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Abstract— Exact expressions are derived for the average symbol error
rate (SER) for correlated non-frequency selective quasi-static multiple-
input multiple-output (MIMO) Rayleigh fading channels where the
transmitter employs orthogonal space-time block coding (OSTBC) and
precoding with a full complex-valued precoder matrix. Expressions are
given for M -PSK, M -PAM, and M -QAM signal constellations. An
iterative optimization technique is proposed for finding the minimum
exact SER precoder. The results show that the proposed precoder
performs better than a system using the trivial precoder and a system
using the precoder that minimizes an upper bound on the pair-wise error
probability (PEP).

I. I NTRODUCTION

In the area of efficient communications over non-reciprocal MIMO
channels, recent research has demonstrated the value of feeding back
to the transmitter information about channel state observed at the
receiver. Clearly, the type of feedback may vary largely, depending on
its nature, e.g., required rate, instantaneous, or statistical channel state
information (CSI), leading to various transmitter design schemes, see
e.g., [1], [2], [3]. There has been a growing interest in transmitter
schemes that can exploit low-rate long-term statistical CSI in the
form of antenna correlation coefficients. So far, emphasis has been
on designing precoders for space-time block coded (STBC) [2]
signals or spatially multiplexed streams that are adjusted based on
the knowledge of the transmit correlation only while the receiving
antennas are uncorrelated [4], [5], [6], [7]. These techniques are
well suited to downlink situation where an elevated access point
(situated above the surrounding clutter) transmits to a subscriber
placed in a rich scattering environment. Although simple models
exist for the joint transmit receiver correlation based on the well
known Kronecker structure [2], the accuracy of these models has
recently been questioned in the literature based on measurement cam-
paigns [8]. Therefore, there is interest in investigating the precoding
of OSTBC signals for MIMO channels thatdo notnecessarily follow
the Kronecker structure.

Previously developed theory in the field: An upper bounds on
the PEP is minimized in [4], [9] for transmitter correlation and
for full channel correlation in [3], [10]. In [9], the exact SER
expressions were derived for when there isno receiver correlation
and maximum ratio combining is used at the receiver. A bound of
the exact error probability was used as the optimization criterion
in [9]. The no receiver correlation assumption might be an unrealistic
channel model for example in uplink communications, where the
access point (receiver) is equipped with several receiver antennas
and where the direction of arrival has a small spread at the receiver
antennas. In [11], exact SER expressions were found for uncorrelated
MIMO channels that are precoded with the identity matrix.

In this paper, we address the problem of linear precoding of
OSTBC signals launched over a jointly transmit-receive correlated

This work is supported by the Research Council of Norway through project
number 157716/432.

Mt × 1
Mt × B Mr ×Mt

x̂

B × 1

x

Mr × 1

xk x̂k

K × 1K × 1

y′k
MLD

√
α

C(x)

OSTBC

(a)

(b)

zi

H

vi

yi

MLDF

v′k

ci(x)

Fig. 1. Block model of the linear precoded OSTBC MIMO system.

MIMO channel. Our two main contributions are: Firstly, we derive
exact expressions for the average SER for a system where the
transmitter has an OSTBC and a full complex-valued precoder matrix
equipped with multiple antennas and where the receiver also has
multiple antennas and is using maximum likelihood decoding (MLD).
The channel correlation matrix is general such that receiver correla-
tion might be present. The transmitter knows the correlation matrix
of the channel transfer matrix and the receiver knows the channel
realization exactly. Secondly, we propose an iterative numerical
technique for minimizing theexact SERwith respect to the precoder
matrix. In earlier works, an upper bound of the exact symbol error rate
or the pairwise error probability are used. The precoder is obtained via
an iterative algorithm which uses the knowledge of the full transmit-
receive correlation, regardless of whether the Kronecker structure is
valid or not.

II. SYSTEM DESCRIPTION
A. OSTBC Signal Model

Figure 1 (a) shows the block MIMO system model withMt and
Mr transmitter and receiver antennas, respectively. One block of
K source samplesx0, x1, . . . , xK−1 is transmitted by means of an
OSTBC matrixC(x) of size B × N , whereB and N are the
space and time dimension of the given OSTBC, respectively, and
wherex = [x0, x1, . . . , xK−1]T contains the source samples. It is
assumed that the OSTBC is given. Letxi ∈ A, whereA is a signal
constellation set such asM -PAM,M -QAM, orM -PSK. The OSTBC
returns anB × N matrix C(x) that is dependent onx. If bits are
used as inputs to the system,K log2 |A| bits are used to produce the
vectorx, where| · | denotes cardinality. Assume thatE

[
|xi|2

]
= σ2

x,
and that the matrix that comes out of the OSTBC is denotedC(x) is
of sizeB×N . Since the OSTBC is orthogonal, the following holds

