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ABSTRACT

The performances of the LDU (Lower-Diagonal-Upper (LDU) fac-
torization) transform were recently shown to be equivalent to those
of the Karhunen-Loève Transform (KLT, which is optimal for Gaus-
sian sources) in the limit of high rates [1, 2, 3]. In this paper, we
further investigate the performances of the LDU for actual trans-
form coding (TC) schemes. The results of [2] showed that the
LDU should be implemented in closed loop around the quantizers,
though this leads to a noise feedback effect, similar to that occur-
ing in DPCM systems. We develop in this paper novel analyses of
these effects on the distortion-rate functions and coding gains. The
proposed analyses compare the results of [2] obtained for an hypo-
thetical TC system for which the bit allocation is optimal and the
rate is high, to those obtained for practical TC systems whose bit
allocation is nearly optimal. By means of a theorem and numer-
ical results, evidence is given that ordering the subsignals in the
source vector by order of decreasing variance minimizes the quan-
tization noise feedback. For the investigated practical systems, we
show that deviations from the high rate assumptions arise below
� � b/s. The effects of the noise feedback become non negligible
below � � b/s. The LDU competes with the KLT above � ��� b/s.

1. INTRODUCTION

Transform codes are popular because they provide an attractive
compromise between computational complexity and performance.
They allow to code with relatively low complexity long data blocks
at the cost of being suboptimal in the rate-distortion sense. A per-
vasive use is made of orthogonal transforms, since they guarantee
that the quantization noise will not be amplified. Among them,
the KLT has become a benchmark, since it has been proven to be
optimal for Gaussian sources [4]. In the framework of classical
tranform coding (TC), where the rate is high, the sources are sta-
tionary Gaussian and the bit allocation optimal, another transform
was recently shown to be optimal: the causal transform [1, 2, 3].
This transform can be shown to be a particular case of a general
causal coding framework [5].
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Texas Instruments.

For practical TC systems however, one or several of the assump-
tions above may not be verified. It seems therefore interesting to
investigate how the performances of the causal transform are af-
fected in practical cases. We shall nevertheless restrict the scope
of this work to the case of Gaussian sources, essentially because
this assumption renders the analytical evaluations tractable.
As a consequence of the non-orthogonality of the LDU, efficient
causal coding structures should be implemented in closed loop
around the quantizers, as in (A)DPCM systems [2]. As a con-
sequence of the closed loop implementation, a quantization noise
feedback increases the resulting distortion. Since the noise feed-
back arises in actual implementable causal coding structures, a re-
alistic analysis of the coding performance of the causal transform
should evaluate in which range of rates this noise feedback be-
comes important, and how the corresponding coding performances
are actually deteriorated. No such analyses were proposed in [1]
nor in [3]. The theoretical analysis of this particular problem in
[2] assumed stringent assumptions, namely an optimal bit assign-
ment, and a sufficiently high rate for the quantizer’s performance
factor to be constant. Hence, these results have remained difficult
to corroborate. The main goal of the present paper is to describe
quantitatively how the noise feedback impacts the coding perfor-
mances of actual causal TC coding systems, and to evaluate the
preciseness of the analysis of [2] in this case. A theorem showing
that the signals within the source data blocks should be processed
by order of decreasing variances will be proposed. This theorem
completes the analysis of [2], and evidence of its validity will be
given for the practical systems investigated.
Paper Outline : Some results regarding the causal transform in
the classical TC framework are recalled in the second Section. In
the third part, the analysis of [2] is summarized and completed. A
practical causal TC system is then investigated in Section 4. The
last part summarizes the main results.

