
Authenticating Real Time Packet Streams and Multicasts

Alain Pannetrat, R´efik Molva

Institut Eurécom, Sophia-Antipolis, France.

Abstract

In this work we propose a new stream authentication
scheme that is suitable for live packet streams distributed
over a lossy channel, such as an IP-multicast group. Pack-
ets are signed together in a block and the recipient can
authenticate this block if the loss rate per block is lower
than a certain threshold, which can be chosen based on the
characteristic of the communication channel. This scheme
provides both integrity and non repudiation of origin, and
in a majority of situations, it performs with less overhead
in bytes per packet than previously proposed practical live
stream authentication schemes.

1. Introduction

Authentication is a primary requirement for the deliv-
ery of multicast content such as live television video, radio
broadcastings, or stock quotes over the Internet. The recipi-
ents of the content will often require guarantees of integrity
and sometimes even non-repudiation on the received data.
Conversely, the content provider does not want to be imper-
sonated by another party. The two major challenges in the
design of a multicast authentication mechanism are first, the
best effort characteristic of the communication channel and
second, thelive characteristic of the distributed content. A
lot of Internet video or audio streaming protocols are de-
signed to tolerate some packet loss patterns with a grace-
ful degradation in playback quality. A good authentication
scheme must allow the recipient to authenticate the received
data despite these losses. While in some examples, such
as a pre-recorded video, it is possible to compute the au-
thentication information to be sent with the packetsoffline,
in many cases such aslive or real time event broadcasts,
the computations need to be doneonline or with reasonably
small buffering. Interesting protocols targeted mainly for
offline streams have been proposed, for example, by Miner
and Staddon[9], were the sender is assumed to buffer very
large amounts of data. Our goal is to provide a scheme
which works with the constraints of alive event broadcast,
for streams that are not known in advance.

A desirable property of a live authentication stream is to
allow a receiver to start authenticating from any point in the
stream. Though we would ideally like to be able to start
authentication on a packet boundary, in practical situations
we believe that starting authentication on the boundary of a
group of packets is a satisfactory compromise. To describe
this feature, we will say that a stream authentication scheme
is joinable on a certain boundary.

A straitforward stream authentication method would be
to use a digital signature on each packet of the stream. But
this approach has serious drawbacks. First, the compu-
tational cost of signing packets individually is prohibitive
in many scenarios. Second, adding a typical 1024 bit
signature[16] (or 128 bytes) to every packet represents a re-
ally high overhead. Faster digital signatures designed for
stream authentication where proposed in [15] and [17], but
these solutions have an even higher overhead, and today,
signing each packet remains impractical.

An alternative approach is to amortize the signature over
several packets in ablock. The stream is itself divided into
many small blocks that have each a unique signature that is
combined with hash techniques to authenticate the packets
in the block. We refer to these techniques as well as the
one we propose in this work as “hybrid” approaches, and
we review them is section 5.

The central contribution of this work is the proposal of
an originaljoinable live lossy stream authentication scheme
with non-repudiation of origin. It uses Erasure Codes[14]
to provide a lower overhead per packet than previous live
authentication stream proposals, while being adapted to re-
alistic multicast Internet loss patterns.

The next section will introduce a few notations that we
will use throughout this work. Our scheme is formalized in
section 3 as well its relationship with Internet loss patterns
based on a Markov chain model. Section 4 discusses the
cost and overhead of our scheme and presents its use in a
few concrete scenarios. Finally, we review other live lossy
stream authentications schemes in section 5 and compare
them with our approach.

Due to space restrictions, some details and proofs were
omitted or condensed in this paper. They can however be
found in the full version of this work [11].

1



2. Background

Erasure Codes. A systematic erasure code algorithm
Ck�r takes a setX � fx�� ���� xkg of k source packets
and produces a setfx�� ���� xk� y�� ���� yrg of code pack-
ets. The setY � fy�� ���� yrg denotes the set of parity
symbols generated by the code and we will often simply
write fX�Y g � Ck�r�X� to describe the code genera-
tion process. Any subsetZ of k elements infX�Y g �
fx�� ���� xk� y�� ���� yrg is sufficient to recover the set of
source packetsX, with a corresponding decoding operation
denotedfXg � Dk�Z�. For additional details on erasure
codes, we refer the reader to [14].

Notations. In this work we will consider a stream to be
divided in consecutive blocks ofb packets. We allow the
use of dummy padding null packets at the very end of the
stream to match ab packet boundary. Our authentication
scheme is parameterized byb, the block size in packets, and
p � ������, the maximum expected loss rate per block.

