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pour un canal bruité linéaire : : : : : : : : : : : : : : : : : : : : : : : : 228
A.4 Comparaison des performances respectives du NSWCMA et du CMA

en terme de “ill-convergence” : : : : : : : : : : : : : : : : : : : : : : : 229

6



A.5 Le mauvais effet d’une fenêtre glissante longue : : : : : : : : : : : : : : 231
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A.8 La similarité entre le CMA 1-2 et le DDA : : : : : : : : : : : : : : : : : 234
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A.16 L’effet du suréchantillonnage de x(t) à sa stationnarité : : : : : : : : : : 242
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Résumé

Nous étudions le problème de l’égalisation et de l’identification aveugle des canaux de com-
munication linéaires : la séquence émise (ou la réponse impulsionnelle du canal) doit être
identifiée uniquement à partir de la sortie du canal.

Dans la première partie de la thèse, on considère l’égalisation non-sur-échantillonnée.
Dans ce cas l’égalisation aveugle des canaux à phase non-minimale n’est pas possible en
utilisant uniquement les statistiques du second ordre de la sortie du canal. Les algorithmes
de Bussgang constituent une classe importante d’algorithmes qui utilisent implicitement
les moments d’ordre supérieur de la sortie du canal pour l’égalisation aveugle. Quelques
désavantages de ces algorithmes sont leur vitesse de convergence lente ainsi que le problème
dit du “ill-convergence” : dépendants de leur initialisation, ils peuvent converger à des
minima locaux qui n’ouvrent pas l’oeil du canal.

Nous proposons une nouvelle classe d’algorithmes du type “A Module-Constant (CM)”
qui accélèrent la vitesse de convergence et aident à éviter le problème des minima locaux.
Cette classe d’algorithmes (appellée NSWCMA) est une contre-partie de l’algorithme de fil-
trage adaptatif classique APA (Affine Projection Algorithm). La dérivation du NSWCMA
conduit aussi à la formulation d’un principe de séparation qui lie le filtrage adaptatif clas-
sique à l’égalisation aveugle. Ensuite, nous proposons une classe d’algorithmes régularisés
pour résoudre le problème d’amplification de bruit souvent présent dans l’algorithme APA.
Une contre-partie pour l’égalisation aveugle est aussi dérivée et nommée NSWERCMA. Le
problème de l’égalisation Dirigée par les Décisions (DD) est considéré après : nous montrons
que, contrairement à ce qui semble être pensé, les algorithmes DD sont capables d’ouvrir un
oeil de canal initialement fermé si le signal d’entrée est CM. Pour le cas des constellations
non-CM, on propose un schèma CM-DD hybride qui correspond à un nouveau algorithme
de type Sato-Généralisé.

Afin d’obtenir une solution analytique qui résout le problème des minima locaux, nous
proposons un principe d’égalisation bilinéaire : nous utilisons une nouvelle paramétrisation
du problème qui conduit à une fonction de coût de type CM convexe. De cette façon on
résout le problème des minima locaux. Plusieurs méthodes pour obtenir l’égaliseur linéaire
en présence de bruit et de sur-paramétrisation sont présentées.

Dans la deuxième partie nous considérons le problème de l’égalisation et de l’identification
aveugle multicanal : le signal reçu peut être vu comme la sortie d’un canal SIMO (Single-Input-
Multiple-Output). Cette structure peut être utilisée dans le cas d’un récepteur à plusieurs
capteurs ou d’un égaliseur sur-échantillonné (au cas où le signal reçu serait cyclostationnaire).
L’identification aveugle peut maintenant être atteinte à l’aide des statistiques du second
ordre de la sortie vectorielle. Un autre avantage de la structure multicanal est qu’elle permet
l’égalisation ZF (Zero-Forcing) en utilisant des égaliseurs de longueur finie. Nous montrons
comment des égaliseurs ZF ainsi que MMSE (Minimum Mean Square Error) peuvent être
obtenus de façon aveugle par la prédiction linéaire multivariable. Nous proposons aussi
des méthodes du type sous-espace ainsi que de maximum de vraisemblance afin d’améliorer
la qualité de l’estimation. Finalement, nous appliquons les algorithmes proposés dans la
première partie de la thèse à la structure multicanal afin d’améliorer encore leur performance.
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Summary

We consider the problem of blind equalization and identification of linear communication
channels: the transmitted sequence (or the channel impulse response) has to be identified
based only on the received channel output.

In the first part of the thesis we consider equalization at the symbol rate. In this case
blind equalization of non-minimum-phase channels is not possible with the use of second-
order statistics of the channel output. The Bussgang algorithms constitute an important
class of algorithms that implicitly use high order moments of the channel output in order
to achieve blind equalization. However, they have a number of drawbacks, e.g. they have
low convergence speed and they exhibit the problem of ill-convergence: depending on their
initialization they may end up at undesired solutions.

We propose a class of algorithms of the Constant Modulus (CM) type that accelerate the
convergence speed and help avoiding the problem of ill-convergence. This class of algorithms
(called NSWCMA) is a counterpart of the Affine Projection Algorithm (APA) for adaptive
filtering. As a byproduct of the derivation of this class of algorithms we formulate a separation
principle that allows us to link classical adaptive filtering to blind equalization. We then
propose a regularized class of algorithms that overcome the problem of noise amplification
present in some cases in the APA. Its blind equalization counterpart is also derived and given
the name of NSWERCMA. The problem of Decision-Directed (DD) equalization is considered
next: we show that, contrary to what seems to be believed to date, DD algorithms can open
an initially closed channel eye if the input signal is CM. For the case of non-CM constellations,
we propose a CM-DD hybrid that corresponds to a novel Generalized-Sato scheme.

In order to obtain an analytical solution that solves the problem of ill-convergence, we
propose a bilinear blind equalization principle: using a new parameterization of the problem,
we construct a convex cost function for CM equalization. Using this formulation, the problem
of ill-convergence is avoided. Different methods to obtain the linear equalizer in the presence
of noise and order mismatch are also presented.

In the second part of the thesis we consider the problem of blind multichannel equalization
and identification: the received signal may be viewed as the output of a SIMO (Single-Input-
Multiple-Output) channel. Such a setup may be applicable either in the case of reception
through an antenna array or in the case of fractionally-spaced receivers (in which case the
received signal is cyclostationary). Blind identification can be now achieved by using only the
second order statistics of the vector output. Another important advantage of the multichannel
setup is that FIR (Finite-Impulse-Response) ZF (Zero-Forcing) equalizers exist. We show how
ZF as well as MMSE (Minimum Mean Square Error) equalizers may be obtained blindly
by using multivariable linear prediction. Moreover, we provide subspace as well as ML
(Maximum Likelihood) methods to improve upon the quality of estimation. Finally the
methods developed in the first part of the thesis are applied to the multichannel setup in
order to further improve their performance.
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Chapter 1

Introduction

THIS thesis deals with the problem of blind channel identification and equalization in digital

communication systems. In this introductory chapter we present an overview of its contents,

as well as a list of the achieved contributions.

1.1 An overview of the thesis

� Part I

In the first part of the thesis we address the problem of single-channel blind identification

and equalization: the transmitted continuous-time waveform is received by a single sensor

and sampled at the symbol rate.

� Chapter 2

In this background chapter we give a brief overview of the domain of digital trans-

mission: digital modulation, transmission through linear channels and reception are

discussed. The problem of Inter-Symbol-Interference (ISI) is presented and the notion

of equalization is defined. Then the problem of blind equalization is defined and a

brief overview of existing adaptive blind equalization techniques (the emphasis being

on techniques of the Bussgang type) is provided.

� Chapter 3

In this chapter we propose a new class of algorithms for blind equalization of the

constant-modulus type. These algorithms are derived by a deterministic criterion that

imposes at each iteration a number of constraints of the constant-modulus type to the

equalizer. This criterion (and therefore the corresponding algorithms as well) is a coun-

terpart of the Affine Projection Algorithm (APA) that has been recently proposed in

12
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adaptive filtering as an intermediate algorithm that combines the features of the LMS

and the RLS algorithms. An important feature of the algorithms of this class is their ac-

celerated convergence speed with respect to the classical Constant Modulus Algorithm

(CMA). Moreover, the algorithms of this class are shown to have a better behaviour in

terms of the problem of ill-convergence often present in blind equalization techniques.

Some efficient schemes for the improvement of the computational complexity of the

algorithms are proposed, and their performance is studied both theoretically and by

means of computer simulations which verify the theoretically expected behaviour.

As a side-effect of the derivation of the NSWCMA algorithms from a deterministic

criterion we have been able to formulate a so-called separation principle. This principle

allows for the acquisition of algorithms suitable for blind equalization of the constant

modulus type by a simple modification of classical adaptive filtering algorithms. Apart

from its practical importance, this principle gives also important intuition for the better

understanding of the CMA and the decision-directed (DD) algorithm.

� Chapter 4

In this chapter we treat a problem that may appear in the APA algorithm. Namely,

when the length of the rectangular window used in the APA is big (approaching the

filter length), then the APA has the following erratic behaviour: it shows a significant

increase in its error variance after steady-state has been achieved. This problem is

due to the noise amplification caused by the algorithm. The same effect of course

is reflected to the NSWCMA algorithm presented in the previous chapter. In this

chapter, a remedy to the problem is proposed. Namely, we propose the use of an

exponential instead of a rectangular sliding window for the windowing of the data.

The advantage of using such a window is that the employed sample covariance matrix

has a better conditioning compared to the case of a rectangular sliding window for

window lengths close to the filter length. A deterministic criterion that corresponds

exactly to the derived algorithm is given. Then the algorithm is modified so as to

provide its blind equalization counterpart by applying our previously stated separation

principle. The new class of algorithms shows a significant improvement in terms of noise

amplification in the steady state, as well as in its initial convergence. This is true in both

classical adaptive filtering and blind equalization contexts. We also propose an efficient

computational organization for the proposed algorithm based on the FAP algorithm.

Finally the improvement of the proposed class of algorithms is tested through computer

simulations in the blind equalization context.

� Chapter 5

In this chapter we consider the problem of decision-directed blind equalization. Decision-

directed equalizers are often used in the final stage of a typical blind equalization pro-

cedure in order to improve the steady-state performance. However, even though they

14 CHAPTER 1. INTRODUCTION

could be used as well for blind equalization, this does not happen in practice since they

are considered to be unable of opening a closed channel eye. In this chapter we take a

closer look to DD equalization by examining the special case of an input signal that has

a Constant Modulus (CM). We perform a convergence analysis of the DD equalizer in

this case which shows its ability to open the channel eye. Combined with the superior

performance of DD equalizers in the steady state, this result motivates their use for

blind equalization of constant modulus signals.

Based on the fact that the major feature that prevents DD equalizers from converging to

an acceptable setting is the non-CM form of the transmitted constellation, we propose

a new hybrid CM-DD scheme for blind equalization. This scheme constitutes actually

an alternative to the Generalized Sato algorithm for complex signals. The success of

this scheme is verified by the good performance of the corresponding algorithms when

used with non-CM constellations.

� Chapter 6

In this chapter we take a closer look to the problem of ill convergence often present in

blind equalizers. This problem is often observed in the algorithms of the CMA - type:

depending on its initialization, such an algorithm may end up to an undesirable setting.

This is primarily due to the non-convex shape of the cost function that the algorithm

minimizes. We propose a new formulation of the CMA 2-2 cost function by making

a mapping of the equalizer parameters to a new set of parameters. The proposed cost

function is convex with respect to the introduced parameter set and therefore leads to

a globally convergent blind equalization method. A particularity of this optimization

problem is that it becomes singular when the equalizer is over-parameterized. The

mechanism that produces this singularity is analyzed and a solution that overcomes

this problem is given. Several methods for the implementation of the technique are also

proposed.

� Part II

In this part of the thesis we consider the problem of blind multichannel identification and

equalization.

� Chapter 7

The multichannel - multiequalizer setup of a communication system is presented as a

general framework that may correspond to either fractionally-spaced receivers or re-

ceivers that use an array of sensors. The important issue of stationarity in this context

is analyzed and the identifiability of the multichannel based on second-order statistics

is analyzed. Zero Forcing (ZF) as well as Minimum-Mean-Square-Error (MMSE) equal-

ization is considered. The channel identification based on second-order statistics is also

analyzed in the time-domain by using linear prediction. The analogy of this problem
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with the problem of identifying sinusoids in noise is presented, as well as subspace-

fitting methods for channel identification. Finally, some Maximum Likelihood (ML)

methods for blind channel identification based on the received data are presented and

their performance is analyzed.

� Chapter 8

In this chapter we consider the application of the blind equalization methods presented

in the first part of the thesis to the fractionally-spaced setup. The impacts of fractional

spacing to the performance of the techniques are discussed and their claimed behaviour

is discussed through computer simulations. These simulations show the improved

performance of the techniques of the first part of the thesis to the fractionally-spaced

setup.

� Appendix A

In this appendix we provide an extended summary of the work presented in this thesis

in french.

1.2 Contributions

At this point we highlight a number of points which we consider to describe the major

contributions of this work:

� The proposal of a new class of algorithms (NSWCMA) for blind equalization that have

an accelerated convergence speed with respect to other Bussgang algorithms.

� A study of the impact of normalization to blind equalization algorithms leading to the

conclusion that normalization can help avoid the problem of ill convergence.

� The establishment of a “separation principle” linking classical adaptive filtering to

adaptive blind equalization. This principle allows to obtain several classes of algorithms

for BE, by simply modifying the corresponding adaptive-filtering algorithms.

� The proposal of a remedy for the problem of high steady-state error observed in the APA

algorithm when the size of its sliding window approaches the filter length. The solution

proposed is based on the regularization of the sample covariance matrix used by the

algorithm, by exponential weighting. This solution gives a better-performing alternative

to both the APA and the NSWCMA algorithm. A fast algorithmic organization scheme

is also provided.

� A novel study of the Decision-Directed (DD) cost function in the special case of a

Constant-Modulus input signal. This study shows that under some asymptotic condi-

tions the DD Algorithm (DDA) is globally convergent and provides important evidence

16 CHAPTER 1. INTRODUCTION

for the fact that the DDA should be able of opening a closed-channel eye under realistic

conditions if the input signal is CM. This result throws new light to the understanding

of the DDA and motivates its use for cases where the transmitted signal is CM.

� The proposal of a novel CMA-DD hybrid criterion for blind equalization. This is a new

Generalized-Sato algorithm that is closer to Sato’s philosophy for real signals.

� The proposal of a convex cost function for blind equalization of the CM type. The

convexity of this (bilinear) cost function leads to globally convergent algorithms, thus

circumventing the problem of ill-convergence.

� An analysis of the ZF multichannel equalization problem: this leads to an equivalent

single-channel representation, to a Nyquist condition in the frequency domain and to

the acquisition of the optimal ZF equalizer for a given length.

� A comparative study of MMSE and ZF equalizers in the multichannel case as well as two

methods to obtain an MMSE equalizer from a given ZF equalizer. One method is based

directly on second-order statistics, whereas the other one is based on multidimensional

linear prediction.

� The proposal of a Conditional Maximum Likelihood method for blind multichannel

identification that assumes a Gaussian distribution for the symbols. This method im-

proves upon a previously proposed Deterministic Maximum Likelihood (DML) method.

The improvement is shown by deriving and comparing the Cramer Rao bounds for the

two cases.
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1.3 Abbreviations

The following abbreviations will be used throughout this thesis:

AP: All-Pole (filter)

APA: Affine Projection Algorithm

AR: Auto-Regressive (process)

ARMA: Auto-Regressive Moving-Average (process)

BD: Blind Deconvolution

BE: Blind Equalization

CM: Constant Modulus

CMA: Constant Modulus Algorithm

CML: Conditional Maximum Likelihood

CRB: Cramer Rao Bound

CRIMNO: Criterion with Memory Nonlinearity algorithm

DD: Decision-Directed

DDA: Decision-Directed Algorithm

DFE: Decision Feedback Equalization

DFT: Discrete Fourier Transform

DML: Deterministic Maximum Likelihood

DOA: Direction Of Arrival

FAP: Fast Affine Projection (algorithm)

FIR: Finite Impulse Response

FSE: Fractionally Spaced Equalization

FTF: Fast Transversal Filter

GSA: Generalized Sato Algorithm

GSM: Global System for Mobile communications

HOS: Higher Order Statistics

IIR: Infinite Impulse Response

ISI: Inter-Symbol-Interference

LMS: Least-Mean-Square (algorithm)

LS: Least-Squares

LTI: Linear Time Invariant (system)

MA: Moving Average (process)

MIL: Matrix Inversion Lemma

MIMO: Multiple Input - Multiple Output (system)

MISO: Multiple Input - Single Output (system)

ML: Maximum Likelihood

MMSE: Minimum Mean Square Error

MP: Minimum Phase (system)

18 CHAPTER 1. INTRODUCTION

NCMA: Normalized Constant Modulus Algorithm

NLMS: Normalized Least-Mean-Square Algorithm

NSWCMA: Normalized Sliding Window Constant Modulus Algorithm

NSWERCMA: Normalized Sliding Window with Exponential Regularization CMA

NMP: Non-Minimum Phase

OF: Oversampling Factor

PSD: Power Spectral Density

QAM: Quadrature Amplitude Modulation

RLS: Recursive Least Squares (algorithm)

SCD: Spectral Correlation Density (function)

SFTF: Stabilized Fast Transversal Filter

SGA: Stop-and-Go Algorithm

SIMO: Single Input - Multiple Output (system)

SISO: Single Input - Single Output (system)

SNR: Signal to Noise Ratio

SOS: Second Order Statistics

SVD: Singular Value Decomposition

SWC: Sliding-Window Covariance

ZF: Zero Forcing

i.i.d. independent identically distributed (random variables)

pdf probability density function

w.r.t. with respect to

s.t. subject to

iff if and only if

i/o input-output

id. identification

eq. equation

1.4 Mathematical Notation

The following mathematical notation will be used throughout the thesis:

(�)T : Matrix or vector transpose

(�)�: Complex conjugate of a scalar, vector or matrix

(�)H : Hermitian (complex conjugate) transpose

Re(�): Real part of a complex scalar

Im(�): Imaginary part of a complex scalar

j � j: Modulus of a scalar
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jj � jj: 2-norm of a vector

jj � jjF : Frobenius norm of a matrix

tr(�): Trace operator

rank(�): Rank of a matrix

sign(x): x
jxj

E(�) Statistical expectation

F(�): Fourier transform

Z(�): Z- transform

R: The set of real numbers

C: The set of complex numbers

span(X): The space spanned by the columns of matrix X

PYX : The projection of X on the column-space of Y

P?
Y X : The projection of X onto the orthogonal complement of the column space of Y

d�e: Integer part of a real scalar

�(�): Dirac function

�n;k : Kronecker delta

0n�m: n�m zero matrix

Im�m: m�m identity matrix

f1; 2; : : :g: The set of positive integers

fxkg: A discrete stochastic process or a time series or a discrete set

5�(J): The gradient of function J(�) with respect to �


: Kronecker product

�: Convolution operator

< � >: discrete-time averaging

< �; � >: inner product
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Chapter 2

Equalization and identification of

linear channels

THIS chapter is an introduction to the context of the thesis. Some basic principles of

digital modulation are reviewed and the problem of equalization is presented. A short review

of the state of the art in the domain of blind equalization is presented in order to motivate the

research results presented in the rest of the thesis.

2.1 Introduction

This thesis deals with the problem of blind equalization and channel identification in digital

communication systems. The transmission of information in digital form seems to be more

and more the standard way of communicating nowadays, whether if this is done through

a standard telephone line, a high speed data network or a mobile cellular network. Impor-

tant contributions made in various other technological fields such as microelectronics, signal

processing, information theory, optical electronics, computer science e.t.c. during the last

years, have drastically accelerated the development of digital communications systems. In

this work we will only be concerned with aspects related to the physical layer of a digital

communication system, also called transmission layer. A block diagram of a generic commu-

nication system is given in figure 2.1: the original information is first formatted in digital form

in order to be represented as a series of bits. These digits are then source-encoded in order to

form another sequence of bits in as a compact way as possible. This binary sequence is then

channel-coded, a procedure that introduces some amount of redundancy in the transmitted

message in order to detect and possibly correct errors due to the transmission. The resulting

coded sequence may also be merged with sequences originating from other sources that are

going to be transmitted through the same transmission medium. This merging is done with
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Figure 2.1: A generic communication system

the help of a multiplexer. The resulting sequence of bits is then transformed by the modula-

tor into a continuous-time waveform proper for transmission over the physical transmission

medium, also called communication channel. This waveform will typically occupy a certain

frequency bandwidth, which might be further altered in a pre-arranged sophisticated way for

reasons of robustness in the frequency spreading stage. We refer to the ensemble of process-

ing stages considered up to this point as the “transmitter”. The resulting waveform is ready

for transmission through the channel that is responsible for the delivery of the waveform to

the other end. The received waveform, which according to the characteristics of the channel,

may be more or less different from the transmitted one, is submitted to a series of processing

stages that try to invert the operations done prior to transmission in order to finally obtain

the transmitted information. It is therefore first submitted to a spectrum de-spreading stage,

then to a demodulator and detector stage that tries to detect the transmitted bits, and then

demultiplexed, channel decoded and source decoded in order to give the final digital output,

which will be further transformed to analog form if the original information was also analog.

We refer to the ensemble of the processing stages for the received signal as the “receiver”. In

this work we will be primarily interested in the demodulation and detection stage of a digital

communication receiver.

2.2 Digital modulation

The continuous-time waveform transmitted through a communication channel is often a

carrier-modulated narrowband signal, i.e. a waveform whose bandwidth is much smaller

than the carrier frequency. This is primarily due to bandwidth limitations of the channel.
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Such a narrow-band signal can be expressed in the following form:

a(t) = Re fg(t) ej2�fctg = e(t) cosf2�fct + �(t)g ; (2.1)

where g(t) is the so-called lowpass information bearing signal [Pro89], fc the carrier frequency,

Redenotes the real part of a complex number and e(t) is the envelope of a(t) (signals of constant

envelope will be of special interest in this work). The principle of digital modulation is the

following: consider the transmission of a block of K consecutive binary digits. This block

may correspond to L = 2K different binary sequences, each of which is called a symbol si:

si = [b
(i)

1 b
(i)

2 � � �b(i)K ] ; (2.2)

where b(i)l ; l = 1; : : : ; K; i = 1; : : : ; L is the bit at the lth position of the ith possible symbol.

The set of all possible symbols is called the alphabet A (of size L) of the transmitted symbols:

A = fs1; � � � ; sLg : (2.3)

Then perform a one to one mapping of each of the L possible symbols to one of L different

continuous-time lowpass waveforms ui(t); i 2 f1; : : : ; Lg. When the ith symbol is to be trans-

mitted, transmit the narrowband signal (as in (2.1)) that corresponds to ui(t). The mapping

of different symbols to different lowpass waveforms ui(t) can be done by attributing to the

set of symbols a discrete set of amplitudes, frequencies and/or phases of u(t). Such different

mappings will correspond to different digital modulation techniques. A quite popular digital

modulation technique is the so-called Quadrature Amplitude Modulation (QAM), in which the

different lowpass waveforms are produced as follows:

ui(t) = (Ri + jIi) u(t) ; (2.4)

where each symbol si is first mapped to a complex numberAi = Ri+jIi which then multiplies

a real-valued signal pulse u(t) in order to produce the corresponding lowpass signal ui(t).

