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ABSTRACT
The paper introduces a novel time-frequency linearly con-
strained minimum variance (LCMV), also known as Capon
method, for the direction of arrival (DOA) estimation of
nonstationary signals impinging on a multisensor array re-
ceiver. The results are compared with the conventional Capon
method of DOA estimation technique. In Capon method,
the weights are chosen to minimize the weighted array power
output subject to the unity gain constraint in the desired
look direction. Time-frequency distributions localize the
signal power in the time-frequency domain and as such en-
hance effective Signal to noise ratio (SNR), leading to im-
proved DOA estimates. Time-frequency distributions result
in signal separation in the time-frequancy domain and hence
fewer signals can be selected for processing. Therefore, the
interference signals are eliminated by selecting proper time-
frequency regions. This paper focuses on the class of fre-
quency modulated (FM) signals because of their clear rep-
resentation in time-frequency plane.

1. INTRODUCTION

The problem of signal parameter estimation in the sensor ar-
ray processing has received much interest for several years.
Many algorithms have been proposed for the estimation of
DOA of the signals impinging on the array of sensors [1].
Classical DOA estimation problem, however, requires that
the number of source signals impinging on an antenna array
is less than the number of sensors in the array. One of the
non-parametric method used to estimate the DOAs is Capon
method. The conventional Capon method is based on the
estimates of the data covariance matrix. In our approach,
the evaluation of quadratic time-frequency distributions of
the data snapshots across the array yields spatial time fre-
quency distributions (STFD). These distributions are most
appropriate to handle non-stationary sources. STFD local-
ize the signal energy while spreading the noise in the entire
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time-frequency plane and thus enhance SNR. Our method
(time-frequency Capon method) is shown to have superior
performance than conventional Capon method for DOA es-
timation. This superior performance is attributed to the fol-
lowing reasons:
1) Increase in SNR
2) the localization of signals in time-frequency domain per-
mits to select fewer signals than those incident on the ar-
ray and hence the space time frequency distribution matri-
ces can be constructed by taking into account fewer signals
which can be used in place of data covariance matrix in
Capon method.
The paper is organized as follows: In section 2, the signal
model is presented and conventional Capon method is dis-
cussed. Section 3 is devoted to spatial time frequency disti-
butions and the Capon method based on these distributions.
In section 4 simulations are presented, and the results are
discussed in section 5.

2. SIGNAL MODEL

Consider an array of � sensors. The output from all the
sensors can be written as
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where ����� spatial matrix 
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represents the mixing matrix or the steering matrix. The
functional form of this matix is assumed to be known. �%�"0/$�21
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, i.e., the steering vectors corresponds to the angle of
arrival 6/ . We shall refer to �%��( � as the array manifold.�7�8���91 354

and ������� is given by the following equation
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is the n-vector containing the signals, �$< � ; is transpose op-
erator and n(t) is complex zero mean white Gaussian noise
with variance =

&
. We assume that the sources are in the

far field of the array and that the sources and the array lie
in the same plane. We also assume that the array is cali-
brated, i.e., we know the positions, gains, and phases for all



antenna elements, for all possible frequencies and all possi-
ble DOAs. In this paper we focus on frequency modulated
signals. These signals are modeled as
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where
� / and � / �8��� are the fixed amplitudes and the time-

varying phase of the � ��� source signal respectively. The in-
stantaneous frequancy of the � ��� source is given by � /������ �#&���� �	��
���� � . The DOA problem can now be stated as fol-
lows. Given  measurements of the output of the array and
given the model in equation (1), determine the DOAs of n
sources. In other words, given ! ���8���#"%$��& # 1 354

and the
mapping 
��"�� , we wish to determine the parameter  . The
DOA will be estimated in a non-parametric fashion. The
main attribute of the non-parametric method is that it does
not make any assumption on the covariance structure of the
data �7�8��� . As such, it does not require the number of signals
and noise covariance matrix to be specified. Only knowl-
edge of the functional form of the array is assumed to be
known. We consider FM signals because these signals are
charaterized by instantaneous frequency and they have clear
time-frequency distributions which facilitates in separating
region of interest in the time-frequency domain. The region
of interest contains signal of interest and hence space time
frequency distribution matrices are constructed by consid-
ering only the region of interest. In the following lines we
will briefly discribe Capon method and regularized form of
Capon method.