C(x)CH(x) = a

K−1∑
i=0

|xi|2IB, (1)

wherea = 1 if C(x) = GT2 1, C(x) = HT3 , or C(x) = HT4 in [13]
and a = 2 if C(x) = GT3 or C(x) = GT4 in [13]. The rate of the

1The OSTBCGT2 is the well-known Alamouti code [12].



code isK/N . Other OSTBC can be used as well. The codeword
matrixC(x) has sizeB ×N and can be expressed as:

C(x) = [c0(x) c1(x) · · · cN−1(x)] , (2)

whereci(x) is theith column vector ofC(x) and it has sizeB×1.
Before each code vector is launched into the channel, it is precoded

with a memoryless complex-valued matrixF of sizeMt×B, so the
Mr × 1 receive signal vectoryi becomes

yi = HFci(x) + vi, (3)

where the additive noise on the channelvi is complex Gaussian cir-
cularly distributed with independent components having varianceN0

andH is the channel transfer MIMO matrix. Let the vectorsyi be
collected into the matrixY of sizeMr ×N in the following way:

Y =
[
y0 y1 · · · yN−1

]
, (4)

and the vectorsvi into the matrixV of sizeMr×N , in the following
way:

V = [v0 v1 · · · vN−1] . (5)

Then the block input-output relationship for the MIMO system can
be expressed:

Y = HFC(x) + V . (6)

The receiver is assumed to know the channel matrixH and the
precoding matrixF exactly, and it performs MLD of blocks of
lengthN .

B. Correlated Channel Models

A quasi-static non-frequency selective correlated Rayleigh fading
channel model [2] is assumed. LetR , E

[
vec (H) vecH (H)

]
be

the generalMtMr ×MtMr positive definite autocorrelation matrix
for the channel coefficients, where the operatorvec(·) stacks the
columns of the matrix it is applied to into a long column vector [14].
A channel realization of the correlated channel can then be found by

vec (H) = R1/2 vec (Hw) , (7)

whereR1/2 is the unique positive definite matrix square root [14] of
R andHw has sizeMr ×Mt and is complex Gaussian circularly
distributed with independent components all having unit variance.

Kronecker model: A special case of the model above is as
follows [2]

H = R1/2
r HwR

1/2
t , (8)

where the matricesRr andRt are the correlations matrices of the
receiver and transmitter, respectively, and their sizes areMr ×Mr

andMt × Mt. The full autocorrelation matrixR of the model in
Equation (8) is then given by

R = RT
t ⊗Rr, (9)

where the operator(·)T denotes transposition and⊗ is the Kronecker
product. Unlike Equation (9), the general model considers that the
receive (or transmit) correlation depends on at which transmit (or
receive) antenna the measurements are performed.

C. Equivalent Single-Input Single-Output Model
Define the matrixΦ of sizeMtMr ×MtMr as:

Φ = R1/2
[(
F ∗F T

)
⊗ IMr

]
R1/2. (10)

This matrix plays an important role in the developed theory. Define
the real non-negative scalarα by

α = ‖HF ‖2F = vecH (Hw)Φ vec (Hw) , (11)

where‖ · ‖F is the Frobenius norm. Since the matrixHw contains
unit variance uncorrelated variables,E

[
vec (Hw) vecH (Hw)

]
=

IMtMr . The expected value ofα can now be found:

E [α] = E
[
vecH (Hw)Φ vec (Hw)

]
= Tr

{
ΦE

[
vec (Hw) vecH (Hw)

]}
= Tr {Φ} . (12)

By generalizing the approach given in [11], [15] to include afull
complex-valued precoderF of sizeMt×B and having anarbitrary
channel correlation matrixR the OSTBC system can be shown
to be equivalent with a system having the following output input
relationship

y′k =
√
αxk + v′k, (13)

for k ∈ {0, 1, . . . ,K − 1}. This signal is fed into a memoryless
MLD that is designed from the signal constellation of the source
symbolsA. v′k ∼ CN (0, N0/a) is complex circularly distributed.
The equivalent single-input single-output (SISO) model is shown in
Figure 1 (b).

III. SER EXPRESSIONS FORGIVEN RECEIVED SNR
By considering the SISO system in Figure 1 (b), it is seen that the

instantaneous received SNRγ per source symbol is given by

γ =
aσ2

xα

N0
= δα, (14)

whereδ , aσ2
x

N0
. The expected received signal to noise ratio is given

by: E [γ] =
aσ2
x Tr{Φ}
N0

= δTr {Φ}.
In order to simplify the expressions, the following three signal

constellation dependent constants are defined

gPSK = sin2 π

M
, gPAM =

3

M2 − 1
, gQAM =

3

2(M − 1)
. (15)

The symbol error probabilitySERγ , Pr {Symbol error|γ} for a
givenγ for M -PSK,M -PAM, andM -QAM signalling given by [16]

SERγ =
1

π

∫ (M−1)π
M

0

e
− gPSKγ

sin2(θ) dθ, (16)

SERγ =
2

π

M − 1

M

∫ π
2

0

e
− gPAMγ

sin2(θ) dθ, (17)

SERγ =
4

π

(
1− 1√

M

)[∫ π
2

π
4

e
−
gQAMγ

sin2(θ)dθ+
1√
M

∫ π
4

0

e
−
gQAMγ

sin2(θ)dθ

]
,

(18)
respectively.