By this one to one mapping si $ Ai the symbol alphabet A is represented by a set of points

in the R2 complex plane. This set of points is called a signal space diagram, and the specific

form it may take on for a particular modulation is called a constellation. Therefore, each point

of the constellation corresponds uniquely to a symbol of the alphabet A. If in (2.4) we restrict

Ii = 0; 8i 2 f1; : : : ; Lg, then each symbol si is mapped onto a real number Ai = Ri and PAM

(Pulse Amplitude Modulation) is obtained:

ui(t) = Ai u(t) ; (2.5)

where Ai may take on L different real values. Eq. (2.5) describes the so-called double-sideband

PAM, i.e. the transmitted waveform ai(t) = RefAiu(t)e
j2�fctgoccupies the double bandwidth

of u(t). If instead of the mapping in (2.5) the following one is used:

ui(t) = Ai [u(t)� j^u(t)] ; (2.6)
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where ^u(t) is the Hilbert transform of u(t):

^u(t) = lim

�!0

1

�
Z

j� j>�
u(t� �)

�

d� ; (2.7)

then ui(t)has the same spectral width as u(t), and this corresponds to the single-sideband PAM.

In the case of PAM, the signal space diagram will be a set of points on the real axis. Some

typical PAM and QAM constellations are shown in figure 2.2. In the sequel we will use the

2-PAM 4-PAM

4-QAM 16-QAM

Figure 2.2: Some typical PAM and QAM constellations

term symbol to denote Ai instead of si, according to the mapping si $ Ai described above.

2.3 Impairments of communication channels

The term communication channel corresponds to everything that separates the transmitter

from the receiver: all the filters and processing stages used before transmission and after

reception and the transmission medium. However, we often denote by “communication

channel” the transmission medium alone. Some typical transmission media are copper wires,

coaxial cables, optical fibers, the air, the water, e.t.c. As one would expect, the channel may

influence in various ways the waveform that arrives to the receiver. Some serious impairments

often met in communication channels are the following:

� Additive noise:

One of the most common impairments which is almost always present in any kind of trans-

mission is the so-called additive noise, i.e. a random signal that is added to the transmitted
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+Linear   channel

a (t) x (t)

υ (  )t

Figure 2.3: Linear noisy channel

waveform and may be due either to external (radiation of electric devices, electrical discharges,

cosmic radiation, other transmitters) or to internal (thermal noise, shot noise) sources. Impor-

tant quantities that characterize the additive noise v(t) are its variance (E(v(t)�E(v(t))2) - E

denotes statistical expectation -, its Power Spectral Density (PSD) and its bandwidth. Often

the additive noise is modeled as a zero-mean white Gaussian stochastic process.

� Linear distortion:

We often consider that the communication channel is linear, i.e. it obeys the superposition

principle: the output corresponding to a linear combination of input signals is the same linear

combination of the outputs that would have been produced if each signal had excited the

input by itself. Such a situation may arise for example when we have multipath propagation.

A linear and time invariant (LTI) channel can be described by its impulse response h(t):

x(t) = a(t) � h(t) ; (2.8)

where a(t) is the continuous-time channel input, x(t) the corresponding output and � denotes

convolution. In this case it makes sense to talk about the channel’s frequency response, which

leads to an equivalent representation of convolution in the frequency-domain:

X(f) = A(f) H(f) ; (2.9)

where H(f) is the Fourier transform of h(t):

H(f) = F(h(t)) =

Z
1

�1

h(t) e�j2�ft dt ; (2.10)

and A(f), X(f) are similarly defined as F(a(t)) and F(x(t)), respectively. Channels whose

frequency response H(f) is not uniformly flat at all frequencies are called frequency selective

channels. For linear time-invariant noisy channels, the following model has been widely

adopted: the noise is modeled as a random process, independent of both the input signal and

the channel, that is added to the channel’s output. In this case, the output of the noisy channel

can be written as:

x(t) = a(t) � h(t) + v(t) =

Z +1
�1

a(t� �) h(�) d� + v(t) : (2.11)

Figure 2.3 shows the typical model of linear noisy channel that will be used extensively

throughout the rest of the thesis.
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� Fading

Due to nonstationary phenomena, the channel impulse response is often varying in time. A

typical case of a time-varying impulse response is that of a mobile communication channel.

The channel constantly changes as the mobile is moving and the physical medium between it

and the base station changes. Channels with time-varying impulse responses are called fading

channels and their frequency response is a function of two frequency variables. The problem

with such channels is that at some time instants their frequency response may be close to zero

at some frequencies, which might cause problems at the reception stage. A receiver designed

for fading channels should therefore seriously take into account this undesired characteristic.

� Cross-talk interference

Often signals from other communication channels interfere with the signal that is supposed to

use alone a channel. This kind of interference is called cross-talk interference and constitutes

an important impairment of communication channels. Such a case arises for example typically

in telephone lines and in mobile communications.

� Frequency offset

Often the carrier frequency of the received waveform has been altered w.r.t. its original

value. This phenomenon is called frequency offset and should be given particular attention,

especially in the case of synchronous receivers.

� Non-linear distortion

Sometimes non-linear distortion is also present in the received signal. In this case the channel

can no longer be described by an impulse response (for example a Volterra-series modeling

can be used to describe it). Non-linear channels are typical in optical transmission.

In this thesis we will only consider linear noisy channels, stationary for an adequately

long time interval. As we are especially interested in the case of digital transmission, it is

essential to describe the effect of linear distortion in this context.

2.4 Symbol rate, Sampling, Inter-Symbol-Interference, Channel eye

In the sequel we will use the so-called baseband representation of communication channels: in

this representation we omit the carrier and proceed as if all the signals were transmitted and

received in the baseband.

In digital communication systems the binary information stream is organized in blocks of

K bits each and then for each block a different continuous-time waveform is transmitted.

This transmission of waveforms is of course done at a constant rate, i.e. the time interval T
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between the transmission of two consecutive waveforms is constant and is called the symbol

period and its reciprocal is called the symbol rate or Baud rate:

fB =

1

T

: (2.12)

The transmitted signal can then be written as:

a(t) =

1X
n=�1

anu(t� nT ) ; (2.13)

where an is the symbol transmitted at time instant n and u(t) the band-limited pulse. Figure

2.4 shows a typical transmitted waveform for a 2-PAM system. Supposing an ideal noiseless

communication channel, the received continuous-time waveform x(t) will equal a(t) (apart

from a possible delay and a scaling factor). Acquisition of the transmitted symbols is then

simply done by sampling x(t) at the Baud-rate, i.e. every T seconds:

xk = x(t0 + kT ) ; k = 0; 1; : : : ; (2.14)

where t0 accounts for the time instant that the first sample is taken. We will refer to receivers

a   =  1 a   =  1 a   =  1 a   =  1a   =-1 a   =-1 a   =-1
k-3 k-2 k-1 k k+1 k+2 k+3

time

T

Figure 2.4: A 2-PAM transmitted continuous-time signal

that sample the received signal at the Baud-rate (or symbol-rate) as “Baud-rate receivers” or

“T-spaced receivers” in contrast to “fractionally-spaced receivers”1 , i.e. receivers that sample

the received signal with a period Ts that is a fraction of T :

Ts =
T

m

;m > 1 : (2.15)

Consider now a linear-distortion channel. The frequency response of such a channel will

typically occupy a specific frequency band. As a result of this the received waveforms ui(t)

will spread in time and interleave in a way similar to the one shown in figure 2.5 for a 2-PAM.

Mathematically, the received signal will be given by:

x(t) =

1X
n=�1

anc(t� nT ) + v(t) ; (2.16)

1Fractionally-spaced receivers will be of particular interest in the second part of this thesis.
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where c(t) is defined as:

c(t) =
Z
1

�1

u(t� �)h(�)d� ; (2.17)

and h(t) is the channel’s continuous-time impulse response. Sampling at the Baud rate will

time

T

s s s sss sk-3 k-2 k+1k-1 k k+2k-4

Figure 2.5: Received waveforms of a 2-PAM signal transmitted through a linear channel

then yield:

xk = x(t0 + kT ) =

1X
n=�1

anc(t0 + (k � n)T ) + v(t0 + kT ) ; (2.18)

which may also be written as:

xk =

1X
n=�1

anck�n + vk ; (2.19)

where ck = c(t0 + kT ). Eq. (2.19) is very important to our work because it provides the

baseband discrete-time model that we will assume for the received sampled process. Note

that in this expression, xk can be viewed as the output of a linear discrete-time filter with

impulse response fcig whose input is the discrete-time sequence of the transmitted symbols

faig. If we split the above sum in the following way:

xk = c0ak +
X

n6=k
anck�n + vk ; (2.20)

then it is clear that the noiseless part of the received sample at a certain time instant is the

sum of the contribution of the transmitted symbol that corresponds to the same time instant

(c0ak) and an (undesired) cumulative contribution of symbols transmitted at other time in-

stants (

P
n6=k anck�n). The presence of undesired contributions due to neighboring symbols

is common in digital communications over linear channels and has been given the name of

Inter-Symbol-Interference (ISI). This contribution represents a second kind of noise present in

the received samples and may lead to high error rates in the detection of the transmitted

symbols.

Intuitively, it should be clear that the symbol rate 1

T

may significantly affect the resulting

ISI: when T is very large, the adjacent pulses anu(t � nT ) will be fairly far from each other
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and since they are practically time-limited, there will be a small amount of contributions

(depending also on the channel) of adjacent pulses to the sample of a specific pulse. This

intuition can be mathematically verified as follows: from (2.19), in order to have zero ISI, the

discrete sequence fckg should be a discrete Dirac function:

ck = �k =
8<: 1 ; k = 0

0 ; k 6= 0 :

(2.21)

Eq. (2.20) can be written in the frequency domain as follows:

1

T

1X
i=�1

C(f +

i
T

) = 1 ; (2.22)

where C(f) is the Fourier transform of c(t). Eq. (2.22) may only be satisfied if the bandwidth

�f of C(f) is greater than or equal to 1

T

. This is known as Nyquist’s condition for zero ISI:

Nyquist’s condition for zero ISI:

In order to achieve zero ISI for a channel with frequency response C(f), (2.22) must be

satisfied.

An immediate consequence of Nyquist’s condition is the following: the ISI of a channel

may only be zero if its bandwidth �f is greater than or equal to the symbol rate 1

T

:

�f � 1

T

: (2.23)

If instead of the bandwidth�f of C(f) its baseband bandwidth�fbb is used, then (2.23) takes

the following form:

�f bb �

1
2T

: (2.24)

Therefore, according to Nyquist’s condition, given a specific channel bandwidth and a re-

ceiver sampling the received signal at the symbol rate2, there is an upper bound on the symbol

rate that can be employed if one wants to make it possible to have zero ISI. This constitutes

a practical limitation that must be given serious attention in high-rate communication systems.

In order to have an idea of the “amount” of ISI present at the received process fxkg, the

following closed-eye measure � of a channel is defined:

� =
X

i

jcij � max

i

(jcij)

max

i

(jcij)

: (2.25)

�measures the ratio of the “undesired” contributions (due to the residual ISI) over the desired

contribution, represented by the (absolutely) largest coefficient term in the expression (2.19)

2A similar condition is given for the case of fractionally-spaced receivers in the second part of the thesis.
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(the fact that the maximum and not the first term is considered to represent the “desired”

contribution reflects the fact that a constant time-delay of the received sequence w.r.t. the

transmitted one may be tolerated). When no ISI is present in fxkg � = 0. When 0 < � < 1, the

channel eye is said to be open, whereas for � � 1 the channel eye is said to be closed. The term

“channel eye” is due to the eye-like form that is obtained in an oscilloscope if consecutive

portions of a received continuous-time PAM signal of length T each are plotted on the same

screen. The resulting diagram is called an eye diagram and is mathematically the set of points

pi defined as:

fpig = f(t mod T; x(t)); t 2 Rg : (2.26)

Assuming a noiseless channel, when the channel eye is open (0 < � < 1) , the transmitted
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Figure 2.6: A typical channel eye of a 2-PAM system

symbol sequence can be accurately obtained at the receiver by a simple decision device with

zero error probability. In other words, when the amount of ISI is small enough to keep the eye

open, error-free transmission is theoretically achieved if no additive noise is present. When

noise is present on the contrary, there will always be a non-zero probability of error, even for

� = 0 (eye perfectly open). However the probability of error will increase as the eye opening

decreases. A typical eye diagram for a 2-PAM system is shown in figure 2.6.

2.5 ISI cancelling, equalization

It is clear from the above discussion that in order to be able to obtain the transmitted data with a

high reliability the receiver should try to reduce, or ideally, completely eliminate the ISI present

in the received sampled process fxkg. There exist both optimal and suboptimal receiver

structures in order to combat ISI. The optimal structures optimize a Maximum Likelihood
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(ML) criterion on a sequence of received samples assuming an a priori known distribution for

the additive noise and the known discrete symbol alphabet, whereas suboptimal structures

optimize other criteria. Assume a finite-length transmitted message of K symbols:

AK = [a0 a1 � � �aK�1] : (2.27)

If the size of the symbol alphabet is L, then there are LK different possible transmitted

sequences A(i)
K ; i = 1; : : : ; LK . The principle of ML receivers is to choose, among these LK

sequences the most likely one to have produced the received sampled sequence fxkg. This

is a typical detection problem. It turns out that when the additive noise is assumed to be

Gaussian, the ML receiver will choose the transmitted sequence as follows [Pro89]:

^AK = arg max

A
(i)
K

J(A
(i)
K ) = 2 Re

 X
n

a�nfn
!

�
X

n

X
m

a�namrn�m ; (2.28)

where:

rn = r(nT ) =
Z
1

�1

c�(t)c(t+ nT )dt ; (2.29)

and:

fn = f(nT ) =
Z
1

�1

x(t)c�(t � nT )dt : (2.30)

The sequence frig represents the autocorrelation function of the channel c(t), sampled at the

rate 1

T

. The sequence ffig on the other hand, can be derived as the output of a filter matched3 to

c(t)whose output is sampled at the rate 1

T . The sequence ffig forms a set of sufficient statistics.

The choice of the most likely sequence according to (2.28) can be done in an exhaustive

way by calculating all the LK metrics J(A
(i)
K ); i = 1; : : : ; LK, but this will require a high

computational complexity for big message lengths K. A substantially lower computational

complexity can be achieved by employing the Viterbi algorithm [For73]. This is a sequence-

detection technique based on dynamic programming that is well-known for its applicability

and good performance. It is applicable when the channel response c(t) has a finite duration,

a condition that can always be made to hold with good approximation.

Often in practice, suboptimal receivers are used due to requirements such as low com-

plexity, low cost, simplicity e.t.c. A commonly used suboptimal receiver structure for ISI

cancellation is a linear discrete-time filter that operates on the sequence of received samples

fxig. The coefficients of this filter are chosen in such a way so as to satisfy a specific criterion,

the final aim being that the filter’s output should be as close as possible to the transmitted

symbol sequence faig. Such a filter is called an equalizer. In a broader connotation [Pro89],

the term equalization can be used to describe any kind of technique used by a receiver in order

to compensate for the channel’s ISI. The term originates from the fact that the purpose of an

3A filter matched to c(t) is by definition a filter whose input x(t) produces the output
R
1
�1

x(�)c�(� � t)d� .
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equalizer is to produce a data stream “equal” to the transmitted symbol sequense. We will

use the term linear equalization to describe the whole procedure of detecting the transmitted

symbols with the use of a linear filter.

z z
-1 -1

xk-N+2x k-N+1

w w w wN-1

+

y
k

k+M

z
-1

x x  k+M-1

N-2-M -M+1

Figure 2.7: A linear equalization structure

When the received signal x(t) is sampled at the symbol rate 1

T

, a linear equalizer W is a filter

with impulse response w(t) defined as follows:

w(t) =

1X
i=�1

wi�(t � iT ) : (2.31)

The equalizer output at time instant k will then be:

yk =

1X
i=�1

wixk�i : (2.32)

In practice, of course, the equalizer will be finite-length, w(t) =
PM

n=�N wn�(t � nT ), and in

this case it can be described by a vector of length N +M + 1 that contains the samples of its

impulse response:

W = [w�M � � �w�1 w0 w1 � � �wN ]
T : (2.33)

The equalizer output can then also be written as:

yk = XH
k W ; (2.34)

where Xk is the regression vector defined as 4:

XH
k = [xk+M � � �xk � � �xk�N+1] : (2.35)

Usually a linear equalizer is implemented with the use of a tapped-delay line (transversal

filter), the delay between adjacent taps being T . In order to detect the transmitted symbols

once the equalizer has been tuned to a setting that corresponds to the satisfaction of some

4The reasons for using complex conjugate transposition will become clear later on.
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criterion, its output is then passed through a decision device that chooses at each time instant

the symbol closest to it. This is not an optimal structure, but is nevertheless commonly used.

Figure 2.7 shows the part of a receiver that corresponds to linear equalization:

Two among the best known methods for the tuning of a linear equalizer are:

� Zero Forcing (ZF) equalization

The equalizer is said to be zero-forcing when it minimizes the so-called peak distortion criterion.

Consider the infinite-length equalizer described by eq. (2.31). The cascade of the equivalent

discrete time channel response fcig and the equalizer is a discrete-time filter whose ith coeffi-

cient si is given by:

si =

1X
j=�1

cjwi�j ; (2.36)

and which admits as input the symbol sequence faig. Its output at time instant kwill therefore

be given in the absence of additive noise by:

yk = s0ak +
X

i6=k
aisk�i : (2.37)

We shall call peak distortion the maximum possible value of the ISI term

P
i6=k aisk�i of the

above expression:

Dpeak = max

al2A
(jalj)

X
i6=0

jsij = max

al2A
(jalj)

X
i 6=0

j
1X

j=�1

cjwi�j j : (2.38)

The peak distortion represents the worst-possible value of the ISI. As the equalizer is assumed

to be infinite-length, it is able of completely nullingDpeak if its taps fwig are set so as to satisfy:

1X
�1

cjwi�j = �i0 ; (2.39)

where �nk stands for the Kronecker delta. The above equation takes the following form in the

z-domain:

W (z) =

1

C(z)
: (2.40)

Eq. (2.40) gives the ideal ZF equalizer in the absence of noise: it is the one whose z-transform

is the reciprocal of the channel’s discrete-time impulse response z-transform. Note that

complete ISI elimination occurs only when the equalizer is of infinite length.5

When the equalizer is finite-length (see e.g. (2.33)), the ZF equalizer is defined as the finite-

length equalizer of a specific length that minimizes Dpeak. Note that in the absence of noise,

an infinite-length ZF equalizer is also the optimal equalizer since error-free transmission is

achieved. However when noise is present, the equalizer described by (2.40) is no longer

optimal in the sense that it does not guarantee the minimal probability of error at the output

5It will be shown later on that zero-ISI ZF equalizers of finite length exist for fractionally-spaced receivers.
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of the decision device. If the additive noise at the channel output is assumed to be white, of

power spectral density N0 (N0
2 in baseband), the noise variance at the equalizer output can be

shown to be equal to:

�2

b =
N0T

2

2�

Z �
T

�

�
T

1

1X
i=�1

jC(! � 2�i
T

)j2
d! : (2.41)

It is clear from (2.41) that the noise at the output of the ZF equalizer may be significantly

amplified if the channel frequency response C(f) is very small at some frequencies (such

a phenomenon is usual for example in fading channels). In the extreme case where C(f)

equals zero for some frequencies6, the output noise variance �2

b becomes infinite and will

lead to a totally unreliable detected sequence at the output of the decision device! This

amplification of noise variance at the entry of the decision device, heavily depending on the

channel characteristics, constitutes the main drawback of ZF equalizers and is responsible for

their poor performance in many practical situations.

� Minimum Mean Squared Error (MMSE) equalization

A different philosophy is behind the criterion of the so-called MMSE equalization: the equal-

izer now does not try to completely eliminate the ISI but to achieve a reasonable compromise

between the ISI and the output noise variance �2

b . The corresponding criterion is:

min

W

J(W ) = E(jyk � ak j2) = E(jXH
k W � akj2) ; (2.42)

i.e. the goal now is to minimize in a quadratic sense the deviation of the equalizer output

at time instant k, yk , w.r.t. the actually transmitted symbol at the same time instant, ak. The

solution to the above criterion is the MMSE equalizer which is given in the z-domain by:

W (z) =

1

C(z) +N0

; (2.43)

(compare (2.43) to (2.40)). J(W ) is minimized for the choice of W (z) in (2.43) and achieves

the value:

Jmin(W ) =
N0T

2

2�

Z �
T

�

�
T

1

1X
i=�1

jC(! � 2�i
T

)j2 +N0T
d! ; (2.44)

which represents the noise variance at the output of an MMSE equalizer (compare to (2.41)).

Note that in contrast to the ZF equalizer, a channel frequency characteristic with deep spectral

nulls will no more produce an infinite-variance noise at its output. On the other hand, it is

obvious from (2.43) that in the presence of noise (N0 6= 0), the cascade channel-equalizer

will not correspond to a Dirac impulse response. This means that in the presence of additive

noise, the MMSE equalizer does not completely eliminate the ISI. These two remarks show the

6Note that in this case C(z) will have zeros on the unit circle
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compromising action of the MMSE equalizer between noise-amplification and ISI cancelling.

Note however that in the absence of noise, both the MMSE and ZF equalizers are equal and

provide error-free transmission (zero ISI, zero noise).

2.6 Adaptive filtering and equalization

A practical way to obtain the equalizer setting corresponding to a specific minimization

criterion (e.g. like the one in (2.42)) is to do this adaptively, i.e. with the help of an adaptive

algorithm that makes an initial guess for the equalizer setting and then updates this setting

until it converges to the desired value. This procedure is called adaptive equalization and it

can be considered as an application of adaptive filtering. A typical setup to which adaptive

filtering applies is the system identification setup shown in the figure 2.8. In this figure, the

task of the adaptive algorithm is to adapt the filter W in such a way so as to minimize the

mean squared difference between its output at time instant k, yk , and a “desired” response

sample at the same time instant, dk. The “desired” response is supposed to be the output of

  W

 W
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+

υ                       k
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-
                       k

o

Adaptive Algorithm

d           k
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Figure 2.8: A typical system identification setup

an optimum linear FIR filter Wo with input fxkg plus some additive noise fvkg:

dk = XH
k W

o + vk ; (2.45)

Xk being a regression vector of the same length (say N ) as Wo:

XH
k = [xk � � �xk�N+1] : (2.46)

The filterW is adapted by the algorithm (usually) every time a new data sample xk is available

(i.e. at the symbol rate) and the corresponding setting is denoted by Wk. The minimization

criterion used is typically quadratic of the following form:

min

W

J(W ) = E(jdk � yk j2) = E(jdk �XH
k W j2) : (2.47)
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The cost function J(W ) is quadratic and hence convex in W . It therefore admits a unique

minimum point given by:

W = fE(XkX
H
k )g�1E(Xkdk) ; (2.48)

provided of course that the sample covariance matrix of the input signal, R = E(XkX
H
k )

is nonsingular (this condition is always satisfied in practical cases). An adaptive filtering

algorithm should therefore be able of converging after a certain number of iterations towards

the solution in (2.48). Some performance measures for adaptive filtering algorithms are:

� Convergence time, i.e. the number of iterations needed to converge

� Complexity, i.e. the number of operations performed at each iteration of the algorithm

� Steady-state error, i.e. the bias of the found solution and the variance of the error after

convergence

� Robustness w.r.t. the colouring of the input process fxig

� Robustness w.r.t. the variance and/or the colouring of the additive noise process fvig

Two among the best known adaptive filtering algorithms are the LMS and the RLS algorithms.

