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Abstract

Developing robust applications is a challenging task. Al-
though modern programming languages like C++ and Java
provide sophisticated exception handling mechanisms to de-
tect and correct runtime error conditions, exception han-
dling code must still be programmed with care to preserve
application consistency. In particular, exception handling
is only effective if the premature termination of a method
due to an exception does not leave an object in an inconsis-
tent state. We address this issue by introducing the notion
of failure atomicityin the context of exceptions and novel
techniques toautomaticallydetect and masknon-atomic ex-
ception handling. These techniques can be applied to appli-
cations written in several different programming languages,
and can be used even when the application’s source code is
not available. We perform experimental evaluation on both
C++ and Java applications to demonstrate the effectiveness
of our techniques and measure the overhead that they intro-
duce.

1 Introduction

Developing robust software is a challenging task. A ro-
bust program has to be able to detect and recover from a
variety of faults like the temporary disconnection of com-
munication links, resource exhaustion, and memory corrup-
tion. For programmers, robust software has the connotation
of elegance[17]: robust software has to be able to recover
from faults without substantially increasing the code com-
plexity. An increase in code complexity increases the prob-
ability of design and coding faults and can thus decrease the
robustness of the software.

Language-levelexception handlingmechanisms allow pro-
grammers to handle errors with only one test per block of
code. In programming languages without exception han-
dling, such as C, programmers have to check for error re-
turn codes after each function call. The use of exception
handling mechanisms can simplify the development of ro-
bust programs.

Although the use of exceptions simplifies the detection
of failures, the elegance of language-level exception han-
dling mechanisms might lead to the neglect of recovery is-
sues (for an example, see [6]). The premature exit of a
method due to an exception might leave an object in an in-
consistent state. If this inconsistency is not solved in the
error handling code, it might prevent a later recovery, and
thus decrease the robustness of the program. In this paper,
we show how to automatically detect and correct such state
inconsistencies.

Problem Description. Modern programming languages,
like C++ and Java, provide explicit exception handling sup-
port. When a semantic constraint is violated or when some
exceptional error condition occurs, an exception isthrown.
This causes a non-local transfer of control from the point
where the exception occurred to a point, specified by the
programmer, where the exception iscaught. An exception
that is not caught in a method is implicitly propagated to the
calling method. The use of exceptions is a powerful mecha-
nism that separates functional code from the error handling
code and allows a clean path for error propagation. It fa-
cilitates the development of applications that are robust and
dependable by design.

Exception handling code must however be programmed
carefully to ensure that the application is in a consistent
state after catching an exception. Recovery is often based
on retrying failed methods. Before retrying, the program
might first try to correct the runtime error condition to in-
crease the probability of success. However, for a retry to
succeed, a failed method also has to leave changed objects
in a consistent state. Consistency is ensured if any modi-
fication performed by the method prior to the exception’s
occurrence is reverted before the exception is propagated
to the calling method. This behavior is hard to implement
because, when catching exceptions, a programmer has to
consider all possible places where an exception might be
thrown, and has to make sure that none of these exceptions
can cause a state inconsistency.



We address in this paper the challenging issue of ensur-
ing that failed methods always leave objects in a consistent
state after throwing an exception. We classify methods as
either failure atomicor failure non-atomic, depending on
whether they do or do not preserve state consistency, re-
spectively. Informally, we say that theexception handling
is atomicif it ensures failure atomicity. Otherwise, we say
thatexception handling is non-atomic. Our main objectives
are to find mechanisms that help identify all failure non-
atomic methods, and to develop techniques to automatically
transform these methods into failure atomic methods.

Approach. To address the issue of failure non-atomic meth-
ods, we propose a system to systematically test and validate
the exception handling code of applications. Our system au-
tomatically injects both declared (i.e., anticipated) and un-
declared (i.e., unexpected) exceptions at runtime, and eval-
uates if the exception handling code ensures failure atom-
icity. It notifies the programmer about any failure non-
atomic method, as in many situations minor code modifi-
cations (e.g., changing the order of some instructions, or
introducing temporary variables) are sufficient to transform
a failure non-atomic method into a failure atomic method.
In cases where this is not possible, our system can automat-
ically generate wrappers to render a given method failure
atomic with the use of checkpointing and rollback mecha-
nisms.

