
Improving Routing and Network Performance in Mobile Ad Hoc Networks Using
Quality of Nodes

Navid Nikaein and Christian Bonnet
Institut Eurécom

Sophia Antipolis, France
Firstname.Name@eurecom.fr

Abstract—In this paper we suggest a mechanism to describe the quality
of nodes over time from the network point of view, and use this quality for
extracting the links connecting the pair of best nodes. Therefore, links (or
nodes) can be properly selected so as to improve the routing performance.
We also present a distributed algorithm to construct a forest of nodes with
the high quality. The constructed forest reduces the broadcasting overhead
by selecting a subset of the neighboring nodes for forwarding a packet.
Furthermore, the subset of the forwarding nodes belongs to the set of nodes
with the high quality, which in turn imp roves routing performance. We
also provide two simulation results to show the efficiency of the algorithm.

Index Terms—Manet, routing, broadcasting, QoS, graph-theory.

I. I NTRODUCTION

Mobile ad hoc networking is a challenging task due to the frequent
changes in network topology as well as the lack of wireless resources.
As a result, routing in such networks experiences link failure more of-
ten. Hence, it is essential that a routing protocol for an ad hoc network
considers the reasons for link failure to improve the routing perfor-
mance. Link failure stems from node mobility and lack of network re-
sources both reside in the wireless medium and in nodes. Therefore it
is essential to capture the aforesaid characteristics to identify the qual-
ity of nodes and hence the quality of links. In this paper we suggest a
mechanism to describe thequality of nodes over time from the network
point of view, and use this quality for extracting thelinks connecting
the pair of best nodes. Due to the reasons of link failure in mobile ad
hoc networks, this quality should not only reflect the available network
resources but also the stability of such resources. Therefore, links (or
nodes) can be properly selected so as to improve the routing perfor-
mance. We also present a distributed algorithm to construct a forest of
nodes with the high quality. The rationale behind the forest construc-
tion is to reduces the broadcasting overhead since a subset of the set of
neighboring nodes is selected for forwarding a packet. Furthermore,
the subset of the forwarding nodes belongs to the set of nodes with the
high quality, which in turn improves routing performance. This forest
is dynamic because the quality of nodes change over time, and also it
is connected thanks to gateway nodes.

II. QUALITY OF NODES

Unlike fixed/wired networks, the performance of ad hoc routing
strictly depends on the “quality” of each individual node. This quality
should not only represent the available network resources reside both
in the wireless medium and in the mobile nodes but also the stability
of these resources. This is because mobile ad hoc networks poten-
tially have less resources than wired networks. Furthermore, mobility
may result in link failure which in turn may result in a broken path.
Therefore, more criterion are required in order to capture the quality
of the links between nodes. We defineQoS state as thebuffer level
and stability level of a node to represent the “quality” of nodes, and
hence the quality of network [1]. In this work for the sake of simplic-
ity, we only consider buffer level as the available network resources

in a symmetric environment where all nodes have similar capabilities
such as transmission range and buffer capacity. However, additional
QoS states such as link SINRs and power level can be used based on
an asymmetric environment. Note that a QoS state is internal to a node
and it is periodically evaluated by each node. TheQoS state of a par-
ticular node reveals whether the node isforced to beselfish or not. In
the selfish mode, a node ceases to be a router and acts only as a host.
We assume that each node periodically broadcasts its presence and its
QoS state in the form of abeacon to its neighboring nodes.

� Buffer Level— which stands for the available unallocated buffer.
It represents a node’s internal state, and we assume that a node
is capable of determining its state. Note that if the buffer level
of a particular node is low, then this implies that a large num-
ber of packets are queued up for forwarding, which in turn im-
plies that a packet routed through this node would have to experi-
ence high queuing delays. This metric is translated into a two-bit
code which indicates the QoS state of a node in terms of available
buffer. This two-bit code is used to indicatehigh, medium, low
and selfish QoS state in terms of the buffer level. Ahigh QoS
state indicates that the corresponding node no packets queued up
for forwarding, whileselfish QoS state shows that the available
buffer is less than 25 percent of its size. Since there is a slight de-
lay between the broadcast of this metric and its use, instantaneous
buffer-level may be misleading. Hence, a node should maintain
the average buffer-level such as exponentially weighted moving
average (EWMA).

