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ABSTRACT

The use of multiple transmitter and receiver antennas allows to
transmit multiple signal streams in parallel and hence to increase
communication capacity. To distribute the multiple signal streams
over the MIMO channel, linear space-time codes have been shown
to be a convenient way to reach high capacity gains with a rea-
sonable complexity. The space-time codes that have been intro-
duced so far are block codes, leading to the manipulation of possi-
bly large matrices. To reduce complexity, we propose an approach
based on spatial spreading and delay diversity. The approach al-
lows full symbol rate transmission in the sense that the number
of symbols transmitted per sample equals the number of transmit
antennas. The approach allows furthermore for full diversity in
the sense that each transmitted symbol passes through all chan-
nel elements in a uniform fashion. Some optimal and suboptimal
receivers schemes are discussed also.

1. INTRODUCTION
Spatial multiplexing has been introduced independently in a 1994
Stanford University patent by A. Paulraj and by Foschini [1] at
Bell Labs. Spatial multiplexing can be viewed as a limiting case
of Spatial Division Multiple Access (SDMA) in which the various
mobile users are colocated in one single user multi antenna mobile
terminal. In that case, the various users are no longer distinguish-
able on the basis of their (main) direction (DOA) since all antennas
are essentially colocated. Nevertheless, if the scattering environ-
ment is sufficiently rich, the antenna arrays at TX and RX can see
the different DOAs of the multiple paths. One can then imagine
transmitting multiple data streams, one stream per path. For this,
the set of paths to be used should be resolvable in angle at both
TX and RX. Without channel knowledge at the TX, the multiple
streams to be transmitted just get mixed over the multiple paths in
the matrix channel. They can generally be linearly recovered at
the RX if the channel matrix rank equals or exceeds the number of
streams. This rank equals the number of paths that are simultane-
ously resolvable at TX and RX. The assumptions we shall adopt
for the proposed approach are no channel knowledge at TX, per-
fect channel knowledge at RX, frequency-flat channels for most of
the paper.

2. LINEAR PREFILTERING APPROACH
We consider here the case of full rate transmission (Ns = Ntx),
whenNrx � Ntx such that the rank of the channelpossibly equals
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the number of streamsNs. A general ST coding setup is sketched
in Fig. 1. The incoming stream of bits gets transformed toNs sym-
bol streams through a combination of channelcoding, interleaving,
symbol mapping and demultiplexing. The result is a vector stream
of symbolsbk containingNs symbols per symbol period. The
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Figure 1: General ST coding setup.

Ns streams then get mapped linearly to theNtx transmit anten-
nas and this part of the transmission is called linear ST precod-
ing. The output is a vector stream of symbolsak containingNtx

symbols per symbol period. The linear precoding is spatiotem-
poral since an element ofbk may appear in multiple components
(space) and multiple time instances (time) ofak. The vector se-
quenceak gets transmitted over a MIMO channelH with Nrx

receive antennas, leading to the symbol rate vector received sig-
nalyk after sampling. The linear precoding can be considered to
be an inner code, while the nonlinear channel coding etc. can be
considered to be an outer code. As the number of streams is a
factor in the overall bitrate, we shall call the caseNs = Ntx the
full rate case, whileNs = 1 corresponds to the single rate case.
Instead of multiple antennas, more general multiple channels can
be considered by oversampling, by using polarization diversity or
other EM component variations, by working in beamspace, or by
considering in phase and in quadrature (or equivalently complex
and complex conjugate) components. In the case of oversampling,
some excess bandwidth should be introduced at the transmitter,
possibly involving spreading which would then be part of the lin-
ear precoding. As we shall see below, channel capacity can be
attained by a full rate system without precoding (T(z) = I). In
that case, the channel coding has to be fairly intense since it has
to spread the information contained in each transmitted bit over
space (across TX antennas) and time, see the left part in Fig. 2 and
[2]. The goal of introducing the linear precoding is to simplify
(possibly going as far as eliminating) the channel coding part [3].
In the case of linear dispersion codes [4],[5], transmission is not
continuous but packet-wise (block-wise). In that case, a packet of
T vector symbolsak (hence aNtx � T matrix) gets constructed
as a linear combination of fixed matrices in which the combina-
tion coefficients are symbolsbk. A particular case is the Alamouti
code which is a full diversity single rate code corresponding to
block lengthT = Ntx = 2, Ns = 1. In this paper we shall focus
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on continuous transmission in which linear precoding corresponds
to MIMO prefiltering. This linear convolutive precoding can be
considered as a special case of linear dispersion codes (making ab-
straction of the packet boundaries) in which the fixed matrices are
time-shifted versions of the impulse responses of the columns of
T(z), see Fig. 1. Whereas in the absence of linear precoding, the
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Figure 2: Two channel coding, interleaving, symbol mapping and
demultiplexing choices.