Our infrastructure for detecting and masking non-atomic
exception handling comes in two flavors, which support the
C++ and Java programming languages. The C++ version
is optimized for performance, but requires access to the ap-
plication’s source code. The Java version is less efficient,
as it uses a combination of load-time and runtime reflec-
tion mechanisms, but it works with applications for which
source code is not available.

The contribution of our paper is twofold. First, we for-
malize the failure atomicity property in the context of ex-
ceptions. Second, we introduce novel techniques forauto-
maticallydetecting and masking non-atomic exception han-
dling. These techniques can be applied to both C++ and
Java applications, and do not always require access to the
application’s source code. We present experimental results
that demonstrate the effectiveness and the performance over-
head of our techniques.

The organization of this paper is as follows: In Section 2,
we first discuss related work. Section 3 introduces the fail-
ure atomicity problem, and Section 4 presents our approach
for detecting and masking failure non-atomic methods. In
Section 5 we discuss the implementation details of our sys-
tem, and Section 6 elaborates on the performance of our
C++ and Java infrastructures. Section 7 concludes the pa-
per.

2 Related Work

Exception handling has been investigated for several de-
cades. Goodenough [14] proposed to add explicit program-
ming language constructs for exception handling in 1975,
and Melliar-Smith and Randell [24] introduced the combi-
nation of recovery blocks [4] and exceptions to improve the
error handling of programs in 1977.

Exception handling is still actively investigated. For ex-
ample, a complete issue of ACM SIGAda Ada Letters [1]
was recently dedicated to exception handling, and a 2001
Springer LNCS book addresses advances in exception han-
dling [26]. One of the major issues addressed by researchers
is a better separation of functional code and exception han-
dling code. [25] proposes to combine exception handling
and reflection to increase this division. [22] studies the use
of aspect-oriented programming for reducing the amount of
code related to exception handling.

Although the goal of exception handling code is to in-
crease the robustness of programs, it has been noted by
Cristian in [8] that exception handling code is more likely
to contain software bugs (calledexception errors[23]) than
any other part of an application. This can be explained in-
tuitively by two factors. First, exceptions introduce signifi-
cant complexity in the application’s control flow, depending
on their type and the point where they are thrown. Second,
exception handling code is difficult to test because it is ex-
ecuted only rarely and it may be triggered by a wide range
of different error conditions. Furthermore, 50% of secu-
rity vulnerabilities are attributed to exception handling fail-
ures [23]. Therefore, eliminating exception failures would
not only lead to more robust programs, but also more secure
programs.

Several approaches have been proposed to address the
issue of exception errors [23]: code reviews, dependabil-
ity cases, group collaboration, design diversity, and testing.
Testing typically results in less coverage for the exception
handling code than for the functional code [8]. The effec-
tiveness of dependability cases, design diversity, and col-
laboration for reducing exception handling errors has been
studied in [23]. In this paper we introduce a novel approach
based on exception injection to address certain kinds of ex-
ception errors. We do not consider our approach as a re-
placement of other approaches; we rather believe that it
complements techniques like dependability cases and col-
laboration. The advantages of our approach lie essentially
in its highly automated operation and fast detection of func-
tions that contain certain exception errors.

The robustness of programs can be evaluated using fault
injection techniques [3]. There exist software-implemented,
hardware-implemented, and simulation-based fault injectors.
Our tool performs software-implemented fault injections.
Software-implemented fault injectors have been investigated



for various types of failures, such as memory corruption [27,
2], invalid arguments [20], or both [9]. There are also var-
ious techniques for injecting faults. Some tools like FER-
RARI [18] and Xception [7] inject faults without modifying
the applications. Tools like DOCTOR [16] modify the ap-
plication at compile time, and others during runtime.

Our tool injects faults in the form of exceptions, by mod-
ifying the application either at compile time or at load time.
Unlike FIG [5], which tests the error handling of applica-
tions by returning error codes to system calls, our tool only
injects application-level exceptions.