2. CAUSAL TRANSFORM CODING WITH NEGLIGIBLE
QUANTIZATION NOISE FEEDBACK

In the classical TC framework, a matrix transform � is applied
to each source vector ��. This vector may be composed by �

consecutive samples of the same scalar signal �, in which case
�� � ��� ���� � � � �������

� , or by the samples of � scalar
subsignals ����, in which case �� � ����� ���� � � ������

� is a
sample of a vectorial signal �. The causality refers to the ordering
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of the samples ����, or of the scalar signals ���� which compose
�. The influence of a component permutation on the coding gains
will be investigated in this Section and in Section 3.
The components of the transform vector �

�
� ��� form a set

of transform coefficients which are independently quantized using
scalar quantizers. In what follows, we will consider (jointly) Gaus-
sian sources with known covariance matrix ���.
In the causal case, �

�
� ��� � �� � ���, where ��� is the ref-

erence vector. The output ��� is ��
�
����. As detailed in [1, 2], the

components �� are the prediction errors of �� with respect to the
previous components of �, the ������, and the optimal coefficients
��������� are the optimal prediction coefficients. It follows that

�����
� � ��� � diag ����� � � ��

�
��
� � ��� � �������

��

(1)
where diag ��� represent the diagonal matrix with diagonal �.
Exp. (1) represents the LDU factorization of ���. The distortion

is given by � �������� � � ������ � � ���� ��������
�

� � ��� �

where 	 � �
�
�	

��� 	�. The coding gain [6] for � is

�
���
� �

�
��� 	 diag �����


��� 	 diag ������� �


� �

�

�

�
��� 	 diag �����


��� �

� �

�

��
���

 �

(2)
where the superscript ��� refers to the ideal case where the rate
is sufficiently high (for the prediction to be based on unquantized
data, and the quantizers’performance factor to be constant) and the
bit assignment is optimal. The notation diag �� denotes the diag-
onal matrix with same diagonal as , � denotes a KLT of��� and
� the corresponding matrix of eigenvalues. This is the best cod-
ing gain achievable among all unimodular transforms. Moreover,
this gain is invariant by permutation: consider the vector ���,
where � is a permutation matrix. Let us denote by �� the cor-
responding LDU transform such that � ��������������

� �
��������

�
� � �����. Since permutation matrices are unimod-

ular, �������� � �������� � ������ �����
� � ������.

Hence, the coding gain is still given by (2). We shall see in Section
3 that this invariance is broken when the effects of quantization
noise are not negligible in the closed loop structure.
The causal transform presents aditionally several advantages w.r.t.
the KLT [1, 2], among which : lower design and implementation
complexity, or “robustness” as the transform coefficients are quan-
tized. Moreover, the LDU can be naturally used either for lossy or
lossless compression and for on-line transform coding [5].

3. HIGH RESOLUTION ANALYSIS OF A CLOSED
LOOP CAUSAL TRANSFORM CODING SCHEME

The analysis of [2] can be closely related to that of the noise feed-
back in closed loop DPCM coding schemes [6]. In all the subse-
quent analyses we will assume Entropy Coded Uniform Quantiza-
tion (ECUQ). For this type of quantizers, the additive quantization
noise model is accurate for a wide range of rates (see [5]). The
operational distortion-rate functions of the quantizers are denoted
by ��

���
� ���������� , where � generally depends on 	. For suffi-

ciently high rates, � tends to ��
�. This approximation (known as
the Gish and Pierce approximation) will be retained in this Section,
as well as the optimal bit assignment assumption.

3.1. Quantization Noise Feedback Analysis

The following development accounts only for the first order of the
perturbations. In the sequel, the superscript � will denote quantities

obtained in the presence of noise feedback. The causal transform
will be denoted by �� because its design may be different from
the that of the transform � (designed for a system without, or with
negligible feedback). We shall see however that as in DPCM, the
optimal predictor does not essentially vary, and that �� � �.
In the case where the reference vector is based on quantized data,
the output vector becomes �

�
� ����

�

��� � ����
�

�������� �
���� � �

���
�
� The difference vector �

�
now not only contains

the prediction error ���� of ��, but also the quantization error ��
�

filtered by the predictor �
�

. An alternative (and equivalent) rep-
resentation of the closed loop causal coding scheme as described
above can be obtained by coding the transform components with-
out reconstructing the data, that is, by using the quantized whitened
versions ��� instead of ��� to compute the prediction. In both cases,
the variances of the quantization noises are, for an optimal bit as-
signment, equal :