The LMS is a stochastic gradient algorithm, i.e. an algorithm that performs a search along

the opposite direction of the instantaneous gradient 5Jk(W ) = Xk(yk � dk). The resulting

algorithm is: 8<: �k = dk �XH
k Wk

Wk+1 = Wk + �Xk�k ;

(2.49)

where � is the so-called stepsize parameter, which controls the deviation of the “next” filter

setting Wk+1 w.r.t. Wk. The value of � influences both the convergence speed and the steady-

state error of the algorithm. In order to have a stable operation of the algorithm, the stepsize

� should lie in the interval:

0 < � <

2

kXkk2 ; (2.50)

and the maximum convergence speed is attained for �k = 1

kXkk

2 . The algorithm’s complexity

is 2N multiplications/iteration where N is the equalizer length and its convergence speed

heavily depends on the colouring of the input signal. The most favourable case is the one of

a white input which provides the maximum convergence speed. The more strongly coloured

the input signal gets, the larger number of iterations will be needed to reach the steady-state.

In the extreme case where the input signal is an AR process with poles on the unit circle, the

filter coefficients will practically never converge. However, despite its limitations, the LMS

algorithms is one of the most popular algorithms for adaptive filtering due to its simplicity

and low computational complexity.
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Another popular class of algorithms for adaptive filtering is the so-called RLS algorithm.

Without getting into detail in the algorithm’s organization, we outline the essential computa-

tions performed at each iteration:

�k = dk �XH
k Wk

R�1

k = ��1R�1

k�1 � ��1R�1

k�1Xk(1 +XH
k �

�1R�1

k�1Xk)
�1XH
k �

�1R�1

k�1

Wk+1 = Wk +R�1

k Xk�k :

(2.51)

� is a parameter called forgetting factor that controls the tracking of the sample covariance

matrix Rk as well as the convergence speed (typical values are between 0:9 and 1), and is

of particular importance when the input signal is non-stationary. The updating equation for

R�1

k is the so-called Ricatti equation7. It permits to avoid the inversion of Rk, an operation

that would require O(N 3) multiplications/iteration. An important quantity in the algorithm

is the so called Kalman gain, defined as R�1

k Xk.

The RLS algorithm has in general a better performance than the LMS algorithm8: its

convergence is faster and steady-state is typically reached at � 2N iterations, irrespective of

the colouring of fxig. The steady-state error variance is also often smaller than the one of

LMS. This is achieved on the other hand at the cost of a higher computational complexity

(of the order of O(N2) multiplications/iteration). However fast RLS versions (FTF[CK84],

FAEST[CMK83], SFTF[SK91], FNTF[MT93]) that keep the complexity down to O(N) multi-

plications/iteration have been derived based on the particular shift-invariance structure of

the data matrix and the resulting low displacement rank of the sample covariance matrix Rk.

Several other adaptive filtering algorithms have been proposed during the last decade,

offering a big variety of compromises between their performance characteristics. Some of

them (namely the NLMS and the APA) will be given special attention in the sequel. For

the moment we will mostly adhere to the LMS which has been widely used in channel

equalization.

The LMS can be used to update an MMSE equalizer corresponding to the cost function

in (2.42), which has the same form as the cost function in (2.47). It is clear that in (2.42), the

role of the “desired samples” dk is played by the actually transmitted symbols ak. The LMS

equalizer will then be described by the following equations:8<: �k = ak �XH
k Wk

Wk+1 = Wk + �Xk�k :

(2.52)

Even though described by the same equations as (2.49), the setup corresponding to (2.52) is

quite different than the typical system identification setup shown in figure 2.8. The setup

corresponding to adaptive equalization is shown in figure 2.9. We now outline the main

differences of the two setups shown in figures 2.8 and 2.9:
7The Ricatti equation is derived by applying the so-called Matrix Inversion Lemma (MIL) to the updating equation

for Rk .
8This may however not be true for nonstationary environments.
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Figure 2.9: A typical adaptive equalization setup

� In fig. 2.9, the “desired” process faig is not corrupted by additive noise as in fig. 2.8.

� In fig. 2.9, the input process fxig is corrupted by additive noise, which is not the case in

fig. 2.8.

� In fig. 2.9, the equalizer tries to match the impulse response of the channel’s “inverse”,

i.e. fig. 2.9 describes an inverse problem. On the other hand, fig. 2.8 describes a direct

problem, in the sense that the adaptive FIR filter W tries to match the FIR filter Wo.

� Figure 2.8 depicts an “identification” or estimation problem, i.e. the aim is to estimate

W o, whereas in fig. 2.9 the final aim is the acquisition of the transmitted symbols

faig. This is a detection problem, and the estimation of the optimal equalizer is only an

intermediate step in this direction. 9

The differences outlined above have a number of impacts on the performance and the design

of adaptive equalizers. The fact that the input process fxig is corrupted by additive noise (i.e.

additive noise is present at the input of the adaptive filter) may have a significant impact on

its performance and makes the analysis of such an adaptive filter a more difficult task than

in the case of fig. 2.8. The fact that we are dealing with an inverse problem, has the obvious

disadvantage that a problem of existence of an inverse filter arises. Namely, an FIR filter of

any length will never be long enough to match exactly the inverse of the channel impulse

response. In the extreme case of the channel FIR filter having zeros on the unit circle, its

impulse response is infinite-length and cannot be adequately approximated by any FIR filter.

This is a serious limitation of the setup in fig. 2.9, which excludes a whole class of channels

for equalization.

It should be also noted that there exist other equalization structures that do not obey the

setup of figure 2.9. Two important structures should be mentioned:

9As already mentioned, the splitting of the problem in an estimation part (equalizer) and a detection part

(threshold detector), as shown in fig. 2.9, is neither optimal nor unique. Other setups used are for example the

decision-feedback equalization, or ML equalization.
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Figure 2.10: The structure of a GSM time-slot

� Fractionally-spaced equalizers (FSE’s)

� Decision Feedback Equalizers (DFE’s)

The principle of fractionally-spaced equalization (see [Ung76])is based on the oversampling of

the received continuous-time signal and will be given special attention in the second part of the

thesis. The principle of decision feedback equalization (see [BJ79]) is based on the feedback of

a number of decisions to the adaptation algorithm in order to improve the performance. The

resulting process is a nonlinear equalization process. DFE’s will not be discussed throughout

this thesis, which is primarily devoted to linear equalization.

2.7 Training sequence, Decision Directed (DD) equalization

It is clear from the above that for an LMS equalizer to be realizable, access to the actually

transmitted sequence of symbols faig is needed. Of course this does not make perfect

sense because if the actually transmitted symbols were known, there would be no reason

for equalization! What usually happens in practice is that a “pre-arranged” sequence of

symbols of finite length that is a priori known to the receiver is transmitted at the beginning of

transmission. In this “start-up” period during which no useful information is transmitted, the

receiver indeed has knowledge of the transmitted sequence faig, which can allow the adaptive

algorithm to converge towards an acceptable equalizer setting (by acceptable setting we mean

one that opens the channel eye enough to lead to a correct retrieval of the transmitted symbols

by the decision device with a high probability).

Once the equalizer has converged to an acceptable setting, transmission of information

can begin, and, provided that the channel characteristics have not been changed, it will lead

to a “correct” detection of the transmitted symbols. When the channel is time varying, a

training sequence has to be sent periodically in order to allow to the receiver to adapt to the

new channel setting. An example of a system that makes use of a training sequence is shown

in figure 2.10. This figure shows the structure of a data frame of the European GSM system for

mobile cellular communications. A different data sequence of 148 bits is transmitted every 4.6

msec. As the communication channel has probably been changed in the time interval between
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the transmission of two consecutive frames, a training sequence of 26 bits is provided each

time to the receiver. An obvious disadvantage of such a system is that the training sequence is

responsible for a reduction of the useful information rate with respect to the total information

rate of 26
148 (this loss can be equivalently translated to a waste of bandwidth).

As the length of the training sequence is not always sufficiently long to allow for a good

estimation of the channel inverse, the adaptation of the equalizer often continues after the

end of the start-up period as well. The problem arising now of course is that there is no more

access to the transmitted symbols that played the role of “desired” response. A remedy often

used to this problem is to use as “desired” samples dk the outputs of the decision device:

dk = ^ak = dec(yk) : (2.53)

This is the so-called Decision-Directed (DD) principle and the idea behind it is that if the

detection is of relatively good quality, the outputs of the decision device will be (often enough)

identical to the actually transmitted symbols and one can hope that this will help improve

the equalizer setting which will in its turn improve the detection quality and so on. The

corresponding (LMS-like) Decision-Directed Algorithm (DDA) is given by:8<: �k = ^ak �XH
k Wk

Wk+1 = Wk + �Xk�k :

(2.54)

In this scenario, the whole procedure is expected to converge towards a steady-state where

good performance has been achieved. This is however not always the case and the dominating

result in literature seems to be that DD equalization will only work if the initial channel eye

is already open.10

2.8 Blind equalization

As already mentioned, the constraint of using a training sequence may be prohibitive for

different reasons. Some of them are listed below:

� The useful information rate is reduced, or equivalently, the necessary bandwidth nec-

essary for the same rate of useful information is increased

� For a fast varying channel a training sequence has to be sent very frequently

� A new training sequence has to be sent at the beginning of a new communication in

order to initialize the receiver. In some cases, as for example in local area networks

(LAN’s), if one user loses its connection to the master server, the transmission of a

training sequence to this user will also interrupt the communication towards other

users
10We will see in chapter 5 that the performance of DD equalization also depends on the shape of the symbol

constellation.
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For all the above reasons it is desired to be able to obtain the transmitted sequence of symbols

without the use of training sequence. An equalization procedure that makes no use of

training sequence is called Blind Equalization (BE). The DD equalization discussed above

has probably been the first BE procedure ever proposed, since it makes no use of training

sequence. However, the poor performance of DD equalization combined with the increasing

interest in the domain have resulted during the last 20 years in a rich literature for BE. In fact,

BE can be considered as a special case of the so-called Blind Deconvolution (BD) problem. The

aim of BD is to identify a system based only on measures of its output, i.e. given no access

to its input. On the contrary, knowledge of the statistical properties of the input (which is

usually modeled as a stochastic process) is provided. In fact it is this knowledge combined

with the model used for the system that may allow identification of the system. What is

actually exploited in BD is the statistics of the output of the system. The same holds of course

for BE.

We now focus on a linear (say, in general IIR) channel, i.e. the z-transform of its impulse

response is given by:

C(z) =
B(z)

D(z)
; (2.55)

where B(z) and D(z) are (scalar) polynomials of z�1 and/or z. C(z) is supposed to be stable,

i.e. all roots of D(z) are inside the unit circle. C(z) is said to be Minimum Phase (MP) if the

roots of its numeratorB(z) are also inside the unit circle, maximum phase if they are outside the

unit circle and mixed-phase if they are both inside and outside the unit circle. The following

is a fundamental identification result in BE:

Necessary condition for the identifiability of a linear channel from its output:11

Identification of the channel described by (2.55) from its output second-order statistics (SOS)

is only possible if C(z) is minimum phase. Identification when C(z) is mixed-phase is how-

ever possible if statistics of order higher than two of its output are used, provided that the

input to the system is not a Gaussian process.

A way to verify the result given above is the following: first express the frequency response

of the channel as:

C(!) = jC(!)jej�(!) ; (2.56)

where jC(!)j and�(!) account for the magnitude and phase, respectively ofC(!). The power

spectral density (PSD) of the channel’s output y(t) is given by:

Syy(!) = jC(!)j2Saa(!) ; (2.57)

11An extension of this result to the case of a single-input multi-output system will be given in the second part

of this thesis.
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where Saa(!) is the PSD of the input process a(t). From (2.57), provided thatSaa(!) is known,

the magnitude of the channel frequency response can be identified. However, it is clear from

(2.57) that no information about the phase �(!) of the channel frequency response can be

extracted from Syy(!). Therefore, only the magnitude of C(z) can be identified by use of SOS

(the PSD is the Fourier Transform of the autocorrelation function). However jC(z)j will be

sufficient for the identification of C(z) if the channel is MP, since then there exists a unique

phase �(z) for a given magnitude jC(z)j (the same would be valid if we knew that C(z)

is maximum phase). Since SOS do not suffice for the identification of a NMP channel, this

imposes a first major limitation on BE:

� Limitation 1: non-identifiability of a NMP channel when the input process is Gaussian:

This is due to the fact that all the statistical information of a Gaussian process is contained

in its first two moments. The fact that a Gaussian input sequence is excluded in BE is not

very important in the sense that the distribution of the input process is practically never

Gaussian in digital communications. However, due to a technique called constellation shaping

used in digital communications, there is sometimes a tendency of the “shaped” constellation

to approach a Gaussian distribution [ZPV91]. This fact can make the BE problem a more

difficult task.

At this point it is also worth mentioning two other major limitations that seem to be

inherent in the BE setup:

� Limitation 2: identifiability up to a rotational factor:

Note from (2.57) that even for a MP channel, the channel frequency response is only identifi-

able to within a constant scalar of unit magnitude, i.e. any C0(!) of the following form:

C0(!) = C(!)ej� ; (2.58)

for any � can be identified as well as the sought channel frequency response. In other words,

an equalizer using this method cannot determine but up to a rotated version of the transmitted

constellation. As it will be shown in the sequel, this phenomenon often arises in BE.

� Limitation 3: identifiability up to a constant time-shift

Another limitation inherent in BE is the fact that the channel can only be identified up to a

constant time-delay. This is due to the fact that a NMP invertible channel in general will have

an inverse that is noncausal. An immediate consequence of that is that the inverse channel

(approximation) (in the z-domain) can only be defined as [BG83]:

S�1(z�1)S(z�1) = z�l ; (2.59)

l being a constant integer. Therefore, (blind) equalization is not possible instantaneously but

up to a constant time-shift.
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In contrast to the above-mentioned frequency-domain approach, a time-domain approach

can be followed as well. The solution to the problem when the channel is minimum-phase

can be directly found by linear prediction (see [Mak75]) on the noise-free received sequence

fxig. Namely, it has been shown that in this case, the input sequence faig is equal to the

innovations process of fxig [Hay91]:

^ak = xk � ^xk ; (2.60)

where ^xi is the linear MMSE prediction:

^xi = E(xkXk�1)
�
E(Xk�1X
H
k�1

��1

Xk�1 ; (2.61)

(the prediction order equals the length ofXk). However, this is not the solution in the case of a

NMP system, since the solution in (2.61) only requires autocorrelations of the received process,

i.e. SOS. In the NMP case, the ^ak are related to the ak by an all-pass filter (transforming one

white noise to another one).

A sufficient condition for the identification of a NMP linear channel from its output’s

statistics was stated in 1980 by Benveniste et Al. [BGR80] and goes as follows:

Sufficient condition for the identifiability of a NMP linear channel from its output:

If the probability density functions (pdf’s) of all orders of the equalizer output process fyig

equal the corresponding pdf’s of the input process faig, then the channel is identifiable from

fyig.

In other words, if all the moments of the output process match the corresponding moments

of the input process, identification is possible. However this is not a necessary condition.

A necessary and sufficient condition for the identifiability of a linear system from its out-

put was stated by Shalvi and Weinstein in 1990 [SW90] and is as follows:

Necessary and sufficient condition for the identifiability of a NMP linear channel from its output:

A linear channel is identifiable from its output if and only if the following two conditions

hold: 8<: E
�
jyj2

�
= E

�
jaj2

�

jK(y)j = jK(a)j ;

(2.62)

where K(�) is the Kurtosis of a process defined as:

K(zi) = E
�
jzij4

�
� 2E2

�
jzij2

�
�

���E(z2

i )
���2 : (2.63)

It is clear from the above that in order to be able to identify a mixed-phase channel one has

to exploit moments of its output of order higher than two. However, if the input process a(t)
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is a Gaussian stochastic process, the output will also be Gaussian, and all information about

its statistics will be contained in its moments of order one and two. This verifies the fact

that identification of a mixed-phase system that is excited by a Gaussian input is not possible

based on statistics of its output.

Based on the way HOS are used in order to achieve channel identification, we can discern

two different categories of methods for blind channel equalization:

� Methods that do not use “explicitly” HOS (moments and cumulants) but try to equalize

by optimizing a criterion that contains “implicitly” information of higher order moments

of the output via nonlinear functions. These methods belong to the so-called Bussgang

family of blind equalizers. A simple example of such BE techniques is DD equalization,

where the minimization criterion is the cost function:

JDD = E(dec(yk)� yk)

2 ; (2.64)

and the corresponding nonlinearity is dec(yk).

� Methods that use “explicitly” HOS of the output for the channel identification. These are

typically cumulant-based methods (see for example [Nik88], [GM89], [HN91],[FVM92],

[ZMM93]).

A tutorial presentation of these two big classes of BE methods can be found in [BR85].

However, in the recent literature several novel equalization techniques have been proposed

that cannot be directly put in one of the above two families of techniques. Namely, there exist

Maximum Likelihood BE techniques (see e.g. [GW92]) as well as BE techniques based on the

exploitation of some kind of diversity (e.g. space diversity - time diversity).

In the first part of this thesis we will focus on Bussgang-like techniques for BE. In the

second part we will consider diversity techniques based on an over-sampling equalization

setup.

2.9 Bussgang techniques for blind equalization

As already mentioned, the Bussgang blind equalizers optimize (usually minimize) a criterion

which is a nonlinear (and usually memoryless) cost function of the equalizer’s output y:

min

W

J(y) = J(XHW ) : (2.65)

A Bussgang BE setup is depicted in figure 2.11. We will present at this point some of the best

known BE algorithms of the Bussgang type:

� The Sato Algorithm
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Figure 2.11: A Bussgang blind equalization setup

The Sato algorithm was proposed by Y. Sato in 1975 [Sat75] and in its original form was

conceived for multi-PAM (real) constellations. Sato’s motivation was that the conventional

(by that time) adaptive equalization algorithm (i.e. the DD algorithm) failed to readapt to

a newly connected channel in multi-level amplitude modulation systems. The cost function

proposed by Sato was the following:

min

W

JSato(W ) = E((y � sign(y))2) ; (2.66)

where sign denotes the usual sign function of a real scalar:

sign(r) =

r
jrj =

8<: 1; r > 0

�1; r < 0

; (2.67)

and  is a scaling factor defined as:

 =

Ea2

k

Ejakj
: (2.68)

Sato’s idea behind this algorithm was to employ a binary decision device instead of a multi-

level decision device, since the problem of the DD algorithm seemed to be that it couldn’t

cope with multi-PAM. Therefore Sato decomposed the multilevel into a polarity signal and

a remaining signal and classified his decisions based only on the polarity signal, treating the

remaining signal as random noise. For example, the levels of a 8-PAM signal are given by:

Ai = V (

1
2

d1 +

1
4

d2 +

1
8

d3) ; (2.69)

where dj = �1(j = 1; 2; 3) and V is a constant factor. Sato’s equalizer only used d1 in

order to classify the received samples as positive or negative, and used only this informa-

tion in order to adapt his equalizer. The gradient of the cost function (2.66) is found as follows:

5JSato = @
@W

�
E(yk � sign(yk))

2

�
= E

�
@yk

@W

@
@yk
(yk � sign(yk))

2

�
=

= 2E
�
@yk

@W

(yk � sign(yk))
@
@yk
(yk � sign(yk))

�
= 2E

�
Xk(yk � sign(yk))

�
:
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The corresponding stochastic gradient algorithm (Sato) will have the form

Wk+1 = Wk � �5 JSatok ;

where JSatok accounts for the instantaneous value of 5JSato at iteration k:

Wk+1 = Wk + �Xk(sign(yk)� yk) : (2.70)

Eq. (2.70) describes the Sato algorithm for multi-PAM signals. One should note that in the

2-PAM case, the Sato coincides with the DD algorithm.

In order to analyze the algorithm’s performance Sato made the following three assump-

tions:

� The PAM modulation admits an infinity of levels (infinite length alphabet), i.e. the

transmitted symbols have a continuous uniform distribution in a symmetric interval

(�V; V ). In this case a transmitted symbol can be written as:
a = V

�

1
2

d1 +

1
4

d2 + � � �+

1
2l

dl + � � �
�

; (2.71)

(di = �1; i = 1; 2; : : :).

� The overall combined channel-equalizer impulse response is infinite length

� The channel eye is open (� < 1) at the beginning of equalization

Under these assumptions, the cost function (2.66) can be proven [Sat75] to be equal to

E
�
yk � sign(yk)

�
=

V 2

3

X
(h2

i )� V
 

s0 +

1
3

P0
h2

i

s0

!
+ 2 ; (2.72)

where fsig is the overall impulse response, s0 is the greatest coefficient of fsig at the beginning

of equalization and

P0

denotes summation over all indices except the 0-lag index. From eq.

(2.72) it can be shown that (under the above assumptions) the Sato cost function is a convex

function 12 of the equalizer parameters. The convexity of the cost function guarantees that

it has a unique minimum point. Moreover, this minimum point will provide the optimum

equalizer setting, since this setting nulls the positive cost function JSato(W ). Therefore,

under the above assumptions, the Sato algorithm will converge (if � is chosen so as to provide

stability) towards the optimal equalizer.

As is noted by Sato, the assumption of an initially open eye (

P0 jsij < js0j), which is a

strong assumption, is sufficient for the proof of (2.72) but probably not necessary. In fact, the

major advantage of the Sato algorithm, i.e. the fact that it may be able to open the channel

12

f(x) is said to be a convex function of x if for any 0 < � < 1, the following holds: f(�x1 + (1 � �)x2) �

�f(x1) + (1 � �)f(x2), for any x1 < x2 in the domain of definition of f .
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eye for a multi-PAM system, even if it is initially closed, is not proven by the above analysis

due to this limiting assumption!

However, in the sebsequent literature , a result that removed this assumption was found

by Benveniste et Al. [BBG+78] and Benveniste and Goursat [BG84]. In order to present this

result we first give the following definition [BG84]:

Definition: A distribution v is said to be sub-Gaussian in one of the following cases:8<: v is uniform over[�d;+d]

v(dx) = Ke�g(x)dx ;

(2.73)

where K is a constant and g is an even function, differentiable except possibly at the origin,

such that g(x) and g0(x)
x

are strictly increasing overR+. The result given in [BG84] is as follows:

Theorem: If the distribution v of the input sequence faig is sub-Gaussian, then the Sato

cost function (2.66) admits as only local (and also global) minima the inverse channels �c�1.

Therefore, according to this theorem, the Sato cost function is convex w.r.t. the (infinite

in number) equalizer parameters, provided that the input sequence is sub-Gaussian. This

is an asymptotic result in the sense that it assumes (as Sato did as well) a continuous input

distribution, which is not a realistic hypothesis. In the realistic case of a discrete-time input

distribution, the above theorem does not hold (even for an infinite number of equalizer taps)

and the Sato cost function indeed has local minima that do not correspond to the optimal

solutions.

It still seems however that Sato’s performance is clearly better than DDA’s performance

in realistic multi-PAM cases with discrete input distributions. This may be justified by the

different form of the local-minima regions in the two cases (as noted by Mazo, the local

minima regions of DD in multi-PAM systems do not have the form of cones) whereas the

corresponding Sato local minima regions are cone-shaped. These aspects will be discussed in

chapter 5.

A direct extension to Sato’s algorithm for QAM constellations is the so-called Generalized

Sato Algorithm (GSA) , which has the following form:

Wk+1 = Wk + �Xk(csign(yk)� yk) ; (2.74)

where the “complex sign” function csign(�) of a complex scalar r = rR + jrI is defined as:

csign(rR+ jrI) = sign(rR) + jsign(rI) : (2.75)

A theorem similar to the one mentioned above has proven the convexity of the GSA as well,

under the assumption thatRe(i) and Im(ai) are two independent i.i.d sequences with the same

sub-Gaussian distribution v.
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The Generalized Sato Algorithm classifies the received samples in one of the four quad-

rants of the complex plane R2. This philosophy respects Sato’s principle in the sense that

the classified symbols have all the same magnitude, as in the real case. However, it does

not respect it (except for 4-QAM constellations) in the sense that the classified symbol has an

altered phase with respect to the received sample, which is not of course the case in the real

case! We will present in chapter 5 a Sato-type algorithm that maintains the phase also for any

QAM constellation.