Our tool does not only evaluate the robustness of pro-
grams by performing exception injections, but it also auto-
matically corrects the problems discovered by the fault in-
jections. The automatic wrapping of shared libraries based
on injection results has been previously demonstrated in [11].
In this paper, we address different types of failures (excep-
tion handling vs. invalid arguments) and hence, we use dif-
ferent fault injection and wrapping techniques.

3 Problem Description and Motivation

Robust software has to be able to detect and recover from
failures that might occur at runtime. One way of perform-
ing failure recovery is by taking advantage of the exception
handling mechanism that is provided in many programming
languages. Using this mechanism, a method can signal to
its caller that it has encountered a failure, be it memory de-
pletion or an unexpected result of a calculation, by throw-
ing an exception. The exception can then be caught by the
caller, which provides the programmer with an opportunity
to recover from the failure and consequently to increase the
robustness of the application.

Failure recovery is however likely to fail, unless extreme
care is taken during the programming of the exception han-
dling code. Due to the incomplete execution of the method
that threw the exception, one or more objects might be in in-
consistent states. Unless consistent states are restored, the
application might crash or terminate with an incorrect re-
sult.

In this paper, we present a system to help programmers
detect which methods might leave an object in an incon-
sistent state when an exception is thrown. Our system can
also automatically revert an object back to a consistent state
by automating the “checkpoint, execute, and roll-back on
exception” idiom, if the programmer so desires. This is fur-
ther explained in Sections 4 and 5.

Before describing our system in more detail, we formally
introduce the notions ofobject graphs, failure non-atomic
methods, andfailure atomic methods.

Definition 1. An object graphis a graph where each node
is either an object or an instance of a basic data type (like

an integer or a pointer). The values of the instance vari-
ables of an object are represented as children of the object
node. If a node represents the value of a variable, the node
is also labeled with the name of the variable. If a node con-
tains a non-null pointer, the node has exactly one child that
represents the referenced object or the referenced instance
of a basic data type. If two non-null pointers are pointing to
the same object or instance, their nodes in the object graph
share the same child node. If the node is a null pointer, the
node does not have any children.

Theobject graph of objecto is the object graph whereo
is the root node.

Definition 2. Let C be a class. A methodmof classC is
failure non-atomicif there exists an objecto of classCand
an executionE, such that the object graph ofo beforemis
invoked ono in E is different from the object graph ofo
right after mhas returned with an exception. A method is
failure atomicif it is not failure non-atomic.

4 Approach

Our approach to identify and transform failure non-atomic
methods consists of two phases: adetectionand amask-
ing phase. The detection phase uses automated injection of
exceptions to identify failure non-atomic methods, and the
masking phase transforms failure non-atomic methods into
failure atomic methods.

4.1 Detection Phase

The goal of the detection phase is to determine which
methods are failure non-atomic. This detection is done
with the help of automated experiments.

Automated Experiments. We use automated fault injec-
tion experiments to determine if methods are non-atomic.
Experiments are run on test programs or end-user applica-
tions that call the methods we want to investigate. We auto-
matically transform the code of these programs to inject ex-
ceptions at specific points of their execution. As the last step
in the detection phase, these exception injector programs are
then run to generate a list of the failure non-atomic methods
to be used as input to the masking phase. This process con-
sists of steps 1 through 3 as shown in Figure 1.
Step 1: To create an exception injector programPI from a
programP , we first determine which methods are called
by P , and for each of them, the exceptions that may be
thrown (this includes all the exceptionsdeclaredas part of
the method’s signature, as well as generic runtime excep-
tions that can be thrown by any method). The Analyzer then
creates aninjection wrapperfor all methods called during
the execution ofP .
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Figure 1: We automatically transform applications to inject exceptions in their execution, and we use the experimental results to correct the applications.

Assume that methodm declares exceptions of typesE1,
E2, ... Ek and may also throw runtime exceptionsEk+1, ...
En. The Analyzer creates an injection wrapperinj wrap-
per mfor m, which either throws one of these exceptions,
or calls methodm. In the injection wrapper ofm, there are
n potential injection points as shown in Listing 1. We deter-
mine whether to throw an exception at any of these injection
points using a global counter (Point ), incremented every
time the control flow reaches a potential injection point;
an exception is injected when the counter reaches a preset
threshold value (InjectionPoint ).

