two proper-
ties, e.g. spatial (or rather temporal) coherence, as in [3], or
correlated degradation, as in [6], but not both properties.

II. REPRESENTATION OF 3D DATA

In order to ensure the spatial relationship between the
payload and the cover, we represent a 3D object as a cylin-
drical texture image and an associated cylindrical depth map.

ExtractionEmbedding

geometry

recover
geometryhiding geometry

texture textured object

combinehide

geometry

texture

Fig. 1. Overview of our data-hiding scheme.

X

Z

Y

�

�

�

�

�

���

1

0

�
� ��� �
	 ���

Fig. 2. From cartesian coordinates
����������� to cylindrical coordinates������������ to bidimensionnal depth map ������ ��� .

Furthermore, the resolution of the depth map is 8 times lower
than the resolution of the texture image in both directions.
Therefore each pixel of the depth map corresponds to a!#"$!

block of the texture. The texture image is originally
a color image, but the host information for data-hiding is
the luminance of the image, computed from the Red, Green
and Blue color components using the simplified formula %'&(*) +-,/.$(0) 1324.5(*)�687

.
Hiding each depth value into the corresponding texture

block would achieve the desired property of preserving the
spatial correlation between payload and cover (Fig. 4), but not
the property of correlated degradation. Therefore, prior to any
processing, we perform a three-level wavelet decomposition
of both depth and texture. In this way it will be possible to
hide low depth frequencies into low texture frequencies and
high depth frequencies into high texture frequencies. There-
fore the most significant depth coefficients (low frequencies)
would be hidden in the most robust texture coefficients (low
frequencies). When the texture is progressively degraded, the
high texture frequencies are the first to be destroyed, and the
high depth frequencies are likewise not recoverable. However

(a) Cylindrical texture�������������
.

(b) Depth map �
	 � �
	 . (c) Textured 3D object.

Fig. 3. (a) Cylindrical texture, location of the depth sample points (circles)
and associated triangulation of the geometry. In reality there are �
	 � �
	
sample points. There are not sample points on the right border since they
are identified to those of the left border through the cylindrical topology.
Top and bottom half-bands of the texture are discarded. (b) Depth sampled
in cylindrical coordinates. White pixels represent 3D points distant from the
cylindrical axis. (c) 3D object reconstructed and meshed according to the
depth map.

Texture, 512x512

Depth, 64x64

block 8x8

Fig. 4. Spatial coherence between payload and host information, by hiding
each depth value in the corresponding � � � texture block.

the low depth frequencies remain recoverable. This achieves
a progressive degradation of the payload when the cover is
degraded.

III. EMBEDDING ALGORITHM

A. Overall hiding strategy

Using the previous spatio-frequential decomposition of
depth and texture maps, we hide each depth coefficient of
each wavelet band in the corresponding

! " !
block of the

corresponding wavelet band of the texture (Fig. 5). Thus, one
scalar value is hidden in a

! " !
block of scalar values. This

is done by first quantizing the depth scalar value and then
hiding each bit of the quantized depth value into one or more
values of the

! "$!
texture block, by modifying their LSB

(least significant bit).

B. Quantization of depth

Each depth coefficient is quantized over a given number of
bits. This number of bits as well as the quantization function
(linear, logarithmic, etc.) and the quantization interval, must

Depth (wavelets), 64x64

Texture (wavelets), 512x512

block 8x8

Fig. 5. Hiding each depth coefficient into the corresponding � � � texture
block after wavelet decomposition.

be carefully chosen, and may be different for coefficients
of different wavelet bands. For our experiments we linearly
quantized each depth coefficient using 8 bits. The quantiza-
tion interval was empirically adapted to each wavelet band.
Thus, each coefficient is represented as a binary number������������
���������������
�

.

