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Abstract. In this paper, we analyse the throughput of a multihop net-

work, where nodes use slotted ALOHA as medium access protocol (MAC)

and are able to receive simultaneously several packets in a slot. We pro-
vide a closed-form formula for the throughput in the generic case as a

function of the probability, rn;k , for a receiver to decode k packets given

that n have been sent in its neighborhood. We then consider several sim-
ple models for the computation of the rn;k , when spread slotted ALOHA

is used. In particular, we compare the performances of a matched �l-
ter (MF) receiver with those of a linear minimum mean-square error

(MMSE) multi-user detector (MUD). Capacity results show the great

advantage of multi-packet reception and highlight the near-far resistance
of the MUD scheme.

1 Introduction

In recent years, a lot of e�ort has been spent in the design of protocols for
ad hoc networks. Such packet networks are multi-hop and operate without any
�xed infrastructure. This can be a low cost and easily deployable technology
to provide high speed Internet access in a wireless environment, to organize
networks of sensors, or to complement the coverage of future cellular networks.

In this paper, we pay special attention to the MAC sub-layer and, in par-
ticular, to the traditional slotted ALOHA scheme. A lot of protocols have been
proposed in the literature to address the issue of medium access, and we can dis-
tinguish two main families: the contention based schemes and the conict-free
schemes. Slotted ALOHA is the most simple protocol of the �rst category. Other
examples are MACA [1], MACAW [2], FAMA [3], or IEEE 802.11 DCF [4]. On
the other hand, conict-free protocols allow the reservation of the channel for
a certain amount of time and transmissions are then conict-free. In this case,
the reservation phase or the transmission of broadcast packets often relies on a
slotted ALOHA scheme. That is the reason why this simple protocol is of great
interest.

The spatial capacity of the slotted ALOHA protocol has been studied in
[5], where the e�ect of capture is detailed. This capacity has been obtained
with the assumption that receivers devices are able to decode at most a single
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packet per slot. However, research performed since the early 1980's in the domain
of multi-user detection in CDMA systems [14] shows that this condition can
be overcome. Indeed, receivers using multi-user detection schemes can decode
the packets from several simultaneous transmitters. In particular, the near-far
resistance of the multi-user detectors [13] makes this technique very attractive
for ad hoc networks, where power control schemes are much more di�cult to
implement than in traditional single-hop systems.

In this paper, we extend the result of [5] in the case of multi-packet reception
(section 2) and we provide a closed-form formula for the throughput of the
slotted ALOHA as a function of the probability, rn;k, for a receiver to decode k
packets given that n have been sent in its neighborhood. In section 3, we detail
three di�erent models of multi-packet reception: a simple model often used in the
literature, a bank of MF, and a MMSE multi-user detector. At last, in section 4,
we provide numerical results and highlight the near-far resistance of the MUD
scheme.

2 Spatial Throughput with Multi-Packet Reception

2.1 Models

Throughout this paper, we will consider a packet radio network of nodes, spa-
tially distributed in the plane according to a Poisson process with parameter �.
That means that the probability to �nd k nodes in any region, A, of area S(A)
is:

P [k in A] =
(�S(A))k

k!
e��S(A) : (1)

We will assume that the considered network is large and we will neglect the edge
e�ects.

All nodes are assumed to operate with a half-duplex radio device. This means
that a collision of the second order can occur if a node receives a packet, while
it is itself transmitting during the same slot. In this case, the packet is lost. The
transmit power is constant and equals P0.

As explained in the introduction, we assume that nodes access the channel
by using the slotted ALOHA protocol, i.e., time is divided in equal time-slots.
At a given slot, a node sends a packet with a �xed probability p. Otherwise, it
is able to receive one or several packets coming from the transmitters. Let R0

be the reception radius of a receiver. R0 is the maximum distance from which
can come a packet destined to this receiver. If there are n transmitters within
R0 from the receiver, the probability to decode k packets is rn;k.

We assume that packets destined towards a particular node in the network
are routed with equal probability towards one of the neighboring nodes that lies
in the direction of the destination. All these assumptions are taken from [5].

