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ABSTRACT

We investigate the identi�ability conditions for blind
and semi{blind FIR multichannel estimation in terms
of channel characteristics, data length and input sym-
bol excitation modes. Parameters are identi�able if they
are determined uniquely by the probability distribution
of the data. Two models are presented: in the de-
terministic model, both channel coe�cients and input
symbols are considered as deterministic quantities and
in the Gaussian model, the input symbols as Gaussian
random variables. The Gaussian model appears more
robust than the deterministic one as it requires less de-
manding identi�ability conditions. Furthermore, semi{
blind methods appear superior to blind methods as they
allow the estimation of any channel with only few known
symbols.

1 Introduction

Blind multichannel identi�cation has received consider-
able interest over the last decade. In particular, second-
order methods have raised a lot of attention, due to
their ability to perform channel identi�cation with rel-
atively short data bursts. These methods su�er from
several drawbacks though. They leave an ambiguity in
the channel determination (in a single-user context, they
can only determine the channel up to a scale or phase
factor) and cannot identify certain ill-conditioned chan-
nels. This motivates the development of various other
methods to alleviate this problem. Semi-blind estima-
tion techniques exploit the knowledge of certain input
symbols and appear superior to purely blind and train-
ing sequence methods as much for their performance as
for their ability to perform identi�cation for any channel
for few known symbols [1].
We present here the identi�ability conditions for blind

and semi{blind FIR multichannel estimation for two
models. For the deterministic model, in which the in-
put symbols are considered as deterministic quantities,
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we give necessary and su�cient conditions in the blind
case and su�cient conditions in the semi-blind case. For
the Gaussian model, in which the input symbols are con-
sidered as Gaussian random variables, we give su�cient
conditions. The Gaussian model proves to be more ro-
bust and the deterministic one and semi{blind methods
appear superior to blind methods as they allow the es-
timation of any channel with only few known symbols.

2 Data Model and notations

Consider a sequence of symbols a(k) received through
m channels of length N and coe�cients h(i): y(k) =PN�1

i=0 h(i)a(k�i) + v(k), v(k) is an additive in-
dependent white Gaussian noise with rvv(k�i) =
Ev(k)v(i)H = �2vIm �ki. Assume we receive M sam-
ples, concatenated in the vector Y M (k):

Y M (k) = TM(h)AM+N�1(k) + V M (k) (1)

Y M(k) = [yH(k�M+1) � � �yH(k)]H , similarly for

V M (k), and AM (k) =
�
aH(k�M�N+2) � � �aH(k)

�H
,

where (:)H denotes hermitian transpose. TM (h) is a
block Toeplitz matrix �lled out with the channel co-
e�cients. The SIMO transfer function is: H(z) =PN�1

i=0 h(i)z�i = [HH1 (z) � � � H
H
m(z)]

H .

H=[h(N�1) � � �h(0)] and h=[hH(N�1) � � �hH(0)]H :
(2)

We shall simplify the notation in (3) with k = M�1 to:

Y = T (h)A+ V = Tk(h)Ak + Tu(h)Au + V (3)

where Ak are the Mk known symbols in the burst and
Au the Mu unknown symbols.
A channel is said irreducible if its subchannels Hi(z)

have no zeros in common, and reducible otherwise.
A reducible channel can be decomposed as: H(z) =
Ho(z)Hc(z), where Ho(z) of length No is irreducible
and Hc(z) of length Nc is a monochannel,Hc(0) = 1. A
channel is said minimum{phase if all its zeros are inside
the unit circle.
We introduce the notion of e�ective number of sub-

channels denoted me: it is the rank of H in (2). In-
deed, certain identi�ability conditions will be based on



the fact that T (h) is full column rank. When H(z)
is irreducible, T (h) is full column rank if the rank of
its lines is greater or equal to the number of columns,

i :e: meM � M + N � 1, or M �
l
N�1

me�1

m
(where dxe

gives the closest integer greater than x). Throughout
the paper, we denote:

L =

�
N�1

me�1

�
(4)

when me = 1, L = 0.

