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Abstract— This paper addresses the problem of MIMO spatial-
multiplexing (SM) systems in the presence of antenna fading
correlation. Existing SM (V-BLAST and related) schemes rely on
the linear independence of transmit antenna channel responses
for stream separation and suffer considerably from high levels
of fading correlation. As a result such algorithms simply fail
to extract the non-zero capacity present in highly correlated
spatial channels. We make the simple but key point that just one
transmit antenna is needed to send several independent streams if
those streams are appropriately superposed to form a high-order
modulation (such as QAM)! We build on this idea to present a
new transmission scheme based on a precoder adjusting the phase
and power of the input constellations in closed-form as a function
of the antenna correlation. This yields a rate-preserving MIMO
multiplexing scheme that can operate smoothly at any degree of
correlation.

I. INTRODUCTION

Multiple input and multiple output (MIMO) systems, em-
ploying several transmit and receive antennas at both ends, are
capable of providing a large increase in capacity compared to
traditional single antenna systems [1], [2]. This increase in
capacity is however dependent upon the fact that the channels
from a transmitter to a receiver follow independent paths.
The capacity of MIMO systems can be shown to degrade
if there are for example severe correlations present at the
transmitter and/or receiver side [3], [4]. At worst, the capacity
falls back to that of a SIMO/MISO with additional array
gain. However the impact on actual transmission algorithms
such as spatial multiplexing [2] can be dramatic. Indeed
any correlation present at the transmitter effectively increases
the linear dependence of the input streams’ response and
makes stream separation and decoding a difficult task. For
example current schemes like V-BLAST literally break down
in the presence of correlation levels close to one. Designing
appropriate transmission techniques that can adjust smoothly
to any level of correlation is therefore an important and
practical issue. Although correlated scenarios have previously
been considered [5], [6] the focus has mainly been on capacity
issues rather than on robust practical algorithms. In order to
take advantage of correlation knowledge, [6] and [7] discuss
using the eigen-decomposition of the average MIMO channel
and thereupon implementing a waterfilling approach across
the eigenmodes of the correlation matrix. This results in
widely unbalanced error-rates across streams unless some form
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of adaptive coding/modulation is implemented as well. To
minimize the BER in the presence of transmit correlation,
a transmit precoding scheme based on power allocation and
per-antenna phase shifting was introduced in [8] for a 2 × 2
MIMO system, while [9] investigates a phase-shifting only
strategy. However interesting, both of these concepts rely upon
the use of numerical optimization in order to find appropriate
solutions and exhaustive search-based maximum likelihood
(ML) decoding techniques. In this article we revisit the issue
of reliable transmission over correlated MIMO channels when
only (long term) correlation properties are known to the
transmitter while the receiver has full channel knowledge. We
take on a new perspective to solve the problem in a simple and
insightful manner. We make the following simple observations:

• MIMO channel input signal vectors can be viewed as
multidimensional constellations.

• Having N transmitters and M (≥ N) receivers allows
transmission of multidimensional signal constellations
with dimension up to 2N (N real and N imaginary).

• Fading correlation acts as continuous dimension reduc-
tion factor, as seen by the receiver. In the extreme
correlation one situation, the dimension offered by the
channel for transmission simply falls down to 2, i.e. one
complex scalar per channel use.

• Finally, the same approach used to design complex (2D)
signal constellations can be used to find a suitable pre-
coding scheme that generates multidimensional constel-
lations designed to match arbitrary MIMO correlation
levels.

In this paper we simplify the design of the input multidi-
mensional constellation by assuming a structure where each
transmit antenna carries an independent signal drawn from a
single fixed modulation (such as p-PAM or p-QAM). Each
constellation is adjusted in power and phase according to the
transmit correlation knowledge. The unique features of our
approach include:

1) The optimized transmitter is determined in closed form
from the (transmit) correlation coefficients.

2) The transmission rate Nb (where b is the modulation’s
efficiency in Bits/Symb) of the spatial multiplexing
system is preserved regardless of correlation level.

3) When the correlation approaches 1, the signal seen at
a certain stage of the receiver is equivalent to that of a



regular (2D) constellation with an alphabet size of 2Nb

symbols.
4) The transmitter is optimized based on the BER balancing

criterion (BBC) which states that all components of the
SM system should be detected with similar error rate.
Interestingly, most high-order constellations based on
regular complex grids also follow this criterion.