We will denoteH as a cryptographic hash function such
as SHA[10] or MD5[13] which produces hashes ofh bytes.
The couple�S�V� will denote the digital signature and ver-
ification algorithms respectively associated with the source
of the packet stream, such as RSA[16, 1] for example. The
size of the signatures will be expressed ass bytes. For RSA,
a typical value fors is 128 bytes (or 1024 bits).

3. Stream Authentication

3.1. Authentication Tags

Consider a block as a sequence ofb packets�P�� ���� Pb�.
Let fh�� ���� hbjhi � H�Pi�g be the set of hash values of
these packets computed with a hash functionH���. From
this hash set we build a set ofb authentication tagsZ �
f��� ���� �bg with the following algorithmT �b�p� which uses
some of the notations introduced in the previous section:

Tag generation: T�b�p�

INPUT: fh�� ���� hbg

OUTPUT: f��� ���� �bg.

fX�Xg � Cb�dpbe�X� (1)

� � S�H�h�jj���jjhp�� (2)

fY �Y g � Cbb���p�c�dpbe�Xjj�� (3)

Split fY �Y g into b tagsf��� ���� �bg. (4)

To exploit the tag generation algorithm we define our au-
thentication criterion:

Authentication criterion: In this work we say that a
packetPi is fully authenticable in a block if, given the set

of hashesZ � fh�� ���� hbg of packets in the block and
their signature� � S�H�Z��, we can verify that both
V���H�Z�� � true andH�Pi� � hi.

The proposed schemes in this work are based on the fol-
lowing property of the tag generation algorithm.

Proposition 1. Let� � �P�� ���� Pb� be a block ofb pack-
ets andfh�� ���� hbjhi � H�Pi�g its associated hash set.
GivenA � f��� ���� �bg � T�b�p��fh�� ���� hbg�, any subset
of at leastbb��� p�c packets in� can be authenticated us-
ing any subset of at leastbb��� p�c tags inA.

A direct corollary of the proposition above is that both a
block of packets and their authentication tags can withstand
a loss rate of at mostdpbe elements while allowing us to
authenticate the remaining packets.

From the construction of the algorithm above we can de-
termine the size of an authentication tag:

Proposition 2. Let h define the length of our crypto-
graphic hashes ands the size of the signatures. The size of
an individual authentication tag is expressed as a function
��b� p� of both the number of packets in a block andp the
maximum expected loss rate per block, as:

��b� p� �
Rb���p�bc�s 	 dp�beh�

b��� p�bc

whereRn�z� is an integer function which returns the lowest
multiple ofn greater or equal toz.

3.2. Proposed Schemes

In our stream authentication scheme we propose to pig-
gyback authentication tags in the packets of a block and
useProposition 1 to authenticate received packets when the
loss rate in a block is less thanp. We propose 3 differ-
ent variants of our scheme which only differ by the po-
sitioning of the authentications tags. In this section we
will denote a stream as a set ofm blocks B�� ���� Bm.
The individualb packets in each blockBi are identified
asP �i� ��� ���� P �i� b�. The corresponding authentication tags
are identified as� �i� ��� ���� � �i� b�. The packetsP �i� j� are a
combination of just two things: a stream data packetD�i� j�
and an authentication tag.

ECU: The unbuffered sender scheme. In this scheme
we use packets in a blockB�i��� to piggyback authentica-
tion tags related to blockBi. Thejth packet in a blockBi is
thus defined asP �i� j� � fD�i� j�jj� �i��� j�g. This requires
the sender to create an extra padding dummy blockB�m���

to allow the last blockBm to be authenticated. This scheme
does not require any stream data packet buffering from the
sender, only the hashes of the packets in the current block
need to be stored by the sender who can then compute the
necessary authentication tags to be piggybacked in the next
block. In this sense, this scheme is truly alive authentica-
tion scheme. The tradeoff of this construction is that the

2



receiver will experience a delay of two blocks in the worst
case before he can authenticate the first packet in a blocks he
received. This construction creates a dependency between
two consecutive blocks, thus in the event of a loss that ex-
ceeds the thresholdp and in particular if a whole blockBi

is lost then we will not be able to authenticateB�i���.
EC2: The double buffer scheme. In this scheme, the

tags of blockBi are put in packets of theprevious block
B�i��� and packets in a blockBi are defined asP �i� j� �
fD�i� j�jj� �i	 �� j�g. This requires the sender to create an
extra padding dummy block at the beginning of the data
stream. The main advantage of this construction is that the
receiver can authenticate each received packet immediately
upon reception. The main drawback of this scheme is that
it requires the sender to buffer two blocks at a time. In this
sense it is not a trulylive scheme but in some applications,
this double buffering is still acceptable. Similarly to ECU,
this construction also creates a dependency between blocks.