2.1. Capon method

The Capon filter minimizes the following criteria:

� � �(' ��)�*,+.-�-/) � (4)

subject to
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i.e., minimize the output power, 243 ������� 3 & but pass undis-
torted the signal from the desired direction, 0/ , 2 is the ex-
pectation operator. In Capon method, the criteria is data
dependent. It also takes into account the spatial distribution
of the signal energy which is described by the covariance
matrix + -�- . The goal is to steer the beam to the desired
direction  / while attenuating as much as possible all other
signals that impinge on the array from the directions other
than 6/ . The solution to the above optimization problem is
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and the corresponding output energy is
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��< � * is Hermitian transpose. The minimum value of equa-
tion (7) for a value of  / is the DOA of the � �7� source. Sim-
ilarly the DOAs for other sources can be estimated in the
same way.

2.2. Regularized Capon method

In this method the idea is to minimize the sum of weighted
array output power plus a penalty term, proportional to the
square of the norm of the weight vector, subject to the unity
gain constraint in the desired signal direction.
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subject to
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The parameter 8 penalizes large values of ) . The solution
of the above problem is
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3. SPATIAL TIME FREQUENCY DISTRIBUTIONS

The STFDs based on quadratic (Cohens class) time-frequency
distributionswas introdued in [3]. We will discuss two STFDs
methods, i.e., method based on pseudo Wigner-Ville distri-
bution and the method based on Wigner-Hough transform.
First of all, we will consider the pseudo Wigner-Ville distri-
butions (PWVD). The discrete form of PWVD of a signal�7�8��� , using rectangular window of length ? , is given by
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where ��< � * denotes the Hermitian transpose. Taking sepa-
rately,i.e., for each antenna element, PWVD of the received
signal will give PWVD at each antenna element. We Con-
sider FM signals, these have clear (well separated) PWV
representation. It is shown in [3] that if we select the time
frequency points along the time-frequency signature or the
instataneous frequency of the � �7� FM signal, the SNR is im-
proved by factor of L, i.e., the selected window size. The
PWVD of each FM source has a constant value over the ob-
servation period, provided that we leave out the rising and
falling power distributions at both ends of the data record.
For convenience analysis, we select those  H ? �M0 time-
frequency points of constant distributionvalue for each source
signal. The averaged space time frequency distribution ma-
trices over the time-frequency signature of the signal of in-
terest is given by
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where � / �8�$/ � is the instantaneous frequency of the signal of
interest at � ��� time sample. In the above equation we con-
struct the space time frequency distribution matrix by tak-
ing into account the region of interest in the time-frequency
plane i.e., signal of interest region plus noise in that region.
Hence

N3 -@- will almost be free of the interfering signals
(neglecting interference terms of the distribution). By re-
placing the covariance matrix in the Capon method with the
above space time frequency distribution matrix, we obtain
time-frequency Capon method. More precisely, we have
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and the corresponding ouput energy is
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The estimate of '/ is
N6/�� ����� 4 / ,�� � ���%��6/$� * N3 -�- 5 #
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The advantage of the time-frequency Capon method over
conventional Capon method are follows:
1) Better DOA estimates
2) Conventional Capon method will completely fail if the
two or more sources have the same DOA. On the other hand
time-frequency Capon method will resolve the DOA prob-
lem successfully by constructing space time frequency dis-
tribution matrix for each source separately.