II. SIGNAL AND CHANNEL MODELS

We consider a MIMO system consisting of N transmit
antennas and M (≥ N) receive antennas with correlations
present at the transmitter only. In this situation the channel

can be described by H = H0R
1
2
t . The M×N channel matrix

H0 consists of complex Gaussian zero mean unit-variance
independent and identically distributed (iid) elements while Rt

is the N×N transmitter correlation matrix. We assume that the
transmitter and receivers are aware of the correlation matrix
Rt, while only the receiver has knowledge of H0. This is a
practical situation for many wireless systems where only the
correlation may change slowly enough to be fed back regularly
from receiver to the transmitter.

The baseband equivalent of the N -dimensional signal vector
observed at the receiver can be expressed as:

y = Hs + n = H0R
1
2
t s + n. (1)

Where n is the M-dimensional noise vector whose entries are
iid complex Gaussian with zero mean and a variance of σ2

n.
Also we set

s = [
√
P 1s1

√
P 2e

jφ2s2 ...
√
PNe

jφN sN ]T . (2)

P1, ..., PN represent power levels allocated respectively to in-
put symbols s1, ..., sN , and are selected to satisfy

∑N
i=1 Pi =

1. φ2, ..., φN correspond to phase shifts on each transmit
antenna. Notice that the first symbol does not undergo a phase
change and can be regarded as a reference point for all other
phase components. We therefore define φ1 = 0. Standard SM
assigns equal weights Pi = 1

N and φi = 0 for 1 ≤ i ≤ N .
The symbols are all expected to be selected from the same
modulation with an average energy of one, E{|si|2} = 1.

III. TRANSMITTER OPTIMIZATION

Since the instantaneous channel properties are unknown
to the transmitter, the objective is to design a set of power
coefficients P1,..., PN and phases as functions only of the
correlation matrix Rt and independent of H0. We note that,
on a long term basis, H0 will be well-conditioned (and thus
’easy’ to invert) while ill-conditioning introduced in the system
will typically come from Rt. In the fully correlated case, Rt

is rank one and non-invertible.

A. Hybrid Zero-Forcing/MRC SIC

Following the remarks above and in the interest of
deriving our closed-form precoding algorithm, we as-
sume a particular receiver structure that we denote
hybrid zero-forcing maximum-ratio-combiner successive-
interference-canceler (HZM-SIC). The idea behind the HZM

structure is that the well conditioned and ill-conditioned
components of the channel ought to be treated differently:

H0 is inverted out through a zero-forcing filter while R
1
2
t ,

being possibly very ill-conditioned, is dealt with in a MRC
SIC manner rather than matrix inversion. It is important to
emphasize that the main goal for such a receiver structure is to
lead to an insightful and closed-form deriving of the solution to
the transmitter optimization problem that is fully independent
of the instantaneous channel fading. Thus we do not claim
optimality in any sense for this linear receiver, although
we believe the differentiation of well-conditioned from ill-
conditioned channel components is a promising approach.
Finally, given the general and intuitive nature of the obtained
solutions (described in section IV) we show from simulations
that the resulting precoding coefficients can be used for a wider
range of receiver algorithms (ML etc.).

For the sake of exposition we start with describing the
optimization procedure for the 2 × 2 case. We later extend
the derivation to the case of arbitrary number of transmitter
and receiver antennas.

B. HZM-SIC receiver for 2× 2 case
The hermitian square-root correlation matrix for a 2 × 2

setup may be expressed as:

R
1
2
t =

[
α βejψ

βe−jψ α

]
(3)

where by construction α2 + β2 = 1, and ρ = 2αβ is the
modulus of the antenna correlation coefficient (ρ ≤ 1).

1) Zero-forcing stage: Applying a linear zero-forcing filter
on (1) in order to neutralize H0:

z = H†0y = R
1
2
t s + H†0n, (4)

where (·)† refers to the Moore-Penrose pseudoinverse.
Equation (4) can be written out in full as:

z1 = α
√
P 1s1 + β

√
P 2e

j(φ2+ψ)s2 + n1 (5)

z2 = β
√
P 1e

−ψs1 + α
√
P 2e

jφ2s2 + n2 (6)

2) MRC stage with correlation coefficients: We next start
with estimating s1 by applying MRC on z with conjugate

coefficients from the first column of R
1
2
t :

η = (R
1
2
t :,1)∗z = αz1 + βejψz2 (7)

=
√
P 1s1 + 2αβej(ψ+φ2)

√
P 2s2 (8)

+ αn1 + βejψn2. (9)

The notation A:,l expresses the l’th column of the matrix A.
ŝ1 can be estimated directly with a slicer over 1√

P 1
η.