EC1: The single buffered scheme. The most obvious
construction and perhaps the one that offers the best com-
promise between the sender buffering and the receiver au-
thentication delay is to piggyback the tags of a blockBi in
the blockBi itself. Packets in a block are simply defined as
P �i� j� � fD�i� j�jj� �i� j�g. This scheme requires the sender
to buffer one block and adds a maximum verification delay
of one block for the receiver. An advantage of this scheme
is that it does not create a dependency between blocks, thus
if a block losses packets beyond the expected maximum
loss ratep, the authentication of neighboring blocks in the
stream remains unaffected.

3.3. Parameter Choice

Until now we proposed a method which can authenticate
a block when a threshold of less thanpb packets are lost
in a block ofb packets. However we need to relate these
parameters to concrete average network loss patterns and
we will now discuss the choice of the 2 main parameters of
our scheme:b the block size andp the maximum loss rate
per block.

The goal of an hybrid scheme is to amortize the cost of
a signature over several packets. Thus the greater the block
size, the less often we will need to compute a signature.
On the other hand, the block size influences the authen-
tication delay and/or the sender buffer size, depending on
which scheme of section 3.2 is chosen. As we said above,
EC1 seems to be a good compromise in most situations with
both a buffering and a maximum authentication delay of one
block. Once a scheme is chosen, we recommend to chose
the largest possible block sizeb within the constraints of the
application authentication delay requirements.

The parameterp depends on the loss pattern of our net-
work. In this work, we propose to refer to a model often

suggested to describe bursty losses in Internet traffic which
is a simple 2 state Markov chain [2, 18] also called the
Gilbert model, where state 0 represents a packet received
and state 1 a packet lost by the recipient. Ifr denotes the
probability of going from state 0 to state 1 andq the prob-
ability of going from state 1 to state 0 we have the fol-

lowing transition matrix[5]:M �

�
��� r� r

q ��� q�

�

The probability thatk consecutive packets are lost is equal
to �� � q�k��q which describes a distribution of mean
� � �

q
. The long term average loss rate�� is calculated

as�� � r
r�q (see also [2, 11]). We further note that Perrig

et al. have used this model for their simulations in their own
stream authentication scheme, EMSS[12].

4. Discussion

4.1. Computational Cost

For each block, the source needs to computeb hash op-
erations, a digital signature, and generate the 2 codes. Here,
the hashing and signing costs are equivalent to other hybrid
schemes as found in [12] or [4]. In the ideal case, where no
loss occurs, the recipient just computesb hashes and veri-
fies a signature. If packets are lost some additional decod-
ing operations are needed. The codes are used to recover
hashes of packets, rather then the packets themselves, thus
we will be manipulating small amounts of data. In tradi-
tional uses of Erasure Codes, the packet sizeL is typically
over a thousand bytes, while here we are looking at figures
ranging fromL � � toL � �
� bytes in the most extreme
cases.

If we take a simple Reed-Solomon Erasure Code[14],
the computational decoding cost isO�m�e�L� wherem is
the number of original message packets, ande the addi-
tional parities needed (corresponding to the loss) andL the
size of a packet. The coding cost is similarly inO�m�k�L�
wherek is the number of parities. For demanding situ-
ations, we can turn to more efficient codes such as Tor-
nado Codes[7], which achieve coding and decoding times
in O��m 	 k�� ln������L� (in [3] a value� � ���
 is sug-
gested).

Compared to other hybrid live authentication streams,
the main tradeoff of our scheme is in the additional com-
putational cost generated by the erasure code. However,
since we are operating on a small code packet size, the cost
over a block should remain very reasonable. We will show
in the next section that the substantial gain we can achieve
in terms of overhead per packet is clearly worth the extra
computational effort.