IV. EXACT SER EXPRESSIONS

The moment generating functionφγ(s) of the probability density
function pγ(γ) is defined asφγ(s) =

∫∞
0
pγ(γ)esγdγ. Since

all the K source symbols go through the same SISO system in
Figure 1 (b), the average SER of the MIMO system can be found as

SER , Pr {Error} =

∫ ∞
0

Pr {Error|γ} pγ(γ)dγ

=

∫ ∞
0

SERγ pγ(γ)dγ. (19)



This integral can be rewritten by means of the moment generating
function of γ.

From Equation (11) and the fact that all the elements ofHw is
independent and complex Gaussian distributed with zero mean and
unit variance, it follows that the moment generating function ofα is
given by:

φα(s) =
1

MtMr−1∏
i=0

(1− λis)
, (20)

whereλi is eigenvalue numberi of the positive semi-definite matrix
Φ. Sinceγ = δα, the moment generating function ofγ is given by:

φγ(s) = φα (δs) =
1

MtMr−1∏
i=0

(1− δλis)
. (21)

By using Equation (19) and the definition of the moment generating
function together with the result in Equation (21) it is possible to
express the exactSER for all the signal constellations in terms of
the eigenvaluesλi of the matrixΦ. When finding the necessary
conditions for the optimal precoder, eigenvalues that are not simple
might case difficulties in connection with calculations of derivatives.
Therefore, it is useful to rewrite the expressions for theSER in
terms of the full matrixΦ. This can be done by utilizing the eigen-
decomposition of this matrix. The results of all these operations led
to the following expressions for theSER for M -PSK,M -PAM, and
M -QAM

SER =
1

π

∫ (M−1)π
M

0

dθ

det
(
IMtMr + δ gPSK

sin2 θ
Φ
) , (22)

SER =
2

π

M − 1

M

∫ π
2

0

dθ

det
(
IMtMr + δ gPAM

sin2 θ
Φ
) , (23)

SER =
4

π

√
M − 1√
M

[∫ π
2

π
4

dθ

det
(
IMtMr + δ

gQAM
sin2 θ

Φ
)

+
1√
M

∫ π
4

0

dθ

det
(
IMtMr + δ

gQAM
sin2 θ

Φ
)] , (24)

respectively. It is seen that Equations (22) and (23) gives the same
result whenM = 2. This is not surprising, since, the constellations
of 2-PSK and2-PAM are identical. WhenM = 4, it can be shown
that Equations (22) and (24) return the same result. IfR = IMtMr
andF = IMt , then the performance expressions in Equations (22)
and (24) are reduced to the results found in [11]. IfMr = 1 and no
receiver correlation is present, Equations (22), (23), and (24) are in
accordance with expressions derived in [9].

V. PRECODING OFOSTBCSIGNALS
A. Power Constraint

Then OSTBC is used, Equation (1) holds and the average power
constraint on the transmitted blockZ , FC(x) can be expressed
as

aKσ2
x Tr

{
FFH

}
= P, (25)

whereP is the average power used by the transmitted blockZ .

B. Optimal Precoder Problem Formulation
The goal is to find the matrixF such that the exactSER is

minimized under the power constraint. We propose that the optimal
precoder is given by the following optimization problem:

Problem 1:

min
{F∈CMt×B}

SER

subject to Kaσ2
x Tr

{
FFH

}
= P.

Remark 1:The optimal precoder is dependent on the value ofN0

and therefore also onSNR.

C. Properties of Optimal Precoder
Lemma 1: If F is an optimal solution of Problem 1, then the

precoderFU , whereU ∈ CB×B is unitary, is also optimal.
Proof: Let F be an optimal solution of Problem 1 andU ∈

CB×B , be an arbitrary unitary matrix. It is then seen by insertion
that the objective function and the power constraint are unaltered by
the unitary matrix.

Lemma 2: If N0 → 0+, B = Mt, andR is non-singular, then the
optimal precoder is given by the trivial precoderF =

√
P

Kaσ2
xMt

IMt
for theM -PSK,M -PAM, andM -QAM constellations.