� Stability Level— we define the connectivity variance of a node with
respect to its neighboring nodes over time as the stability of that
node. This metric is used to avoid unstable nodes to relay packets.
We estimate the stability of a node� as:

������� �
���� ���� �

���� ���� �

��� and��� represent the nodes in the neighborhood of� at
times�� and�� respectively. Note that,�� � �� denotes the time
period in which nodes exchange beacons. A node is unstable if
a large number of its neighbors change. Further, if most (or all)
of the neighbors remain the same at the two times�� and��, then
we call this node stable. Note that��� � ��� (the numerator
of �������) denotes the set of nodes that have remained in the
neighborhood of� between times�� and ��. The denominator
of ������� is a normalization term. A node hashigh stability if
none of its neighbors change (��� � ���) , in this case we have
������� � �. A node isunstable (no stability), if all its neighbors
change (��� ���� � �), in this case we have������� � �. We
say that a node haslow stability if � � ������� � �	� and that
it hasmedium stability if �	� � ������� � �. A two-bit code
maps the stability to four QoS states ofhigh, medium, low and
no stability. For the sake of conformity with the other metric, if a
node hasno stability, we say that it hasselfish stability.

In order to facilitate the notion of QoS state, we need to map the
the QoS state onto a single weighted metric which can be compared
and whose best can be chosen. Suppose� and� denote the stability
and buffer levels of a particular node. Note that�
 � � ��
 �� since we
are using a two bit code to capture these metrics. We say that the QoS
state of a node� is:

� � ���
 �� � 	 �� � 	 �

The weights and� denote the relative importance of stability and
buffer level amongst themselves. Since we desire stability to be most
important followed by the buffer level, we propose � 	 and� � �.
Hence, given two nodes, we are always in a position to select thebetter
one. For example in Fig. 1, if a node� has� � 	, � � � then its QoS
state is: 7. On the other hand a node� with � � �, � � � has a QoS
state value of 9. Hence, in our scheme, node� is a “better” node than
node� .

III. A LGORITHM FOR FORESTCONSTRUCTION WITHHIGH

QUALITY NODES

Quality of service forest (QoS-F) is a distributed algorithm to con-
struct a forest of high quality links (or nodes) from network point of
view, and use these for routing and broadcasting. The main objectives
of QoS-F are to reduce the overhead of broadcasting and to improve
routing performance. To reduce the broadcasting overhead, QoS-F
elects the smallest subset of the set of neighboring nodes in order to
forward a packet. A packet is forwarded if the message has not been
received by the node before, and the node belongs to the subset of the
forwarder nodes. On the other hand, it improves routing performance
since the subset of forwarding nodes belongs to the set of high qual-
ity nodes. The QoS-F algorithm consists of three cyclic time-ordered
phases: preferred neighbor election, quality of service forest construc-
tion, and neighboring table construction, which are carried out based
on the information provided bybeacons. A beacon is a periodic mes-
sage exchangedonly between a node and its neighboring nodes. We
assume that initially each node knows the QoS state of its neighboring
nodes. Then, each node in the network topology carries out the pre-
ferred neighbor election algorithm to choose a preferred neighbor. The
preferred neighbor of a node is the node that owns maximum neigh-
borhood QoS state among neighboring nodes. Then, a forest is con-
structed by connecting each node to its preferred neighbor and vice
versa. It has been proven that whatever is the network topology, con-
necting each node to its preferred neighbor always yields a forest (i.e.
we have no cycle) [2]. The neighboring table contains the set of nodes
with which there exist a direct link over which data may be transmitted.
However, only a subset of them are selected to forward a packet, hence
reducing broadcasting overhead and therefore increasing network life-
time. Furthermore, this subset provides the high quality connections
between nodes, and thus improving routing performance.