3) Successive interference canceler: After obtaining ŝ1,
the symbol can be subtracted from the correlated signal
observation z. In the derivation we assume no propagation
of error (ŝ1 = s1), such that we can define

ẑ = z− [α βe−ψ]T
√
P 1s1. (10)

A second MRC, is performed on ẑ to estimate ŝ2:

η̂ = (R
1
2
t :,2)∗ẑ = ejφ2

√
P 2s2 + βn̂1 + αn̂2. (11)



Observe that the decoding structure becomes identical to the
decoding of a standard r-QAM modulated symbol where
successive decisions are made over each quadrant.

C. BER Balancing Criterion

Our optimization criterion is based on the idea that each
substream should be have the same target error probability.
The symbol error probability for s1 is governed by the
variance σ2

η of the additive noise term αn1 + βejψn2 and
the received minimum symbol distance for s1. Assuming the
symbols already follow a rigid regular format, the phase of the
factor 2αβej(ψ+φ2)

√
P 2s2 must be selected to maximize the

distance from the decision boundaries of s1. For an arbitrary
QAM modulation, this is done by setting φ2 at the emitter
such that

φ2 = −ψ. (12)

This also corresponds to a transmit MRC with respect to the
phase of the correlation matrix, a procedure known to be
optimal capacity-wise as well [5], [6] at high correlation. The
(average) minimum distance for a decision on η, obtained from
(8) for e.g. s2 = −s1, becomes:

δ1 =
√
P 1 − 2αβ

√
P 2. (13)

This minimum distance is not to be confused with the
minimum distance between two symbols, dmin,η , which for
example is given for a 4-QAM constellation by the relationship
dmin,η = 2√

2
δ1. The minimum distance for s2, assuming

compensation of phase φ2, is (11) given simply as

δ2 =
√
P 2. (14)

The noise elements of n follow the same distribution, similarly
all components in H0 also have an identical statistical struc-
ture. Thus the noise factors βn̂1 + αn̂2 and αn1 + βn2 have
identical variance when averaged over H0. We can therefore
equate the average probability of error for s1 and s2 simply
by equating the minimum distances, for any value of the
correlation: √

P 1 − ρ
√
P 2 =

√
P 2 (15)

under constraint
P1 + P2 = 1. (16)

The weights for this 2× 2 system can easily be computed as
function of the correlation to be

P1 =
(1 + ρ)2

1 + (1 + ρ)2
, P2 =

1

1 + (1 + ρ)2
. (17)

Special cases:

• Uncorrelated: With no correlation ρ = 0 which yields
equal power transmission, justifying the standard V-
BLAST design.

• Fully correlated: With full correlation ρ = 1 we find
P1 = 0.8 and P2 = 0.2. Interestingly, this corresponds
to the power allocation for a regular 2D constellation.
For instance a 16-QAM constellation can be seen as

the superposition of two 4-QAM constellations with
respective powers 0.8 and 0.2 (see figure 1).

The latter case indicates that if antennas are fully correlated (as
in a SIMO case), we can still preserve the pre-selected spatial
multiplexing data rate by sending a higher order (e.g. QAM)
constellation which corresponds to intuition. In practice the
precoder adjusts the transmit constellation smoothly between
those two cases and is capable of extracting a non-zero
capacity for any level of correlation between the antennas.

IV. TRANSMIT OPTIMIZATION FOR ARBITRARY NUMBER

OF ANTENNAS

We now describe the procedure for finding precoding
weights in a general setting. The decoding starts by selecting
the symbol corresponding to largest power Pi. Without loss of
generality we assume that the power weights are set to satisfy

P1 ≥ P2 ≥ ... ≥ PN . (18)

Thus s1 is the first symbol to be decoded, followed by s2 etc.
in a chronological order.