last operation of the encoding part is spatial demultiplexing (serial-
to-parallel (S/P) conversion) (see left part of Fig. 2), this S/P con-
version is the first operation in the case of linear precoding, see the
right part of Fig. 2. After the S/P conversion, we have a mixture
of channel coding, interleaving and symbol mapping, separately
per stream. The existing BLAST systems are special cases of this
approach. VBLAST is a full rate system withT(z) = INtx which
leads to quite limited diversity. DBLAST is a single rate system
with T(z) = [1 z�1; : : : ; z�(Ntx�1)]T which leads to full di-
versity (delay diversity). We would like to introduce a prefiltering
matrix T(z) without taking a hit in capacity, while achieving full
(spatial) diversity. The MIMO prefiltering will allow us to cap-
ture all diversity (spatial, and frequential for channels with delay
spread) and will provide some coding gain. The optional channel
coding per stream then serves to provide additional coding gain
and possibly (with interleaving) to capture the temporal diversity
(Doppler spread) if there is any. Finally, though time-invariant
filtering may evoke continuous transmission, the prefiltering ap-
proach is also immediately applicable to block transmission by re-
placing convolution by circular convolution.

2.1. Capacity
Consider the MIMO AWGN channel

yk = H ak + vk = H T(q)bk + vk (1)

where the noise power spectral density matrix isSvv(z) = �2v I,
q�1 bk = bk�1. Theergodic capacitywhen channel knowledge
is absent at the TX and perfect at the RX is given by:

C(Saa)= EH 1
2�j

H
dz
z
log2 det(I +

1
�2v

H Saa(z)HH)

= EH 1
2�j

H
dz
z
log2 det(I +

1
�2v

H T(z)Sbb(z)Ty(z)HH)

= EH 1
2�j

H
dz
z
log2 det(I + �H T(z)Ty(z)HH)

(2)

where we assume that the channel coding and interleaving per
stream leads to spatially and temporally white symbols:Sbb(z) =

�2b I, and� =
�2b
�2v

= SNR
Ntx

. The expectationEH is here w.r.t.
the distribution of the channel. As in [6], we assume the entries
Hi;j of the channel to be mutually independent zero mean com-
plex Gaussian variables with unit variance (Rayleigh flat fading
MIMO channel model). As stated in [7], to avoid capacity loss
the prefilterT(z) requires to be paraunitary (T(z)Ty(z) = I).
Motivated by the consideration of diversity also (see below), we
propose to use the following paraunitary prefilter

T(z)=D(z) Q
D(z)=diagf1; z�1; : : : ; z�(Ntx�1)g ;QHQ = I ; jQijj = 1p

Ntx

(3)

whereQ is a (constant) unitary matrix with equal magnitude ele-
ments. Note that for a channel with delay spread, the prefilter can
be immediately adapted by replacing the elementary delayz�1 by
z�L for channel of length (delay spread)L. For the flat propa-
gation channelH combined with the prefilterT(z) in (3), symbol
streamn (bn;k ) passes through the equivalent SIMO channel

NtxX
i=1

z
�(i�1)H:;iQi;n (4)

which now has memory due to the delay diversity introduced by
D(z). It is important that the different columnsH :;i of the channel
matrix get spread out in time to get full diversity (otherwise the
streams just pass through a linear combination of the columns, as
in VBLAST, which offers limited diversity). The delay diversity
only becomes effective by the introduction of the mixing/rotation
matrixQ, which has equal magnitude elements for uniform diver-
sity spreading.