��
�
���

� ������
	�
���

��
�
��
�

�

� � ��
�
� � (3)

and the autocorrelation matrix of the noise is ��

���� � ��
�
�� . Com-

paring with Section 2, the prediction error variances are increased
because the reference vector is based on quantized data, and the
quantization noise variances are therefore increased to ��

�
� . One

shows that the problem of optimizing �� corresponds to the opti-
mal prediction of � perturbed by a white noise. Thus, we should
look for

��
��
�������

��

����� � ��
�
����

��
� � (4)

The resulting prediction error variances are

��
�
��
� ������

� � ��
�
���

�
��� � ������

� � �����
�
���� (5)

where ��� � � and � are non perturbed quantities (Sec. 2).
Suppose now that the transform � of Section 2, eq. (1) (i.e. opti-
mized for a system with negligible noise feedback) is used to com-
pute the reference vectors in a closed loop coding scheme. Then
the variances of the transform signals will also be given by (5),
which is obtained with the transform �� of eq. (4). Thus, the
optimal predictor design should not essentially vary when one ac-
counts for the first order of the perturbations in closed loop causal
TC. The performances degradation come mainly, at high rates,
from the filtering of the quantization noise by the predictors (rows
of the matrix �). The distortion (3) is in this case

�
	

� ������
��
� �

	
� ������

�
� �

	

	�
���

��

�
�������

�
��

� ��
�
����

�
	�
���

��
�
��

� �

�

� ���

�
� �

��
	

	�
���

����
�

����

�
�

(6)
This leads to the following expression for the coding gain ����

�

�
���
� � �

���

��
� �

���
�

�
��

�

�
���

	�
���

����
�

����

�
� (7)
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3.2. Influence of the Permutation on the Coding Gain
An equivalent expression of ����

� is (see Appendix 2.A in [5])

�
���
� � �

���
�

�
�� ���

�

��
���

�
�

��
� �

����

��
� (8)

where ���� are the eigenvalues of ���. Thus, maximizing the
coding gain entails maximizing the sum of the inverses of the pre-
diction error variances : whereas ����

� is invariant by permutation
there should be for the closed loop causal TC scheme an optimal
ordering of the components ���� of ��. Comparing �

���
� in (8)

with the infinite resolution case (2), the different prediction error
variances produced by different decorrelation approaches induce
now different gains. Hence, the coding gain �

���
� depends on a

carefull choice of the decorrelation procedure. In the case � � �,
maximizing the coding gain entails making the variances as dif-
ferent as possible. Thus, the subsignal of greater variance should
be processed first, and the off-diagonal predictor should be used
to decrease the variance of the subsignal of lower variance. Now
under the assumptions stated above, the following theorem holds
for � � �.
Theorem : Optimal ordering of the subsignals for the triangu-
lar transform. The optimal ordering of the subsignals in a sta-
tionary vectorial signal for maximizing the high-resolution coding
gain����

� of the causal LDU transform implemented in closed loop
is obtained by processing the signals in order of decreasing vari-
ance.
To show the theorem, consider a recursive argument. First of all,
the theorem is clearly true for the case of two channels. Now con-
sider 	 � � channels that we have ordered in order of decreasing
variance. When we add a 	th channel, the question is in which
position it should be put w.r.t. the other channels. Assume in a
first scenario that we put the channel in a position such that all 	
channels are in order of decreasing variance. Assume in a second
scenario that we insert the 	th channel at another position. Then
we can evolve from the first to the second scenario by a sequence
of permutations of two consecutive channels. In one such permu-
tation operation, assume that the channels involved in the permu-
tation are in positions 
 and 
 � �. Then the channels �� � � � � 
 � �
are unaffected in the triangular prediction approach. The channels

 � �� � � � � 	 are also unaffected by the order in which channels 

and 
 � � are put since in any case they get orthogonalized w.r.t.
the signals in those channels. So the only effect of the permutation
between channels 
 and 
 � � is on the prediction error variances
of those channels 
 and 
 � �. In other words we are reduced to
the two channel case, in which case we know that we should put
the channels in order of decreasing variance. So, as we move from
scenario one to scenario two by a succession of permutations of
two consecutive channels, we decrease the coding gain. Hence,
the optimal ordering is in order of decreasing variance.
This theorem is a special case of a more general theorem proposed
for triangular MIMO prediction in [7].

