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ABSTRACT

This paper further develops a previously proposed adaptation method
for speech recognition called Symbolic Speaker Adaptation (SSA).
The basic idea of SSA is to model a speaker’s pronunciation as
a blend of speech varieties (SVs) - regional dialects and foreign
accents - for which the system has existing pronunciation mod-
els. The system determines during an adaptation process the rela-
tive applicability of those models, yielding a speech variety profile
(SVP) for each speaker. Speaker-dependent lexica for recogni-
tion are determined from a speaker’s SVP. In this paper, we dis-
cuss a series of experiments designed to analyze how the SSA
method is affected by SV-balanced training, expanded phone in-
ventories, reduced amounts of adaptation data, and speech from
SVs not modeled by the system. The most dramatic improvements
were obtained by using expanded (”SV-inclusive”) phone invento-
ries. SSA was also shown to be effective with a very small number
of adaptation sentences. And, SSA’s SV blending scheme yields
higher accuracy than using a SV classification scheme for speakers
of novel (unseen) SVs.

1. INTRODUCTION

Several papers (e.g., [1]) demonstrate that performance of an ASR
system trained on a particular SV can significantly degrade when
it is evaluated on another SV. It has been shown that pronunci-
ation modeling methods help compensate in part for this increase
in word error rate. An issue commonly addressed concerns model-
ing pronunciation variations when the non-standard SV is assumed
to be known (e.g., [2]). Although such methods effect good pro-
nunciation modeling and contribute to performance improvement,
they are limited to the targeted speech variety. A more difficult
situation is when there are multiple SVs involved and the targeted
SV is not known in advance. For such tasks, SV-specific pronun-
ciation models may be combined with existing SV classification
methods (e.g., [3]) for multiple pronunciation targeting. However,
these methods are designed to activate one single speech variety
at a time. This one-SV classification scheme is inadequate in at
least two respects: first, some speakers are best characterized by
multiply modeled speech varieties (e.g, a bilingual or multilingual
person), and second, in practice it is impossible to model all speech
varieties of a given language and some speakers’ SVs may fall out-
side the modeled pronunciation space covered by the system.

In [4], we introduced a method called Symbolic Speaker Adap-
tation (SSA) that addresses these shortcomings. It combines SV
selection and pronunciation modeling and assumes - in contradis-
tinction to general classification methods - that a speaker’s pronun-
ciation is best characterized not by a single SV modeled but rather
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Fig. 1. Symbolic Speaker Adaptation

a combination of them. This paper will describe some experiments
and results that illustrate this assumption. Moreover, we will study
the relative influence of the training database, phone inventory and
the number of adaptation sentences available to our system.

2. METHODOLOGY

Details about the SSA process can be found in [4]. This section
briefly reviews some of its main aspects.

2.1. Overview

When a new speaker is enrolled in SSA, the system has no idea
about his/her pronunciation characteristics, but it makes the as-
sumption that he/she is well modeled by a combination of the
speech varieties for which the system has existing pronunciation
models. In order to model his/her pronunciation style, the speaker
is enrolled in an adaptation process as depicted in Figure 1. The
objective is to build a Speech Variety Profile (SVP) for this speaker.
An SVP is simply a list of modeled SVs with their relative im-
portance (probabilities) that best describe the speaker’s pronunci-
ation. The following steps are applied for each enrolled speaker
and his/her adaptation sentences:

1. Each word in the adaptation sentence is mapped to its base-
form transcription(s) (canonical pronunciation(s)).

2. SV-specific transcriptions are derived from the baseform(s)
using all sets of pronunciation models (one set per SV), and
used to generate a pronunciation network. For each SV-
specific form, a list of symbol transformations is kept.

3. A Viterbi alignment is performed using the network to re-
turn the most likely sequence of phones actually uttered by
the speaker.