C. Quantization of texture

A depth value is encoded in the corresponding
! " !

texture
block. A bit of a depth value is encoded in a texture value by
modifying its LSB. This LSB is defined unequivocally by a
quantization step � . Given this quantization step, the LSB

�
of

a texture coefficient � is the LSB of the integer � &����� � .
Now, given a bit

��!
to encode in the value � , we bring to �

the least modification that sets its LSB to
�"!

in the most robust
way. That is:

#� &
$%& %')(� . ��+* � if

� & ��!
(� . �� * � . � if

�-,& ��!
and �/. (� . �� * �

(� . ��+* �102� if
�-,& ��!

and �/3 (� . ��+* � (1)

Let us note that a different value for � may be used for the
different wavelet bands of the texture. Also, this set of values
determines the visibility and robustness of the hidden data in
the texture: the greater the � s, the greater the robustness, but
unfortunately the greater the visibility too.

D. Repartition and redundancy of hidden bits

We have
! "$! & 154

texture values to encode one 8-bit
depth value. Each texture value can encode one depth bit. So,
there are 64 host bits for only 8 payload bits. This allows
to redundantly encode some or all of the payload bits. For
example we could encode 8 times each depth bit. However
we choose to prioritize the most significant bits over the least
significant ones. We hide 16 times bits

�
and

� �
, 8 times bits� �

and
� �

, and 4 times bits
� �

,
� �

,
� �

and
� �

. By doing so,
we hope that the most significant bits will be recovered more
reliably using a majority vote.

This being set, we must still choose which host bits will
encode which depth bits. For example we might encode 16
times the bit

�
by modifying the LSB of a

4 "�4
sub-block of

the
! " !

texture block. However many repartitions are possible.
We actually used a repartition where each depth bit is more
or less uniformly spread over the whole

! " !
texture block.

This repartition, which gave the best results, is the following:� � � � � � � � � � � ���� ��� ��� ��� ��� ��� ��� ���� � � � � � � � � � � ��"� ��� �
� ��� �"� ��� �
� ����� ��� �� ��� �� ��� �� ���� � � � � � � � � � � � � � � ��� �
� �� �
� �� �
� �� �
�� � � � � � � � � � � � � � � �

E. From embedding domain to RGB domain

After the depth information is hidden in the wavelet co-
efficients of the luminance, we perform an inverse wavelet
transform to get the modified luminance map

#% . Then, the
original RGB image must be modified to reflect the mod-
ification of luminance. Considering the simplified formula
% & (*)�68, . (*) 1-2 . (*) +-7

for the luminance, we see that
there are two degrees of freedom in choosing

,
,

2
and

7
to obtain a given luminance value: we can arbitrarily set two
color components and still be able to get the wanted luminance
by choosing the right value for the third component.

Let � & #% 0 % be the difference of luminance introduced
by the hidden data. The simplest way to modify the color
components to reflect this change of luminance is to set

#, &, . � ,
#2 & 2 . � and

#7 & 7 . � . However we must
be aware that

,
,

2
and

7
must be integer. Therefore the

increment � should be truncated to an integer value. In this
way the luminance change is encoded with a precision of 1.
However it is possible to encode � with a precision of

(0)
6
by

using the two aforementionned degrees of freedom available
when modifying

,
,
2

and
7

to get a given luminance.
Without loss of generally we can suppose ����� 0 (*)���� (0) � �

(by first adding the integer part of � to
,

,
2

and
7

). Then, to
encode the fractional part of � we simply increase or decrease,

,
2

and/or
7

by one as follows:

interval coded modification
�	�
� 0 (0) ��� 0 (*) 4�� � 0 (*)�� (,� 2�� 7 * . & ((�� 0 6�� . 6 *
�	�
� 0 (0) 4���� 0 (0) +�� � 0 (*) 4 (,� 2�� 7 * . & (0 6�� (�� 0 6 *
�	�
� 0 (0) +���� 0 (0) ��� � 0 (*) + (,� 2�� 7 * . & (0 6�� (�� (*
�	�
� 0 (0) ����� 0 (0)
6�� � 0 (*)�� (,� 2�� 7 * . & (0 6�� (�� . 6 *
�	�
� 0 (0)
6���� 0 (0) (�� � 0 (*)�6 (,� 2�� 7 * . & ((�� (�� 0 6 *
�	�
� 0 (0) (���� (0) (�� � ((,� 2�� 7 * . & ((�� (�� (*�	�
� (0) (���� (0)
6�� � (*)�6 (,� 2�� 7 * . & ((�� (�� . 6 *
�	�
� (0)
6���� (0) ��� � (*)�� (,� 2�� 7 * . & (. 6�� (�� 0 6 *
�	�
� (0) ����� (0) +�� � (*) + (,� 2�� 7 * . & (. 6�� (�� (*
�	�
� (0) +���� (0) 4�� � (*) 4 (,� 2�� 7 * . & (. 6�� (�� . 6 *
�	�
� (0) 4���� (0) � � (*)�� (,� 2�� 7 * . & ((�� . 6�� 0 6 *