� The Godard algorithms for BE

An important class of algorithms of the Bussgang type is the so-called Godard class of blind

equalization algorithms. This class of algorithms was proposed by D. Godard in 1980 [God80].

The Godard cost function is defined as:

JGodp (W ) =

1
2p

E
�
jyjp � rp

�2

; p = 1; 2; : : : ; (2.76)

where rp is a constant scalar called dispersion constant and defined as:

rp =
Ejakj2p

Ejakjp
: (2.77)

The philosophy of the Godard criterion (2.76) is that the criterion penalizes the deviations of

the magnitude of the received signal with respect to a constant scalar. The constant scalar is rp

and represents the radius of a circle that “best fits” is some way the transmitted constellation.

Of course the cost function (2.76) only makes perfect sense for constant modulus constellations,

i.e. PAM or QAM constellations with the property that all the symbols of their alphabet have

the same magnitude in the complex plane R2. However, this criterion has been proven to

make sense even in non-constant-modulus constellations, as we will see in the sequel.

The gradient of the Godard cost function is equal to:

5JGodp = @
@W

�

1
2pE(jykj � rp)

2

�
= E

�
@yk

@W

@
@yk
(jykjp � rp)
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�
=

= 1

p
E

�
@yk

@W

(jykjp � rp)
@
@yk
(jykjp � rp)

�
= E

�
Xkykjykjp�2(jykjp � rp)

�
:

The resulting stochastic gradient algorithm is:

Wk+1 = Wk + �Xkyk jykjp�2(rp � jyk jp) : (2.78)

Eq. (2.78) is the famous Godard algorithm for BE. The two best known Godard algorithms

are derived by (2.78) for p = 1 and p = 2. These algorithms have been also proposed by

Treichler and Agee [TA83] and Treichler and Larimore [TL85] and are commonly referred to

as Constant Modulus Algorithms. In the first case the CMA 1-2 algorithm is derived:

Wk+1 = Wk + �Xk(r1

yk
jykj
� yk) : (2.79)
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Note that in the case of a real constellation, the CMA 1-2 algorithm is identical to the Sato

algorithm (note also that  = r1). The following table shows the coincidence of some of the

above-mentioned BE algorithms for some specific input signals:

Constellation/Algorithm DD Sato CMA 1-2 GSA

2-PAM Identical Identical Identical Identical

multi-PAM - Identical Identical Identical

4-QAM Identical - - Identical

In the case p = 2, the so-called Constant Modulus Algorithm (CMA) (or CMA 2-2) is obtained:

Wk+1 = Wk + �Xkyk(r2 � jykj2) : (2.80)

The CMA (or the Godard) algorithm is considered to be among the most succesful algorithms

of the Bussgang type. This is due to the following advantages (see [Jab92], [SGKC91] for some

comparative studies):

� Often CMA succeeds in opening the initially closed channel eye.

� The CMA is more robust than other Bussgang algorithms to carrier phase offset. This is

an important advantage of the Godard algorithm and is due to the fact that its criterion

is based only on the amplitude of the received signal, i.e. it is blind to a phase rotation.

� The CMA often achieves a lower steady-state error w.r.t. other Bussgang algorithms.

The analysis of the Godard algorithm, as done in the original paper of Godard, gives the

following results:

� When the channel is noiseless and the equalizer is infinite-length, the global minimum

of the Godard cost function corresponds to a zero-ISI equalizer setting.

� The cost function in (2.76) is not a convex function of the equalizer taps. As a result

of this, the algorithm’s initialization is of critical importance since some initializations

may lead the algorithm towards a local minimum of the cost function, which does not

adequately open the channel eye.

� Two conditions are necessary for the transmitted constellation, namely, the two follow-

ing equations must be satisfied:

E(a2

i ) = 0 ; (2.81)

and

E(jaij4) < 2

�
Ejaij2

�2

: (2.82)

Eq. (2.81) requires some kind of symmetry on the transmitted constellation, whereas eq.

(2.82) some kind of compactness on the transmitted constellation. However, these two
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conditions are often met by many constellations, especially as the transmitted samples

are first differentially encoded13.

� Some practical guidelines in order to guarantee the equalizer’s convergence towards

the global minimum of the cost function are suggested in [God80]. However, there is

no way to guarantee that a specific initialization will be correct in all cases.

The strongest result on the performance of the Godard algorithm (in T -spaced equalizers)

was obtained by Shalvi and Weinstein [SW90]. By showing that the Godard criterion (p = 2)

is a special case of their kurtosis function, they proved that the CMA 2-2 algorithm is globally

convergent under the following assumptions:

� No additive noise is present

� The input distribution is sub-Gaussian

What was not explicited in [SW90] is that an extra assumption was needed for their proofs to

be valid, namely:

� The equalizer has a doubly-infinite length

This remark was done by Tugnait in [Tug92], thus verifying the claims in [Din91a], [DKAJ91],

[JLK92] e.t.c. about the existence of local sub-optimal minima of the Godard cost function in

the case of FIR equalizers.

A way to explain the existence of local minima of the Godard cost function in the case of a

finite equalizer length is the following. The extrema of the Godard cost function can be found

by setting the gradient of the cost function equal to zero, i.e.:

E
�
Xkykjykjp�2(jykjp � rp)

�
= 0 : (2.83)

Eq. (2.83) is a system of N nonlinear equations w.r.t. N parameters (equalizer taps). Due

to the nonlinear character of this system of equations, there is a proliferation of solutions

to it, some of which correspond to minima. This is why local minima exist for the Godard

algorithm! It must be noted at this point that the local minima in the Godard cost function

exist even when the equalizer is adequately parameterized to be able to match exactly the

inverse of the channel impulse response. Figure 2.12 shows the Godard cost function in the

case of a linear AP(1) channel and a linear FIR(1) equalizer (perfect parameterization). Note

the existence of two optimal global minima and of two local minima that do not completely

open the channel eye.

� The Stop-and-Go algorithm for BE

13Differential coding is a technique that permits, at the loss of some dB of performance, to eliminate phase

ambiguities in the received signal.
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Figure 2.12: A Godard cost function for an AP(1) channel and a FIR(1) equalizer

The Stop-and-Go algorithm for BE was proposed by Picchi and Prati in 1987 [PP87] and

is a hybrid scheme in the sense that it uses both the error functions of the DDA and the

(generalized) Sato algorithm. We use the term error function in the same way it is used

in classical system identification to denote the difference between the filter output and a

“desired” response. The corresponding error functions for DDA and Generalized Sato are:8<: eDDk = dec(yk) � yk

eSatok = csign(yk)� yk :

(2.84)

The principle of the Stop-and-Go algorithm is the following: the Sato algorithm has in general

been proven to be able to open the channel eye more succesfully than the DDA. However

the DDA achieves faster convergence and a lower steady-state error once the eye is already

opened. The Stop-and-Go adaptation rule is the following: if the error functions eDDk and

eSatok have the same complex sign csign at iteration k, then the DDA is considered reliable

enough to do the adaptation, and therefore a DDA iteration is performed. On the other hand,

if this is not the case (csign(eDDk ) 6= csign(eSatok )), then there is no adaptation performed. In

other words, the Sato error at each iteration is calculated only in order to give enough credit

to the DD adaptation rule to be performed or not. The Stop-and-Go algorithm has therefore

the following form:

WR
k+1 = WR
k � �1

�
fRk e
R
kX

R
k + f Ik e

I
kX

I
k

�

WR
k+1 = WR
k � �2

�
fRk e
R
kX

I
k + f Ik e

I
kX

R
k

� ; (2.85)

where ek = eDDk , the superscripts R and I denote real and imaginary part of the corresponding

quantities, respectively and fJ ; J = R or I is a flag function defined as:

fJk =
8<: 1; if sign(eDD
J

) = sign(eSato
J

)

0; otherwise

: (2.86)

The Stop-and-Go algorithm (SGA) has been reported to have a behaviour combining the

advantages of both DD and Sato, i.e. it has DD’s steady-state error, has a convergence speed
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faster than Sato’s and is capable of opening the channel eye in cases where DD cannot but

Sato can.

Some novel Stop-and-Go-like algorithms have been introduced by Hatzinakos (see [Hat91],

[Hat92]), namely the Sign Stop-and-Go algorithm, the Godard Stop-and-Go algorithm and the

Stop-and-Go algorithm with 2 error functions (SG2). The philosophy of the sign stop-and-go

algorithm is to use for the adaptation not the actual values of eDD and eSato at each iteration

but their respective sign functions, since it is only based on the information of the sign func-

tions that the stop-and-go algorithm decides if it is going to perform an operation or not. The

corresponding algorithm is therefore obtained if one replaces in (2.85) the quantities eDD
R

and eDD
I

by the quantities sign(eDD
R

) and sign(eDD
I
), respectively.

The Godard SG algorithm is the same as the SGA algorithm with the difference that now

the Godard error function eGodk = yk(jykj2 � r2) is used instead of eSato. Finally the SG2

algorithm is as the SGA algorithm with the difference that the flag function is now defined

as:

fJk =
8<: 1; if sign(eDD
J

) = sign(eSato
J

) = sign(eGod
J

)

0; otherwise

: (2.87)

All these algorithms have been shown in practice to outperform the DD algorithm for non-

constant modulus constellations. However we are not aware of any complete theoretical

analysis that explains this behaviour.

� Other algorithms

Several other algorithms for BE have been recently proposed. The CRIMNO algorithm

[CNP92] proposes a criterion with memory nonlinearity (it imposes constraints not only

on the modulus of each received sample but also on some correlation terms with previous

samples). In [WK94] some other dual-mode type BE algorithms are proposed, whereas in

[SW93] some HOS - based methods are proposed which do not impose restriction on the pdf

of the transmitted sequence.

2.10 Principal aims of the thesis

In the remainder of the thesis we will propose several new methods for blind equalization

and identification of linear channels. The motivation for the development of each method

has to do with disadvantages of already existing schemes. Namely, our concern is focused on

the following aspects of BE algorithms:

� Their low convergence speed

� Their steady-state error

� The problem of ill-convergence
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� The impossibility of ZF equalization with FIR filters

� The need of Higher Order Statistics for Blind Equalization

The methods that will be presented propose some solutions to the above-mentioned problems.

Chapter 3

A new class of algorithms for

constant-modulus blind equalization

IN this chapter we propose a new class of algorithms of the constant modulus type for

blind equalization. The algorithms are derived by minimizing a deterministic criterion that

imposes at each iteration a number of constraints on the equalizer. An efficient computa-

tional organization of the algorithm is proposed in order to allow for reduced computational

complexity. The algorithms are analyzed both theoretically and by means of computer sim-

ulations. Two important advantages with respect to conventional CMA’s is their increased

convergence speed as well as their potential ability to escape from local minima of their cost

function. The relation of this class of algorithms to classical adaptive filtering algorithms is

investigated and as a result a so-called separation principle is established. This principle al-

lows for the derivation of algorithms suitable for BE by using any classical adaptive filtering

algorithm.

3.1 Introduction

We consider the blind equalization setting of figure 3.1. As we already mentioned, one of

the most popular adaptive blind algorithms for equalization of linear channels in a QAM

system is the Constant Modulus Algorithm, a special case of the Godard algorithms. The

popularity of the algorithms of the constant modulus type is due to several advantages they

offer, namely:

� their satisfactory performance in several cases

� their simplicity (low computational complexity, easy implementations)

54
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� their ability to open blindly the channel eye not only for constant envelope but for any

QAM constellation

The last advantage mentioned above, even though paradoxical (why should a constant mod-

ulus algorithm be useful in a non-constant modulus modulation system?) has been not only

experimentally validated but also theoretically founded recently by Shalvi and Weinstein

[SW90]. This is the main reason why we will focus on the development of algorithms of the

constant modulus type.

Channel Equalizer

Adaptive Blind
Algorithm

Decision

-1C(z   ) -1W(z   )
k{a    } k  {y    } ^{ a     }k

Device

                 +

{η   }k

{x   }
 k

Figure 3.1: A typical blind equalization scheme

Besides the above-mentioned advantages, the CMA’s exhibit also a number of drawbacks

that have been extensively reported in recent literature over the last 15 years, namely:

� They have a low convergence speed, especially when the received signal is strongly

coloured

� They are sensitive to their initialization, i.e. some initializations may lead to convergence

around undesirable stationary points, causing the problem of ill-convergence.

The problem of low convergence speed is a typical one of stochastic gradient algorithms. It

is well known for example that in the LMS algorithm (2.49) the speed of convergence for a

given value of the stepsize parameter � is sensitive to the colouring of the input signal (it

decreases with the colouring of the input signal). For a given colouring of the input signal,

the convergence speed increases with �, but as in each iteration k the maximum stepsize for

stable operation depends on the specific regressor Xk, one usually chooses � small enough

in order to guarantee stability at all iterations. An alternative to the LMS that overcomes this

problem is the NLMS algorithm:

Wk+1 = Wk +

�

kjXkjj2

Xk(^ak �XH
k Wk) : (3.1)

The stability of (3.1) is guaranteed for all 0 < �� < 2 and its maximum convergence speed

is provided for �� = 1. As the CMA is also an algorithm of the stochastic gradient type,

it is a natural reflection to investigate if its convergence speed can be increased by suitable

normalization.

However, convergence speed is not the only performance index that dictates the normal-

ization of constant modulus algorithms. One might expect that normalization could be also
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beneficial w.r.t. to the problem of ill convergence of CMA’s. Namely, the convergence of a

stochastic gradient algorithm to an undesirable stationary point is the result of the interaction

of three different factors:

� the existence of local undesirable minima of the corresponding cost function

� the algorithm’s initialization

� the employed stepsize

Indeed, attacking each one of these three points could result in a remedy to the problem. In

the first case a convex cost function should be constructed (such attempts have been recently

reported in literature, e.g. [KD92] [BZA94]) 1, in the second and third case practical guidelines

for the algorithm’s initialization (see e.g. [JL92]) or choice of stepsize should be given. In this

case one does not try to influence the shape of the cost function, but rather the trajectory that

the algorithm will follow on it (or close to it).

An interesting hint about the crucial role of the stepsize can be found in Mazo [Maz80],

concerning the performance analysis of a decision directed equalizer in a multi-PAM system.

Mazo showed that a DD algorithm in a PAM case will always converge (eventually) to its

global minimum. However it is stated that “for � small, we expect to wait a very long time for

deviations of the required magnitude to occur, and our earlier assumption of getting trapped at an

undesired minimum is, in this sense, justified”. This implies that in DD equalization (which is

a primitive form of BE), a big value for the stepsize can help the algorithm head towards

its global minimum, essentially escaping from its local minima. We therefore expect that

normalization will play a positive role in this respect as well.

Besides normalization, another feature that could be added to algorithms of the constant

modulus type is memory. As already mentioned, all BE algorithms of the Bussgang type

are memoryless, i.e. only the most recent sample of the equalizer output is used for the

adaptation of the algorithm. One would expect a better performance if one takes into account

a number of other past equalizer outputs as well. This can be translated to imposing a more

severe constraining on the equalizer output than memoryless algorithms do. This constraining

allows for more flexibility on the choice of the cost function 2 and is expected to improve also

the convergence behaviour of the algorithm.

To sum up, we are interested in algorithms for BE, of the constant modulus type, employing

an inherent normalization of their stepsize and imposing a more severe constraining on the

equalizer’s output. A first class of algorithms of this type is presented in the next section.

1A construction of a convex cost function for constant-modulus BE is also proposed in chapter 6 of this thesis.
2An example is the recently proposed ([CNP92]) CRIMNO algorithm.
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3.2 The new class of algorithms

3.2.1 Derivation

Consider first the following deterministic CM criterion:

min

Wk+1

kWk+1 �Wkk2
2

subject to: (jXH
k Wk+1jp � 1)q = 0 ;

(3.2)

where kWk2 = WHW for W 2 CN denotes the 2-norm of a complex vector. This is a

deterministic criterion that imposes a CM constraint on the a posteriori equalizer output at

each time instant, trying to keep the “next” equalizer setting Wk+1 as close as possible to the

previous one Wk in doing so. It is clear that as the number of parameters (N) to be adjusted

is bigger than the number of constraints (1) set by the second equation of (3.2), this can be

exactly satisfied, in which case Wk+1 will obey the following equation:

jXH
k Wk+1j = 1 : (3.3)

We now consider the minimum-norm criterion of the first line of (3.2). The deviation of the

new equalizer setting Wk+1 with respect to the previous one Wk can be decomposed as:

Wk+1 �Wk = Xkvk + 
k : (3.4)

The first term on the right-hand side of (3.4) represents the component of Wk+1 � Wk in

the 1-dimensional subspace of CN spanned by Xk, and 
k the component belonging to the

orthogonal complement of this subspace, of dimension N � 1:


H
k Xk = 0 : (3.5)

Therefore, the first line of (3.2) can be written as:

kXkvkk2
2 + k
kk2

2 = minimal ; (3.6)

since Xkvk and
k are orthogonal to each other. As
k has no influence on equation (3.3) (due

to the orthogonality expressed by (3.5)), the term k
kk2
2 must be minimized independently,

which gives:

Wk+1 = Wk +Xkvk : (3.7)

Now combining (3.3) and (3.7) one gets:

XH
k Wk +XH
k Xkvk = ek ; (3.8)

where ek is a complex number of modulus 1:

jeij = 1 : (3.9)
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Eq. (3.8) gives when solved for vk:

vk = (XH
k Xk)

�1(ek �XH
k Wk) : (3.10)

Reporting this value of vk into (3.7), we get the following recursive formula for the equalizer

vector W :

Wk+1 = Wk +Xk(X
H
k Xk)

�1(ek �XH
k Wk) : (3.11)

Now among all the possible choices for the vector ek, we must choose the one that results in

the minimum 2-norm ofWk+1�Wk . As is shown in Appendix 3.A, this leads to the following

choice for ek :

ek = sign(XH
k Wk) ; (3.12)

where the sign of a complex scalar is defined as:

sign(rej�) � ej� ; (3.13)

(if r = 0 we use in practice the convention sign(0) � 1). A geometrical interpretation for ek

as given in (3.12) is that ek is the projection of XH
k Wk on the unit circle in such a way so as to

preserve its phase (see fig. 3.2).

Im(z)

Re(z)         H
k-iX  W

sign( k-i k

k

X  W                                )
                                   H                                

sign(e   )i

Figure 3.2: Choice of the optimal projection onto the unit circle

Substituting into (3.11), we obtain the following recursive formula that solves the minimiza-

tion problem (3.2):

Wk+1 = Wk +Xk(X
H
k Xk)

�1(sign(XH
k Wk)�XH
k Wk) : (3.14)

Notice that the above algorithm is derived by minimizing the criterion in (3.2) for any value

of p and q, and therefore corresponds to a deterministic version of any CMA p� q algorithm.

We now consider the following alternative deterministic criterion:

min

Wk+1

n
kWk+1 �Wkk2

2

o

subject to: ksign(XH
k Wk)�XH
k Wk+1k2

2 = 0 :

(3.15)
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As again we have the freedom to null exactly the scalar quantity sign(XH
k Wk) � XH
k Wk+1,

we obtain again (3.3) and following exactly the same steps we arrive at the conclusion that

the algorithm (3.14) also solves the problem (3.15). In order to allow more flexibility to

this minimization criterion we shall now introduce a stepsize parameter �� that will allow

control of the deviation of the new equalizer setting Wk+1 w.r.t. Wk, instead of imposing a

minimum square-norm deviation. Using a result presented in [Slo92b] (see also Appendix

3.B), we obtain the following formulation: an exact minimization with respect to Wk+1 of the

deterministic function

ksign(XH
k Wk)�XH
k Wk+1k2

(XH
k

Xk)�1 + (

1

��
� 1)kWk+1 �Wkk2

2 ; (3.16)

where kxk2

S = xHSx, is provided at each iteration by the following algorithm:

Wk+1 = Wk + ��Xk(X
H
k Xk)

�1(sign(XH
k Wk)�XH
k Wk) : (3.17)

In (3.16) the hard constraint of (3.15) has been replaced by a weighted minimization of the

terms in (3.2). The first term expresses the information in measurements while the second

term represents the prior information. The role of the parameter �� 2 (0; 1] is to control the

relative weight of each term. Indeed, the problem of minimizing (3.16) w.r.t. Wk+1 reduces

(is equivalent) to the problem in (3.15) as ��! 1.

Now consider a more severely-constrained minimization problem similar to the one de-

scribed in (3.16) that imposes an ensemble of L (instead of 1) “sign-type” constraints on the

equalizer vector Wk+1:

ksign(XH
k Wk)�XH
k Wk+1k2

P�1

k

+ (

1

��
� 1)kWk+1 �Wkk2

2 ; (3.18)

where Pk = XH
k Xk and Xk is a N � L data matrix defined as:

Xk = [Xk Xk�1 : : :Xk�L+1] =
26666664
x�k x�k�1 � � � x�k�L+1

x�k�1 x�k�2 � � � x�k�L

...
...

...
...

x�k�N+1 x�k�N+2 � � � x�k�N�L+2

37777775 ; (3.19)

where superscript � denotes complex conjugate and the sign of a complex vector is defined

as:

sign([x0 x1 � � �xN�1]
T = [sign(x0) sign(x1) � � �sign(xN)]T : (3.20)

According to the result presented in Appendix 3.B, the criterion (3.18) is minimized exactly

at each iteration by the following algorithm:

Wk+1 = Wk + ��XkP
�1

k (sign(XH
k Wk)� XH
k Wk) : (3.21)

Eq. (3.21) is the proposed class of algorithms that we will study in the sequel.
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3.2.2 Discussion

Eq. (3.21) describes a new parametric class of algorithms for BE of CM signals. At each

iteration, any algorithm of this class sets to zero the deterministic criterion (3.18). The two

adjustable parameters are the data window length L and the stepsize ��. L is an integer that

expresses the number of “CM constraints” imposed on the next equalizer setting at each

iteration and may vary typically from 1 to N . Different values of L correspond to different

members of the class of algorithms. The imposition of L constraints results in prewhitening

the received data by the inverse of an L � L sample covariance matrix (Pk). As one can see

from eq. (3.19) this matrix is formed by constructing first a N � L data matrix (Xk), which

corresponds to passing the data through a rectangular sliding window. �� is a real scalar that

controls the deviation of the new equalizer setting w.r.t. the previous one. Strictly speaking,

only when �� = 1 do we impose a set of L constraints on Wk+1, whereas in the other cases we

rather minimize a weighted deterministic function (3.18) that contains two additive terms.

Two major features of the algorithms expressed through (3.21) with respect to the classical

Godard or CMA BE algorithms are hence:

� (3.21) results from the exact minimization at each iteration of a deterministic criterion,

and not by using a stochastic gradient technique in order to minimize a stochastic cost

function.

� the algorithms (3.21) employ CM-type requirements that do not involve (if L > 1) only

the most recent regression vector of data Xk but some previous regressors (of number
L� 1) as well. In a way this can be seen as adding memory to the algorithm.