3



pnb 16 32 64 128 256 512 1024

0.05 10 6 4 2 2 2 1
0.10 12 7 5 3 3 3 2
0.25 16 11 8 7 6 6 6
0.50 32 24 20 18 17 17 17
0.75 80 64 56 56 50 49 49

Table 1. Overhead bytes per packets for dif-
ferent values of p and b

4.2. Overhead

Evaluation The overhead in bytes per packet of our 3
schemes is uniquely defined by the size of an authentication
tag. Thus, recalling Proposition 2 in section 3 we can ex-
press the overhead as a function��b� p� of p, the maximum
expected loss rate per block, andb, the number of packets
in a block:��b� p� � Rb���p�bc �s�dp�beh�

b���p�bc .
We would like to emphasize that this overheadincludes

the signature overhead. Table 1 presents a sampling of
��p� b� for different values ofp andb, with s � ��� bytes
(1024 bit RSA) andh � � (MD5[13]). Note that��b� p�
remains surprisingly small if eitherb large orp is reasonably
low.

Case studies To be more concrete we applied our scheme
to the two case studies proposed by the authors of the
EMSS[12] live stream authentication scheme. We recall
their first case study:

A municipality wishes to collect traffic information from
sensors distributed over the streets. The system require-
ments are as follows:

� The data rate of the stream is about 8 Kbps, about 20
packets of 64 bytes each are sent every second.

� The packet drop rate is at most 5% for some recipients,
where the average length of burst drops is 5 packets.

� The verification delay should be less than 10 seconds.

We propose to use the ECU scheme since the sensors may
have limited memory, thus the verification delay of 10 sec-
onds allows us to use a block of 100 packets (���

� since a
block is authenticated by the next one).

Given the drop rate and the average length of bursts, we
constructed a corresponding 2 state Markov chain and sim-
ulated it over 10000 blocks of 100 packets (for simulation
techniques we referred to [6]). We found that 99% of those
blocks experienced a loss less than 27 packets, thus we de-
cided to chosep � ����. The overhead1 per packet is then

1If we had chosen the EC1 scheme instead, we would haveb � ���,
p � ��� and��b� p� � �.

�� � b p ��p� b�

Example 1 10% 3 32 0.47 22
Example 2 10% 50 512 0.50 18
Example 3 80% 10 200 0.905 160
Example 4 5% 5 1024 0.1 2

Table 2. A few case studies.

only ������ ����� � � bytes !
The second case study proposed by Perriget al. is related

to real-time video broadcasting, with the following require-
ments:

� The data rate of the stream is about 2Mbps, or 512
packets of 512 bytes each every second.

� The packet drop rate is at most 60% for some recipi-
ents, with an average length of burst drops of 10 pack-
ets.

� The verification delay should be less than 1 second.

We propose the EC1 scheme and because of the verification
delay, we have to limitb to 512 packets. We simulated the
corresponding Markov model over 10000 blocks and found
that 99% of those blocks experienced a loss of less than 375
packets. We decided to chosep � �	



��
, which gives us an

overhead per packet of��
��� ����� � �
 bytes.
As a complement to the two proposed scenarios above,

Table 2 shows a few of our other simulation results, follow-
ing the same approach as above for different average burst
loss lengths� and loss rates��. Example 1 shows that with
a small block size, parameterp is significantly higher than
the network loss rate. Similarly, an extreme average burst
length increases the value ofp as shown in example 2. Fi-
nally we have two extreme examples of the parameters of
our scheme: first in a very lossy network which requires
160 bytes of overhead per packet which more than the size
of a public key signature, and to finish we have an ideal
case, with a small loss and a long block size which gives us
a surprisingly low overhead per packet of 2 bytes !

5. Comparison

5.1. Hash Trees

The authors of the Hash Trees construction[17] use
Merkle[8] authentication techniques to construct a balanced
binary hash tree over a block ofb packets. To allow the re-
ceived packets to be authenticated independently (and make
the scheme joinable on any packet), each packets contains a
set of�ln��b�� �� hashes needed to recover the root of the
hash tree as well as a digital signature of the root. This leads

4



P2 P3 P4 P5 P8 P9 P10 P11 P12 P13 P15 P16P1 P6 P7 SignP14

Figure 1. Hash chain resisting to bursts of 6
packets in a 16 packet block.

to an overhead per packet ofs	�ln��b�����h bytes which
is even larger than than the “sign each” approach, though it
only requires one signature computation per block. Just like
EC1 (and EC2), the scheme requires the sender to buffer the
whole block before the first packet of that block can be sent.