2.2. Matched Filter Bound and Diversity
The Matched Filter Bound (MFB) is the maximum attainable SNR
for symbol-wise detection, when the interference from all other
symbols has been removed. Hence the multistream MFB equals
the MFB for a given stream. For VBLAST (T(z) = I), the MFB
for streamn is

MFBn = �jjH:;njj22 (5)

hence, diversity is limited toNrx. For the proposedT(z) =
D(z)Q on the other hand, streamn has MFB

MFBn = �
1

Ntx

jjHjj2F (6)

hence thisT(z) provides the same full diversityNtxNrx for all
streams. Larger diversity order leads to larger outage capacity.

2.3. Pairwise Probability of Error Pe

The received signal is:

yk = H T(q) bk + vk = H D(q) Q bk + vk = H D(q) ck + vk
(7)

whereck = Q bk = [c1(k) c2(k) : : : cNtx(k)]
T . We consider

now the transmission of the coded symbols over a duration ofT

symbol periods. The accumulated received signal is then:

Y = H C + V (8)

whereY andV areNrx�T andC isNtx�T . The structure ofC
will become clear below. Over a Rayleigh flat fading i.i.d. MIMO
channel, the probability of deciding erroneouslyC0 for transmitted
C is upper bounded by (see [3]):

P(C ! C0) � (
rY
i=1

�i)
�Nrx(

�

4
)
�Nrx r

(9)

wherer and�i are rank and eigenvalues of(C � C0)H(C � C0).
Introduceek = 1

�b
(ck � c0k); then:
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C�C0 =

2
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0
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. .. : : : : : : : : :
...

.. .
. ..

.. . : : : : : :

0 : : : 0 eNtx (0) eNtx(1) : : :

3
77775

(10)

Let i be the time index of the first error:

C � C0 =

2
64

0 : : : 0 e1(i) : : : : : : : : :

...
. ..

.. .
.. .

. .. : : : : : :

0 : : : : : : : : : 0 eNtx (i) : : :

3
75 :

(11)
NtxY
n=1

en(i) 6= 0 (12)

the upper bound on the pairwise error probability becomes (maxi-
mized for a single error eventi):

P(C ! C0) � (

NtxY
n=1

jen(i)j2)�Nrx : (
�

4
)
�Nrx Ntx

: (13)

Hence, full diversityNrxNtx is guaranteed, and the coding gain

is: min
ei 6=0

NtxY
n=1

jen(i)j2. The condition (12) is well known in the

design of lattice constellations (see [8], [9]), a field based on the
theory of numbers. A solution that satisfies our criteria of unitary
matrix and equal magnitude components ofQ, is the Vandermonde
matrix:

Q
s =

1p
Ntx

2
6664
1 �1 : : : �1

Ntx�1

1 �2 : : : �2
Ntx�1

...
...

...
1 �Ntx : : : �Ntx

Ntx�1

3
7775 (14)

where the�i are the roots of�Ntx � j = 0 ; j =
p�1.

It was shown in [7] that whenNtx = 2nt (nt 2 N), and for a
finite QAM constellation with(2M)2 points, thenQs maximizes
the coding gain among all matrixQ with normalized columns, and

achieves:min
ei 6=0

NtxY
n=1

jen(i)j2 =

�
(2d)2

Ntx�
2
b

�Ntx

, where2d is the

minimum distance between two points in the constellation.