The deterministic aspect of the proposed algorithms offers not only important insight to the

algorithm’s analysis, but provides also the very important feature of normalization. As it will

turn out, the algorithms of this class are stable for all values 0 < �� < 2 (the fastest conver-

gence corresponding to the choice �� = 1), which provides an a priori known (normalized,

independent of the actual regressors used at each iteration) range for stability (in contrast to

stochastic-gradient algorithms where the stepsize’s region for stability is not known a priori

and heavily depends on the input data’s colouring). The normalization not only facilitates the

implementation of the algorithm in the sense that the choice of the stepsize is done very easily

and independently of the received signal, but also, as it will be shown in the sequel, may have

a positive impact in avoiding the problem of ill-convergence often observed in BE algorithms

of the Godard type. On the other hand, the “memory” aspect of the proposed algorithms is

expected to have a beneficial impact on the algorithms’ convergence speed, namely we expect

that due to the extra constraining, the convergence speed will increase as L increases. Based

on the two aforementioned features of normalization and constraining, we call the class of

algorithms (3.21) Normalized Sliding-Window Constant Modulus Algorithms: NSWCMA’s.
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3.2.3 Criterion interpretation

The criterion in (3.18) is a deterministic function of Wk+1 that contains two additive quadratic

terms. The first term represents the constant modulus requirement and the second one the

minimum deviation (in a square-norm sense) requirement of Wk+1 w.r.t. Wk. The relative

importance of the two terms is determined by the value of the scalar parameter ��. The first

term becomes less dominant in favour of the second term as �� moves away from 1 and vice

versa when �� approaches 1. When �� equals 1 the criterion (3.18) is equivalent to the following

criterion:
min

Wk+1

kWk+1 �Wkk2
2

subject to: ksign(XH
k Wk)� XH
k Wk+1k2

2 = 0 :

(3.22)

An interesting geometrical interpretation of this criterion is the following: consider the fol-

lowing vector of a posteriori outputs:

Ek = XH
k Wk+1 : (3.23)

Substituting the expression for Wk+1 given in (3.21) in (3.23) we obtain the following expres-

sion:

Ek = ��sign(XH
k Wk) + (1� ��)XH
k Wk ; (3.24)

which is a convex function for ��. As shown in fig. 3.3 each component of Ek is a projection

of the corresponding component of XH
k Wk at some point on the straight line linking it to the

origin. The actual position of the projection on this line is determined by ��. As �� approaches

1 this position approaches the unit circle and gets on the unit circle when �� = 1. The fact that

this projection is always on the same line shows that the criterion doesn’t attempt to change

the phase of the received signal. This is a typical characteristic of all Godard algorithms that

only impose constraints on the modulus and not on the phase of the received signal.

3.2.4 Projection interpretation

As will be made clear later on, the NSWCMA may be considered to be a blind equalization-

counterpart of the APA algorithm. The APA algorithm ([OU84]) was first proposed by Ozeki

and Umeda in 1984. Its derivation based on a deterministic criterion was given by Slock in

[Slo92b], where a block version is also derived and given the name of BUCFTF algorithm.

The following explanation of the projection mechanism that is performed in the APA will

help understand better the NSWCMA as well. The APA update formula is given as

Wk+1 = Wk + ��XH
k P

�1

k (Dk �XH
k Wk) ; (3.25)

where Dk = [dk dk�1 � � �dk�L+1]T contains the desired signal’s elements at time instants

k; k � 1; : : : ; k � L + 1. The behaviour of the algorithm (3.25) may be described by the
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Figure 3.3: A geometrical interpretation of the minimized criterion

following projection interpretation: consider first the case �� = 1. Then Wk+1 will be such as

to null L consecutive a posteriori errors :

Dk �XH
k Wk+1 = 0 : (3.26)

We denote by Q the L-dimensional subspace of CN spanned by the L column vectors of the

data matrix Xk and by Q? the orthogonal complement of Q, of dimension N � L. (3.26)

is a linear system of L equations in N unknowns (L < N ) and therefore has an infinity of

solutions. We denote by W
0
k+1 the one lying on Q (this is the minimum-norm solution of eq.

(3.26)). Then all the other solutions will have one component on Q equal to W
0

k+1 and then

another component on Q?. The constraint of minimizing kWk+1 �Wkk2 results in choosing

among all these solutions the one that is closer to Wk in a square-norm sense. A schematic

representation of this geometrical interpretation may be found in fig 3.4. As can be seen in the

figure, Wk+1 is obtained by an orthogonal projection of Wk to the the subspace Q? + W
0
k+1.

The name “affine projection algorithm” in fact reflects the fact that this is an affine space w.r.t.

Q? 3.

In the case L = N the set of equations (3.26) has a unique solution which coincides with

the classical least-square solution often sought in adaptive filtering. In this case Q coincides

with CN and the restriction for kWk+1 �Wkk2 has no impact on the choice of Wk (we remind

that �� = 1). This means that when L = N and �� = 1 the algorithm will converge to the

optimal equalizer only after 1 iteration (of course we have supposed here that no additive

noise corrupts the data or the desired signal).

The situation becomes somewhat more complicated when �� 6= 1. We denote by Jk the

3By affine space we mean a space that has been shifted in the direction of a constant vector.
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deterministic cost function at time instant k:

Jk = (Dk�XH
k Wk+1)

H(XH
k Xk)

�1(Dk�XH
k Wk+1)�(

1

��
�1)(Wk+1�Wk)
H(Wk+1�Wk) : (3.27)

Now Jk may be written as:

Jk =
24 Dk � XH

k Wk+1

Wk �Wk+1

35H 24 (XH
k Xk)

�1 0L�N

0N�L ( 1

�� � 1) IN
3524 Dk �XH

k Wk+1

Wk �Wk+1

35 =

=
24 (XH

k Xk)
�

1
2 Dk � (XH

k Xk)
�

1
2 XH

k Wk+1q

1

�� � 1 Wk �
q

1

�� � 1 IN Wk+1

35H 24 (XH
k Xk)

�

1
2Dk � (XH

k Xk)
�

1
2 XH

k Wk+1q

1

�� � 1 Wk �
q

1

�� � 1 IN Wk+1

35 =

=
������
������
24 (XH

k Xk)
�

1
2Dkq

1

�� � 1 Wk

35�
24 (XH

k Xk)
�

1
2 XH

kq

1

�� � 1 IN

35 Wk+1

������
������

2

:

(3.28)

Eq. (3.28) shows the kind of projection that is performed in the case �� 6= 1. In this case

the desired vector role is played by the vector [(XH
k Xk)

�

1
2Dk

q

1

�� � 1Wk]
T of length N + L

and Wk+1 is projected on the space spanned by the columns of the (N + L) � N matrix24 (XH
k Xk)

�

1
2 XH

kq

1

�� � 1IN

35.

Q Q
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Figure 3.4: A projection interpretation of the APA algorithm

3.2.5 Relation to other algorithms

The relation of the NSWCMA algorithm to other algorithms is two-fold: when one chooses

L = 1 which corresponds to a zero-memory criterion, the following algorithm results:

Wk+1 = Wk + ��XkP
�1

k (sign(XH
k Wk)�XH
k Wk) : (3.29)
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The above algorithm actually corresponds to a constant-modulus counterpart (as explained

in the previous subsection) of the NLMS algorithm . In fact, this algorithm has been derived

in [HD92a] for the special case �� = 1 by nulling at each iteration the a posteriori error �k of the

CMA 2-2 algorithm defined as:

�k = jXH
k Wk+1 � 1j2 � 1 ; (3.30)

and has been given there the name NCMA (Normalized Constant Modulus Algorithm). We

have derived the NCMA based on a deterministic CM criterion that incorporates also the

stepsize �� and shows its role (figure 3.3). So the NCMA is the first member (L = 1) of the

class of NSWCMA algorithms.

On the other hand, as already mentioned, the NSWCMA is very similar to the APA

algorithm for classical adaptive filtering. Namely, the NSWCMA is obtained if one chooses

in the update formula (3.25) of the APADk as follows:
Dk = sign(XH
k Wk) : (3.31)

Therefore, the NSWCMA may be seen as the BE counterpart of the APA. A further discussion

on this issue is given in the next paragraph.

3.3 The separation principle

As it was shown in section 3.2, the NSWCMA was derived based on a constant modulus

criterion 4 , and not by simply modifying the APA: the sign function appearing in the desired

vector of the algorithm was not chosen empirically but was found to be the optimal choice

that satisfied our CM criterion (3.2). We therefore notice the following coincidence:

Statement: An algorithm of the classical adaptive filtering form (the only difference being

in the choice of the vector of desired samples) has been derived by minimizing exactly a CM

criterion.

This means that if we had simply taken the NLMS algorithm and replaced the desired sample

dk by the scalar sign(XH
k Wk), the resulting algorithm would correspond exactly to the mini-

mization of a Godard-type CM criterion! Even though this will not be always the case for any

adaptive algorithm (we saw for example that for the NSWCMA (L > 1) the corresponding

criterion is a sign-like instead of a CMA-like one), it provides enough motivation to use it as

an easy way to obtain algorithms suitable for BE of the CM type, from any classical adaptive

filtering algorithm. We formulate this idea as follows:

4Strictly speaking, only in the case L = 1 the NSWCMA is derived by a CM criterion, while for L > 1 it is

derived by a sign� type criterion.
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A separation principle for BE: An adaptive algorithm of the CMA-type suitable for BE can

be derived by taking any classical adaptive filtering algorithm and replacing its desired signal

fDkg by fsign(XH
k Wk)g.

We call this procedure a separation principle because in some cases (e.g. NLMS) its appli-

cation corresponds exactly to a CM criterion, whereas in other cases it is suboptimal. The

projection on the unit circle that has to be performed in order to obtain the vector of desired

samples is the one shown in figure 3.2.

LMS Wk+1 = Wk + �Xk(dk � yk)

CMA 1-2 Wk+1 = Wk + �Xk(
yk
jykj
� yk)

NLMS Wk+1 = Wk +

��
kXkk

2
2

Xk(dk � yk)

NCMA Wk+1 = Wk +

��
kXkk

2
2

Xk(
yk
jyk j
� yk)

APA Wk+1 = Wk + ��XkP
�1

k ( Dk �XH
k Wk)

NSWCMA Wk+1 = Wk + ��XkP
�1

k (sign(XH
k Wk)� XH
k Wk)

RLS Wk+1 = Wk + P�1

k Xk(dk � yk)

‘RLS-CMA’ Wk+1 = Wk + P�1

k Xk(
yk
jykj
� yk)

Table 3.1: CM-type BE algorithms derived by applying the separation principle

By using the separation principle it is easy to obtain many different algorithms for BE that

reflect the performance characteristics of their classical adaptive filtering counterparts. An in-

teresting algorithm (already proposed in [Age86]) is the RLS-CMA, i.e. the algorithm derived

by applying the separation principle to the RLS algorithm. Of course, all fast algorithmic

organizations for the RLS (e.g. (S)FTF, Fast Lattice, Fast QR) can also be used leading to

fast CMA-like algorithms ((S)FTF-CMA, Fast Lattice-CMA (see also [GRS87]), Fast QR-CMA)

e.t.c. The same stands for the Fast Newton algorithms [MT93] that can lead to the Fast Newton

CMA algorithm.

Table 3.1 shows how some CMA-type algorithms are derived from their corresponding

classical counterparts. Our separation principle has already been mentioned in [Lam94],

where a blind SFTF filter was derived, based on a Newton update.

66 CHAPTER 3. A NEW CLASS OF CONSTANT MODULUS ALGORITHMS

3.4 Computational organization

Taking into account the close-to-Toeplitz structure of the sample covariance matrix Pk , the

calculation of the next equalizer setting Wk+1 from the previous one Wk may be organized in

a computationally efficient way as follows:

1. Compute the L� 1 a priori error vector (NL multiplications):

Ek = sign(XH
k Wk)�XH
k Wk : (3.32)

2. Update a sufficient description of Pk from that of Pk�1 (close-to-Toeplitz matrix) (O(L)

multiplications).

3. Solve the following linear system of equations by use of the generalized Levinson algorithm

(5:5L2 + O(L) multiplications):

PkHk = ��Ek : (3.33)

4. Update the equalizer vector as follows (NL multiplications):

Wk+1 = Wk + XkHk : (3.34)

A further reduction in complexity may be achieved if the algorithm is implemented in a

Block-updating form, i.e:

Wk+L = Wk + ��XkP
�1

k (sign(XH
k Wk)�XH
k Wk) : (3.35)

The algorithm (3.35) will have a complexity L times smaller than (3.21) but also a lower

convergence speed as L times fewer updates are carried out. It is possible to use FFT

techniques to perform the computations in (3.32) and (3.34) inO(Nlog2L) operations. Also the

computations in (3.33) can be reduced to O(L(log2L)

2) operations by using the displacement

representation of P�1

k (this necessitates the use of the FTF algorithm for propagating the

generators of P�1

k inO(L)operations). These alternative computations are interesting whenL

(and henceN ) is large. Finally, if we introduce an approximation in NSWCMA corresponding

to taking

Ek = [sign(XH
k Wk) � � � sign(XH
k�L+1Wk�L+1)]

T ; (3.36)

the USWC FTF algorithm of [Slo92c] may be used to run NSWCMA in 12N + O(L) opera-

tions/sample.

A more interesting algorithmic organization that provides a significant reduction in com-

putational complexity can be obtained if we apply the FAP algorithm. This algorithm has

been proposed in [Gay93] as a fast alternative to the APA. It is worthwhile to describe the

FAP algorithm, especially as we will introduce a modified version of it in chapter 4.
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3.4.1 The FAP algorithm

The FAP implements the APA algorithm in a computationally efficient way:

Wk+1 = Wk + ��Xklk (3.37)

where lk is the L� 1 vector defined as:

lk = P�1

k Ek =
26664
l0;k

...

lL�1;k
37775 ; (3.38)

and Ek is the L� 1 a priori error vector at iteration k:

Ek = Dk � XH
k Wk : (3.39)

The key formula that will permit for a fast algorithm is derived by developing the updating

term in (3.37) as follows:

Wk+1 = Wk + �� Xk lk

= W1 + ��
k�1X

i=0

Xk�i lk�i

= W1 + ��
k�1X

i=0

�
Xk�i � � �Xk�i�L+1

�
26664
l0;k�i

...

lL�1;k�i
37775

= W1 + ��
k�1X

i=0

L�1X
j=0

Xk�i�j lj;k�i :

Using the convention that X0 = X�1 = : : : = X�L+2 = 0, the above relation gives:

Wk+1 = W1 + ��
k�1X

m=L

Xk�m

L�1X
j=0

lj;k�m+j + ��
L�1X

m=0

Xk�m

mX
j=0

lj;k�m+j

= W1 + ��
k�1X

m=L

Xk�m

L�1X
j=0

lj;k�m+j + ��
�
Xk � � �Xk�L+1

�
26666664

l0;k

l0;k�1 + l1;k

...

l0;k�L+1 + � � �+ lL�1;k
37777775 :

Defining the quantities cWk and Fk as:

cWk = W1 + ��
k�1X

m=L

Xk�m

L�1X
j=0

lj;k�m+j ; (3.40)

(a N � 1 vector) and

Fk =
26666664

l0;k

l0;k�1 + l1;k

...

l0;k�L+1 + � � �+ lL�1;k
37777775 =

2666664
F0;k

F1;k
� � �

FL�1;k
3777775 ; (3.41)
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(an L� 1 vector), respectively, the above expression takes the form:

Wk+1 = cWk + ��Xk Fk : (3.42)

cWk is a key quantity for the development of FAP and in fact the updating of Wk will be

replaced by the updating of cWk. From the definition of cWk in (3.40) it results that:

cWk+1 = cWk + �� Xk�L+1

L�1X
j=0

lj;k�L+1+j ;

and therefore the recurrence for cWk can be written as:

cWk+1 = cWk + �� Xk�L+1 FL�1;k : (3.43)

From (3.43) and (3.42) we find the relationship linking Wk and cWk at the same time instant:

Wk+1 = cWk+1 + �� Xk F k ; (3.44)

where Xk and F k are defined as:

Xk =
h

Xk Xk�L+1

i
; (3.45)

and

Fk =
24 F k

FL�1;k
35 ; (3.46)

respectively. Eq. (3.43) is the most important formula for the derivation of FAP since it allows

for a filter update that only needs one regression vector (namely, Xk�L+1 for the updating ofcWk), instead of the L regression vectors needed for the updating of Wk in (3.37). In this way

a gain of one order of magnitude (O(L)) in complexity is attained. So what will be updated

in each iteration of the algorithm is cWk and Wk will be calculated (if desired) via (3.44) only

after convergence. So (3.43) is the key identity of FAP.

In order to be computationally efficient, one needs to update also Fk. Noting that:

Fk =
26666664
l0;k

l1;k

...

lL�1;k
37777775+
26666664

0

l0;k�1
...

l0;k�L+1 + � � �+ lL�2;k�1

37777775 ;

the updating formula for Fk is:

Fk =
24 0

F k�1

35+ lk : (3.47)

Now lk will be updated using the displacement structure of Pk (remember that lk = P�1Ek).

We first have to define the quantities P k and ePk as the following upper left and lower right

partitions of Pk , respectively:
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Pk =
26666664

�

P k

...

�

� � � � � �

37777775 =
26666664
� � � � � �

�

... ePk

�

37777775 :

The corresponding partitions for the inverse matrices can be written as:

P�1

k =
26666664

0 0 � � � 0

0
... eP�1

k

0

37777775 +

1

Ea;k
ak a
H
k =

26666664

0

P
�1

k

...

0

0 � � � 0 0

37777775 +

1

Eb;k
bk b
H
k ;

(3.48)

where ak; bk; E�;k; E�;k denote the forward and backward linear prediction filters and the

corresponding prediction error energies for the sample covariance matrix Pk , respectively.

If we now define the following quantities:

elk = eP�1

k

eEk

lk = P
�1

k Ek

; (3.49)

where:

Ek =
24 E0;keEk

35 =
24 Ek

EL�1;k
35 ; (3.50)

then lk can be updated efficiently via the following two identities:

lk =
24 0elk
35+ 1

Ea;k
aka
H
k Ek ; (3.51)

and: 24 lk

0

35 = lk �

1

Eb;k
bk b
H
k Ek ; (3.52)

which are straightforwardly derived from (3.48) and (3.49). The forward and backward pre-

dictors ak and bk, respectively, can be updated using the prediction part of the Sliding Window

Covariance Fast Transversal Filter algorithm . This will require 10L flops per iteration, or

11L � 12L flops for a Stabilized Fast Transversal Filter algorithm [SK91].

The updating of Ek is done efficiently by exploiting a specific relation that exists between a

priori and a posteriori error vectors. Whereas the a priori error vector at iteration k is defined

as:

Ek = Dk � XH
k Wk =

24 dk �XH
k Wk

Dk�1 � XH
k�1Wk

35 ; (3.53)

the a posteriori error vector at time instant k � 1 is defined as:

Ek�1 = Dk�1 �XH
k�1Wk =

24 Dk�1 � X

H
k�1Wk

dk�L �XH
k�LWk

35 =

24 Ek�1

EL�1;k�1

35 : (3.54)
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From (3.53) and (3.54) it results that:

eEk = Ek�1 : (3.55)

Writing down the expression for the a priori error at iteration k � 1 we find that:

Ek�1 = Dk�1 � XH
k�1Wk�1 = Dk�1 �XH
k�1(Wk � ��Xk�1P

�1

k�1Ek�1)

Ek�1 = Dk�1 �XH
k�1Wk = Dk�1 � XH
k�1Wk�1 � ��XH
k�1Xk�1P

�1
k�1Ek�1 = (1� ��)Ek�1 ;

and therefore the relationship between a priori and a posteriori errors is:

Ek = (1� ��) Ek : (3.56)

Now combining (3.53), (3.54) and (3.56), we obtain the following equation for the updating

of Ek:

Ek =

24 E0;k

Ek�1

35 =

24 E0;k

(1� ��)Ek�1

35 : (3.57)

A by-product of (3.57) is that it allows for a passage from lk to elk. This is done by noting that:

ePk+1 = P k ; (3.58)

which is due to the specific structure of Pk. Then one can easily see that:

elk+1 = P
�1

k

eEk+1 = P
�1

k (1 � ��) Ek ;

and therefore the sought relation is:

elk+1 = (1� ��)lk : (3.59)

There is also an efficient way to compute the scalar E0;k. Using the definition of E0;k and

(3.44) we have:

E0;k = dk � XH
k Wk = dk �XH
k (cWk + �� Xk�1 F k�1) ;

E0;k = bE0;k � �� XH
k Xk�1 F k�1 ;

where bE0;k is defined by: bE0;k = dk � XH
k

cWk : (3.60)

Therefore the updating of E0;k is done through:8<: bE0;k = dk � XH
k

cWk

E0;k = bE0;k � �� �k F k�1 ;

(3.61)

where �k is defined as:

�k = XH
k Xk�1 : (3.62)

In order to update the quantity �k note that it can be written as:

�k = xk eXH
k + � � �+ xk�N+1

eXH
k�N+1 ; (3.63)
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where eXk is the vector consisting of the lower-most L� 1 elements of the following vector:

Xk =

26664
xk

...

xk�L+1

37775 =

26664
xk

eXk
37775 : (3.64)

Therefore the update equation for �k is:

�k = �k�1 + xk eXH
k � xk�N eXH
k�N : (3.65)

The identities derived above that constitute the FAP algorithm are now summed up in

table 3.2.

The FAP algorithm �

0:

Initialization: a0 = [1 0(L�1)�1]
T ; b0 = [0(L�1)� 1 1]T ;

Ea;0 = Eb;0 = � (a very small number)

�0 = XH

0 X�1; F 0 = 0; cW0 = 0; ~l1 = 0; E0 = 0

1:
Use a (Stabilized) SWC FTF (prediction part)

to update ak; bk; Ea;k; Eb;k

10L � 12L

2: �k = �k�1 + xk eXH
k � xk�N eXH
k�N 2L

3: bE0;k = dk �XH
k

cWk N

4: E0;k = bE0;k � ��kF k�1 L

5: Ek =
24 E0;k

(1� ��)Ek�1

35 L

6: lk =
24 0

~lk
35+ 1

Ea;k
aka
H
k Ek 2L

7:

24 lk

0

35 = lk � 1

Eb;k
bkb
H
k Ek 2L

8: Fk =
24 0

F k�1

35+ lk L

9: cWk+1 = cWk + �Xk�L+1FL�1;k N

10: elk+1 = (1� ��) lk L

Table 3.2: The FAP algorithm

3.5 Performance analysis

In this section we study the performance of the NSWCMA in terms of stability, convergence

and noise robustness.
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3.5.1 Stability

We first consider the issue of stability of the proposed class of algorithms. Let Wo denote the

optimal equalizer setting and �Wk = Wk �W o the deviation of the current equalizer setting

w.r.t. the optimal one. Then by subtracting Wo from both sides of (3.21) we obtain:

�Wk+1 = (I � ��Xk(XH
k Xk)

�1XH
k )�Wk + ��Xk(XH
k Xk)

�1Ek ; (3.66)

where Ek = sign(XH
k Wk)�XH
k Wk. If now we define the matrix Mk as

Mk = I � ��Xk(XH
k Xk)

�1XH
k ;

then the following recurrence holds:

�Wk+1 = (Mk Mk�1 � � �M0)�W0 + other terms : (3.67)

For a stable operation of the algorithm, the influence of the initial setting W0 should asymp-

totically be eliminated. This implies that the eigenvalues of each one of the matrices Mi be

absolutely bounded by 1 and also that the input signal is persistently exciting so that elim-

ination of �Wk will occur in all subspaces. As the matrix Xk(XH
k Xk)

�1XH
k is an orthogonal

projection operator on the L-dimensional subspace of CN spanned by the columns of Xk , it

has N � L eigenvalues equal to 0 and L eigenvalues equal to 1 (see also [Slo92b],[MD94]).

Thus the matrix Mi = ��Xi(XH
i Xi)

�1XH
i has N � L eigenvalues equal to 1 and L eigenvalues

equal to 1� ��. The following lemma holds:

Lemma I: The algorithm (3.21) will be exponentially stable if the input signal is persistently

exciting and the stepsize parameter �� lies in the following region:

0 < �� < 2 :

3.5.2 Convergence behaviour

We will examine separately two different aspects related to the convergence behaviour of

NSWCMA’s, i.e. we’ll first examine issues related to the problem of ill-convergence, a problem

often met in blind algorithms of the Bussgang type and then the convergence dynamics of the

proposed class of algorithms.