3 Identi�ability De�nition

Let � be the parameter to be estimated and Y the ob-
servations. � is said identi�able if:

8 Y ; f(Y j�) = f(Y j�0) ) � = �0 (5)

This de�nition has to be adapted in the blind identi�ca-
tion case because blind techniques can at best identify
the channel up to a multiplicative factor �: � 2 C in the
deterministic model and j�j = 1 in the Gaussian model.
The identi�ability condition (5) will be for � to equal �0

up to the blind indeterminacy.
For both deterministic and Gaussian models, f(Y j�)

describes a Gaussian distribution: identi�ability will be
identi�ability from the mean and the covariance of Y .

4 Deterministic Model

In the deterministic model, both (unknown) input sym-
bols and channel coe�cients are assumed to be un-
known deterministic quantities. Lots of blind algorithms
fall into this category, among which we �nd: the least
squares approach in [2], the (unweighed) subspace �t-
ting approaches, the blocking equalizers method [3], the
deterministic ML approaches in their blind version and
in their semi{blind version [4].
In the deterministic model, Y � N (T (h)A; �2vI) and

� = [AHu hH ]H (the estimation of � is decoupled from
the estimation of �2v). Identi�ability is based on the
mean only. Au and h are identi�able if:

T (h)A = T (h0)A0 ) Au = A0

u and h = h0 (6)

(A = 1

�
A0 and h = �h0 in the blind case). Identi�ability

is then de�ned from the noise{free data that we will
denote: X = T (h)A.

4.1 Training Sequence Based Identi�ability

Training sequence based estimation is a particular case
of the deterministic model for which all the input sym-
bols are known. T (h)A = Ah (where A is some struc-
tured matrix containing the a(k)'s). h is determined
uniquely if and only if A is full column rank, which cor-
responds to conditions (i� ii � iii) below.

Necessary and su�cient conditions The m{
channel H is identi�able by training sequence estima-
tion if and only if

(i) Burst Length � N .

(ii) Number of known symbols � 2N � 1.

(iii) Number of independent input symbol modes � N .

4.2 Blind Channel Identi�ability

We give here necessary and su�cient conditions for de-
terministic blind identi�ability in terms of channel char-
acteristics, burst length and input symbol modes. Only
su�cient conditions were derived in [5], necessary and
su�cient conditions were given in [2], but one of their
conditions is useless.

Necessary and su�cient conditions In the deter-
ministic model, the m{channel H and the input symbols
A are blindly identi�able up to a scale factor if and only
if

(i) H(z) is irreducible.

(ii) Burst length � N + 2L.

(iii) Number of independent input symbol modes�N+L.

Proof: Su�ciency It is su�cient to prove that h and
A can be uniquely identi�ed by a blind deterministic
method. It has been shown in [6] that, under condition
(i), a minimum parameterization of the noise subspace
of the data is given by P L of size (me� 1)�me(L+1).

The notation P L indicates that it can be obtained by

linear prediction. P L veri�es PLTL+1(h) = 0: un-
der condition (i), this relation determines uniquely the
channel from P L up to a scale factor.

P L can be obtained from the mean of Y , i.e. the
noise-free data X , if the matrix AM is full row rank.
Indeed:

P LXM = P LTL+1(h)AM = 0 (7)

where XM is of size me(L+ 1)�M � L and

XM =

2
64

x(M�1) � � � x(L)
...

. . .
...

x(M+L�1) � � � x(0)

3
75 ; (8)

AM =

2
64

a(M�1) � � � a(L)
...

. . .
...

a(M�L�N ) � � � a(�N+1)

3
75 : (9)

where x(k) = y(k) in the noiseless case. If AM is full
row rank, (7) ) PLTL+1(h) = 0. (ii) and (iii) are
necessary and su�cient conditions for AM to be of full
row rank.
Under conditions (i), we can determine uniquely

h0 = �h from P L. Under conditions (i � ii), T (h0)
is full column rank and A can be estimated up to a
scale factor: A0 = T +(h0)X = A=�, where we denote
B+ = (BHB)�1BH .