5.2. Hash Chains

Golle and Modadugu[4] proposed a stream authentica-
tion mechanisms designed to tolerate the loss of packets in
bursts of at most	 packets in a block. They construct a di-
rected acyclic graph between the packets of the block, by
putting the cryptographic hash of a packet in one or several
other packets. If a packetP is signed then any packetsP �

for which there exists a path in the graph joiningP � to P
can be authenticated. The authors of [4] propose methods
to design such acyclic graphs in an optimal way regarding
bursty packet losses. Their simplest scheme is constructed
as shown on the example of figure 1: the hash of a packet
Pi is stored both as part of the following packetPi�� and as
part ofPi���� . Finally the hashes of the last�	 	 �� pack-
ets are sent, along with a signature of these�	 	 �� hashes
for verification.

The same authors further refined their hash chain con-
struction, to create “Augmented Chains”, which require to
buffer a few packets, but allows a smaller set of hashes to be
signed at the end. The principle remains the same and we
refer the reader to [4] for details. Their first scheme can tol-
erate several bursts in a block while the “augmented chain”
construction may have difficulties if there are several bursts
in the same block, consequently we will focus on their first
scheme in this comparison.

Hash Chain Overhead: The authors of [4] do not de-
tail how to choose	 nor do they provide a clear method to
deal with signature loss except to suggest the transmission
of several copies of the signature. If these signatures are
transmitted far enough apart, we can consider that their loss
probabilities are uncorrelated. If we assume that
 signa-
tures are transmitted, we can approximate the overhead as
�HC �
� b� � 
 ������h�s

b
	 �h bytes per packets, with the

notations already used throughout this work. The size ofb
is essentially constrained by the authentication delay, which
here is at most the distance between the first packet of the

block and the
th redundant signature that is transmitted for
that block.

Recalling the Markov chain model of section 3 we know
that the probability that a burst ofk lost packets occurs is
q��q����k��� with an average length of�

q
packets in a burst.

Consequently we will choose	 in the hash chain such that
the probability that a burst exceeds	 is low, for example
such that��

P�
k������ q��� q�k�� � ���. If we refer to

the two case studies we borrowed from EMSS in section 3,
we would have:

Case 1: We proposeb � ��, 
 � �, 	 � �� since
q � ���. We would transmit the first signature at the end
of the block and the second signature 20 packets later (1
second). The probability that one of the signature arrives
is approximately�� ���
� � �����
 and the overhead per
packet is�HC �
� b� � �� bytes.

Case 2: This case is more problematic because a individ-
ual signature has a good probability of being lost. Indeed, if
we take
 � � the probability that one redundant signature
at least arrives is����� � ���� (if we take
 � � the prob-
ability is lowered to����). But this means that each block
is transmitted along with 4 to 8 signatures and it becomes
difficult to define a reasonable size forb � 
��. If we chose
b small then we need to compute several signatures per sec-
ond and we need to send several copies of each of them
during the same time (without a guaranty that losses will be
independent). If we choseb larger then the probability of
authenticating a packet within the authentication delay be-
comes lower. As a indication, ifb � �
, 
 � �, 	 � ��,
we have�HC �
� b� � 
� bytes.

No matter how good the network conditions are and no
matter how long the block size is, the hash chains have at
least an overhead of��h bytes per packets (with a few ex-
tra bytes for the signature). Comparatively, our scheme has
clearly a lower overhead when the network is not too lossy,
with such extremes shown as in Example 4 in table 2. For
more lossy streams, our scheme maintains a high authenti-
cation probability despite the losses, without encountering
the problems we described above in Case 2.

5.3. EMSS

Perrig et al. used a similar hash chain idea in their
EMSS[12] scheme, with an more concrete method to deal
with block signature loss. As opposed to [4] which uses
a deterministic edge relationship pattern among the pack-
ets in the chain, EMSS uses randomly distributed edges.
Moreover, packets are chained across blocks, thus event if
all the redundant signatures pertaining to a block are lost,
the signature in the next block can be used to authenticate
the data (potentially out of authentication delay). They per-
formed several simulations in order to tune the right num-
ber of hashes to include in each packet depending on the

5



loss characteristics of the stream. The signature of a block
is transmitted several times to allow it to reach the recipient
with high probability, depending on the characteristic of the
network.