A. HZM-SIC algorithm:

Let us define z by

z = H†0y = R
1
2
t s + H†0n, (19)

then we can obtain η through a MRC with coefficients taken
from the first column of R

1
2
t :

η = (R
1
2
t :,1)∗z =

N∑

l=1

r∗l,1 zl (20)

=

N∑

l=1

r∗l,1 (

N∑

k=1

rl,k
√
P ke

jφksk) + (R
1
2
t :,1)∗H†0n (21)

=
√
P 1s1 + (

N∑

l=1

r∗l,1rl,2)
√
P 2e

jφ2s2 + ... (22)

+ (
N∑

l=1

r∗l,1rl,N )
√
PNe

jφN sN + (R
1
2
t :,1)∗H†0n, (23)

where we use the short hand notation ri,j to denote element

(R
1
2
t )i,j in the square-root correlation matrix. We further

define τi,j = |ri,j |.
To minimize interference caused by other symbols, we apply

the phase-wise transmit MRC shown by equation (12):

φk = −∠(
N∑

l=1

r∗l,1rl,k). (24)

where ∠ denotes the phase of the expression. Equation (24)
makes certain that the superimposed QAM symbols maximize
their distance from the decision boundary. The error probabil-
ity for s1 is then, as previously, governed by the additive noise
variance and the minimum distance. The minimum distance for
s1 is reached for s2 = s3 = ... = sN = −s1. Written out with
weights and correlation coefficients we arrive to:

δ1 =
√
P 1 − (

N∑

l=1

τ1,lτ2,l)
√
P 2 − ... − (

N∑

l=1

τ1,lτN,l)
√
PN (25)



Fig. 1. Illustration of superimposed 4-QAM constellations, ρ = 1

where we have used the fact that R
1
2
t is hermitian.

Assuming no error propagation, s1 is detected and sub-
tracted from equation (19):

ẑ = z−
√
P 1R

1
2
t :,1s1. (26)

An additional MRC with weights from (R
1
2
t :,2)∗ can then be

used to obtain estimate for ejφ2s2. Similar to (25), we can
find the minimum distance for s2 as follows:

δ2 =
√
P 2 − (

N∑

l=1

τ2,lτ3,l)
√
P 3 − ... − (

N∑

l=1

τ2,lτN,l)
√
PN . (27)

By repeating this N times, we obtain expressions for N
minimum distances, on a form analogous to (25) and (27).

If the correlations between transmitters either follow a real
correlation model, or the exponential correlation structure [10];
then phases derived through (24) are optimal for all iterations
of the decoding algorithm. Details can be found in [11].

B. BBC-based transmit optimization

As Rt is an hermitian matrix, the norm of all columns

in R
1
2
t becomes identical, and when averaged over H0, all

symbols are affected by the same noise variance. In order
to guarantee all symbols an equal error rate, it is therefore
sufficient that values for

√
P 1,
√
P 2, ...,

√
PN are selected so

that the minimum symbol distance observed for each symbol
is identical, i.e.:

δ1 = δ2, δ2 = δ3, ..., δN−1 = δN , (28)

or alternatively

δ1 = δN , δ2 = δN , ..., δN−1 = δN . (29)

Based on (29) the following linear system can be set up as
part of the problem to find the appropriate power levels:

∆p = 0 (30)

where

∆ =




1 −∑ τ1,lτ2,l −∑ τ1,lτ3,l ... −∑ τ1,lτN,l − 1
0 1 −∑ τ2,lτ3,l ... −∑ τ2,lτN,l − 1

...
0 0 0 1 −∑ τN−1,lτN,l − 1




p = [
√
P 1

√
P 2 ...

√
PN ]T (32)

and 0 is a vector with N zero elements. All sums in ∆ are
expected to run from l = 1 to l = N . The system (31)
only contains N − 1 equations for N unknowns, however,
any solution must also satisfy

∑N
i=1 Pi = 1. Therefore p can

be found as the only unit-norm all-positive vector in the null
space of ∆. Combined with (24) a full solution to the problem
is obtained. Special cases:
• With no correlation,

∑N
l=1 τm,lτn,l = 0, (1 ≤ m,n ≤

N,m 6= n) and the energy is distributed equally across
all substreams, Pi = 1

N . Again this justifies the standard
V-BLAST approach.