3.1. Chirp detection/parameter estimation using Wigner-
Hough transform

The parameters of the chirp can also estimated by Wigner-
Hough transform [4]. The discrete Wigner-Hough trans-
form (WHT) of a sequence � �"�)� , � �	� A�0/A*(*('( A  H 0 (for
N even) is defined as
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The WHT of the chirp signal
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assumes its maximum absolute value in the point of coor-
dinated � ��F A0� F � where it is equal to $ �HG �& [4]. This means
that the detection and estimation of chirp signals embedded
in noise can be recast as search for the peaks in the domain� � AI� � . There is one advantage of using WHT, is that, there
are only two peaks present in the final domain, since the
cross terms are cancelled by the integration operated by the
HT.

4. SIMULATIONS

We consider a six-element linear array with half wavelength
interelement spacing, and two chirp signals arrive at this ar-
ray. We consider a simple case of FM signals such that their
time-frequency signatures do not overlap. The start and the
end frequency of the first signal, � #0����� are � #7J �K��<ML and
� #7N �O�7<MP repectively and those for the second signal ��& �8���
are � &QJ �R� and � &QN �R�7< S respectively. The DOAs of
the two signals are  # �	P F and  & � HTP F repectively. Both
Capon method and time-frequency Capon method gives sat-
isfatory results upto SNR of 5 dB. Figure 1 shows the mix-
ture of two noiseless chirp signals. Figure 2 and figure 3
shows Wigner-Ville and Pseudo Wigner-Ville distibution of
the two chirp signals respectively. In these figures we can
see clearly the interference terms. Figure 4 shows Smoothed
Pseudo Wigner-Ville distibution, it is clear from the figure
the suppression of interference terms but this is achieved
at the expense of signal resolution in the time-frequency
plane. In figure 5, the Wigner-Hough transform is shown.
The coordinates of the two peaks are the estimates of the
parameters of two chirp signals. Now we fix SNR to be
-5dB. The window length is chosen to be, ? � 0VU4W and
the number of samples across the array,  �XU�P4Y . For
eight independent trials for DOA estimation (see figure 6
and figure 7), it is evident that the Capon method based on
space time frequency distribution matrix out performs con-
ventional Capon method. Now we consider two chirp sig-
nals arriving at the array from the same direction with DOA
equal to  �ZP F . Conventional Capon method fails to esi-
mate DOAs. But the same problem can be solved success-
fully by time-frequency Capon method as shown in figure
8.
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Fig. 1. Mixture of two chirp signals.
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Fig. 2. Wigner-Ville distribution of mixture of two chirp
signals.
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Fig. 3. Pseudo Wigner-Ville distribution of mixture of two
chirp signals.
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Fig. 4. Smoothed Pseudo Wigner-Ville distribution of mix-
ture of two chirp signals.
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Fig. 5. Wigner-Hough transform of mixture of two chirp
signals.
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Fig. 6. Capon method for DOA estimation.
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Fig. 7. Time-frequency Capon method for DOA estimation.
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Fig. 8. Time-frequency Capon method for DOA estimation.

5. CONCLUSIONS

In this paper we presented nonparametric DOA estimation
using time-frequency distributions.The results are compared
with the Capon method for DOA estimation. Better results
are obtained because the covariance matrix in the Capon
method is replaced with the space time frequency distribu-
tion matrix. We considered the case of two chirp signals.
These signals have clear time-frequency signatures. Using
time-frequency distributions we enhance the SNR of sig-
nals and we can construct space time frequency distribution
matrices by selecting only region of interest, i.e., in order
to calculate the DOA of source 1, we select source 1 re-
gion of interest in the time-frequency plane. In this man-
ner we eliminate intereference term which is due to the sec-
ond source and the space time frequency distribution ma-
trix can be constructed only from the signal of interest, the
same procedure applies in estimating the DOA of the second
source. In this way better estimates for DOAs are obtained
by using space time frequency distribution matrices in place
of covariance matrix in Capon method.
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