3. ML RECEPTION
In principle, we can perform Maximum Likelihood reception since
the delay diversity transforms the flat channel into a channel with
finite memory. However, the number of states would be the prod-
uct of the constellation sizes of theNtx streams to the power
Ntx � 1. Hence, if all the streams have the same constellation
sizejAj, the number of states would bejAjNtx(Ntx�1), which will
be much too large in typical applications. Suboptimal ML recep-
tion can be performed in the form of sphere decoding [10]. The
complexity of this can still be too large though and therefore sub-
optimal receiver structures will be considered in the next section.

4. MIMO DFE RECEPTION
Let G(z) = H T(z) = H D(z)Q be the cascade transfer function
of channel and precoding. The matched filter RX is

xk = Gy(q) yk = Gy(q)G(q) bk + Gy(q) vk
= R(q)bk + Gy(q) vk

(15)

where R(z) = Gy(z)G(z), and the psdf ofGy(q) vk is �2v R(z).
The DFE RX is then:bbk = � L(q)|{z}

feedback

bk + F(q)|{z}
feedforward

xk (16)

where feedbackL(z) is strictly “causal”. Two design criteria for
feedforward and feedback filters are possible: MMSE ZF and MMSE,
see [7], where we introduced triangular MIMO feedback struc-
tures, allowing to incorporate channel decoding in the feedback,
and leading to the stripping approach of Verdu & M¨uller or Varanasi
& Guess..

5. RECEIVER PROCESSING AND CAPACITY ISSUES
In this section we study the influence of simplified receivers on the
capacity of the system. For this let us first note:

� Q = IDFTdiagf1; �1; �21; : : : ; �Ntx�1
1 g, whereIDFT

is theNtx-point Inverse Discrete Fourier Transform.

� For random variablesY andX = (x1; : : : ; xN ), applying
the chain rule of the mutual information leads to:

I(Y;X) =
NX
k=1

I(Y; xkjx1; x2; : : : ; xk�1) �
NX
k=1

I(Y; xk)

(17)

in the Gaussian case the latter term corresponds to the mu-
tual information betweenxk and its LMMSE estimate on
the basis ofY .

� In [7] it was shown that:
C= 1

2�j

H
dz
z
log2 det(INtx+ �QH Dy(z)HH H D(z)Q)

=

NtxX
n=1

log2 SNRMMSE
n =

NtxX
n=1

log2(1 + SNRUMMSE
n )

(18)

where SNRMMSE
n is theSNR at the output of the stagen

of an MMSE DFE receiver.

5.1. SIC with stream-wise SIMO MMSE DFE

This receiver performs a successive detection of the substeams;
we denote byfk1; k2; : : : ; kNtxg the order of detection of the
substreams. Then at stepn the receiver has already detected and
cancelled the substeamsfk1; k2; : : : ; kn�1g. The processing is
then done by first filtering by a MISO (Multiple Input Single out-
put) MMSE filter, that corresponds to the LMMSE estimates of
the substreamkn, followed by a ML (e.g. Viterbi) detector of a
SISO channel. LetR(z) = INtx+�QHDy(z)HHHD(z)Q, Vn =
[ekn ; ekn+1 ; : : : ; ekNtx ] andVn = [ek1 ; ek2 ; : : : ; ekn�1 ] where
ekn is theNtx � 1 vector containing 1 at positionkn and 0 else-
where. The LMMSE filtering error has a power spectrum density
equal to:MSEn(z) = ((VH

n R(z)Vn)
�1)11, and the correspond-

ing (predictive) DFE has SNRMMSE
n = e

1
2�j

H
dz
z

log2MSE�1n (z),
the log2 of which is the capacityCMMSEDFE

n on streamn. We
can note that:
R�1
knkn

(z) = (fVH
n R(z)Vn�

VH
n R(z)Vn(V

H

n R(z)Vn)
�1(VH

n R(z)Vn)
yg�1)11

� ((VH
n R(z)Vn)

�1)11 = MSEn(z)

(19)

whereR�1
knkn

(z) = eHknQ
HDy(z)(INtx+�HH H)�1D(z)Qekn .