1 return type inj wrapperm (...) throw (E1, E2 ,..., Ek){
2 if (++Point == InjectionPoint )throw E1();
3 if (++Point == InjectionPoint )throw E2();
4 ...
5 if (++Point == InjectionPoint )throw En();
6 objgraphbefore = deepcopy(this );
7 try {
8 return m (...);
9 } catch (...){

10 objgraphafter = deepcopy(this );
11 if ( objgraphbefore != objgraphafter )
12 mark(”m”, ”nonatomic”, InjectionPoint );
13 else // atomic in this call
14 mark(”m”, ”atomic” , InjectionPoint );
15 throw ;
16 }
17 }

Listing 1: Pseudo-code for the injection wrapper of methodm(detec-
tion phase). This code injects exceptions into callers ofm.

1 return type atomicm (...){
2 objgraph = deepcopy(this );
3 try {
4 return m (...);
5 } catch (...){
6 replace (this , objgraph );
7 throw ; // rethrow exception
8 }
9 }

Listing 2: Pseudo-code for the atomicity wrapper of methodm(mask-
ing phase).

Step 2: After the Analyzer has created the injection wrap-
pers for all methods called byP , the Code Weaver makes
sure that the wrappers, as opposed to the original meth-
ods, are called. Modifications can be performed on the pro-

gram’s source files (source code transformation), or by di-
rectly instrumenting the application’s code or bytecode (bi-
nary code transformation). The result of this transformation
is an exception injector programPI , and the two approaches
are discussed in more detail in Sections 5.1 and 5.2, respec-
tively.
Step 3: Once the exception injector programPI is created,
we execute it repeatedly. We increment the thresholdIn-
jectionPoint before each execution to inject an excep-
tion at a different point in each run. Each wrapper in-
tercept all exceptions and checks if the wrapped method is
failure non-atomic before propagating the exception to the
caller.

To determine whether a methodm is failure non-atomic,
the injection wrapperinj wrapper m(Listing 1) makes
a deep copy of the state of the invoked object before calling
methodm (all arguments that are passed in as non-constant
references are also part of this copy.) This copy represents a
snapshot of the object graph of the invoked object (see Sec-
tion 3). If m returns with an exception, the wrapper catches
the exception and compares the snapshot of the object’s pre-
vious state with its current state. If both object graphs are
identical, we mark the method as failure atomic (for this in-
jection); otherwise, we mark it as failure non-atomic. Since
different injections may result in different classifications for
a method, we classify a methodm as failure atomic if and
only if it is never marked as failure non-atomic, i.e., if and
only if for each injection the “before” and “after” object
graph are identical. The output of this phase is a list of the
failure non-atomic methods called in the original program.

4.2 Masking Phase

The goal of the masking phase is to transform the failure
non-atomic methods identified during the injection phase
into failure atomic methods. By doing so, the resulting pro-
gram becomes more robust, since the incomplete execution
of a method due to an exception does not result in an incon-
sistent program state. The masking phase consists of two
steps (Step 4 and 5 in Figure 1), which are described next.
Step 4: The failure non-atomic methods are automatically
transformed into equivalent failure atomic methods. The



Analyzer performs this task by generating anatomicity wrap-
per atomic m for each method in the list of failure non-
atomic methods provided by the detection phase. This wrap-
per exhibits failure atomic behavior to its callers. Its pseudo-
code is given in Listing 2.
Step 5:After the Analyzer has generated an atomicity wrap-
per for each of the method that should be transformed, the
Code Weaver transforms the original programP into an
equivalent (corrected) programPC by replacing each call to
such a methodm by a call to its atomicity wrapperatomic m.
This process is similar to the one in Step 2.

The implementation details of both the detection and the
masking phases are discussed in Section 5.