A. Preferred Neighbor Election

Let � and� be any nodes of the graph� � ��
��. We assume
that initialy each node� knows the ID numbers and the QoS state of
its neighboring nodes. However, they are periodically provided in a
beacon. Based on these two information, node� can determine its
PN. For this purpose, node� computes a set of nodes whose QoS
state are equal to maximum neighborhood QoS state. This set is de-
noted by��� � ������ �������� �
������ ����������� �
���� ��� �
���� ������, where�� is the neighboring nodes of
node�. We distinguish three cases:

� No PN— if the set is empty, then node� has no PN which means
it has no neighbors. In Fig. 1, node� has no neighbor and conse-
quently no PN;

� Single PN— if the��� has only one member, then this member is
the elected PN. For example, in Fig. 1, node� has five neighbors:
�
 �
 �
 �
 �, but the set of��� has only one member which is
the node�;

� Multiple PN— the set of��� can have more than one member
which is the case for node�, since��� � ��
 ��. This means
that there are more than one neighbor with the maximum neigh-
borhood QoS state. In this case, we assume that node� elects a
node with the greatest ID number. So, node� elects node� since
its ID number is greater than node� (regarding to the alphabetical
order).

db

t

x

9

7

6

4

3

4

4
f

k

c

q
y

5
4

n
9

5
8

a

g

(a) An arbitrary graph�

Edge of graph G

y
xNode x with degree y

Bridge

Edge of Forest F

(b) Legend

Fig. 1. Each node in the graph is characterized by its QoS state and a letter
which represents its ID number, and we assume that each node knows the QoS
state and the ID number of its neighboring nodes.

Consequently the main idea of the algorithm is to select, for each
node� in the network topology, a neighbor that has the maximum QoS
state in the neighborhood. For nodes that evaluate two identical QoS
state values, we break ties by setting the convention that nodes with
higher IDs are preferred. We say that node� is thepreferred neighbor
of node�, if � is in the neighborhood of� and has the maximum QoS
state among its neighbors. In this manner, each node in the network
selects a preferred neighbor, and we can obtain a forest. Note that a
node that has any one of these metrics asselfish is not considered for
preferred neighbor election (see section II).

B. Quality of Service Forest Construction

A forest is built by connecting each node to its PN. In [2], it is
proven that, whatever is the network topology, this approach always
yields a forest (i.e. we have no cycle). This is because the way in which
a node is elected follows amonotonic increasing function depending
on its QoS state and on its ID number. Fig. 2 shows the forest of high
quality links (or nodes).

db

t

x

9

7

6

4

3

4

4
f

k

c

q
y

5
4

n
9

5
8

a

g

Fig. 2. Constructed forest with high quality links.

C. Beaconing and Neighboring Table Construction

Basically, neighboring table is the table through which node� de-
tects changes to its neighborhood. This table consists of three in-
formation: a neighboring ID (NID), its QoS state (QoSSTATE),
and whether node� is a forwarder node of this neighbor (FOR-
WARDER STATE). The value of FORWARDERSTATE is null at the
beginning, which represents that node� is a forwarder of its entire
neighborhood. Such information is considered valid for a limited pe-
riod of time, and must be refreshed periodically to remain valid. Ex-
pired information is purged from the table. Table I shows the neighbor-
ing table of node� in Fig. 2. One of our goal is to reduce the number
of neighbors whose forwarder node is�, hence reducing broadcasting
overhead.

To provide first two information in the neighboring table, each node
periodically broadcasts its presence and its QoS state in the form of
a beacon. Upon receiving a beacon, a node can gather information
describing its neighborhood, as well as detect the quality of every
neighbors to act as a router. Based on the neighboring QoS state
and ID, node� performs the preferred neighbor election algorithm
to choose its preferred neighbor, say�. As soon as node� deter-
mines its PN�, it sets node� as a forwarder (a direct forest mem-
ber) in its neighboring table, and then it must notify its neighboring
nodes, especially�, of its decision. Therefore, node� sets its beacon
to �� � ��
��� �����
��. Upon receiving�’s beacon, each
node updates its information regarding� and verifies whether they
have been chosen as the PN of�. Among the neighboring nodes of
�, the PN� sets node� as a forwarder too. Other neighboring nodes
of � set� as a non-forwarder node in their neighboring tables if node�

has already been set as a forwarder node. In this way, we say that� is
learned toonly be the forwarder of node�. On the other hand, if node
� has not been set as a forwarder in the neighboring tables, then node
� becomes a forwarder because it is considered as a gateway node con-
necting two different trees of the same forest. It has to be mentioned,
nodes that are not in the same tree but they are in the direct transmis-
sion range of each other are called gateway nodes. Consequently, the
set of forwarder nodes is reduced. For example in Fig. 2, node� elects
node� as its PN, and sends a beacon�� � ��
��� �����
 ��. Thus
node� becomes a forwarder node in� ’s table. Similarly, node� be-
comes a forwarder for node�. Furthermore, nodes� can be learned by
the nodes�
 � as a non-forwarder nodes because� is the elected PN of
both� and�. Likewise, nodes�
 � can be learned by node� as a non-
forwarder nodes since node� is set as a forwarder of node� . Node�,
on the other hand, becomes a forwarder node for node� because it is
not a PN of any neighbor of� including� itself. Hence, the set of for-
warder nodes of node� is reduced from� to �. Another advantage is
that the leaf nodes becomes non-forwarder nodes, e.g. node�. Table I
shows the neighboring table of node� .

TABLE I
NEIGHBORING TABLE OF NODE�

NID QoSSTATE FORWARDERSTATE
k 9 yes
y 4 no
q 3 yes
b 5 no
g 5 yes (gateway)

However, formation of some fake-gateway nodes and thus forwarder
nodes seems inevitable unless we provide some knowledge of the tree

member for each node [2]. We believe that in a highly mobile network,
providing such information is a waste of wireless scarce resources.
Moreover, it increases the complexity of the algorithm. Therefore, we
compromise some fake-forwarder nodes against network resources and
the complexity of the algorithm. In Fig. 2, node� is a fake-forwarder
node of� and vice versa.

D. Results

The following results were obtained by implementing the static
QoS-F algorithm in C++ and measuring the metrics after the popu-
lation of mobile nodes was distributed uniformly on a grid of 2000m

 2000m with each node having a transmission range of 250m. One
key aspect of this measurement is how QoS-F behave with an increas-
ing number of nodes in the network. The graph in Fig. 3 shows the
number of edges in the topology and the number of edges in the QoS-
forest versus the number of mobile nodes. We consider two cases:
variable density where the network is sparse at the beginning and be-
comes highly dense, and constant density where the area covered by
the ad hoc network increases as the number of nodes increases. There
is a theoretical fact that the number of edges in a tree is of the order
of the number of nodes. For a tree with� nodes, the number of edges
must be� � �. Further, since a forest has strictly lesser edges than a
tree spanning all the nodes in QoS-F, the number of edges in the forest
as reflected by Fig. 3 is ���.

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

Number of nodes

N
um

be
r

of
 e

dg
es

QoS−F

Total Edges

(a) Constant Density

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

Number of nodes

N
um

be
r

of
 e

dg
es

QoS−F

Total Edges

(b) Variable Density

Fig. 3. Total number of the edges in the network topology vs. the total number
edges generated by the forest.

IV. CONCLUSION

We have addressed a mechanism to describe thequality of nodes
over time from the network point of view and use this quality for ex-
tracting the links connecting the pair of best nodes. This quality is
introduced in response to the reasons of link failure in mobile ad hoc
networks. Therefore, links can be properly selected so as to improve
routing performance. We have also proposed a distributed algorithm to
construct a quality of service forest in order to reduce the overhead of
broadcasting. Forest is used to reduce the broadcasting overhead since
a subset of the set of neighboring nodes is selected for forwarding a
packet. Furthermore, the subset of the forwarding nodes belongs to
the set of nodes with the high quality, which in turn improves routing
performance.

REFERENCES

[1] Navid Nikaein and Christian Bonnet, “Layered quality of service model
for routing in mobile ad hoc networks,” inWMAN, 2003.

[2] Navid Nikaein, H. Labiod, and C. Bonnet, “DDR-distributed dynamic
routing algorithm for mobile ad hoc networks,” inMobiHOC. IEEE, 2000.