If we note v(z) = [1; z�1; : : : ; z�Ntx+1]T and using the fact
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thatQ = IDFTdiagf1; �1; �21; : : : ; �Ntx�1
1 g, thenR�1

knkn
(z) =

1
Ntx

v(z e
� j2�(kn�1)

Ntx )y(INtx + �HH H)�1v(z e
� j2�(kn�1)

Ntx ) =

R�1
11 (ze

� j2�(kn�1)
Ntx ). Finally:

SNRMMSE
n � e

� 1
2�j

H
dz
z

log2 R�111 (z) = SNRMMSE
1 (20)

That shows also thatSNRMMSE
1 is the same for any processing

order, hence the capacity of the first substream is independent of
the order of processing. In the same way we can show that this
property holds also for the last processed substream, and that for
any order of processing and for all1 � n � Ntx the following
inequality is satisfied:

SNRMMSE
1 � SNRMMSE

n � SNRMMSE
Ntx

) CMMSEDFE
1 � CMMSEDFE

n � CMMSEDFE
Ntx

(21)

5.2. SIC with stream-wise SIMO MMSE LE

In this approach, we ignore the color of the error spectrum at the
output of the LMMSE filter and treat the output as an AWGN chan-
nel (as in (17)), resulting in the capacity

CMMSE LE
n = log2 SNRMMSE LE

n

= � log2
1

2�j

H
dz
z
(VH

n R(z)Vn)
�1
11

(22)

As was done in the previous section we can show that:

C
MMSELE
1 � C

MMSE LE
n � C

MMSE LE
Ntx

(23)

We can also note thatCMMSELE
n � CMMSEDFE

n and that

CMMSE LE
1 = � log2

tr (INtx+�HH H)�1

Ntx
.

5.3. MIMO MMSE LE RX

In this approach we detect the different substream without any
Decision Feedback, and for every substream we process by first
filtering with an MMSE filter followed by detection of the trans-
mitted symbol when modeling all interference as AWGN. The ca-
pacity of this approach isCMMSELE

1 . This approach results in
a substantial loss in capacity but has the advantage of a simple
FIR filter receiver: the MIMO LE is in fact:QH Dy(z)(INtx +

�HH H)�1HH . Also, in the case of low SNR i.e� jjH jj22
Ntx

=
SNR jjH jj22

N2
tx

� SNRNrx

Ntx
<< 1 this approach becomes optimal.

5.4. Case ofNtx = 2, Nrx � 2

The case of two transmit antennas is important in practice. For
lack of space we shall skip the details of computations and present
the final results. If we note byH = [h1;h2], a = 1 + �jjh1jj22,

b = 1+ �jjh2jj22, cos2 � =
�2 jhH1 h2j2

a b
and�2 = 4a b cos2 �

(a+b)2 � 1

then:

SNRMMSEDFE
1 = 2ab(1�cos2 �)

a+b
2

1+
p

1��2

SNRMMSEDFE
2 = a+b

2

1+
p

1��2
2

SNRMMSE LE
1 = 2ab(1�cos2 �)

a+b

SNRMMSE LE
2 = a+b

2

p
1� �2

(24)

For the first substream, there is a generally small and limited loss in
capacity between using a DFE or a LE:CMMSEDFE

1 �CMMSELE
1

= log2
2

1+
p

1��2
� 1. Note that alternatively applying the Viterbi

algorithm for ML equalization would be complex due to the color
of interference plus noise.
The loss in capacity for the second substream isCMMSEDFE

2 �
CMMSELE
2 = log2

1+
p

1��2
2
p

1��2
, which is not limited and can be

important for values of�2 close to 1. Hence we prefer to use the
DFE for the detection of this substream, in which case the loss in
total capacity is limited to the loss in capacity for the first sub-
stream. Alternatively, we can apply ML (Viterbi) equalization for
the second (or in general last) substream since there is no more
interference and the noise is white: the cleaned received signal is
Y2(q) = H [1;�ej �4 q�1]Tb2(q) + V(q).
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