4. The symbol transformations corresponding to the selected
phone sequence are added to a list.



5. Once all adaptation sentences are processed, probabilities
for the speaker profile are computed.

The example in Figure 1 illustrates a possible adaptation sce-
nario for a Spanish-accented English speaking person. Probabili-
ties for the speaker profile depend on how frequently the speaker’s
pronunciations match the symbol transformations listed during the
adaptation process and how accurately the same symbol transfor-
mations target the speech varieties modeled. The resulting SVPs
influence then how a lexicon of baseforms (Standard American
English (SAE) baseforms in our experiments) is filtered and trans-
formed into a speaker specific set of pronunciation variants for use
during recognition. The processes of adapting SVPs and generat-
ing user-specific lexica are explained in detail in [4].

2.2. Comparison to acoustic speaker adaptation

The basic concept of SSA is close to the CAT [5] and eigenvoice
[6] techniques in Acoustic Speaker Adaptation (ASA): they form
models of any speaker as a weighted sum of canonical speaker
models (Gaussian means or eigenvoices). In a similar way, any
speaker’s speech variety(ies) can be represented as a point in the
pronunciation space, and the objective of SSA is to find the coordi-
nates of this point according to a set of basis vectors (represented
by the different speech varieties modeled), or (ideally) the coor-
dinates of its projection if the point is not located in the subspace
spanned by the basis vectors. However, SSA is still different from
the ASA techniques above because it does not alter the acoustic
models, but only the lexicon, leaving the acoustic models truly
speaker independent.

3. EXPERIMENTS

3.1. Database

All experiments were carried out on an internal English telephone
speech database called Myosphere. In this corpus, speakers from
12 speech varieties give a set of commands to a real ASR sys-
tem (e.g., “call Steve at office”). Most commands are short (3.8
words per sentence on average), but spontaneous and in various
noisy conditions (e.g., cross-talk, line noise). Speech files include
several annotations, including the speaker gender and his/her dom-
inant speech variety.

3.2. Pronunciation models

For each speech variety (SV) and phone combination a decision
tree was trained to predict SV-specific phone(s) from a canoni-
cal phone and its left and right contexts. For each training sen-
tence, correspondences between the canonical phone transcription
and its SV-specific phone transcription were derived using a Dy-
namic Programming (DP) based string alignment technique. For
the canonical phone transcription, the word transcriptions are mapped,
using the SAE lexicon, to an utterance pronunciation string. The
SV-specific phone transcription is from the results of Viterbi selec-
tion of the best path through a network of recognition results. The
pronunciation network for recognition is built from the baseform
transcription(s) using some knowledge-based SV-specific sets of
rules (see [4] for more details). The trees built from the canonical /
SV-specific correspondences use questions related to phonetic fea-
tures (e.g., front, back, round, ...) for the immediate left and right
contexts. The CART algorithm [7] was used to train the decision
trees from the DP alignment results.

3.3. ASR systems

All ASR systems described in the following subsections are based
on HMMs trained using HTK [8]. All models consist of phone-
level monophones with 10 Gaussian mixtures per state, trained
from 39 MFCC coefficients (12 static + 1 energy, 13 � , 13 ��� ).
There are basically 41 distinct symbols, but this phone inventory
was increased up to 164 to take account of the different speech va-
rieties involved (more detail will follow). For evaluation, a back-
off bigram language model was generated from all sentences of
the database to help constrain the search1. The Standard Amer-
ican English (SAE) baseform lexicon contains 3815 words with
pronunciation variants that are considered common to all speech
varieties.

The following subsections will describe the various experi-
ments carried out.