First of all, we are interested in the local throughput of the system, i.e., the
expected number of packet received per slot. We will then evaluate the expected
forward progress of a packet and conclude our study with the total throughput
of the network.
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2.2 Preliminary Results

Before looking at the local throughput, we recall two preliminary results already
given in [5]. We consider a particular node a and we de�ne the random variable
X as the number of correctly decoded packets destined to a in a given slot. Let
us de�ne two important events: (A) the event that a does not transmit; (T )
the event that a particular sender t sends a packet to a. We have the two basic
results:

P [A] = 1� p ; (2)

P [T ] =
1� e���R

2

0
=2

��R2
0

; (3)

where p is the probability of transmission, � is the density of the nodes, and R0

is the transmission range. Note that if nodes are spatially distributed according
to a Poisson process with density �, senders, at a given time-slot, are spatially
distributed according to a Poisson process with density �p (see e.g. [16]).

2.3 Local Throughput

We are now in position to evaluate the local throughput. Let us de�ne two more
events: (Tn) the event that there are n senders in the neighborhood of a; (Dk)
the event that a decodes exactly k packets in the given time-slot. Now, the
probability that a receives x packets given (A), (Tn), and (Dk) is:

P [X = xjA; Tn; Dk] =

�
k

x

�
P [T ]x(1� P [T ])k�x ; k � x ; (4)

because among the k packets decoded, x are destined to a. This probability is
zero if k < x. We now successively un-condition this relation:

P [X = xjA; Tn] =
nX

k=0

P [X = xjA; Tn; Dk]P [DkjA; Tn] (5)

=
nX

k=0

P [X = xjA; Tn; Dk]rn;k (6)

=
nX

k=x

�
k

x

�
P [T ]x(1� P [T ])k�xrn;k : (7)

The second line is justi�ed by the fact that the events (Dk) and (A) are indepen-
dent. The third line takes into account Eq. 4. Now, assuming that the considered
node a does not transmit:

P [X = xjA] =
1X
n=0

P [X = xjA; Tn]P [TnjA] (8)



4

=
1X
n=0

P [X = xjA; Tn]
(�p�R2

0)
n

n!
e��p�R

2

0 (9)

=
1X
n=0

nX
k=x

�
k

x

�
P [T ]x(1� P [T ])k�xrn;k

(�p�R2
0)
n

n!
e��p�R

2

0 :(10)

The second equation results from the fact that (Tn) and (A) are independent
and that the density of the senders is �p as explained before. Note that if a is
a sender at the considered slot, a cannot receive any packet because of the half-
duplex nature of its radio device. So, for x 6= 0:

P [X = x] = P [X = xjA]P [A] (11)

= P [X = xjA](1� p) ;

according to Eq.2. We have obtained the probability distribution (pdf) function
of X, the number of packets received by a:

P [X = x] =
1X
n=0

nX
k=x

�
k

x

�
P [T ]x(1� P [T ])k�xrn;k

(�p�R2
0)
n

n!
e��p�R

2

0 (1� p) :

(12)
The throughput in a is immediatly obtained by taking the expectation of X:

E[X] =
1X
x=1

xP [X = x] : (13)

If there are N nodes in the network, the local throughput, S, of the network,
i.e., the throughput at the MAC layer is:

S = NE[X] : (14)

Note that the single-packet detection without capture is a special case of the
aboves formulas. Indeed, by taking r1;1 = 1, rn;0 = 1 for n 6= 1, and rn;k = 0
otherwise, we get:

E[X] = P [X = 1] (15)

= P [T ](�p�R2
0)e
��p�R2

0 (1� p)

= p(1� p)(1� e���R
2

0
=2)e��p�R

2

0 ;

which is in accordance with the results of [5].