Ill convergence

Even though the algorithm (3.29) has been designed from a deterministic point of view, it

may however be seen as an algorithm of the stochastic gradient type that tries to minimize

the following stochastic cost function:

J(W ) = E(kXH
k W � sign(XH
k W )k
P�1

k

) : (3.68)
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The equilibrium points of the algorithm can be found by setting the derivative of J(W ) equal

to zero. This will give:

E(XkP
�1

k (sign(XH
k W )� XH
k W )) = 0 : (3.69)

Eq. (3.69) describes a nonlinear system of N equations in N unknowns and therefore has a

plenitude of solutions, some of which will be maxima and some of which minima of the cost

function in (3.68). The existence of more than one solution to (3.69) is a direct consequence of

the non-convex form of (3.68). In figure 3.5 one can see the cost functions of the CMA and the

Figure 3.5: CMA and NSWCMA (L=2) cost functions in a case of two equalizer parameters

(N=2)
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 . 
 .

 .

NSWCMA (L=2) (left and right part, respectively) for the case of a two-dimensional equalizer

and a FIR(1) communication channel. One can easily see two pairs of minima in each one of

these cost functions. The deeper hills correspond to the global minima whereas the higher

ones to undesired local minima. It is therefore clear that the problem of local minima exists

also for the NSWCMA’s.

However the NSWCMA’s may in practice more easily override a false minimum point

for the following reason: as was first shown by Mazo [Maz80] for the decision-directed LMS

algorithm in a multilevel PAM context, the algorithm’s stepsize is of crucial importance on

what concerns its ill convergence. In fact, Mazo showed that when a constant stepsize is

used the algorithm will finally escape from its local undesirable stationary points and will

eventually end up to one of its global minima. However, especially when the stepsize is small,

this might take too much time, justifying the claim that is this case the algorithm actually gets

trapped by a false minimum. Such an escape however would be easier when a bigger stepsize

is used. But in unnormalized algorithms one has to use a small stepsize in order to guarantee

stability. This gives a potential advantage to normalized algorithms as the NSWCMA’s whose
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stable performance is guaranteed for all stepsize values �� 2 (0; 2). This may be theoretically

justified from a deterministic point of view as follows. It is shown in Appendix 3.C that in

the ideal case of a noiseless and exactly parameterized case the NSWCMA (the same holds

for the NSWDDA and for all CMA’s) will exactly stop if and only if it ends up at its global

minimum point that corresponds to the optimal setting for the equalizer coefficients. This

means that if the algorithm gets close to a local minimum it will continue on moving around

it even in the absence of any kind of noise. It is exactly this movement that can be amplified

by using a big stepsize which will help the algorithm escape from the local minimum until it

reaches its global minimum where it will stop. Practical evidence for this behaviour will be

given in the section of computer simulations.

Convergence dynamics

We will separately examine the noiseless and the noise-present cases. However before pro-

ceeding in this analysis it would be useful to discuss the role of noise in a blind-equalization

setup. As mentioned in chapter 2, the modeling of noise in a blind equalization setup is

somewhat different than in a classical system identification setup. In the latter case, one

usually assumes the data to be noise-free and the desired signal only to be corrupted by some

additive noise. So in such a case, if we denote by ak the desired sample at time instant k and

by W o the optimal filter, then the following holds:

XH
k W

o = ak

XH
k Wk = ak + nk ;

(3.70)

where nk represents the additive noise corrupting the desired signal sample at time instant
k. Therefore, if we denote by �Wk the deviation of Wk w.r.t. Wo, i.e. �Wk = Wk �W o, this

will satisfy:

XH
k �Wk = nk : (3.71)

In the blind equalization setup on the contrary noise adds up in a different way: first, the

noise contaminates the received data, and thus we have:

xk = �k + �k ; (3.72)

where �k represents the additive noise corrupting the noise-free data�k. Moreover, the desired

signal dk also deviates form the ideal ak because of the “blind” character of the algorithm:

dk = ak + nk : (3.73)

In this case nk does not represent (only) measurement noise as in (3.71) but also deviations

between sign(XH
k Wk) from ak. These deviations are not only large when the algorithm is

far from convergence but are also amplified due to the already noise-contaminated data xk .

Moreover, for a non-cyclic constellation, even at convergence there will always be a residual
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noise in dk because of the distances between the constellation points and the unit circle.

Finally, since in reality the communication channel is modeled as a FIR filter, a finite-length

equalizer can never match exactly the infinite-length channel’s inverse impulse response.

This gives rise to yet another kind of noise that we call “under-parameterization” noise. So,

even in the case of simple LMS decision-directed algorithm for blind equalization, the effects

of noise will be quite more severe than in a classical adaptive filtering context. We now

discriminate between the two cases:

� Noiseless case

In order to describe a “noiseless” case in a blind equalization setup we make the following

assumptions:

- The channel is modeled as an AP(N-1) filter and the equalizer as a FIR(N-1) filter. Therefore

the equalizer is capable of matching exactly the channel’s inverse impulse response (exact

parameterization). No additive noise corrupts the channel’s output and therefore no noise

amplification corrupts the sign signal at reception.

- The transmitted constellation is constant modulus and therefore no noise arises from the

mismatch of the transmitted constellation and a constant modulus constellation patents.

In this case we are close to a classical adaptive filtering noiseless case, the only difference

being the replacement of the truly desired signal ak by the quantity sign(XH
k Wk). Following

the same reasoning as in section (3.5.1), the algorithm (3.21) will be performing a series of suc-

cessive projections onto the subspace of CN spanned by the first L columns of the data matrix

Xk so as to match at each iteration the vector sign(XH
k Wk). Depending on its initialization,

the algorithm will proceed towards a local or a global minimum of its cost function (3.68). As

explained above however, it will only stop when it reaches its global minimum point. This

will happen more and more fast as the algorithm’s stepsize �� approaches unity.

Another interesting issue in the noiseless case is the algorithm’s sensitivity to the correla-

tion of the received data process. Since we consider the channel to be modeled as an AP(N-1)

linear filter, all correlation information may be described by its N � N covariance matrix.

When the channel’s poles are close to the unit circle, this corresponds to a frequency spectral

response with deep spectral nulls, resulting to an ill-conditioned covariance matrix, since:

�max

�min
' Smax

Smin

; (3.74)

where�max and�min are the largest and smallest eigenvalues of the data covariance matrix, re-

spectively and Smax, Smin the largest and smallest values of the channel’s frequency response,

respectively [Hay91]. The role of P�1

k in (3.21) is to perform some kind of prewhitening of

the received signal. When Pk = I there is no prewhitening and the algorithm’s convergence
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speed will be low for a strong colouring of the input signal. On the other hand, the prewhiten-

ing performed by Pk = XH
k Xk attenuates the influence of this colouring on the algorithm’s

speed (the best case being L = N ). Therefore, in the case of a noiseless channel and an exactly

parameterized equalizer the algorithm’s convergence speed will be maximal for L = N and

�� = 1.

An interesting interpretation of the algorithm’s behaviour may be obtained by considering

its deterministic aspect. Consider for simplicity a 2-PAM scheme, where the transmitted

symbols may equally likely take on the values +1 and �1 and moreover the case of a real

channel. Then the vector [sign(XH
k Wk) sign(X

H
k�1Wk) � � �sign(XH
k�L+1Wk ]

T will contain

only +1 and �1 elements. If by chance the L elements of these vector coincide with the

corresponding symbols at time instants k; k � 1; � � � ; k� L+ 1, i.e.

[sign(XH
k Wk) sign(X

H
k�1Wk) � � �sign(XH
k�L+1Wk]

T = [ak ak�1 � � �ak�l+1]
T ; (3.75)

then, if L = N and �� = 1 the algorithm will converge to its optimal setting in one more

iteration (the same will happen when [sign(XH
k Wk) sign(X

H
k�1Wk) � � �sign(XH
k�L+1Wk ]

T =

�[ak; ak�1 � � �ak�l+1]
T , since then the opposite-to-the optimal setting is obtained, which is

also acceptable (a phase-ambiguity may be eliminated if differential coding is used)). So, if

(3.75) is valid from the first iteration, the algorithm will converge in only one iteration! This

is indicative of the improvement in convergence speed due to normalization.

� Noise present

We now consider the more realistic case of a FIR channel and an additive white Gaussian

noise corrupted received signal. In this case, as explained in the beginning of this section,

both the data and the desired signal will be noise-corrupted, the first directly, the second

indirectly. We concentrate on the following step of the algorithm:

PkHk = [sign(XH
k Wk)� XH
k Wk]

T = Ek : (3.76)

The robustness of the solution Hk found from (3.76) w.r.t. deviations of Ek from its exact

value has to do with the conditioning of the matrix Pk . When Pk has a big eigenvalue spread

(and this will happen when the channel’s zeros are close to the unit circle) the solution found

by (3.76) will be very sensitive to small deviations of Ek w.r.t. its real value. The deviations

of Ek that are due to the additive noise have to do with the location of the channel’s zeros,

for the following reason: when the channel’s zeros are close to the unit circle this means

that the channel’s inverse will have spectral peaks. As a consequence of that, an equalizer

that approaches the channel’s inverse frequency response will amplify the additive noise at

its input in a very disproportional way for different frequencies. This will result in a non-

uniform corruption ofEk along different eigenvalue directions. We thus see that the channel’s
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“conditioning” plays a very important role in the noisy case.

Quantitatively, the noise contribution to the MMSE can be found to be directly proportional

to the following term:

� = ��XkP
�2

k XH
k : (3.77)

Now if one uses the SVD of the data matrix Xk = U�V H , (3.77) becomes:

� = ��U��2UH : (3.78)

This last equation shows indeed why when the matrix Pk = XH
k Xk has a big eigenvalue

spread, the noise will get amplified in a large and very disproportional manner along the

different eigenvector directions of this matrix, thus resulting in a big steady-state MSE. This

will become more and more severe as L moves from 1 to N , which will be the worst case

from this point of view. So one sees that increasing very much the dimension L towards N

in the noisy case may have a catastrophic effect in the algorithm’s steady-state error in the

contrary to the noiseless case where it had the beneficial effect of making it insensitive to the

received signal’s colouring. This is why one should be careful in choosing the algorithm’s pa-

rameters in such a way so as to guarantee both a fast convergence and a low steady-state error.

Different remedies to the problems arising from the ill-conditioning of the sample co-

variance matrix Pk can be either the somewhat regularization of Pk or the reduction of the

stepsize �� or the choice of a low L or even a combination of such remedies. In the first case

one deviates from satisfying exactly the deterministic criterion (3.18), in the following two

cases one reduces the convergence speed. A solution based on the regularization of Pk will

be given in the next chapter, where an exponential sliding window for estimating Pk will be

used instead of a rectangular one. A corresponding deterministic criterion is given there also.

3.6 Computer simulation results

The behaviour discussed above of the proposed class of algorithms has been tested by com-

puter simulations. We have considered both PAM and QAM constellations transmitted

through linear channels. For the testing of noiseless cases we have simulated AP channels of

the same order as the equalizer, whereas for the non-ideal case the channels were simulated as

FIR non-minimum-phase filters. The following results give practical evidence of the proposed

algorithm’s behaviour in terms of convergence speed, noise robustness and ill-convergence

avoidability. As a measure of performance we will use the closed-eye measure of the commu-

nication system, defined in (2.25) (the only difference being now that instead of the channel

impulse response fcig the overall channel-equalizer response fsig has to be used).
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Another aspect that should be presented before the computer simulations is the following:

often we will use the following modeling of a channel output: the channel output will be

supposed to be an AR process whose roots may be either inside or outside the unit circle.

Such a process may result by passing a white noise through the following all-pole (AP) system

H(z) =

1

A(z)
=

1

A+(z�1) A�(z�1)
:

In the above representation, the polynomials A+(z�1) and A�(z�1) are maximum and mini-

mum phase, respectively, i.e. the first contains roots only outside and the second only inside

the unit circle. A problem with the implementation of such a system is of course that it cannot

be used as such, since it is unstable. However the corresponding AR process can be still

produced by introducing a delay. Namely, consider the maximum phase factor:

1

A+(z�1)
=

1

�0 + �1z�1 + � � � + �pz�p
:

This can be written in the form

1

A+(z�1)
=

zp

1 + �p�1z + � � � + �0zp
;

where now the denominator is minimum phase, and therefore stable. The AR process can

then be implemented by first passing the white noise through this filter, and then through the

minimum phase factor 1

A�(z�1)

. This is how the problem of stability is overridden.

The fact that we use such AR processes for some of our simulations, is due to the fact that,

as already explained, we want to simulate some “perfectly” parameterized cases in the sense

that zero-forcing FIR equalizers exist.

3.6.1 Opening the channel eye

In a first step, we will show the ability of the proposed algorithms to open the closed eye of

a linear communication channel. For this, we implemented an FIR complex channel with the

following impulse response:

fhg = [�1:0397+ 0:3055i 0:7846+ 0:6749i � 0:3433� 2:1848i 2:3927� 0:0552i] :

The magnitudes of the roots of the corresponding polynomial H(z) are

�1 = 1:8859

�2 = 1:5865

�3 = 0:7382

A 4-QAM sequence was passed through this complex channel and then additive Gaussian

noise was added at the channel output, so that SNR=30 dB. We implemented the NSWCMA

algorithm using the following parameters:

�� L N

0.01 3 21
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Figure 3.6: The opening of the eye achieved by the NSWCMA algorithm

The 21-tap equalizer was initialized with a single non-zero middle tap equal to 1. Figure 3.6

shows the results obtained after 2000 iterations of the algorithm. Note the closed-eye form

of the received data sequence and how the transmitted 4-QAM pattern is retrieved after the

algorithm’s convergence. This shows the ability of the algorithm to open an initially closed

channel eye. Note also the fact that the obtained equalized constellation is rotated with respect

to the original one, a typical characteristic of all blind equalization methods.

3.6.2 Convergence speed

Noiseless case

As we already stated, in order to have a "noiseless" case, we need to model the channel output

as an AR process of the same order as the equalizer. Moreover, the input sequence has to be

CM, and of course, no additive noise has to be added. Even though such a scenario is strictly

speaking not realistic, we have simulated it in order to verify the corresponding theoretical

analysis. We consider two cases:

� Weak colouring of the channel output

In this case we consider an all-pole non-minimum phase channel AP(7) whose denominator

A(z) has the following roots
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Figure 3.7: Noiseless case : two examples
�1 = 0:1

�2;3 = 0:2e�j�=4

�4;5 = 5e�j�=4

�6;7 = 6e�j�=6

Note that these zeros are far from the unit circle, which shows a weak colouring of the

channel output and a well conditioned sample covariance matrix Pk . We consider a length-8

equalizer (whose order matches exactly the order of the inverse channel). A 2-PAM i.i.d. input

sequence is transmitted through the channel, and several BE algorithms were simulated for

the equalizer adaptation. Namely, we have implemented the SATO and CMA algorithms

with step-sizes that have been found by trial and error to guarantee stability as well as the

NSWCMA with unit stepsize (�� = 1) and three different choices for L (1,3,8). Figure 3.7(a)

shows the evolution of the closed-eye measure of the communication system for the different

algorithms during 1000 iterations. One can see the faster convergence provided by NCMA

w.r.t. SATO and CMA and the further increase of convergence speed of NSWCMA asL grows

up towards N . This verifies the theoretically expected performance: as L moves towards N ,

the algorithm becomes insensitive to the colouring of its input signal, and therefore converges

faster.

� Stronger colouring of the channel output

In this case the poles of the AP(7) channel are

�1 = 0:3

�2;3 = 0:5e�j�=4

�4;5 = 1:5e�j�=4

�6;7 = 2e�j�=6
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This channel has its poles closer to the unit circle than the previous one, thus resulting in a

more strongly coloured received signal and a more ill-conditioned matrix Pk . Figure 3.7(b)

shows again the evolution of the closed-eye measure by different algorithms in this case. We

can see that all algorithms except NSWCMA L = N have now a lower convergence speed

because of the colouring of the received signal. However, NSWCMA L = N seems to be

insensitive to this colouring and to converge roughly at the same speed as for the previous

channel, thus confirming its prewhitening feature.

We have also run the algorithm for channel settings whose zeros are very close on the unit

circle. In these cases the NSWCMA has been shown able to converge, however, as expected

it takes much more time before it reaches its steady state.

Noisy case

The improvement in convergence speed is expected to show up to the realistic case of FIR noisy

channels as well: the difference now is that we cannot be allowed to give very high values

to the algorithm’s parameters L and �, due to the steady-state error amplification discussed

before. If this guideline is followed however, significant improvements in convergence speed

with respect to the CMA can be observed.

Such an example is shown in the following simulated case: we consider an FIR complex

channel with the following impulse response

fhg = [�1:0493+ 0:2305i 1:4129� 1:4497i � 0:2540+ 0:2021i 0:5302� 0:7732i] :

The magnitudes of the roots of the corresponding polynomial H(z) are now

�1 = 1:9106

�2 = 0:6421

�3 = 0:7113

We simulated the CMA and the NSWCMA using the parameters shown in the following table

�� L N

a 0.1 7 21

b 0.1 4 21

c 1 1 21

d 0.001 21

over 2000 iterations each, and in all cases used a center-spike initialization for the equalizer.

The SNR at the channel output is 30 dB. Figure 3.8 shows the evolution of the closed-eye

measure for the four different algorithms Note how the channel opening is achieved much

faster by the three members of the NSWCMA as compared to the CMA (it should be noted

that the stepsize we used for the CMA was found by trial and error to be among the biggest

ones that guarantee stability). For example, in the case of L = 7 the channel eye opens
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Figure 3.8: Noisy FIR channel: comparative simulations

roughly 7 times faster than the CMA! It is also observed that the convergence speed increases,

as expected, with L. The price paid for the increase in convergence speed is, of course, the

increased computational complexity.

3.6.3 Avoiding local minima

We now consider a simple example that shows the potential ability of NSWCMA to escape

from local minima thus avoiding ill-convergence. We consider an AR(1) channel with the

following z-representation:

C(z) =

1
1 + 0:25z�1 ; (3.79)

and an FIR(1) equalizer : W = [w0 w1]
T . We transmit a 2-PAM sequence with no additive

noise through the AR channel and then update the equalizer W by using both the CMA and

the NSWCMA(L=2) algorithm. The convergence trajectories for of the equalizer vector for 40

different initializations on a circle of radius 2 are shown in figure 3.9.

As can be seen in figure 3.9a, the CMA (with a step-size that has been found by trial and error

to guarantee stability) may end up either to one of its two optimal settings W = �[1 0:25]T or

to one of two stationary points on the w0 = 0 axis, corresponding to local minima of its cost

function, depending on its initialization. Note that as has been already mentioned and shown

in Appendix 3.C, the algorithm only stops exactly at its global minima and continuously

moves around its local minima, even in the absence of noise. Figure 3.9b shows the same

experiment tested on the NSWCMA (L = 2) algorithm when a small stepsize (�� = 0:05) is

used. The same more-or less image as for the CMA holds. However one may note that the

motion around the local minima is much wider now, and there are already some “escapes”
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Figure 3.9: A comparison of CMA and NSWCMA (L=2) for an AP(1) channel

from local minima towards global minima. Finally figure 3.9c shows the of the NSWCMA

(L = 2) with �� = 1. Here one can see that local minima are quickly abandoned and all ini-

tializations end up to the global minima. This shows the ability of the NSWCMA’s to escape

from local minima due to their well-defined stepsize region for stability. It should be noted

here that the CMA also has been found to be able to escape from local minima for big values

of its stepsize, but the same values would make the algorithm exponentially unstable in other

realizations.

A similar behaviour has been found out in a noisy case as well. Figure 3.10 (left part)

shows the evolution of � in the case of a FIR(2) channel with impulse response [1 0:6 0:36]

corrupted by additive Gaussian noise (SNR=20 dB) for two different initializations when

the CMA with � = 0:004 is used. It can be seen that the algorithm ill-converges for one of

these two initializations. On the contrary, when the same experiment was carried out by

employing the NSWCMA (L = 2) with �� = 0:1, both initializations lead to the opening of the

system’s eye (right part of figure 3.10). Note that in this case the initialization that lead to

ill-convergence when the CMA was used initially heads towards an unacceptable point but

then quickly escapes and heads towards the desired solution.

3.7 Conclusions

We have proposed a new class of adaptive filtering algorithms for the blind equalization of

constant modulus signals transmitted through a linear possibly non-minimum phase commu-

nication channel. The algorithms are derived by minimizing at each iteration a deterministic

criterion based both on the constant modulus property and on a norm restriction of the “next”

equalizer setting. Some interesting interpretation on the algorithm’s derivation has indicated

how any adaptive filtering algorithm may be used in a constant-modulus blind equalization
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Figure 3.10: Ill convergence: a more realistic example

setup. The algorithm’s behaviour has been discussed in terms of convergence speed, compu-

tational complexity, robustness to noise, ill-convergence. It has been shown that the algorithm

can achieve a faster convergence rate w.r.t. conventional CMA’s in the cost of its increased

numerical complexity. Another important property is that its inherent normalization allows

for the use of stepsize values that a priori guarantee stable operation. This has been also

shown to have beneficial effects in terms of ill-convergence avoidance possibilities. Finally

computer simulation results have been provided in support of the claimed behaviour. Some

of the results presented in this chapter have been also presented in [PS93b], [PS93c], [PS94a].
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3.8 Appendix 3.A

We will show at this point why the choice of ek in (3.12) is the one that minimizes the quantity

kWk+1 �Wkk2
2. From (3.11) we have :

kWk+1 �Wkk2
2 = k(XH

k Xk)
�1k2

2jXH
k Wk � ekj2 : (3.80)

Therefore the following holds:

min

ek

fkWk+1 �Wkk2
2g () min

ek

fjXH
k Wk � ek j2g : (3.81)

Now the right-hand side of (3.81) can be written as follows:

min

ek

fjXH
k Wk � sign(lk)j2g ; (3.82)

where ek = sign(lk). As XH
k Wk and sign(lk) are complex numbers which can be considered

as 2-dimensional vectors, their Euclidean distance will be minimized when they are colinear

(see figure 3.2). Having defined sign(x) = x
jxj

, this colinearity implies that :

sign(XH
k Wk) = sign(sign(lk)) = sign(lk) : (3.83)

Therefore the optimal choice for ek is

e
opt
k = sign(XH
k Wk) : (3.84)

3.9 Appendix 3.B

We will now prove that the deterministic criterion

min

Wk+M

kDk �XH
k Wk+Mk2

S�1

k

+ kWk+M �Wkk2

T�1

k

; (3.85)

where Sk and Tk are positive definite matrices, is minimized by the following argument:

Wk+M = Wk + T�1

k Xk(Sk +XH
k T

�1

k Xk)
�1(Dk �XH
k Wk) : (3.86)

We denote by Jk the quantity kDk �XH
k Wk+Mk2

S�1

k

+ kWk+M �Wkk2

T�1

k

. The gradient of Jk

w.r.t. WH
k+M is given by:

5WH
k+M

(Jk) = �XkS
�1

k (Dk �XH
k Wk+M )S�1

k Xk + T�1

k (Wk+M �Wk) : (3.87)

Setting this gradient equal to zero, we obtain:

Wk+M = (T�1

k +XkS
�1

k XH
k )

�1(T�1

k Wk +XkS
�1

k Dk) : (3.88)

Now we can apply the Matrix Inversion Lemma to the term (T�1

k +XkS
�1

k XH
k )

�1:

(T�1

k +XkS
�1

k XH
k )

�1 = T�1

k � TkXk(Sk +XH
k T

�1

k Xk)
�1XH
k T

�1
k : (3.89)

Substituting (3.89) in (3.88) we obtain after some calculation eq. (3.86).
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3.10 Appendix 3.C

In the following analysis we consider the communications channel to be modeled as an

AP(N�1) channel and the equalizer is FIR withN coefficients. Then the equalizer will be able

to exactly match the channel’s inverse and problems arising from the under-parameterization

of the equalizer will be avoided. The transmitted symbols are assumed to belong to a cyclic

PSK constellation and to be independent from one another, i.e. they constitute a white noise:

E(ai a
�
j ) = ��ij ; Eai = 0 ; (3.90)

where �ij denotes the Kronecker delta and� a real scalar. The fact that the channel is AP(N�1)

is described by the following equation:

XH
k W

o = ak ; k = 1; 2; : : : ; (3.91)

where W o is a column vector that contains the AP channel’s coefficients. According to (3.91)

W o is the equalizer’s optimal setting.