3.4. Influence of a SV-balanced training

In prior work ([4]), we speculated about the negative effects of
the strongly unbalanced training data set (80% SAE and North-
ern Inland English (NI)). In order to see to what extent availability
of non-SAE training data influences the recognition performance,
two different sets of HMMs were trained. The first set (SAE-only)
was trained using 14016 sentences of SAE data only, while the
second set (Multi-SV) was trained using 14016 sentences evenly
balanced (3504 sentences each) between Standard American En-
glish (SAE), Northern Inland English (NI) (e.g., Chicago), British
English (Br) and Indian English (In). Sentences used for evalua-
tion were uttered by nine to ten speakers of each of these four SVs.
Table 1 shows the baseline recognition results. It is not surprising
that the Multi-SV HMMs outperform the SAE-only HMMs with
speech varieties significantly distinct from SAE, namely Br and
In. Also, as would be expected, using models trained with 75%
non-SAE data (Multi-SV) rather than 100% SAE data (SAE-only)
causes the WER for SAE test data to rise, but only moderately.
Overall, the Multi-SV HMM system was clearly better. It was
chosen as the baseline for the remainder of the paper (hereafter
referred to as Base 41 since it uses the original 41 phone set).

SVs SAE NI Br In

SAE-only 17.12 19.21 36.65 26.18
Multi-SV 17.97 19.35 25.68 21.94

Table 1. Baseline recognition results (WER) with single SV
(SAE) training vs. Multi-SV training

3.5. Baseline SSA with SV-balanced models

The SSA process was applied with our baseline Base 41 (Multi-
SV) HMMs using the whole adaptation set (153 sentences on av-
erage per speaker2) to see if the method would benefit from acous-
tic models trained on a SV-balanced training data. Consistent, but
small, improvements relative to the non-SSA baseline results were
obtained, as shown in Table 2. The improvements are generally
better than those reported earlier ([4]) where models were trained
with more, but considerably less SV-balanced, data.

1Test sentences were intentionally included so that the OOV problem
would not influence the results of our experiments.

2Equivalent to 30-35 sentences of Wall Street Journal (WSJ0) in terms
of number of words.



SAE NI Br In

Base 41 17.97 19.35 25.68 21.94
SSA 41 17.77 18.92 24.73 21.89

Table 2. SSA results with SV-balanced training data (WER)

3.6. Influence of an SV-inclusive phone inventory

Next, we tested whether SSA is better able to hone in on a speaker’s
speech variety (or varieties) and contribute to performance im-
provement when the basic phone inventory with 41 symbols is
augmented with more SV-specific phones. For this purpose, four
additional sets of HMMs were trained with 70, 100, 130 and 164
symbols respectively. These are compared with the 41 symbol
baseline set (Base 41) as described in section 3.4 above. The HMM
model set with 164 symbols was obtained by training four subsets
of 41 SV-specific models using each corresponding subset of 3504
SV-specific training sentences from section 3.4. The symbols (ap-
propriately tagged for SV) were then simply combined at the end
of training. The remaining sets (70, 100 and 130) were trained
like the 164-set at the initial stage, but their HMM states were
then clustered with 3 different threshold levels (yielding 70, 100
and 130 models) before the number of Gaussian mixtures in each
state was increased. Separate pronunciation models were also built
for each set of HMMs. To take account of the new phones intro-
duced, each original phonetic transcription found in pronunciation
networks created during the training of decision trees (cf. section
3.2) had four versions, each referring to one of the four subsets of
SV-specific phones. Table 3 shows the recognition results for each
“phone inventory - speech variety” pair before SSA was applied
and Table 4 shows the results after the method was applied.

SAE NI Br In

Base 41 17.97 19.35 25.68 21.94
Base 70 17.41 19.23 26.47 21.95
Base 100 16.59 19.54 29.27 24.32
Base 130 16.57 18.78 33.52 26.26
Base 164 17.22 19.67 35.27 26.44
SV Dep. 17.22 18.59 23.39 24.40

Table 3. Baseline results with SV-inclusive (expanded) phone in-
ventories (WER)

SAE NI Br In

SSA 41 17.77 18.92 24.73 21.89
SSA 70 17.60 18.78 24.73 21.91
SSA 100 16.27 19.26 24.53 22.84
SSA 130 17.70 18.64 23.89 25.83
SSA 164 17.70 19.00 23.13 26.73