2.4 Expected Forward Progress

The forward progress, z, of a successful packet is the distance covered over a
single-hop in the direction of the �nal destination. It has been proven in [5] that:

E[z] =

Z R0

0

2rd(r)

�
dr ; (16)
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where d(r) is the pdf of the distance d between a sender and a receiver for a
successful transmission (event that we denote (R)). Let us evaluate d(r) in the
case of multi-packet reception:

P [r � d � r+drjR; Tn; Dk] =
P [Rjr � d � r + dr; Tn; Dk]P [r � d � r + drjTn; Dk]

P [RjTn; Dk]
:

(17)
We now make the realistic assumption that if k packets are decoded among
n, the successful senders are the k closest senders to the receiver. Under this
assumption, for n > 1 and 1 � k � n:

P [RjTn; Dk] =
k

n
; (18)

P [Rjr � d � r + dr; Tn; Dk] =
k�1X
i=0

�
n� 1
i

��
r2

R2
0

�i�
1�

r2

R2
0

�n�1�i
; (19)

P [r � d � r + drjTn; Dk] = P [r � d � r + dr] =
2r

R2
0

dr : (20)

Eq.18 is the proportion of successful transmissions during the considered slot.
Eq.19 is justi�ed by the fact that a transmission is successful at distance r from
the receiver i� there are at most k� 1 senders in the disk of radius r. Moreover,
the probability for a sender to be in this disk is r2=R2

0. It is straightforward to
verify that the integration of Eq.19 over the disk of radius R0 results in Eq.18.
The last equation is the pdf of the distance between any node in the disk of
radius R2

0 and the receiver. It is possible to un-condition Eq.17 by taking into
account the Poisson distribution and the rn;k probabilities:

P [r � d � r + drjR; Tn] =
nX

k=0

P [r � d � r + drjR; Tn; Dk]rn;k ; (21)

P [r � d � r + drjR] =
1X
n=1

nX
k=0

P [r � d � r + drjR; Tn; Dk]rn;kP [Tn] (22)

=
1X
n=1

nX
k=0

P [r � d � r + drjR; Tn; Dk]rn;k
(�p�R2

0)
n

n!
e��p�R

2

0 :

We can now conclude for d(r):

d(r) =
1X
n=1

nX
k=1

k�1X
i=0

�
n� 1
i

��
r2

R2
0

�i�
1�

r2

R2
0

�n�1�i
2nr

kR2
0

(�p�R2
0)
n

n!
e��p�R

2

0rn;k :

(23)
The numerical evaluation of Eq.16 implies the following integration:

Z R0

0

r2(i+1)
�
1�

r2

R2
0

�n�1�i
dr =

n�1�iX
j=0

�
n� 1� i

j

�
(�1)j

R
2j
0

Z R0

0

r2(i+j+1)dr
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=
n�1�iX
j=0

�
n� 1� i

j

�
(�1)jR2i+3

0

1 + 2(i + j + 1)
: (24)

As a consequence:

E[z] =
1X
n=1

nX
k=1

k�1X
i=0

n�1�iX
j=0

�
n� 1
i

��
n� 1� i

j

�
4(�1)jR0rn;ke

��p�R2

0 (�p�R2
0)
n

k�(3 + 2i+ 2j)(n � 1)!

(25)
With the help of a software of formal computations, we can simplify this expres-
sion in:

E[z] =
4R0e

��p�R2

0

�

1X
n=1

nX
k=1

� (k+ 3
2
)(�p�R2

0)
nrn;k

3� (n+ 3
2
)k!

; (26)

where � is the gamma function.

2.5 End-to-end Throughput

According to [5], for any randomly selected terminal, the expected path length
between it and another selected terminal is given as D = (128=45�)

p
N=��,

where N is the number of nodes in the network. Thus, the mean number of hops
for a packet is D=E[z] and the end-to-end throughput of the network per slot is:

t =
SE[z]

D
: (27)

3 Multi-Packet Reception Models

In this section, we assume that the previously considered ALOHA protocol is a
spread slotted ALOHA. At a given time-slot, all senders are supposed to choose
at random a pseudo-noise (PN) code among a large book of low cross-correlated
PN codes with spreading factor L, large. All potential receivers, i.e., all nodes
have the knowledge of this book and are able to perform mulit-packet reception.
We neglect the probability that two neighboring senders choose the same code in
order to simplify the calculations. From the presented models, we derive values
for the rn;k.