The same is true up to any modulus one complex scalar factor, i.e. any modulus one

complex multiple of Wo is also optimal in the sense that it results in zero ISI (it completely

opens the channel’s eye). Of course in the latter case the transmitted constellation will be

received rotated by an arbitrary angle. However this phase-shift can be eliminated if the

transmitted data are differentially encoded. We will now show that these optimal stationary

points are the only ones where the algorithm (in the ideal case of an AP noiseless channel)

perfectly stops. Such a stationary point should satisfy:

XH
k W = sign(XH
k W ) k = 1; 2; : : : : (3.92)

If one writes eq. (3.91) at L successive time instants, one obtains:

XH
k W

o = [ak ak�1 � � �ak�L+1]
T k = 1; 2; : : : : (3.93)

It is obvious from the above equation that the optimum equalizer settings ej�W o satisfy eq.

(3.92) since sign(ej�ak�i) = ej�ak�i. Therefore the algorithm will exactly stop if it attains

one of its optimal settings. The question now is if it can exactly stop at another stationary

point. Let us denote by H the overall input-output linear filter consisting of the cascade of

the transmission channel and the equalizer and let fhig be its impulse response. Then the

output of the equalizer at time instant k is given by:

yk = XH
k Wk =

+1X
i=�1

hiak�i : (3.94)

Consider now that the equalizer’s setting corresponds to a stationary point that causes the

algorithm to stop exactly. Then the equalizer’s output will satisfy jykj = 1 and therefore,
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Ejyj2k = 1 ) E
P

i;j hih
�
jak�ia

�
k�j = 1. But by definition Eak�ia

�
k�j = �ij as stated in (3.90).

Therefore:

+1X
i=�1

jhij2 = 1 : (3.95)

Also, as jyk j = 1 ) j
P+1

i=�1 hiak�ij = 1 5. As this should be true for all possible sequences

faig, it should also be valid for the particular choice ak�i = sign(hi), which gives:

+1X
i=�1

jhij = 1 : (3.96)

Combining now (3.94) and (3.95) one gets as only possible solution:

hi = ej��li for some integer l: (3.97)

We therefore see that the only setups where the algorithms will perfectly stop in a noiseless

case are phase-shifted versions of the optimal equalizer setting Wo. This reflects also the

well-known fact that blind equalizers identify the transmitted constellation up to an arbitrary

phase shift.

In the case of a non-cyclic QAM constellation the same reasoning may be applied to the

NSWDDA to show that it will also stop exactly only at one of its optimal settings.

5Strictly speaking, this is clear for a uniform continuous distribution on the unit circle. The same however can

be proven for discrete CM distributions.

Chapter 4

A modified APA algorithm for adaptive

filtering and blind equalization

MOTIVATED by the fact that both the APA and the NSWCMA algorithms may exhibit

a high steady-state error when the length of their sliding window is close to N , we propose

first a modified (regularized) class of algorithms of the APA type for classical adaptive filtering.

By applying the separation principle introduced in chapter 3, we obtain immediately a coun-

terpart for blind equalization. An efficient algorithmic organization is proposed and some

bounds of the employed parameters for stability are theoretically derived. The expected

improvement in performance is verified by computer simulations in a blind equalization

context.

4.1 Introduction

The aim that motivated the development of the APA for classical adaptive filtering and of

the NSWCMA (in chapter 3) for adaptive blind equalization has been the construction of

algorithms that exhibit an increased convergence speed with respect to the LMS (resp. the

CMA) without increasing significantly the corresponding computational complexity. The

two crucial parameters of the APA (or the NSWCMA) that control the convergence speed are:

� the stepsize (��)

� the length L of the sliding window

Namely, as already mentioned, the convergence speed increases with these two parameters.

On the other hand however, due to the additive noise, the steady-state MSE of the algorithms

of the APA type increases also with the stepsize and with the window length (see eq. (3.77)).

88
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Therefore in some cases when one will want to push the parameters to high values in order

to have a very fast convergence, the algorithm will have a poor steady-state performance 1.

This lead us to the conclusion, in chapter 3, that there is always a compromise to be made

between convergence speed and steady-state performance.

As indicated by eq. (3.78), it is mainly the conditioning of the sliding-window covariance

matrix XH
k Xk that influences the steady-state performance of the APA (or the NSWCMA)

at the presence of noise. In fact we concluded from several computer simulations that the

conditioning of the sliding-window covariance matrix may be rather high at specific time

instants, even though the algorithm has converged, if the window length L approaches the

filter length N . An extreme example of such a case is shown in figure 4.1. We have simulated

the NSWCMA for the channel [1 2:5 1], taking N = 5, L = 5, �� = 0:1 and SNR = 20dB.

Fig. 4.1 (a) shows the evolution of the condition number of the covariance matrix XHk Xk .

Clearly the condition number becomes excessively high at some time instants, irrespective of

the phase of the algorithm (initial convergence or steady-state). Due to this the channel eye

corresponding at each iteration of the algorithm has the erratic behaviour shown in figure 4.1

(b): the eye measure heads quickly towards values below 1 after initial convergence, but then

continues on switching between high and small values during steady-state! 2 In practice the

filter length will be much longer than in this example, and the window length will be chosen

smaller than the filter length in order to keep down the computational complexity, however

the above example is indicative of the adverse influence of a long (L ' N ) sliding window

on the algorithm’s steady-state performance in the presence of noise.

It is clearly meaningful from the above to try to improve the steady state behaviour of the

APA (or the NSWCMA) by reducing the steady-state excess error due to noise amplification.

Since the key feature seems to be the conditioning of the sliding window covariance matrix, it

would be interesting to find ways to regularize this matrix (i.e. reduce its condition number),

without destroying its covariance character. The next section describes a class of algorithms

of the APA type that can be obtained in the above sense.

4.2 A class of regularized APA-type adaptive filtering algorithms

The above-mentioned ill conditioning of the sample covariance matrix at certain iterations is

due both to the colouring of the received discrete-time process fxig 3 and to the fact that it is

an instantaneous covariance matrix based on a finite-length rectangular window. An obvious

way of improving the conditioning of the covariance matrix is to use a window lengthLmuch

1This phenomenon is well known from the performance of the NLMS algorithm, whose steady-state error

increases with the value of its normalized stepsize.
2The switching between different high and low values corresponds also to transitions between local and global

minima of the corresponding non-convex cost function.
3The lower bound of the condition number (= 1) is achieved by the true covariance matrix of a white process.
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Figure 4.1: The bad effect of a long sliding window in a blind equalization experiment

bigger than the filter length N . In this case the obtained matrix will approximate the true

covariance matrix and will not exhibit such a large variance from one iteration to another.

However this would be impractical because of the associated increase in computational

complexity. Another alternative would be to use the true covariance matrix (e.g. in the

example of the previous paragraph the true covariance matrix has a condition number equal

to 24:28). However this is impossible since the true covariance matrix is not known and needs

a lot of data in order to be estimated. Moreover, when the received signal is not stationary,

there will never be enough data to estimate the true covariance matrix corresponding at a

specific time interval.

Another alternative often used in adaptive filtering (e.g. in the RLS algorithm) is the

use of an exponential instead of a rectangular window. An exponential window offers two

advantages, namely, on one hand it allows to follow the variations of the received signal, on

the other hand it has a much bigger (asymptotically infinite) window length that provides

a better approximation to the true covariance matrix than a rectangular window. 4 For

example, figure 4.2 shows the condition number of a sliding window covariance matrix

based on an exponentially weighted data window for the example of the previous paragraph

(continuous-line). The matrix at each iteration is updated as:

Rk = �Rk�1 + XkXH
k ; (4.1)

4The role of the covariance matrix in the APA is to perform a certain prewhitening of the received signal, since

an adaptive algorithm converges faster when its input signal is white.
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matrix

where Xk is the first column of XH
k :

Xk =
2666664
xk

xk�1

: : :

xk�L+1

3777775 ; (4.2)

and � is the so-called forgetting factor. The value used for the example of fig. 4.2 is � =

0:9. The dashed line represents the condition number of the true covariance matrix for this

example. One clearly notices the better conditioning of the exponential covariance matrix

with respect to the rectangular covariance matrix (dotted line). Therefore one would expect

a better performance of the APA algorithm in the presence of noise if instead of rectangular,

an exponentially-weighted data window is used for the construction of the instantaneous

covariance matrix. In the next paragraph we will show how a suitable class of algorithms can

be obtained by minimizing a deterministic criterion.

4.2.1 Derivation

We confine ourselves to a classical adaptive filtering context. Let dk denote the desired

response that has to be matched by the filter output at time instant k and by Dk a vector of

the L most recent desired responses:

Dk = [dk dk�1 � � �dk�L+1]
T : (4.3)

Now consider the following deterministic criterion:

kDk �XH
k Wk+1k2

S�1

k

+ kWk+1 �Wkk2 ; (4.4)

where

Sk = ��1Rk � XH
k Xk ; (4.5)
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andRk is anL�Lmatrix updated as in (4.1). According to the result presented into Appendix

3.B, the criterion (4.4) is minimized by the update equation:

Wk+1 = Wk + Xk(Sk + XH
k Xk)

�1(Dk �XH
k Wk) : (4.6)

Introducing the expression for Sk given by (4.5) in (4.6) we find that the deterministic criterion

(4.4) is exactly minimized at each iteration by the algorithm:

Rk = �Rk�1 + XkXH
k

Wk+1 = Wk + �XkR
�1

k (Dk � XH
k Wk) :

(4.7)

Eq. (4.7) describes a new parametric class of algorithms for adaptive filtering. This class of

algorithms has been derived by a deterministic criterion (4.4) in a way similar to the derivation

of the APA. However it does not have a projection interpretation like the one described in the

previous chapter for the APA because of the exponential weighting used for the updating of

the covariance matrixR�1

k . On the other hand, due to the better behaviour of the conditioning

of this covariance matrix, a better steady-state behaviour is expected with respect to the APA.

The algorithm has three adjustable parameters: L, � and �. L is the number of constraints

imposed on the filter setting Wk+1 that are expressed by the first term of (4.4) and coincides

also with the size of the square matrix Rk. � is the forgetting factor of the exponential sliding

window and controls the algorithm’s tracking of the input signal as well as the conditioning of

the matrix Rk. Finally � is a stepsize parameter that controls the deviation of the “next” filter

Wk+1 w.r.t. to Wk . We give this class of adaptive filtering algorithms the name Exponentially

Regularized APA: ERAPA.

In the next paragraph we provide an asymptotic analysis of the algorithm that provides

some useful stability bounds.

4.2.2 Asymptotic analysis

Stability

In order to check the region of � that guarantees the stability of (4.7), we use the following

asymptotic approach: consider equations (4.5) and (4.1). Taking expectation of both sides in

both equations one gets:

E(Sk) = ��1 E(Rk) � E(XH
k Xk)

E(Rk) = � E(Rk) + R

; (4.8)

where R is the true L� L covariance matrix: R = EXkXH
k . Combining these two equations

one obtains:

E(Sk) = R
�
�N +

1

�
� 1

1� �
�
= NR

� 1

��N(1� �)
� 1

�
: (4.9)
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Since the criterion (4.4) only makes sense for Sk positive definite, Sk should also be asymp-

totically positive definite, and thus the following must hold according to (4.9) :

� <

1

N(1� �)
: (4.10)

Eq. (4.10) is very important for the implementation of the algorithm because it provides a

bound of � for the stable operation of the algorithm. It is obvious from (4.10) that the choice

of � must be done jointly with the choice of � for a given filter length N .

Convergence dynamics

Denoting as in chapter 3 by �Wk = Wk �W o the deviation of the current equalizer setting

w.r.t. the optimal setting and subtracting Wo from both sides of the second line of (4.7) we

obtain the following recurrence for �Wk:

�Wk+1 =
�
IN � �XR�1

k XH
k

�
�Wk + �XkR
�1

k (Dk �XH
k W

o) : (4.11)

We conclude from (4.11) that a key quantity related to the convergence dynamics of (4.7) is

the following matrix:

Gk = IN � �XkR
�1

k XH
k : (4.12)

In order to get insight into the convergence dynamics of (4.7), we examine the eigenvalues of

the Gk . To do this it is interesting to check the influence of the pre-multiplication of Gk by Xk :

XH
k (IN � �XkR

�1

k XH
k ) = (IL � �XH
k XkR

�1

k )XH
k =

(Rk � �XH
k Xk)R

�1

k XH
k = �SkR

�1

k XH
k :

(4.13)

Eq. (4.13) shows that the eigenvalues 6= 1 of Gk are also the eigenvalues of �SkR�1

k . The

matrix �SkR�1

k is asymptotically equal to:

�(ESk)(ERk)
�1 = � (1� �) [ 1

�(1��) �N ]IL

= (1� �N(1� �)) IL :

(4.14)

Eq. (4.14), even though asymptotical, gives important insight to the convergence behaviour

of the algorithm. On one hand it shows that Gk has asymptotically N � L eigenvalues equal

to 1 and L eigenvalues equal to 1� �N(1� �). Therefore we see that the algorithm (4.7) has

indeed asymptotically a projection interpretation: at each iteration eliminations occur in the

subspace of CN that corresponds to the L non-zero eigenvalues of Gk . On the other hand, eq.

(4.14) reveals the fact that the algorithm’s convergence speed is roughly proportional to the

quantity:

� = �N(1� �) : (4.15)

Therefore � plays the role of an effective stepsize that controls the algorithm’s convergence

speed. Of course one should be careful to satisfy also (4.10). This gives us enough degrees

of freedom to choose the algorithm’s parameters so as to provide a high convergence speed

preserving the algorithm’s stability.
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4.2.3 Further discussion

Some additional insight in the role of the effective stepsize defined in (4.15) as well as to the

convergence speed of the algorithm (4.7) can be obtained as follows: an essentially equivalent

to (4.1) update equation for the sample covariance matrix Rk is the following:

Rk = � Rk�1 + (1 � �) N Xk XH
k : (4.16)

Let Sk be now defined as:

Sk = ���1Rk �XH
k Xk ; (4.17)

where �� is a stepsize parameter (for the moment arbitrary). Taking expectation of both sides

of (4.16) we get:

E(Rk) = NR ; (4.18)

which gives combined with (4.17):
E(Sk) = NR (

1

��
� 1) : (4.19)

Comparing (4.19) to (4.9) we realize that equations (4.16) and (4.17) represent the same algo-

rithm as equations (4.1) and (4.5), apart from the following normalization of �:

�� = �N(1� �) : (4.20)

In fact, �� is nothing else than the effective stepsize � we derived before (eq. (4.15))! Eq. (4.19)

is an alternative way to derive the region of the stepsize for stability:

0 < �� < 2 : (4.21)

Therefore eq. (4.16) can be used as well for the analysis of the algorithm’s convergence

dynamics. In fact, (4.16) reveals the crucial role of the parameter � in the algorithm’s con-

vergence speed: the closest to 1 is �, the slowest will be the speed with which the sample

correlation matrix approaches its true value. This phenomenon can be observed for example

in the following figure which shows the evolution of an element of the matrix Rk for different

values of �. An interesting interpretation of this fact is the following intuitive approach for

the explanation of the algorithm’s initial convergence behaviour: we may expect to have

a high initial convergence speed when � is chosen in such a way so as to allow for a slow

convergence of the sample covariance matrix to its true value, due to the fact that before this

convergence, the sample covariance matrix will have a less good conditioning and provide

higher “jumps” at each iteration. Indeed, such a behaviour has been observed in simulations

and the above reasoning seems to be a valid explanation.
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Figure 4.3: The sensitivity of the convergence speed w.r.t. to �

4.3 Algorithmic organization

In chapter 3 we described in detail the derivation of the FAP algorithm which is a compu-

tationally efficient algorithmic organization for the APA that requires 2N + O(L) flops per

iteration. In the following subsections we present algorithmic organizations for the algorithm

(4.7) based on the philosophy of the FAP. In the first subsection we present an exact algorith-

mic implementation for (4.7), whereas in the second one we discuss the acquisition of faster

algorithmic implementations that correspond to approximations of the algorithm (4.7).

4.3.1 An exact algorithmic organization

The basic update equation we want to implement is:

Wk+1 = Wk + � Xk R
�1

k Ek ; (4.22)

where Rk is defined by (4.1). If we define the quantity lk as:

lk = R�1

k Ek ; (4.23)

(instead of lk = P�1

k Ek defined in chapter 3), then we note that the following identities from

the derivation of FAP in chapter 3 can be also used for a fast implementation of (4.7):

� Updating cWk: cWk+1 = cWk + � Xk�L+1 FL�1;k : (4.24)

� Link between Wk and cWk :

Wk+1 = cWk+1 + �� Xk F k ; (4.25)

� Updating Fk:

Fk =
24 F k

FL�1;k
35 ; (4.26)
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� Updating E0;k: bE0;k = dk � XH
k

cWk ; (4.27)

E0;k = bE0;k � � �k F k�1 ; (4.28)

�k = �k�1 + xk eXH
k � xk�N eXH
k�N : (4.29)

The updating of the quantities lk; Ek andR�1

k however has to be modified due to the difference

in structure between R�1

k and P�1

k :

� Calculating lk:

Due to the structure of Rk in (4.1), the vector lk can no more be efficiently updated as in FAP,

and therefore it must be directly computed as in (4.23).

� Updating Ek:

The relation between a priori and a posteriori errors (3.56) is no more valid for (4.7). It is still

valid however that: eEk = Ek�1 : (4.30)

Writing down the expression for the a posteriori error at time instant k � 1 we get:

Ek�1 = Dk�1 �XH
k�1Wk = Dk�1 �XH
k�1(Wk�1 + � Xk�1 R

�1

k�1 Ek�1) ;

Ek�1 = Dk�1 �XH
k�1 Wk�1 � � XH
k�1Xk�1 ;R�1

k�1 Ek�1

;

and therefore (3.56) of chapter 3 is replaced by:

Ek�1 = (IL � � Pk�1 R
�1

k�1) Ek�1 : (4.31)

Due to (4.30) we recognize that Ek can be written as:

Ek =
24 E0;k

Ek�1

35 : (4.32)

Combining (4.31) and (4.32) we find the following updating formula for Ek:

Ek =

24 E0;k

0(L�1�1)
35 + ZL (Ek�1 � � Pk�1 lk�1) ; (4.33)

where ZL is the following (L� L) shift operator:

ZL =
266666666664

0 � � � � � � � � � 0

1 0
...

0 1
. . .

...
...

. . . . . . . . .
...

0 � � � 0 1 0

377777777775
: (4.34)

The sample covariance matrix Pk can be updated by noting that:
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Pk = XH
k Xk = Xk XH
k + � � �+ Xk�N+1 XH
k�N+1 ;

in the following way:

Pk = Pk�1 � Xk�N XH
k�N + Xk XH
k : (4.35)

In order to give also an update formula for the inverse covariance matrix R�1

k , we first define

the following quantities:

Ck = R�1

k Xk ; (4.36)

and:

k =

1
1 � XH
k Ck

: (4.37)

Ck is the so-called (in adaptive filtering literature) “direct Kalman gain” and k the “likelihood

variable”. Then R�1

k is updated as:

R�1

k =

1

�
R�1

k�1 � k Ck C
H
k : (4.38)

This concludes the derivation of our algorithm, which can be summarized in table 4.1:

If a prewindowed Stabilized FTF with an exponential sliding window is used in step 1,

An Exponentially Regularized FAP �

0: Initialization

1:
Use a (prewindowed) Stabilized FTF (prediction part)

to update Ckandk

6L

2: �k = �k�1 + xk eXH
k � xk�N eXH
k�N L

3: bE0;k = dk �XH
k

cWk N

4: E0;k = bE0;k � � �k F k�1 L

5: Ek =
24 E0;k

0(L�1)�1

35+ Z(Ek�1 � Pk�1 � lk�1) L2 + L

6: E0;k = bE0;k � ��kF k�1 L

7: R�1

k = 1

�
R�1

k�1 � kCkC
H
k 2L2 + L

8: lk = R�1

k Ek L2

9: Fk =
24 0

F k�1

35+ lk 0

10: Pk = Pk�1 � Xk�N XH
k�N + Xk XH
k L2

11: cWk+1 = cWk + �Xk�L+1FL�1;k N

Table 4.1: An exact algorithmic organization for the exponentially regularized FAP

this will take 6L multiplications. The corresponding computational complexity for the other

steps in terms of multiplications is: L for each of steps 2, 4 and 6, N for each of steps

3 and 11, L2 for each of steps 8 and 10, L2 + L for step 5 and 2L2 + L for step 7. This
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gives an overall complexity of 2N + 5L2 + 11L for an algorithm that corresponds exactly to

the criterion (4.7). The O(L2) term represents the price paid for implementing exactly an

algorithm that uses a regularized covariance matrix, without any approximation. On the

contrary, the FAP in [Gay93] has a complexity of 2N + 20L (numerically stable version) but

corresponds to an algorithm with a non-regularized sample covariance matrix Rk = XH
k Xk

and is only approximative when some sort of regularization is introduced (it is similarly

possible however to achieve a lower complexity for (4.7) if approximations are introduced).

However, as usually L is chosen to be significantly smaller than N (especially in acoustic

echo cancellation problems), our algorithm’s complexity is still comparable to that of FAP.

For example, in a blind equalization case with N = 30 and L = 5, our algorithm will

have a complexity of 240 multiplications/iteration whereas FAP has a complexity of 160

multiplications/iteration.

4.3.2 Approximative algorithmic implementations

Faster computational organizations than the the one given above can be achieved if one

introduces some approximations. As the regularization part of the problem resides basically in

the use of an exponential sliding window for the sample covariance matrixRk, one could think

of modifying FAP by changing only its FTF prediction part, namely by using an exponential

instead of a rectangular sliding window. If the rest of FAP remains unchanged, then the

corresponding algorithm will no longer correspond of course to the criterion (4.4),(4.5)5.

However it will certainly have a better performance than the (rectangular window) FAP, due

to the better behaviour of the sample covariance matrix in terms of eigenvalue spread. The

resulting algorithm is described in table 4.2.