Table 4. SSA results with SV-inclusive (expanded) phone inven-
tories (WER)

Table 3 contains the ASR WER test results for each of the
included SVs (columns) and for each of the trained HMM sets
(rows). All tests were run using the standard (SAE) baseline lex-
icon which means that only SAE symbols were included in the
recognition tests. To get an idea of the expected upper bound on
performance, we also ran a ”cheating experiment” for each SV,

recognizing the test utterances for each SV with the 41 models
trained exclusively on the 3504 training utterances for that SV.
Those results are included as the last line in Table 3, labeled as
“SV Dependent” results. Given the choice of the standard lexicon
for the baseline experiments, the SAE SV dependent and the SAE
Base 164 tests become one and the same (and they are similar to
the Base SAE-only experiment of Table 1, but with one fourth the
training data). We see that, for SAE, collapsing only the most sim-
ilar phones (e.g., in SAE Base 100 & 130) leads to improvement
over the SAE SV dependent results, while forcing too much cross-
SV collapsing causes WER increase relative to the SV dependent
case. For the remaining three SVs, the addition of cross-SV data
has a beneficial effect, with In even showing a 10% reduction in
WER relative to its SV-dependent (“cheating”) test.

Examination of the SSA results in Table 4 leads us to note
that, with the exception of a few cases (mainly within SAE which
was already well matched in the baseline), the SSA process con-
sistently leads to WER reductions relative to the corresponding
baseline (non-SSA) results. These can be dramatic (e.g., by 34.4%
error reduction in the case of Br 164). We also note that for each
SV, there is at least one expanded inventory that produced as good
or better WER as that yielded by the SSA process with the original
minimal phone set (SSA 41). Compared to the Base 41 baseline,
the improvement was best for the Br SV with 9.9% relative reduc-
tion in WER. Unfortunately, the relationship between phone set
size and best WER for each SV is rather opaque.

The Indian English (In) results remain somewhat of an enigma.
Large gains in performance were obtained by recognizing with
multi-SV trained models, besting considerably even the SV-specific
recognition results for In. Though the SSA does generally yield
WER reductions for In relative to the corresponding non-SSA re-
sults, they are not nearly as dramatic as those for Br. And, rather
than following the pattern of improving SSA results with larger
sets of (more precise) models to recruit from, SSA performance
decreases with model inventory size for In.

3.7. Influence of limited adaptation data

All of the SSA results presented thus far have been based upon
utilizing the full adaptation data set for each test speaker (approx.
153 short utterances on average). Recall that in SSA the adaptation
data is used to calculate an estimate of the SVP (Speech Variety
Profile) for that speaker. The SVP characterizes the blend of the
existing pronunciation models which will be used to form speaker
specific pronunciation expectations (i.e., the speaker adapted lex-
icon). In these experiments, we examined the effect of reducing
the available adaptation data on SVP estimation by using only five
sentences for adaptation instead of 153. Table 5 gives the average
probabilities of each modeled SV for the 10 Br test speakers (5
male, 5 female) using the 164 phone inventory. We see that, on
average, using only 5 short adaptation utterances yields estimated
SVPs which are virtually identical to those estimated with the full
(153 utterance) adaptation sets. Tests across the variety of SVs and
phone inventories led to similar results.

If we are modeling the SV phone inventories well, then we
would expect a strong positive correlation between the accuracy
of SVP identification and the accuracy of SSA-adapted ASR. The
last column of Table 5 presents the average WERs obtained for
the SVPs derived from the full set of (153) adaptation sentences
and from only 5 sentences. We have found that the SSA method
converges to a reasonable characterization of the SV of speakers



of modeled SVs with very little available data. Thus, it is suit-
able for tasks which require rapid adaptation. However, since SVP
convergence is solely based on the set of actually occurring phone
transformations, results will naturally be more reliable if larger
quantities of adaptation data and / or phonetically balanced data
are available.