3.1 Simple Model

The �rst model is a very simple one, often used in the literature, e.g., in [9]. It
states that all of the simultaneous transmissions can be successfully received if
no more than K users are transmitting at the same time. If there are more than
K users transmitting at the same time, the multi-user receiver is overhelmed
and a collision occurs. Thus:

rn;k =

8<
:
1; if k = n and n � K

1; if k = 0 and n > K

0; otherwise
(28)
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In the following two models, a packet is assumed to be decoded by an idle node
if its signal to interference plus noise ratio (SINR) reaches a SINR target at the
output of the detector.

3.2 Receiver with a Bank of Matched Filters

In this section, we suppose that radio receivers devices are made of a bank of MF
that are able to decode each spreading code individually. If P0 is the transmit
power, the received power at a distance r is assumed to be P (r) = P0=r

 , where
 > 2 is the path loss exponent. This expression is a far-�eld approximation that
doesn't hold for small values of r. A packet is considered to be decoded if the
SINR, �, of a signal at the output of the MF reaches a SINR target �0, i.e., if:

� =
P (r)

�2 + 1
L

Pn�1

i=0
P0
r


i

� �0 ; (29)

where �2 is the power of the noise, n is the number of interferers, and L is the
spreading length.

In order to analitycaly evaluate the rn;k parameters, the cumulative distri-
bution function (cdf) of the SINR is needed in the case of a Poisson �eld of
interferers. This problem has been treated in [6] and in [11], where the charac-

teristic function of the interference Y =
Pn�1

i=0 P0=r

i has been obtained:

�Y (!) = exp
�
���p� (1� 2=)e�i�=!2=

�
; ! � 0 and  > 2 ; (30)

where � is the gamma function and p is the probability of transmission. This
expression leads to the exact cdf of � and thus to the rn;k in the MF case.
However, we will see that this is not the case for the MUD receiver. That is the
reason why we evaluate the rn;k probabilities thanks to Monte Carlo simulations
in order to allow a fair comparison with the MMSE detector.

A Poisson �eld of interferers with density �p is generated on a two dimen-
sional squared network [�Xmax;Xmax] � [�Ymax;Ymax]. The considered
receiver, a, is placed at (0; 0). R0 is �xed as the maximum distance from which
can come packets for the receiver. In the abscence of interferer, R0 veri�es the
following expression: �0 = P0=(R


0�

2). n is the number of senders inside the disk
of radius R0 with center a. For each of these senders, the SINR is computed
after summing the interference from the whole network. If the SINR reaches the
SINR target, the packet from this sender is assumed to be decoded. A snapshot
of the simulation is shown on Fig.1. Tab.1 shows the parameter values used for
our simulations.

Fig.2 shows the plot of the matrix rn;k for n � 14 and p = 0:2. The mean
number of senders in the disk of radius R0 is �p�R

2
0 ' 5, so the probability that

n > 14 is very low. This �gure shows that for small values of n, all packets are
decoded. Then, when n increases, the number of decoded packets decreases.
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R0

-Xmax

Ymax

-Ymax

Xmax

Fig. 1. Snapshot of the Monte Carlo simulation: the power of all the interferers are

sumed at the receiver.

Table 1. Parameter values used for the Monte Carlo simulation in the case of MF

receivers

Parameter Value

Xmax 50

Ymax 50

� 0.25

p 0.2

L 32

P0 5

�0 0.025

�2 0.2

 4

3.3 Receiver with MMSE Multi-User Detector

In this section, we assume that receivers are able to perform multi-user detection
thanks to a MMSE detector. While the traditional MF or Rake receiver treats
interference from other users as noise, the MUD scheme jointly decodes all users.