This modification has a minimal impact on the texture color
and improves the precision with which the hidden information
is finally coded.

IV. EXTRACTION ALGORITHM

A. Extraction and error correction

The first step of the extraction algorithm is straightforward:
we simply perform the wavelet decomposition of the lumi-
nance of the texture image and we read the LSB of the wavelet
coefficients. For a given

! " !
luminance block, each of the

64 extracted LSB corresponds to a given bit (from
��

to
�
�

)
of the associated depth value.

The second step is less straightforward: each read bit
represents a given bit of a given depth coefficient. Since there
is redundancy, several read bits correspond to the same depth
bit. Ideally, these extracted bits would all be equal. In practice,
due to attacks (e.g. compression of the image) or to the limited
precision with which the payload was hidden, they might not

(a) 5/3 biorthogonal
wavelets.

(b) Haar wavelets. (c) “Linear interpola-
tion” wavelets.

Fig. 6. Geometry reconstructed only from the base wavelet band (� � �
coefficients) of the cylindrical depth map, using three different wavelets.

be all the same. In this instance some kind of majority vote
is needed to determine the value of the extracted bit.

For instance, if we read 12 times a 1 for bit
�"

and 4 times
a 0, we would assign the value 1 for bit

�"
. Yet, we explored a

more general formula whereby “the value of a bit is no longer
binary”. Let’s say we read � times 1 for a bit

� !
and � 0��

times 0. We then set the bit
� !

to be:

� ! &
$%& %'
�� . ���� �������� �� if

� �"!#��� 0 ���� �$� ���� �� if
� �/3#��� if

� � &%�
(2)

where & is a chosen parameter. When & & (
we get back the

majority vote formula. For & & 6
, the value of a bit varies

linearly between 0 and 1 with respect to the number of 1s that
are read. For & & .('

, the bit is set to 0 or 1 only when
there is absolute consensus, otherwise it is “ignored” (i.e. set
to 0.5). Note that different values for & could be used for the
different bits and the different wavelet bands. Other formulas
could be tried as well.

Once all the “continuous bits”
��!

of a given depth coefficient
are computed, the depth coefficient is simply computed as) !+* � � ! � ! and then scaled to the correct range, which depends
on the wavelet band it belongs to. Except for the base wavelet
band, this range is centered around 0, therefore when all

� !
are

set to 0.5, the reconstructed value is equal to 0. In other words,
when the bits are “undecided”, the reconstructed frequency
value is not really used (since it is 0).

B. Depth reconstruction

After all depth wavelet coefficients are computed from the
extracted bits, we perform an inverse wavelet transformation to
obtain the depth map in spatial domain. Then the 3D geometry
can be reconstructed and textured.

The kind of wavelets used for describing the geometry is im-
portant: we want that if the high frequency bands are missing
(i.e. have mostly null values) then the geometry reconstructed
from the low frequencies be as smooth as possible. Not all
wavelets are suited to this, as shown on Fig. 6. Therefore
we used “linear interpolation” wavelets to decompose the
depth (illustred on Fig. 7). However we used the so-called
5/3 biorthogonal wavelets (one of the wavelets that will be
implemented in JPEG 2000 [8]) to decompose the texture.

0 1 753164200765432

Fig. 7. Linear interpolation wavelets.

JPEG 100 JPEG 85 JPEG 40

Fig. 8. Extracted geometry (with ���
�
) from the compressed texture: depth

map (top) and corresponding 3D geometry (bottom).