Proof: See [17].
Lemma 3: If Mt = B andR = IMtMr , then the optimal precoder

is given by the trivial precoderF =
√

P
Kaσ2

xMt
IMt for theM -PSK,

M -PAM, andM -QAM constellations.
Proof: See [17].

VI. OPTIMIZATION ALGORITHM

Let the matrixKk,l be the commutation matrix [18] of sizekl×kl.
The constrained maximization Problem 1 can be converted into
an unconstrained optimization problem by introducing a Lagrange
multiplier µ′. This is done by defining the following Lagrange
function:

L(F ) = SER +µ′ Tr
{
FFH

}
. (26)

Since the objective function should be minimized,µ′ > 0. Define
theM2

t ×M2
tM

2
r matrix L as

L =
[
IM2

t
⊗ vecT (IMr )

]
[IMt ⊗KMt,Mr ⊗ IMr ] . (27)

Lemma 4:The precoder that is optimal for Problem 1 must satisfy
Equations (28), (29), and (30) in the bottom of the next page for the
M -PSK,M -PAM, andM -QAM constellations, respectively.µ is a
positive scalar chosen such that the power constraint in Equation (25)
is satisfied.

Proof: See [17].
Equations (28), (29), and (30) can be used in a fixed point iteration

for finding the precoder that solves Problem 1. Notice that the positive
constantsµ′ andµ are different.

VII. R ESULTS AND COMPARISONS

SNR is here defined as:SNR = 10 log10
P
N0

. Comparisons are
made against a system not employing any precoding, i.e.,F =√

P
Kaσ2

xMt
IMt and the system minimizing an upper bound of the

PEP [10].
The following parameters are used in the examples:P = 1, and

Mr = 6. The signal constellation is 8-PAM withσ2
x = 1/2. As

OSTBC the codeC(x) = GT4 in [13] was used such thata = 2,
K = 4, Mt = B = 4, andN = 8.

Let the correlation matrixR be given by

(R)k,l = 0.9|k−l|, (31)

where the notation(·)k,l picks out element with row numberk and
column numberl.

Figure 2 show the SER versus SNR performance for the trivially
precoder, the minimum upper bound PEP precoder [10], and the
proposed minimum SER precoder. From the figures, it is seen that
proposed minimum SER precoder outperforms the reference systems
for all values ofSNR. The performance of the proposed system is
similar to the minimum PEP precoder for low and high values of
SNR, but for moderate values ofSNR, a gain up to0.8 dB can be
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Fig. 2. SER versus SNR performance of the proposed minimum SER
precoder− ◦ −, the trivial precoder− + −, and the minimum PEP
precoder−×− proposed in [10].

achieved over the minimum PEP precoder [10] and up to3.5 dB is
achieved over the trivial precoder.

If the same parameters are used as in [11] withF = IMt and
R = IMtMr , then the same results are found as reported in [11].

By Monte Carlo simulations, the exact theoretical SER expressions
were verified.

VIII. C ONCLUSIONS

For an arbitrary given OSTBC, exact SER expressions has been
derived for a precoded MIMO system equipped with multiple anten-
nas both in the transmitter and the receiver. The receiver employs
MLD and has knowledge of the exact channel coefficients, while
the transmitter only knows the channel correlation matrix. A fixed
point method is proposed for finding the minimum SER precoder for
M -PSK,M -PAM, andM -QAM signalling. The proposed precoders
outperforms the trivial precoder and the precoder that minimizes an
upper bound for the PEP.
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vec (F ) = µ
[
F T ⊗ IMt

]
L
[
R1/2 ⊗

(
R1/2

)∗] ∫ M−1
M

π

0

vec

([
IMtMr + δ gPSK

sin2(θ)
Φ∗
]−1
)
dθ

sin2(θ) det
(
IMtMr + δ gPSK

sin2(θ)
Φ
) , (28)

vec (F ) = µ
[
F T ⊗ IMt

]
L
[
R1/2 ⊗

(
R1/2

)∗] ∫ π
2

0

vec

([
IMtMr + δ gPAM

sin2(θ)
Φ∗
]−1

)
dθ

sin2(θ) det
(
IMtMr + δ gPAM

sin2(θ)
Φ
) , (29)

vec (F ) = µ
[
F T ⊗ IMt

]
L
[
R1/2 ⊗

(
R1/2

)∗] ∫ π
2

π
4

vec

([
IMtMr + δ

gQAM
sin2(θ)

Φ∗
]−1
)
dθ

sin2(θ) det
(
IMtMr + δ

gQAM
sin2(θ)

Φ
)

+
1√
M

∫ π
4

0

vec

([
IMtMr + δ

gQAM

sin2(θ)
Φ∗
]−1

)
dθ

sin2(θ) det
(
IMtMr + δ

gQAM

sin2(θ)
Φ
)
 . (30)