Since we borrowed our 2 test cases directly from EMSS,
we can recall their results here as a comparison. The simu-
lations conducted in EMSS give an overhead of�� bytes in
Case 1 (with an average verification probability per packet
of 98,7%) and an overhead of

 bytes inCase 2 (with a
minimum verification probability of 90%). InCase 2, the
signature of a block alone which is transmitted twice has
only an estimated probability of arrival of��� � �� ���,
but since there is linking between blocks a packet may be
verified by the signature of future blocks, however in this
case we understand that the verification delay of a packet
will be exceeded. We would also like to highlight that their
scheme used 80 bit hashes while we use 128 bit hashes
(MD5). A similar value in our scheme would have given
an even lower overhead per packet and also a lower over-
head in the Hash Chain construction.

Despite longer hashes, in both cases, our scheme has
lower overhead and a higher probability of block verifica-
tion within the required authentication delay.

5.4. TESLA

Perrig et al.[12] proposed a very efficient time based
stream authentication scheme called TESLA. It provides
source authentication but does offer nonrepudiation. It tol-
erates arbitrary packet loss with a reasonably low overhead.
Its main drawback is that it requires a secure clock synchro-
nization between the source and the recipients which may
not be always feasible in a large multicast group. Moreover,
all secure clock servers become potential targets for adver-
saries who wish to defeat the authentication scheme. The
scheme relies on the reliable transmission of a signature as
a commitment during initialization, thus it is worth noting
that without the regular transmission of additional commit-
ments, the TESLA scheme is only joinable at the beginning
of the stream. For these reasons, our scheme may be a more
practical alternative to TESLA in some scenarios.

6. Conclusion

In this work we propose a new approach to live lossy
stream authentication, which is joinable on block bound-
aries. Where previous proposals used hash linking, we
use erasure codes to achieve a lower overhead per packet.
Moreover, we propose a concrete mechanism describing
how to transmit the authentication information as well as
the signature associated to a block with equivalent recovery
probabilities. We proposed buffered and unbuffered varia-
tions of our scheme which offer an interesting alternative to

other live stream authentication mechanism in many situa-
tions.

References

[1] M. Bellare and P. Rogaway. Optimal asymmetric encryp-
tion. Inproceedings of EuroCrypt ’94, volume 950 ofLNCS.
Springer-Verlag, 1995.

[2] J.-C. Bolot, S. Fosse-Parisis, and D. F. Towsley. Adaptive
FEC-based error control for internet telephony. InINFO-
COM ’99, pages 1453–1460, 1999.

[3] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In
proceedings of ACM SIGCOMM ’98, September 1998.

[4] P. Golle and N. Modadugo. Streamed authentication in the
presenceof random packet loss. Into appear in NDSS 2001.,
2001.

[5] C. M. Grinstead and J. L. Snell.Introduction to Probability.
McGraw Hill, 2000.

[6] O. Häggström. Finite Markov Chains and Algorithmic Ap-
plications. Cambridge, June 2002.

[7] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spiel-
man, and V. Stemann. Practical loss-resilient codes. InACM
Symposium on Theory of Computing, pages 150–159, 1997.

[8] R. C. Merkle. A certified digital signature. InCRYPTO ’89,
pages 218–238. Springer-Verlag, August 1989.

[9] S. Miner and J. Staddon. Graph-based authentication of dig-
ital streams. In2001 IEEE Symposium on Security and Pri-
vacy, May 2001.

[10] National Institute of Standards and Technology. Secure hash
standard, 1995.

[11] A. Pannetrat and R. Molva. Real time multicast packet
authentication. Technical report, Institut Eur´ecom, March
2002.

[12] A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient
authentication and signing of multicast streams over lossy
channels. InIEEE Symposium on Security and Privacy, May
2000.

[13] R. Rivest. The MD5 message-digest algorithm. InRequest
for Comments, volume (RFC) 1321, April 1992.

[14] L. Rizzo. Effective erasure codes for reliable computer com-
munication protocols.ACMCCR: Computer Communica-
tion Review, 27, 1997.

[15] P. Rohatgi. A compact and fast hybrid signature scheme for
multicast packet authentication. InProceedings of the 6th
ACM conference on Computer and Communications Secu-
rity, pages 93–100, 1999.

[16] RSA Security Inc. PKCS-1 v2.1: RSA cryptography stan-
dard, 1999.

[17] C. K. Wong and S. S. Lam. Digital signatures for flows
and multicasts. IEEE/ACM Transactions on Networking,
7(4):502–513, 1999.

[18] M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Measure-
ment and modeling of the temporal dependence in packet
loss. InIEEE INFOCOM, New York, Mar. 1999.

6