V. RESULTS

Fig. 8 shows the geometry that could be recovered after
hiding the geometry into the texture and applying a JPEG
compression (with & & 6

). Fig. 9 shows the numerical results
of the distortion of both the texture image and the recovered
geometry (for three different values of the reconstruction
parameter &). The horizontal line represents the strength used
for data-hiding.

As can be seen in this case, the formula used to handle the
redundancy of hidden bits has an impact on the degradation of
the recovered geometry. For slight JPEG compression (down
to 50% quality factor) using & & 6

gives better results than
using a plain majority vote (& & (

).
As for the property of spatial synchronization between

payload and cover, it is illustrated by Fig. 10. We erased a
small part of the texture. The redundancy of hidden bits allows
then to detect that the data recovered in the corresponding
area is not reliable: when we are “too far” from consensus
for a given bit we simply declare it to be invalid instead
of computing the depth value using an & -formula. When a
depth value is invalid, it has a more or less localized impact
according to which wavelet band it belongs to. In this example

2030405060708090100
10

20

30

40

50

60

facteur de qualité JPEG

P
S

N
R

visibility
JPEG
alpha = 0
alpha = 1
alpha = inf

Fig. 9. Degradation of the hidden depth information in function of the lossy
compression of the texture for three different values of the error recovery
parameter � . The visibility of the hidden data (horizontal line) and the strength
of the JPEG compression are also represented.

(a) Truncated texture. (b) Reconstructed geometry.

Fig. 10. Detection of unreliable parts of the texture. Spatial coherence
between payload and host information.

we observe that small parts unrelated to the truncated texture
part are also found to be invalid. This is because the blackened
area affects the surrounding wavelets coefficients which may
impair the data hidden therein. This confirms the need to use
compact wavelets.

VI. CONCLUSION

We proposed a scheme for hiding a 2D depth map into a
2D texture map. As such this scheme is merely an image-in-
image data-hiding algorithm. However in this instance there is
a spatial correlation between the 2D images, which we wanted
to preserve. Also, we wanted that the quality of the retrieved
data be proportional to the quality of the host data. This was
achieved to some degree by using a wavelet decomposition of
both images.

Finally, such a scheme could be applied to any multi-band
document where we want to reduce the number of bands by
hiding the N-th band into the first (N-1) while ensuring the
aforementioned properties. This might be useful to convey
additional information through a standard data format that is
not designed to encode this information. As for images it might
then be possible to hide a transparency layer, or a stereo-vision
disparity map, into a single image stored in a plain data format.

ACKNOWLEDGMENT

This research is supported in part by the FR-RNRT
SEMANTIC-3D project.

REFERENCES

[1] N.K. Adbulaziz and K.K. Pang. Robust data hiding for images. In
International Conference on Communication Technology, 2000.

[2] J.J. Chae and B.S. Manjunath. Data hiding in video. In IEEE International
Conference on Image Processing, 1999.

[3] J. Chou, K. Ramchamdran, D. Sachs, and D. Jones. Audio data hiding
with application to surround sound. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2003.

[4] E. Garcia and J.-L. Dugelay. Texture-based watermarking of 3D video
objects. IEEE Transactions on Circuits and Systems for Video Technology,
13(8), August 2003.

[5] S. Katzenbeisser and F. A. P. Petitcolas. Information Hiding Techniques
for Steganography and Digital Watermarking. Artech House, 2000.

[6] K. Solanki, O. Dabeer, B.S. Manjunath, U. Madhow, and S. Chan-
drasekaran. A joint source-channel coding scheme for image-in-image
data hiding. In IEEE International Conference on Image Processing,
pages II: 743–746, 2003.

[7] M. D. Swanson, B. Zhu, and A. H. Tewfik. Data hiding for video-in-
video. In IEEE International Conference on Image Processing, volume 2,
pages 676–679, Santa Barbara, CA, October 1997.

[8] D. S. Taubman and M. W. Marcellin. JPEG 2000. Kluwer Academic
Publishers, 2002.