The condition of decoding of a packet is still based on the SINR at the
output of the signal detector. According to [15], to check if the target for a given
sender's SINR, �0, can be met for a given system of senders, it su�ces to check
the following condition:

P

�2 + 1
L

Pn�1

i=0 I(Pi; P; �0)
� �0 ; (31)

where P = P0=r
 is the received power of the given sender, Pi is the received

power from the interferer i and I(Pi; P; �0) is the e�ective interference of sender
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Fig. 2. Probabilities, rn;k , for a receiver to decode k packets given that n have been
sent in the case of a bank of MF.

i on the considered sender at the target SINR �0:

I(Pi; P; �0) =
PPi

P + Pi�0
: (32)

Eq.31, also used in [17] in the context of call admission control, is an approxi-
mation since it is true for large systems, when L ! 1, n ! 1 and L=n = �,
and for random spreading sequences.

We can show that the characteristic function of the interference for a given
sender and a given SINR target, �0 is:

�Y (!) = exp

 
i�p�!

Z P=�0

0

�
P0

t
�
P0�0

P

�2=
ei!tdt

!
: (33)

While Eq.30 is seen as the characteristic function of a stable law, Eq.33 seems
to be un-tractable for further computations. That is the reason why we rely on
Monte Carlo simulations as explained in the previous section. Parameter values
are given in Tab.1 and the condition of packet decoding is given by Eq.31.
Fig.3 shows the graph of the matrix rn;k for n � 14. It is clear that the MUD
scheme o�ers much better performances than the MF decoding. Note also that
the simple model is a approximation of the MMSE performance if K is chosen
appropriately.
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Fig. 3. Probabilities, rn;k , for a receiver to decode k packets given that n have been

sent in the case of MMSE MUD.

4 Numerical Results

In this section, we give numerical results for the three models of multi-packet
reception presented previously. We focus our attention on the local throughput
and on the end-to-end throughput of the network.

On Fig.4, we present the local throughput for the �rst simple model with
di�erent values of K. We observe in all cases the characteristic shape of the
throughput of the ALOHA protocol as a function of the input load. As ex-
pected, the multi-packet reception feature improves the maximum achievable
throughput.

Fig.5 shows the end-to-end throughput for the �rst simple model with dif-
ferent values of K. Here also, we see the advantage of multi-packet reception.
Note that the optimum probability of transmission depends on K. For K = 1,
we observe the classical result that p is optimum for p = 1=(��R2

0), which here
is approximatly 0:05. As K increases, p also increases because more packets can
be handled by the receiver.

Fig.6 compares the local throughput of the MF receiver with this of the
MMSE receiver. We observe the great advantage of the MUD over the conven-
tional receiver (approximatly 30% in our scenario). This advantage can also be
seen on Fig.7, that shows the end-to-end throughput. Indeed, the joint detec-
tion of all users makes the MUD very robust to near-far problems. This near-far
resistance is of great interest in ad hoc networks because power control schemes
are di�cult to implement in such decentralized networks.
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Fig. 4. Local throughput in packets/time-slot for the simple model of multi-packet

reception for di�erent values ofK, the maximum number of packets that can be decoded
by the receiver.
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packet reception for di�erent values of K, the maximum number of packets that can

be decoded by the receiver, and N = 100 nodes.
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5 Conclusion

In this paper, we have analyzed the throughput of the slotted ALOHA protocol
in a multi-hop network, where nodes are able to perform multi-packet reception.
We have derived from an analytical study a closed-form formula for the local
throughput and the end-to-end throughput of such a network. This formula
is given as a function of the probabilities, rn;k, of decoding k packet when n

senders have transmitted a packet in the neighborhood of the receiver. Then,
three models of multi-packet reception have been presented in the case of CDMA
systems: a simple one, often used in the literature, and two models based on two
types of receivers, i.e., a bank of matched �lters and a MMSE MUD detector. In
the latter case, we have provided the characteristic function of the interference.
However because of the un-tractability of this formula, we relied on Monte Carlo
simulations in order to evaluate the rn;k probabilities. Numerical results show
the great advantage of the near-far resistance of the MMSE receiver.
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