SAE NI Br In WER

153 sents 0.13 0.10 0.75 0.02 23.13
5 sents 0.11 0.11 0.74 0.04 23.20

Table 5. Average speaker SVP (Speech Variety Profile) probabili-
ties and WERs for the British English test speakers

3.8. Comparison between SV classification and SV blending
schemes

We also investigated system performance with non-modeled speech
varieties by comparing two different schemes: a classification scheme
that only selects the best SV in adaptation derived SVPs, and the
SSA SV blending scheme that keeps all SVs with their respective
probabilities. To have a fair comparison, the number of pronuncia-
tion variants used for each speaker were made to be approximately
the same for both schemes. Fourteen speakers of a diverse group
of non-modeled SVs were evaluated. There were two regional /
dialectal varieties: African-American (Af), one speaker, and two
American speakers with Southern accents (So). Additionally, three
varieties of foreign accented English were represented: Spanish
(Sp), two speakers, Asian (As), seven speakers, and German (Ge),
two speakers. Results using the full phone inventory set are given
in Table 6 and are structured as follows:

Class. shows the results obtained with a classification scheme along
with the selected SV in parentheses.

Ideal shows the results obtained with an ideal classifier (or an
oracle) that always selects the SV that leads to the lowest
WER, along with the corresponding SV in parentheses.

SSA shows the results obtained with the SV blending scheme.

In the last column, all WERs equal to or lower than the match-
ing classifier scheme counterparts are marked in bold, and those
among them that are equal to or lower than the “ideal” classi-
fier WERs are further marked with a ’*’. We observe that SSA
performs on average better than a classification scheme method
(7.2% relative improvement) and is comparable to the “ideal” clas-
sifier. Similar behavior can be observed with lower phone inven-
tory HMMs.

4. CONCLUSION

In this paper, we explored different factors influencing the capabil-
ity of SSA and showed that the addition of an SV-inclusive phone
inventory may substantially contribute to improved performance.
We also observed that only a few adaptation sentences are required
for SSA and that a SSA’s SV blending scheme is more appropriate
than a classification scheme to generalize the use of the system to
speakers of any SV of the same language.

A possible extension of this research line would be to explore
the selection of an optimal SV set to model. For example, it is
obvious from this paper that modeling SAE and NI separately is

Class. Ideal SSA

Af 13.17 (NI) 12.18 (SAE) 12.82
As (1) 9.78 (NI) 9.06 (SAE) 10.51
As (2) 26.76 (NI) 26.76 (NI) 27.73
As (3) 47.69 (Br) 30.00 (NI) 31.89
As (4) 51.42 (NI) 51.42 (NI) 47.17 *
As (5) 34.67 (SAE) 34.67 (SAE) 33.33 *
As (6) 32.14 (Br) 32.14 (Br) 30.71 *
As (7) 34.63 (SAE) 34.63 (SAE) 33.98 *
Ge (1) 51.52 (Br) 51.52 (Br) 51.52 *
Ge (2) 40.96 (Br) 38.55 (SAE) 40.96
So (1) 35.98 (NI) 35.98 (NI) 35.15 *
So (2) 5.45 (SAE) 3.96 (NI) 5.45
Sp (1) 34.15 (SAE) 34.15 (SAE) 29.27 *
Sp (2) 38.33 (Br) 26.67 (SAE) 33.33
Average 32.62 30.12 30.27

Table 6. Comparative results (WER) for handling unmodeled SVs
between SVP based classification, the ideal classifier, and SSA’s
SV blending methods

rather redundant because of their similar acoustic and phonetic
properties. We believe that a data-driven approach to determine
an optimal set of “canonical bases” that are not necessarily bound
to any particular SV (using, for example, a concept similar to [6]
at the SV level) could be advantageous.
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