Necessity (i) If the channel is not irreducible, then
T (h) is not full column rank. If A is in the null space of
T (h),X = T (h)A = 0 and identi�ability is not possible:
either A = 0 and h cannot be identi�ed, either A 6= 0
and A0 = 0 veri�es T (h)A0 = 0. If A is not in the
null space of T (h), we can �nd A0 verifying T (h)A0 = 0
and A

00

= A + A0 linearly independent from A veri�es
T (h)A

00

= X .

(ii � iii) If either (ii) or (iii) are not satis�ed, AM is

not full rank: we can �nd P
0

6= P such that P
0

X = 0

but P
0

T (h) 6= 0 and hence another h0 linearly indepen-

dent from h such that P
0

T (h0) = 0 exists for which
X = T (h0)A, which shows that (ii � iii) are necessary
conditions. �

4.3 Semi{Blind Channel Identi�ability

Consider the general case of a reducible channel: H(z) =
Ho(z)Hc(z). Su�cient conditions for semi{blind identi-
�ability are given in the case of grouped known symbols.
We denote Lo = dNo�1

me�1
e.

Su�cient conditions In the deterministic model, the
m{channel H and the unknown input symbols Au are
semi{blindly identi�able if

(i) Burst length � min(No + 2Lo; Nc).

(ii) Number of independent input symbol modes: at
least � No + Lo which are not zeros of H(z).

(iii) Known symbols: number � 2Nc�1, grouped, num-
ber of independent modes � Nc.

Proof: The semi{blind problem is decomposed as a
purely blind and a purely training sequence problem.
Conditions for identifying the part of H that can be
blindly identi�able, i.e. Ho(z) up to a scale factor, and
then conditions for identifying by training sequence the
rest i.e. the parameters in Hc(z) and the scale factor are
derived.

P LXM = P LTL+1(ho)TL+No�1(hc)AM implies that

P LTL+1(ho) = 0 if and only TL+No�1(hc)AM is full row
rank, which conditions (i� ii) guarantee.

Under conditions (i � ii), we can uniquely iden-
tify h0o = �ho linear combination of the true channel:
T +

M (h0o)X = T (hc)A=�. Under conditions (i � iii), hc
and this scale factor is identi�ed by training sequence
estimation. �

For an irreducible channel, 1 known symbol is su�-
cient. For a monochannel, 2N�1 grouped known sym-
bol are su�cient. If you have 2N�1 grouped known
symbols containing N independent modes, conditions
(i) and (ii) are useless.

We do not prove identi�ability in the case where the
known symbols are not grouped. We however think that
identi�ability is guaranteed even in that case.

5 Gaussian Model

5.1 Gaussian Model

In the Gaussian model, the unknown input symbols are
considered as i.i.d. Gaussian random variables of mean
0 and variance �2a, and the known symbols as determin-
istic (of mean Ak and variance 0) [4]. The prediction
method in [7] or the covariance matching method be-
long to this category [8].
In the Gaussian model, the parameters to estimate are

the channel coe�cients and the noise covariance: � =
[hH �2v]

H . Identi�ability means identi�ability from the
mean and covariance matrix. Note that identi�ability
from the Gaussian model implies identi�ability from any
stochastic model, since such a model can be described in
terms of the mean and the covariance plus higher{order
moments.

5.2 Blind Channel Identi�ability

In the blind case, mY (�) = 0, so identi�ability is based
on the covariance matrix only. In the Gaussian model,
the channel and the noise variance are said identi�able
if:

CY Y (h; �
2
v) = CYY (h

0; �2v
0

)) h0 = ej'h; and �2v
0

= �2v
(10)

When the input symbols are real, the phase factor is
a sign, when they are complex, it is a complex unitary
value.
We show here that it is possible to identify blindly the

channel based on the second-order moments even for a
reducible channel provided that its zeros are minimum-
phase. We give conditions on the channel and the cor-
relation sequence length.