4. ANALYSIS OF A PRACTICAL CASE

A simple mean of realizing nearly optimal bit assignment in the
case of ECUQ is to quantize the signals with equal quantization
stepsizes. This case allows one to check, for a practical TC sys-
tem, several results. Firstly, in which range of average rates the
LDU implemented in closed loop suffers from a non negligible
noise feedback, and for which rates it presents similar coding per-
formances to those of the KLT. Secondly, if the previously exposed

analyses, which are subject to the assumptions of high resolution
and optimal bit allocation, have some value in this practical case.
Thirdly, if the claimed decorrelation strategy consisting in process-
ing the signals by order of decreasing variance is actually the best
one.

4.1. Optimal Bit Assignment and Equal Quantization Stepsize
The classical result of the optimal bit assignment states that given
a set of variances ���� , the quantization noise power ��

���
should be

equal for all the components. The number of bits assigned to the


th component is �� � � � �
�
������

�
��

���

����
�
��

��
�

�� Under high

resolution assumption, the quantization noise resulting from quan-
tization with stepsize 	� is uniformly distributed with variance
��
���

� 	�
� ��. A simple way of realizing an equal distortion is

therefore to quantize all the components with an equal 	. If the
���� � are further entropy coded, the bitrates ���� are given by the
Rényi relation of differential to discrete entropy �� � �
��� � �
�
�
���� ����

�
��
� ����	� It can then easily be checked that choos-

ing 	 �
�
������


��

��� �
�
��
�

�

�� corresponds to �
�

��

��� �� �
�
�

��

����
��� � � � [4].

4.2. Distortion Analysis
For large quantization stepsizes (low rates), the Rényi relation above
may not be accurate, be there a noise feedback or not. This ren-
ders the theoretical analysis of the system somewhat difficult at
low rates. Our analysis will be guided again by that of DPCM
systems. In order to describe the coding system implemented in
closed loop, we shall consider perturbations w.r.t. a system using
unquantized data for the prediction. For this system, the distortion
of each component is � 	��� � ���� � ��
	���������� , where ����
is the i�� optimal prediction error variance, and the notation ��
	�
reflects the fact that the quantizers’performance factor may be dif-
ferent from each other, and may depend on 	 at low rates. The
average distortion is in this case �

�
� ��	����� � �

�

��

��� ���� �
�
�

��

��� ��
	���������� � Numerical results [5] indicate that even
without noise feedback, the average distortion �

�
� ��	����� deviates

noticeably from (and is superior to) the high rate and optimal bit
allocation approximation �	

�
����
������

�

� at rates lower than
� � b/s. Now, for a closed loop causal TC system working at
moderate to low rates, the average distortion may be expressed as

�

�
� �	�����

�
�

�

�

��
���

����� �
�

�

��
���

��
	��������
�
��
� (9)

For our model, we shall assume that the covariance matrix of
the quantization noise is well approximated by ��

��
� at moder-

ate to high rates. Thus, the optimal transform is again given by
(4). The actual prediction error variances ������� may still be ap-
proximated by expression (5). Again, for small perturbations, the
optimal transform �� (minimizing (4)), or the transform designed
without feedback � in (1) should be sensibly equal. Using (5), the
operational distortion-rate function of the transform signals with
quantization noise feedback may be evaluated as

����� � ��
	��������
�
��

� ��
	������
���� � �����
��
 �����
�����
�� �������
	������� � ����

����� � ����

�� �������
	������

(10)
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Hence, the actual distortion in this system can be evaluated as

�

�
� ������

�
� �

�

��
���

������������
�

���
�

�

��
���

����

� � ���������������

� �

�

��
���

����

�� �����
����
����

�
�

�

��
���

������ � ����
� ����
����

��

(11)
As the rate increases, the distortions ������ tend to �	

�
��������� �

�	
�
�������	�

�

�

� � ��� , and the above distortion tends to ex-
pression (6), which was derived under the assumptions of optimal
bit assignment and constant quantizer’s performance factors.