4.3 To Wrap or Not To Wrap

There are situations in which a failure non-atomic method
shouldnot be wrapped during the masking phase. First,
although very unlikely, the failure non-atomic behavior of
a method might have been intended by the programmer.
Since transforming a failure non-atomic method into a fail-
ure atomic method changes its semantics, the transforma-
tion might causean incorrect result or crash, instead of
avoiding it. To deal with this situation, our system provides
an easy-to-use web interface that allows the programmer to
indicate which methods (that are classified as failure non-
atomic) should not be transformed.

Second, a failure non-atomic method might easily be
manually transformed into a failure atomic method, e.g.,
by swapping lines of code or by using temporary variables.
In that case, the programmer might prefer to rewrite the
method himself, since the resulting code is likely to be more
efficient. After the programmer corrects these methods, he
can re-run the detection phase to test the modifications.

Third, a methodm might be classified as failure non-
atomic even though it is impossible for it to exhibit fail-
ure non-atomic behavior. This may happen in situations
where the programmer has explicitly ruled out that a spe-
cific methodm can throw exceptions. Because this assump-
tion is not known to our Analyzer, the injection wrapper for
methodm will contain an injection point (see Section 4.1).
Consequently, the callers of methodm might be classified
as failure non-atomic, due to an exception thrown bym,
although such exceptions cannot happen at runtime.

This conservative classification is a consequence of the
limitations of our current Analyzer implementation, which
does not attempt to determine whether it is possible for a
runtime exception to occur in a given method. We plan to
address this issue in the future. Meanwhile, it should be
noted that this conservative classification does not result in
an incorrect program behavior, but merely in an unneces-
sary loss in performance due to unnecessary checkpoint-
ing during the masking phase. To address this limitation,

we allow the programmer to indicate that certain methods
never throw exceptions using a web interface. All methods
that were classified as failure non-atomic solely because of
the exceptions injected in the “exception-free” methods are
then re-classified as failure atomic. Note however that it is
often hard for a programmer to determine whether a method
is exception-free, since all the various runtime conditions
that might lead to an exception being thrown are not neces-
sarily known.

Fourth, a method might exhibit failure non-atomic be-
havior only because the methods it calls are failure non-
atomic. We call such methodsconditional failure non-atomic
methods:

Definition 3. A conditional failure non-atomicmethod is
a failure non-atomic method that would be failure atomic
if all the methods that it calls (directly or indirectly) were
failure atomic. All other failure non-atomic methods are
pure failure non-atomicmethods.

During the execution of the corrected program (produced
by the masking phase), all methods called by a conditional
failure non-atomic methodm will exhibit failure atomic be-
havior. Thus, by definition, methodm is no longer failure
non-atomic and it is not necessary to wrap it. Therefore,
distinguishing between pure and conditional failure non-
atomic methods can help us improve the performance of the
corrected program.

To distinguish conditional from pure failure non-atomic
methods, we examine the order in which methods were re-
ported as failure non-atomic during exception propagation
for each run of the exception injector program (Step 3 in
Figure 1). If there exists a run in which methodm is the
first method to be marked as failure non-atomic, thenm
is pure failure non-atomic. Indeed, any failure non-atomic
method called bym would be detected and reported before
m because of the way exceptions propagate from callee to
caller (see Listing 1).

4.4 Limitations

The approach that we use to detect and mask failure non-
atomic methods has some limitations. First, it does not han-
dle methods with external side effects, e.g., writing to a file.
Because external side effects are not covered by the defini-
tion of failure atomicity, our approach can neither detect nor
mask such methods.

Second, our system does not explicitly deal with concur-
rent accesses in multi-threaded programs. With applications
that incorporate adequate (conservative) concurrency con-
trol support, our injection and checkpointing mechanisms
should still produce consistent results. For other applica-
tions, one could address this limitation by restricting the
amount of parallelism in the system and enforcing restric-
tive concurrency control policies.



5 Implementations

We have investigated two approaches for implementing
our system, using source code and binary code program
transformation techniques. The first approach requires ac-
cess to the source code of a program, while the second does
not. However, binary code transformation is not necessarily
possible with all programming languages, and the resulting
instrumented programs generally suffer from higher perfor-
mance overhead than with source code transformation.