5.2.1 Irreducible Channel

We give here su�cient conditions in the case of an irre-
ducible channel.

Su�cient conditions In the Gaussian model, the m{
channel H is identi�able blindly up to a phase factor if

(i) The channel is irreducible.

(ii) M � L + 1.

Proof: When condition (ii) is veri�ed, Tu(h) is
(strictly) tall and �2v can then be uniquely identi�ed
as the minimal eigenvalue of CYY (�). H(z) can then
be identi�ed up to a phase factor from the denoised co-
variance matrix CY Y (�) � �2vI by linear prediction [6]:
under conditions (i � ii), you can �nd P (z), the multi-
variate prediction �lter of length L+1 obtained from the
denoised covariance matrix, which veri�es P(z) H(z) =
h(0). This relationship allows to recover uniquely H(z)
from P (z) up to a phase factor.�
Note that you do not need all the non zero correlations

(time 0 to N ) for identi�cation but only the L+ 1 �rst.



5.2.2 Reducible channel

Let H(z) be a reducible channel: H(z) = Ho(z)Hc(z).
We prove that a reducible channel is identi�able in the
Gaussian model if its zeros are minimum-phase.

Su�cient conditions In the Gaussian model, the m{
channel H is identi�able blindly up to a phase factor if

(i) Hc(z) is minimum phase.

(ii) M � max(Lo+1; Nc�No+1).

Proof: Under condition (ii), T (h) is strictly tall
and �2v can be identi�ed as the minimal eigenvalue
of CYY (�). The irreducible part Ho can be iden-
ti�ed up to a scale factor thanks to the deter-
ministic method described in section 4.2 [6] pro-
vided that M � Lo: let h0o = �ho be this es-
timate of ho. T (h0o)

+
�
CY Y (�) � �2vI

�
T (h0o)

H + =
�2aT (�hc)T

H(��hc). �Hc(z) can be now identi�ed by
spectral factorization provided that �Hc(z) or Hc(z)
is minimum phase and T (hc)T H(hc) contains the N
non zero correlations, i.e. M + No � 1 � Nc or M �
Nc�No+1. �

5.3 Semi{Blind Channel Identi�ability

In the semi{blind case, the channel is identi�able from
the mean and the covariance matrix.

5.3.1 Identi�ability for any channel

In the semi{blind case, the Gaussian model presents the
advantage to allow identi�cation from the mean only.
mY (�) = Tk(h)Ak = Akh: if Ak is full column rank,
h can be identi�ed. The di�erence with the training
sequence case is that in the identi�cation of H from
mY (�) = Tk(h)Ak, the zeros before and after the dif-
ferent blocks of known symbols also serve as training
sequence symbols, which lowers the requirements of the
classical training sequence case. For one non-zero known
symbol a(k), with 0 � k � M�N , Ak contains only a
non-zero submatrix of dimension Nm�Nm: a(k)INm.
The Gaussian model presents the great advantage to al-
low identi�cation of any channel, reducible or not, multi
or monochannel, for only one non-zero known symbol
not located at the edges of the input burst.

Su�cient conditions In the Gaussian model, the m{
channel H is identi�able blindly up to a phase factor if

(i) Burst length � N .

(ii) At least one non-zero known symbol a(k) not lo-
cated at the edges (0 � k �M�N).

Su�cient conditions In the Gaussian model, the m-
channel H is identi�able blindly up to a phase factor
if

(i) Channel irreducible

(ii) At least 1 non-zero known symbol (located any-
where)

Proof: Let's assume that Y contains a block of at least
L + 1 samples y(k) that contain only unknown sym-
bols (this gives a condition on the burst length which
we do not give above because it depends on the number
of known symbols and their position). Then h can be
identi�ed blindly up to a unitary constant from the cor-
responding covariance matrix as indicated in section 4.2:
h0 = ej'h. This unitary scale can then be identi�ed
thanks to the mean T +

k (h)mY = e�j'Ak: one non-zero
element of this quantity su�cies to identify '.
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