4.3. Numerical results
The data are real Gaussian i.i.d. vectors with covariance matrix
� � �����

� . ��� is the covariance matrix of an AR(1)
process with parameter 	 � 
��. � is a diagonal matrix whose

th entry is �� � 
 � �����, � � �. The signals �� are coded
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(4) High & Opt. bit alloc. approx

Fig. 1. Distortion for the LDU (equal �, decreasing variances).

by order of either decreasing, or increasing variances. For these
two decorrelating strategies, sets of �
� vectors were transformed
using the algorithm based on reconstructed data. In fig. 1 and 2,
the distortion-rate functions of the closed loop causal transform are
plotted for signals of decreasing and increasing variances respec-
tively (optimal transform � of eq. (1) is used)
- (1) “Theoretic with feedback” refers to the analytical evaluation
(11) of a system with equal stepsize,
- (2) “Actual with feedback” corresponds to the actual distortion-
rate function of the closed loop TC system,
- (3) “Theoretic with Equal c and feedback” refers to the analytical
evaluation (6) : optimal bit assignment algorithm and � � �	

�
,

- (4) “High & Opt. bit alloc. approx” refers to the performance of
an ideal system without feedback, constant quantizer performance

factor, and optimal bit allocation, i.e. �	
�
���� ���	�

�

�

� .
It can be observed for both decorrelation strategies that :
- The performance of actual systems (2) deviate from their high
rate approximation (4) for rates below approximately � b/s.
- These performance are accurately described by the analysis (curve
(1)) down to approximately � b/s.
- The analysis of Section 3.1, which does not account for possible
variations of � w.r.t. the rate underestimates the actual distortions
(as discussed in Section 4.2, the actual distortion in the transform
domain with equal � is larger than �� ���� ���	�

�

��� even
without noise feedback).
Comparing now the Figures 1 and 2, better performance are clearly
obtained by processing the signals by order of decreasing variance,

as suggested by the high rate analysis of Section 3.1. Complemen-
tary numerical results [5] show that the performances of the LDU
are inferior to those of the KLT at low rates only : � ��� b/s; the
LDU with either a decreasing- or increasing-variance decorrela-
tion strategy is still advantageous (w.r.t. direct entropy coding the
signals) at all rates. Results regarding the equivalence of the two
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rate [b/s]
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]

(1) Theoretic with feedback
(2) Actual with feedback
(3) Theoretic with Equal c and feedback
(4) High & Opt. bit alloc. approx

Fig. 2. Distortion for the LDU (equal �, increasing variances).
coding schemes discussed in Sec. 3.1, and that of the transform �
and �� have also been obtained.

5. CONCLUSIONS
The analysis [2] of the noise feedback in the causal case was sum-
marized and completed by a theorem, showing that decorrelating
the signals by order of decreasing variances maximizes the cod-
ing gain. An analytical evaluation of practical TC algorithms was
then presented, which use equal quantization stepsize, and entropy
coded uniform quantizers. These systems allow one to corroborate
the results obtained in [2]. The proposed evaluation accounts cor-
rectly for the variations of the quantizer’s performance factors and
the noise feedback down to � � b/s. For these systems, the devi-
ation from the classical TC framework are noticeable below � �
b/s for both the KLT and the LDU. In the causal case, the effects
of the noise feedback become non negligible beyond � � b/s. The
decorrelation strategy suggested by the theorem was confirmed.
Comparing finally the two approaches, the LDU is shown to com-
pete with the KLT at rates higher than � � b/s, though requiring a
least computational complexity.
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