Both kind of transformations can be aided by the use of
aspect oriented programming [19], which allow program-
mers to easily capture and integrate crosscutting concerns
in their applications. We have used AspectC++ [28] for
our source code transformations, and we plan to use As-
pectJ [19] for a future version of our Java bytecode transfor-
mation engine (AspectJ does not currently implement byte-
code weaving).

5.1 Source Code Transformation

We have implemented a first prototype of our system that
performs source code transformations to inject and mask
non-atomic exception handling in C++ applications. This
prototype uses an aspect-oriented language extension for
C++ (AspectC++ [28]) for source code weaving. We de-
scribe below our implementation along the same five steps
as in Section 4.
Step 1: We use the C/C++ interpreter CINT [15] to parse
the source code of a given program. We use the type in-
formation provided by CINT to generate the checkpointing
code and wrappers for each method. The wrappers are im-
plemented as aspects. We then generate, for each class, a
functiondeep copy to checkpoint the state of an instance
of that class.
Step 2: We use AspectC++ to transform the source code of
the program into an exception injector program. AspectC++
weaves the wrappers (given as aspects) with the source code
of the program in such a way that each call to a methodm
instead calls the wrapper ofm.
Step 3: We execute the exception injector program itera-
tively to inject exceptions at all possible injection points (for
the given program input). The results of online atomicity
checks are written out to log files by the injection wrappers.
These log files are then processed offline to classify each
method.
Step 4: As in step 1, we use CINT to create wrappers (im-
plemented as aspects) for all failure non-atomic methods. In
addition to thedeep copy function, we generate a func-
tion replace to restore the state of a previously check-
pointed object.
Step 5:As in step 2, we use AspectC++ to weave the wrap-
pers into the source program code.

Limitations. Due to restrictions of C++ and the tools we
are using, our implementation has a few limitations. First,
CINT does not support templates and ignores exception spec-
ifications. A better parsing tool could easily solve this prob-
lem. Second, checkpointing C++ objects is not trivial. In
particular, C++ allows pointer manipulations that make it
hard, in some situations, to discover the complete object
graph of an object at runtime. While there exist techniques
to address this problem (e.g., by checkpointing the whole
address space of the process, or by using the underlying
memory management interface), these techniques are often
prohibitively expensive or complex. Note that, in the worst
case, checkpointing incomplete object graphs may impact
the completeness of our detection system, but will never
cause failure atomic methods to be reported as failure non-
atomic.

Third, unlike Java, C++ does not enforce thrown ex-
ceptions to be declared as part of the method’s signature.
Hence, the C++ exception injector might have to inject a
wide range of different exception types in application that
do not declare exceptions. This problem can be solved us-
ing source code analysis or through automated fault injec-
tion experiments.

Fourth, one needs to clean up memory that is implicitly
discarded when rolling back to an object checkpoint. To do
so, our tool adds an automatic reference counting mecha-
nism to objects. However, this mechanism only works for
acyclic pointer structures. For cyclic pointer structures one
can use an off-the-shelf C++ garbage collector.

5.2 Binary Code Transformation

With languages that offer adequate reflection mechanisms,
it is possible to add functionality to an application without
having access to its source code, by applying binary code
transformations. We have followed this second approach
in the Java version of our infrastructure for detecting and
masking non-atomic exception handling.

To inject and mask failures in Java classes, we have de-
veloped a tool, called the Java Wrapper Generator (JWG),
which uses load-time reflection to transparently insert pre-
and post-filters to any method of a Java class. These generic
filters allow developers to add crosscutting functionality (as
with aspect-oriented programming) tocompiledJava code
in a transparent manner. Filters are attached to specific
methods at the time the class is loaded by the Java vir-
tual machine, by using bytecode instrumentation techniques
based on the BCEL bytecode engineering library [12]. Fil-
ters can be installed at the level of the application, individ-
ual classes, instances, or methods. They can modify the
behavior of a method by catching and throwing exceptions,
bypassing execution of the active method, or modifying in-
coming and outgoing parameters.