• At the other extreme, with full transmitter correlation,∑N
l=1 τm,lτn,l = 1 and a closed form solution can easily

be found by writing out ∆:

∆corr =




1 −1 −1 ... −2
0 1 −1 ... −2

...
1 −2


 . (33)

This system can directly be simplified into
√
P i = 2N−i

√
PN (34)

for 1 ≤ i ≤ N . As the solution must sat-
isfy the energy requirement we arrive to

∑N
i=1 Pi =∑N

i=1 22(N−i)PN = 1. Solving with respect to PN gives
PN = 1∑

N
i=1 22(N−i) = 3

4N−1 . Finally we obtain:

Pi =
3 · 4N

4i(4N − 1)
. (35)

The energy for this setup decreases by one quarter from
symbol si to si+1. If each symbol follows a p-PAM or p-
QAM modulation, the final form of η, for full correlation,
simply correspond to respectively a standard pN -PAM
and pN -QAM modulations.

V. SIMULATIONS

In this section we demonstrate the effectiveness of the
new weighting approach proposed in the article. We look
at simulation results under quasi-static Rayleigh fading with
4-QAM symbol constellation and variable correlation at the
transmitter. The transmitter is only assumed to be aware
of the correlations, while the receiver has perfect channel
knowledge. Figure 2 and 3 display simulation results for
a 2 × 2 system with correlation level of ρ = 0.9 and full
correlation at the emitter respectively. We first compare the
following approaches:
• Standard ZF: a straight inversion of H is used as receiver
• HZM-SIC without precoding (equal symbol weights)
• Precoded HZM-SIC

The results show the increased robustness due to the proposed
precoding. Interestingly in the presence of full correlation, the
proposed precoding and decoding method only performs 4 dB
worse off than standard ZF with no transmitter correlation (not
shown) which is the loss experienced by going from a 4-QAM
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transmission to a 16-QAM non-Gray coded transmission.
Compared against a straight matrix inversion the situation is
vastly improved.

ML decoding: Although the precoding approach is mainly
designed with emphasis on a SIC detection, the same pre-
coding can be used with other receiver/decoding algorithms.
Figure 4 demonstrates the use of ML decoding at SNR of
15 dB for a 2 × 2 setup with transmitter correlation ranging
from ρ = 0 to ρ = 1. The difference between ML with
or without precoding is relative small at low correlation
levels but becomes very substantial with higher degrees of
correlation. Finally, we compare with the exhaustive search
approach presented in [8] which gives optimal power weights
for ρ = 0.95 as P1 = 0.78 and P2 = 0.22. The deviation from
expressions of (17), P1 = 0.791, P2 = 0.208 , is thus only
minute and any loss incurred by the closed form algorithm is
marginal, resulting in virtually equal performance under ML
decoding.
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Fig. 4. ML detection

VI. CONCLUSIONS

In this article we proposed a closed-form power/phase
weighting approach making use of the average channel knowl-
edge to adapt the transmitted constellation. The algorithm
assumes SIC style decoding, similar to decoding of r-QAM
modulated symbols, and the resulting precoding weights may
be applied on a wider range of receivers. The obtained SM
scheme offers a method to preserve data rate, with smoothly
degrading performance, for any correlation level.
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[6] M. T. Ivrlač and J. A. Nossek, “On the impact of correlated fading for
MIMO-systems,” in Proc. ISCAS, vol. 3, pp. 655–658, 2002.

[7] M. Kiessling, J. Speidel, I. Viering, and M. Reinhardt, “A closed-form
bound on correlated MIMO channel capacity,” in Proc. IEEE Fall VTC,
vol. 2, pp. 859–863, 2002.

[8] R. U. Nabar, H. Bölcskei, and A. Paulraj, “Transmit optimization for
spatial multiplexing in the presence of spatial fading correlation,” in
Proc. Globecom, vol. 11, pp. 131–135, 2001.

[9] R. U. Nabar, H. Bölcskei, and A. Paulraj, “Cut-off rate based transmit
optimization for spatial multiplexing on general MIMO channels,” in
Proc. ICASSP, 2003.

[10] S. L. Loyka, “Channel capacity of MIMO architecture using the ex-
ponential correlation matrix,” IEEE Communications Letters, vol. 5,
pp. 369–371, Sept. 2001.

[11] J.Akhtar and D. Gesbert, “Spatial multiplexing over correlated MIMO
channels with a closed form precoder,” IEEE Trans. Wireless Commu-
nications, submitted., 2003.