The Java implementation of our framework works along
the same lines as its C++ counterpart, with just a few no-
table differences. Wrappers are attached to the application
at load-time, by instrumenting the classes’ bytecode. These
wrappers have been programmed to be generic, i.e., they
work with any class; they obtain type information about
classes, methods, parameters, and exceptions at runtime us-
ing Java’s built-in reflection mechanisms. The methods that
checkpoint and restore the state of an object are also generic;
they essentially perform a deep copy of the object’s state us-
ing Java’s reflection and serialization mechanisms.

Limitations. A major limitation of our Java binary code
transformation implementation is that a small set of core
Java classes (e.g., strings, integers) cannot be instrumented
dynamically. This limitation applies to all systems that per-
form Java bytecode transformations, and is not specific to
our implementation. It can be overcome by instrumenting
the bytecode of core classes offline and replacing their de-
fault implementations by the instrumented versions.

6 Experimental Results

To validate our exception injection tool, we first devel-
oped a set of synthetic “benchmark” applications in C++
and Java. These benchmarks are functionally identical in
both languages, and contain the various combinations of
(pure/conditional) failure (non-)atomic methods that may
be encountered in real applications. We used these bench-
marks to make sure that our system correctly detects failure
non-atomic methods during the detection phase, and effec-
tively masks them during the masking phase. These appli-
cations were used for performance experiments presented
in the section.

We then performed stress tests and assessed the robust-
ness of some legacy applications. For that purpose, we
tested two widely-used Java libraries implementing regular
expressions [13] and collections [21]. Such libraries are ba-
sic building blocks of numerous other applications and are
thus expected to be robust. We also tested Self? [10], a
component-based framework in C++ that we are currently
developing. We ran experiments with several applications
that use Self? to help us detect failure non-atomic methods
and improve the robustness of the framework.

Table 1 lists the number of classes and methods used in
the applications we used for our experimental evaluation,
together with the total number of exceptions injected dur-
ing the detection phase (note that this value corresponds
to the number of method and constructor calls during the
execution of the test programs). We ran separate experi-
ments for each individual application; however, because of
the inheritance relationships between classes and the reuse

Application #Classes #Methods #Injections

C++ Applications adaptorChain 16 44 10122
stdQ 19 74 9585
xml2Ctcp 5 19 6513
xml2Cviasc1 23 102 12135
xml2Cviasc2 23 89 13959
xml2xml1 18 70 8068

Java Applications CircularList 8 58 5912
Dynarray 7 50 2528
HashedMap 10 40 3271
HashedSet 8 32 1149
LLMap 10 41 7543
LinkedBuffer 8 38 2737
LinkedList 9 62 7500
RBMap 11 55 7133
RBTree 9 51 8056
RegExp 4 32 1015

Table 1: C++ and Java application statistics.

of methods, some classes have been tested in several of the
experiments.

Experiments were conducted following the methodology
described in Section 4: we generated an exception injec-
tor program for each application, and ran it once for each
method execution in the original program, injecting one ex-
ception per run. The C++ experiments were run on a 866
MHz Pentium 3 Linux machine (kernel 2.4.18) with 512
MB of memory and the Java tests were run using Java 1.4
on a 1.7 GHz Pentium 4 Windows 2000 machine with 512
MB of memory.

6.1 Fault Injection Results

We first computed the proportion of the methods defined
and used in our test applications that are failure atomic, con-
ditional failure non-atomic, and pure failure non-atomic.

The C++ results, presented in Figures 2(a), show that
the proportion of “problematic” methods, i.e., those that are
pure failure non-atomic, remains pretty small. This may
indicate that the Self? applications tested have been pro-
grammed carefully, with failure atomicity in mind. In con-
trast, the Java results, presented in Figure 3(a), exhibit a
different trend. The proportion of pure failure non-atomic,
is pretty high, as it averages 20% in the considered appli-
cations. The proportion of conditional failure non-atomic
methods is smaller, but still significant. These relatively
high numbers tell us that our system is indeed needed, and
that the programmer could eliminate many potential prob-
lems by, either manually or automatically, making these
methods failure atomic. Using the input of the fault in-
jector, we managed indeed to reduce the number of pure
failure non-atomic methods in the Java “LinkedList” appli-
cation from 18 (representing 7.8% of the calls) to 3 (less
than 0.2% of the calls) with just trivial modification to the
code, and by identifying methods that never throw excep-
tions (see Section 4.3).

Figures 2(b) (C++) and 3(b) (Java) represent the same
data, weighted by the number of invocations to each method.
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Figure 2: Method classification as a percentage of the number of (a) methods defined and used, and (b) method calls, in each C++ application.
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Figure 3: Method classification as percentage of the number of (a) methods defined and used, and (b) method calls, in each Java application.

Results show that failure non-atomic methods are called
(proportionally) less frequently than failure atomic meth-
ods. This trend may be explained by the fact that bugs
in methods frequently called are more likely to have been
discovered and fixed by the developer. Since problems in
methods that are infrequently called are harder to detect
during normal operation, our tool is quite valuable in help-
ing a programmer find the remaining bugs in a program.
For example, the pure failure non-atomic methods of the
“xml2Cviasc” applications are called very rarely, and would
probably not have been discovered without the automated
exception injections of our system.

Figure 4 shows the proportion of the classes in our test
applications that are failure atomic (i.e., only contain failure-
atomic methods), pure failure non-atomic (i.e., contain at
least one pure failure non-atomic method), and conditional
failure non-atomic (i.e., all other classes). The results clearly
demonstrate that failure non-atomic methods are not con-
fined in just a few classes, but spread across a significant
proportion of the classes (up to 25% for C++ tests, and from

30 to 50% for Java tests).

6.2 Fault Masking Results

The performance of our automated masking mechanism
is highly dependent of the frequency of calls to the trans-
formed methods (see Figure 5). Obviously, we have to pay a
higher performance penalty as the percentage of calls to the
transformed methods increases. The overhead also grows
with the size of the checkpoints. As there is no upper bound
on the size of objects, this overhead cannot be bounded.

Nevertheless, in the programs we have investigated, we
have observed that the checkpoint sizes and the percentage
of failure non-atomic method calls remain small. For ex-
ample, the largest percentage of calls to failure non-atomic
methods in our C++ applications was less than0.4% (Fig-
ure 2(b)). In the Java programs, the pure non-atomic meth-
ods that we could not easily render failure atomic (by per-
forming trivial modifications) accounted for less than0.2%
of the calls. As long as the object sizes and the percentage
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Figure 4: Distribution of the classes as a percentage of the number of classes defined by the (a) C++, and (b) Java applications.
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Figure 5: Performance overhead of C++ masking as a function of
checkpointed object size and percentage of failure atomic method
calls. Each data point is the median of 40 runs and the processing
time per method in the original program is about0.5µs.

of failure non-atomic method calls is reasonably small, we
can obtain reasonable performance. For very large object
sizes, one could use copy-on-write mechanisms to speed
up the checkpointing. For high ratios of failure non-atomic
method calls, it would be preferable to use the detection
phase of our system to manually correct as many of the fail-
ure non-atomic methods as possible.

7 Conclusion

In this paper, we have introduced the failure atomicity
problem and proposed a system that addresses it. Our sys-
tem can automatically detect which methods are failure non-
atomic, and then automatically turn them into failure atomic
methods. To discover failure non-atomic methods, we in-
ject exceptions into each method executed in an application
at runtime, and we compare the state of the objects before

the method call and after the exception. Methods that cause
an object to enter an inconsistent state are classified as fail-
ure non-atomic. To transform failure non-atomic methods
into failure atomic methods, we take a snapshot of the state
of the object before the method is called; if an exception
is thrown, we reinstate that state before propagating the ex-
ception to the caller.

Our exception injection system alerts the programmer
when finding failure non-atomic methods. In many situa-
tions, the programmer can correct the problem by applying
simple modifications to his code (such as reordering a cou-
ple of statements). In other cases, more elaborate modifica-
tions are required to implement failure atomicity; in those
situations, the programmer can use the automatic masking
mechanisms provided by our system.

We have implemented our infrastructure for detecting
and masking non-atomic exception handling in both Java
and C++. Experimental results have shown that our system
is effective and can be of great help for the developer of
robust applications.
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