4.4 NSWERCMA: a counterpart of the proposed class of algorithms

for BE

The class of adaptive filtering algorithms (4.7) can be modified in such a way so as to be useful

for blind equalization. This can be done by direct application of the separation principle we

presented in chapter 3, to the algorithm developed in the previous paragraphs. Namely, a

suitable class of algorithms for blind equalization can be obtained from (4.7) if one replaces

the desired response vector Dk by the projection of the a priori output vector Dk on the unit

circle:

Dk � sign(XH
k Wk) : (4.39)

5Such an approach for the acquisition of a fast algorithm has been proposed in [MD94]
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An approximative exponentially regularized FAP �

0:
Initialization: a0 = [1 0(L�1)�1]

T ; b0 = [0(L�1)� 1 1]T ;

Ea;0 = Eb;0 = �(a very small number)

1:
Use an (exp. windowed) Stabilized FTF (prediction part)

to update ak; bk; Ea;k; Eb;k

6L

2: �k = �k�1 + xk eXH
k � xk�N eXH
k�N 2L

3: bE0;k = dk �XH
k

cWk N

4: E0;k = bE0;k � ��kF k�1 L

5: Ek =
24 E0;k

(1� �)Ek�1

35 L

6: lk =
24 0

~lk
35+ 1

Ea;k
aka
H
k Ek 2L

7:

24 lk

0

35 = lk � 1

Eb;k
bkb
H
k Ek 2L

8: Fk =
24 0

F k�1

35+ lk L

9: cWk+1 = cWk + �Xk�L+1FL�1;k N

10: elk+1 = (1� �) lk L

Table 4.2: An algorithmic organization for an approximative regularized FAP

The resulting algorithm will then have the form:

Rk = �Rk�1 + XkXH
k

Wk+1 = Wk + �XkR
�1

k (sign(XH
k Wk)�XH
k Wk) :

(4.40)

In order to implement (4.40) in a computationally efficient way we can use the two algorithmic

organizations presented above for (4.7). Note that these algorithms dictate a “shift invariance”

structure of the desired signal. Due to the inherent exponential regularization, we give this

class of algorithms the name of Normalized Sliding Window Exponentially Regularized Constant

Modulus Algorithms: NSWERCMA.

It is expected that this class of algorithms for blind equalization, will be able to provide,

with a judicious choice of its parameters a very good compromise of convergence speed,

steady state error, and local minima avoidance. Before entering the computer simulations

section, it would be interesting to show how the algorithm outperforms the NSWCMA in

the example presented in section 4.2. Figure 4.4 shows the closed-eye measure evolution for

the same example corresponding to figure 4.1. Note how, even with the “pushed” choice

L = N = 5, the algorithm is capable of converging to an acceptable open-eye setting without

deviating from it, contrarily to the NSWCMA. We remind that in this example � = 0:9.
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Figure 4.4: The improvement in performance using an exponential sliding window

In the next section we present some comparative computer simulations that show how the

algorithms of the class (4.40) are able of outperforming other blind equalization algorithms

in several cases.

4.5 Computer Simulations

The following computer simulations test the proposed class of algorithms in the blind equal-

ization context of this thesis:

4.5.1 Opening the channel eye

We simulated the algorithm (4.40) in the following blind-equalization setup: a 16-QAM

constellation is transmitted through a linear FIR channel. The received signal is sampled

at the baud rate and the discrete-time channel response is [1 � 3 � 3 2]. Additive noise

resulting in an SNR of 30 dB is added to the received signal. Then the algorithm (4.40) is

employed using N = 5, L = 4, � = 0:1, � = 0:99 and initialized with W0 = [0 0 1 0 0]]T . The

evolution of the system closed-eye measure is shown in figure 4.5, where it can be seen that

the channel eye opens after approximately 500 iterations. Note in this figure the perturbation

of the received data due to the channel ISI and how it is reduced after the convergence of

the blind equalizer. Note also the fact that the algorithm works for a 16-QAM constellation,

despite the fact that its criterion is of the constant modulus type. This is a typical characteristic

of algorithms of the constant-modulus type and can be explained in the same way as Shalvi
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Figure 4.5: The opening of the channel-eye achieved by a member of the proposed class of

algorithms

and Weinstein showed that the CMA 2-2 is able of opening the channel eye when the input is

any sub-Gaussian signal.

4.5.2 Convergence speed

In order to test the improvement of the proposed algorithm in terms of convergence speed, we

performed a comparative computer simulation experiment that implements several constant-

modulus-type blind equalizers. We transmitted a 2-PAM random signal through a FIR(2)

channel with impulse response hc = [1 2 0:6] and a white Gaussian noise �k is added to the

received signal resulting to an SNR of 20 dB. We then run several adaptive blind algorithms

(according to figure 3.1) to update the equalizer. Figure 4.6 shows the evolution of the

system’s closed-eye measure � averaged over 100 Monte-Carlo simulations for four different

blind equalization algorithms. The CMA 2-2 is employed with a stepsize � = 0:04, the

NCMA (NSWCMA with (L = 1)) with �� = 0:3, the algorithm proposed in [GRS87] (that we

call RLS-CMA) with a forgetting factor � = 0:94 and our proposed algorithm ((4.7),(6.17))

with L = 6, � = 0:5 and � = 0:01. The equalizer’s length is equal to 6 and all algorithms are

initialized with W0 = 10�4 � [1 1 1 1 1 1]T . It can be seen that our proposed algorithm has an

increased convergence speed and opens the channel’s eye faster than the other algorithms.

It is also noted that it behaves well in steady-state, despite the small value for the forgetting

factor it uses. This means that even such a small value regularizes adequately the received

signal’s sample covariance matrix. Moreover, it is this small value for � that corresponds to
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a big effective stepsize and provides a high convergence speed. The considerably fast initial

convergence of our proposed algorithm provides also evidence for the above-discussed fact

that the algorithm is expected to go very fast at the beginning when the sample covariance

matrix has not yet reached its steady-state value.
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Figure 4.6: Comparative study of several BE algorithms in terms of convergence speed

4.5.3 Local minima

Figure 4.7 shows a case where the problem of false minima is encountered. The transmission

channel’s impulse response is now hc = [1 0:6 0:36] and a 3-tap equalizer is used, initialized

at [0 0 1]T . This is a typical example where the CMA’s get trapped by a local minimum of

their cost function, being unable to open the system’s eye. The RLS-CMA is used with a

forgetting factor � = 0:95 and then our algorithm (4.40) with L = 3, � = 0:95 and � = 1. It

can be seen how the first algorithm is indeed trapped by a local minimum and does not open

the eye, whereas the second one is able of converging to a setting that opens the eye. This fact

reflects the potential advantage of the algorithms of the proposed class that permit the use of

a big effective stepsize that guarantees stability on one hand but also provides a large enough

motion around false minima that helps escaping from them according to the corresponding

discussion and analysis that we presented in chapter 3.
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Figure 4.7: Escaping from a local minimum of the cost function

4.6 Conclusions

In this chapter we have proposed a new class of adaptive filtering algorithms for blind equal-

ization of constant modulus signals. Our motivation has been the high steady-state error

sometimes present in the APA and NSWCMA algorithms when big values for �� and for L are

used. The proposed remedy has been to use a more regularized sample-covariance matrix

using exponential forgetting as shown in (4.7). The algorithms have been derived by mini-

mizing exactly at each iteration a deterministic criterion, first in a classical adaptive-filtering

and then in a blind-equalization context. An asymptotic analysis has given useful insight to

the algorithm’s convergence behaviour, has revealed the role of an effective stepsize and has

provided parameter bounds that guarantee stability. Based on the algorithmic organization of

the FAP given in chapter 3, we propose an algorithmic organization that corresponds exactly

to our criterion and provides a complexity of 2N + 6L2 + 10L multiplications/iteration. We

also discuss how faster algorithms can be obtained by introducing approximations. The al-

gorithms’ behaviour has been also tested via computer simulations in the blind equalization

context. These simulations show their ability of opening the channel eye, their increased

convergence speed w.r.t. other constant-modulus algorithms as well as their ability to escape

from false minima of their cost function. Moreover, they show the improvement achieved in

the steady-state behaviour for cases when L is chosen to be close to N . A part of the work

contained in this chapter has been also presented in [PS94a].

Chapter 5

Decision-directed blind equalization

DECISION -Directed (DD) equalization is probably the most primitive blind equaliza-

tion method for the cancelling of Inter-Symbol-Interference in data communication systems.

Even though DD equalizers are believed to be unable of opening the channel eye when it is

initially closed, this does not seem to be true in the case of Constant-Modulus (CM) constel-

lations (pure phase modulation). We investigate the shape of the DDA cost function in this

case and obtain several interesting results that indicate that the DDA should be capable of

opening a closed channel eye in the CM case. Based on this fact, we propose a novel hybrid

CMA-DD equalization scheme that offers an appealing alternative to the Generalized Sato

(GSA) algorithm for QAM constellations. Our theoretical claims about the performance of

DD equalizers as well as the performance of our novel scheme are verified through computer

simulations.

5.1 Introduction

Figure 5.1 shows the three different standard modes that may be used at a communication

system receiver for the equalization of the received signal. Namely, the position 1 of the switch

corresponds to the blind equalization mode already discussed, in which only the received

signal’s statistics are used in order to update the equalizer, the position 2 corresponds to

Decision-Directed (DD) equalization, whereas position 3 corresponds to equalization based

on a training-sequence signal (non-blind equalization). Typically, during an equalization pro-

cedure more than one of these equalization modes may alternate, corresponding to different

equalization stages. For example, after using mode 3, when the equalizer has converged to an

acceptable setting with the help of the training sequence, the receiver is usually then switched

to the DD mode (2): since the equalizer output is supposed to approximate well the transmit-

ted sequence, the decision device output at a specific time instant will match the transmitted

104
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sequence with a high probability and can therefore be used as a “training sequence”. The

same switching can be used in the case of a blind method: after convergence to an acceptable

equalizer setting in the mode 1, there is no use any more to update the equalizer with the

blind algorithm, since the DD mode can be used to keep the equalizer to a correct setting.

Moreover, the DD mode has the advantage of providing a lower steady state error, due to

the fact that the decision device output at most time instants is exactly equal to, and not an

approximation of the corresponding transmitted symbols. From the above we conclude that
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Figure 5.1: Three standard equalization modes

DD equalization is usually considered as an auxiliary equalization mode which is used in the

final stage of a conventional or a blind equalization procedure. Of course, strictly speaking,

DD equalization is also blind, since it does not make use of a training sequence. However

it is not used as a BE procedure, since practice has shown that it is in general not successful

in opening an initially-closed channel eye. Based on such remarks (see e.g. [Sat75], [God80])

as well as on theoretical studies on the performance of DD equalizers ([Maz80], [ME84]), the

predominant feeling seems to be that “ Decision - Directed equalizers are unable of opening

an initially closed channel eye”. It is actually this feeling that has lead to attempts for hybrid

algorithms that combine other BE techniques with DD equalization (see e.g. [PP87], [HD93]).

In this chapter of the thesis we will take a closer look to DD blind equalization, by

restraining ourselves to the special case of a Constant Modulus (CM) transmitted signal.

As will become clear in the sequel, there exist both theoretical arguments and experimental

evidence that the above statement is not necessarily true in this case.

The rest of the chapter is organized as follows. In the following section we show the

similarity between the CMA 1-2 and the DDA and in section 5.3 we analyze the shape of the

CMA 1-2 cost function in the case of a CM input signal. The non-CM case is also considered

in section 5.3. In section 5.4 we show how different classes of DD algorithms can be obtained
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in the same way that several CM-BE algorithms were obtained for CM-type BE from the

separation principle. In section 5.5 we present an alternative scheme for the generalization of

the Sato algorithm in the complex case. The computer simulation results of this chapter that

provide experimental evidence to the theoretical parts are contained in section 5.6. Finally,

section 5.7 contains our conclusions and further discussion.

5.2 Motivation

Consider the well known LMS-like DD algorithm (DDA) whose update equation is given by

Wk+1 = Wk + �Xk(dec(yk)� yk) ; (5.1)

where dec(y) denotes the closest constellation symbol to y. Comparing (5.1) with the CMA

1-2 algorithm which can be written as we saw in the following way

Wk+1 = Wk + �Xk(r1sign(yk)� yk) ; (5.2)

where sign(�) and r1 have been defined in chapter 2, we note that these two algorithms are of

the same exactly form: they look like classical LMS updates, the only difference being that, in

the absence of the desired response faig, each one of them uses a different “ guess” for it: the

DDA uses dec(yk) instead of ak, whereas the CMA uses r1sign(yk). This results to different

error signals for the updating of the equalizer as used by the two different algorithms:8<: eDk = yk � dec(yk)

eCk = yk � r1sign(yk) :

(5.3)

The difference between these two error signals increases with the distance of the projection
r1sign(yk) from its closest constellation symbol. For a CM constellation, the two different

guesses for the desired samples have the same magnitude and differ only by their angle.

Figure 5.2 shows the error signals of the two algorithms for the case of a 4-QAM constellation

(fat-line segments). If one thinks of complex CM constellations with more symbols equispa-

ced on a circle of radius r1, it is clear that the more the symbols, the less becomes the difference

between the two error signals. Moreover, in the asymptotic case of an infinity of symbols

uniformly distributed on the circle, the two error signals become identical, since each pro-

jection on the circle corresponds also to a symbol! Therefore we can state the following remark:

Remark: The CMA 1-2 and the DD algorithms are identical in the asymptotic case of an

input signal of CM equal to r1 whose angle is uniformly distributed in [0; 2�).

The case of such an input signal of course is not realistic, however the above remark im-

plies that in the realistic case of finite-alphabet CM constellations, the two algorithms may

have comparable performance. This gives rise to the following question: since the CMA
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algorithms (and particularly the CMA 1-2) are able in general of opening an initially closed

channel eye, why shouldn’t the DDA be able of doing the same in the case of a CM signal?

Re(y  )

      Im(y  )

 k

 k

 k

CMA 1-2

DD

 y+

+

Figure 5.2: The similarity between CMA 1-2 and DDA

Now strictly speaking, as already mentioned in chapter 2, the strongest existing result re-

garding the performance of Godard equalizers is the one proven in [SW90] by Shalvi and

Weinstein: in the case p = 2 the Godard cost function (2.76) is a convex function of s whose

global minima are optimal settings of the form

s = ej�(� � �0 1 0 � � �) ; (5.4)

where s is the impulse response corresponding to the cascade of channel and equalizer

si =

1X
l=�1

cl wi�l : (5.5)

This result explains why the popular CMA 2-2 algorithm [TA83], which corresponds to the

Godard algorithm that we repeat here for convenience:

Wk+1 = Wk + �Xkykjyk jp�2(jykjp � rp) ; (5.6)

for the choice p = 2, has an optimal performance 1 in the case of a noiseless channel and an

infinite-length equalizer, even if faig is not drawn from a CM constellation, provided that it

is sub-Gaussian and symmetrical.

No similar result however seems to exist (up to our knowledge) for the CMA 1-2 algorithm

(the Godard algorithm corresponding to the choice p = 1) in the complex case, namely there is

no proof for its optimality, even under assumptions of infinite-length equalizers and specific

input constellations. However, as mentioned in chapter 1, the CMA 1-2 in the real case

reduces to the Sato algorithm, whose update equation is identical to (5.6) for p = 1, the only

1By optimal performance here we mean that its only local minima are of the form (5.4).
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difference being that all the quantities are real. As mentioned, there exists a strong result

(given by Benveniste et al in [BG83], [BG84]) for the performance of the Sato algorithm: it is

stated that in the case of a continuous sub-Gaussian input distribution, a noiseless channel

and an infinite equalizer length, the Sato cost function admits as only local (and global)

minima the optimal settings for s given in (5.4). This result is less strong than the one given

for the CMA 2-2 in [SW90], since it is only valid for continuous (and not for discrete) input

distributions. The result has also been extended to the case of the Generalized Sato algorithm,

by a simple superposition principle, due to the “separability” of the real and imaginary parts

of the desired signal in this case. However, this kind of analysis has not allowed to obtain

similar results for cases as the one of the CMA 1-2.

As in the real case the assumption of a continuous distribution has allowed to prove the

optimality of the Sato algorithm, and as the true counterpart of the Sato in the complex case

is the CMA 1-2, one may hope that a similar assumption can help obtain such a result for the

CMA 1-2.

Putting together the aforementioned facts and remarks, we have good chance of thinking

that the DDA can be able of opening the channel eye in the case of a CM signal, at least in the

asymptotic case mentioned above. This is why we will perform an analysis of the CMA 1-2

algorithm for this case.

5.3 Analysis of the stationary points of the DDA cost function

We will be interested in the stationary points of the DDA cost function, which will be param-

eterized in the s-domain (see (5.5)) . The equalizer output at time instant k is then expressed

as

yk =

1X
i=�1

si ak�i : (5.7)

We begin by considering the CM case whose special interest was motivated in the above

section.

5.3.1 The CM case

As our analysis is based on the similarity of the CMA 1-2 to the DDA in the case of a CM

signal, we begin our analysis by considering the CMA 1-2 algorithm.

Analysis of the CMA 1-2 cost function

In the sequel we make the following assumptions:

Assumption A.5.1:

� The input faig is an i.i.d. CM sequence
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� The equalizer is infinite-length

� No additive noise is present

Assuming for simplicity that the constellation modulus equals 1 (and therefore r1 = 1

also), the transmitted symbols take the form

ak = ej�k ; (5.8)

and the CMA 1-2 cost function is given by

J(s) = E(jykj � 1)2 (> 0) : (5.9)

The equilibria of the CMA 1-2 cost function are found by setting its first partial derivative

w.r.t. each element of s equal to zero:

@J
@s�k

= 2E
 

j
X

k

an�k skj � 1

! @j
X

k

an�k sk j

@s�k

= 0 : (5.10)

Noting that

j
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it turns out that
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which gives when combined with (5.10)

@J
@s�
k

= E
 

j
X

k
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X
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j
X

i
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and therefore

E
�

1� 1

j
P

i an�isij
�

a�n�k
X

i

an�i si = 0; 8 k: (5.11)

which gives

sk = E

 
a�n�k sign

 X
i

an�i si
!!

: (5.12)

As sk appears in both parts of (5.12) and the specific structure of the equation renders difficult

the extraction of an analytical expression for sk . Things can get much easier if we restrict the

settings of stationary point to be such that all the components of each stationary points have

equal magnitude. This means that the stationary points we are interested in, are all settings

fsig that contain M non-zero elements of equal magnitude , �M , M = 1; 2; : : ::

sM = �M [ � � � 0 ej�1 0 � � � 0 ej�2 0 � � � 0 ej�M 0 � � � ] : (5.13)

Taking into account the form (5.13) for the stationary points, (5.12) gives
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MX
i=1

siEa
�
k�lak�i = E

MX
i=1

si a
�
k�l ak�i

j
MX

i=1

si ak�ij
;

sl E(jakj2) = E
MX

i=1

si a
�
k�l ak�i

j
MX

i=1

si ak�ij

;

sl = sl E

MX
i=1

a�k�l ak�i

jsljj
MX

i=1
ak�ij

;

and therefore we have the following expression for the magnitudes �M

�M = E
0BBBBB@

a�k
M�1X

m=0

ak�m

j
M�1X

m=0

ak�mj
1CCCCCA : (5.14)

This expression is identical to the one given by Godard in [God80] 2. A simpler expression

for the amplitude �M can be found as follows. Consider the expression of the cost function

on a stationary point of the form (5.13):

J(�M ) = M�2

M � 2M E(
X

i2IM

an�i) + 1 ; (5.15)

where IM is defined as

IM = 1; 2; : : : ;M ; (5.16)

and we have used the fact that on a stationary point of the form (5.13)

E(jy(sM)j2) = E
�
j

X
an�i sij2

�
= M �2

M : (5.17)

Now since the expression J(�M ) given in (5.15) corresponds to a stationary point, its first

derivative around it with respect to �M should be zero:

@J
@sk

= 0 ; 2M �M � 2Ej
MX

i=1

aij = 0 ;

yielding

�M =
M

M

; (5.18)

2Even though in [God80] it is stated that (5.13), (5.14) describe all the possible sets of stationary points for the

CMA 1-2, it is possible that there may be other ones as well. However these are the only ones for which we are

able of deriving an analytical expression, and we will focus our attention on them. For a more complete discussion

on this refer to the Appendix 5.A.
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where M is defined as

M = Ej
MX

i=1

aij : (5.19)

The expression (5.18) is simpler than the one in (5.14) and will be useful in the rest of our

analysis. An upper bound for M can be found as follows: we express (5.19) as

M = E

 
MX

i=1

ai
!

sign
 
MX

i=1

ai
!

: (5.20)

By applying the Cauchy-Schwarz inequality to (5.20) we obtain

E

 
MX

i=1

ai
!

sign
 
MX

i=1

ai
!

�
vuutEj
MX

i=1

aij2

p
E 1 =

p
M ;

which gives for M :

M �
p
M : (5.21)

Combining (5.21) and (5.18) we obtain also an upper bound for �M :

�M � 1p
M

: (5.22)

We are now interested in examining the form of these stationary points, namely if they

correspond to local minima, maxima or saddle points. At this point we discriminate between

the following cases:

� M = 1

In this case �1 = 1 and therefore jykj = 1, for all k. Consequently, E(jykj � 1)2 = 0 in this

case. As E(jykj � 1)2 is a nonnegative quantity, we conclude that all the stationary points for

M = 1 correspond to global minima of the CMA 1-2 cost function. These minima are given

by s = ej� where � is an arbitrary angle and all correspond to Zero-Forcing (ZF) equalizers.

The fact that they rotate the constellation by a constant but unknown factor is a problem

frequently encountered in BE and can be overcome by using differential encoding.

� M � 2

The two stochastic quantities of the CMA 1-2 cost function are Ejykj2 and Ejykj. Keeping

(5.19) in mind and using the i.i.d. assumption, these quantities, evaluated at a stationary

point of the form of (5.13) are given by

Ejykj2 =M�2

M

Ejykj = �MM =M�2

M :

(5.23)

A practical way to check the form of the cost function around a stationary point is to find

counterexamples that exclude the possibility of a specific form of the stationary point. This is
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usually done by considering proper perturbations around the stationary points. In this scope,

we consider the following perturbation of sM

s�M =
p

1 + � �M [� � � ej�1 � � � ej�2 � � � ej�M � � �] ; (5.24)

where � is a very small positive number. We now denote by y+k and J+ the output sample

and the value of the cost function on the point s�M , respectively: and define

y+k =

1X
i=�1

ak�is
�
M;i

J+ = E(jy+k j � 1)2 ;

(5.25)

where s�M;i denotes the ith element of s�M . We also denote by Jo the value of the cost function

on the stationary point sM :
Jo = E(jykj � 1)2 : (5.26)

Then we have
J+ � Jo =M �2

M (2+ �� 2

p

1 + �) > 0 : (5.27)

This means that in a neighborhood around the stationary point sM and in the direction de-

fined by (5.24), the cost function takes always a greater value than on the stationary point

itself. This means that this stationary point is not a local maximum. Since this proof is valid

for any integer M , we can conclude the following lemma:

Lemma 5.1: Under the assumptions (A.5.1) the CMA 1-2 has no local maxima points of

the form (5.13).

We are now interested in the existence of local minima of the cost function (5.9). We have

not been successful in finding such perturbations that prove the absence of local minima

for any M 3 . We therefore consider the Hessian of the cost function around the stationary

points. To do this we have to calculate the following second partial derivative of J(y) around

a stationary point of the form (5.13):

@2J

@s�k@sl
:

According to the expression for the first partial derivative obtained in (5.11) we have

3The reasons for this will become clear later on.
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@2J

@s�k@sl
= E

0BB@1
2

an�l(
X

i

a�n�i s
�
i )

j
X

i

an�i sij3

a�n�k (
X

i

an�i si) +

0BB@1 � 1

j
X

i

an�i sij
1CCA a�n�k an�l
1CCA ;

= E
0BB@1

2

an�l a
�
n�k

j
X

i

an�i sij
+

0BB@1 � 1

j
X

i

an�i sij
1CCA a�n�k an�l
1CCA ;

= E
0BBB@
0BBB@1 � 1=2

j
X

i2IM

an�i sij
1CCCA a�n�k an�l
1CCCA :

Therefore we have the following expression for the (k; l) element of the Hessian

@2J

@s�k@sl
=

8>>>><>>>>:

1� 1
2�M

E

a�kal

j
MX

i=1

aij
; k; l 2 f1; : : : ;Mg

�kl ; else :

(5.28)

Now for the Hessian matrix HM we have the following properties:

� HM = HH
M , by definition

� Hk;l =

8<: c1 for k 6= l

c2 for k = l ;

where c1, c2 represent two different scalar constants. From the two above properties we

conclude that HM is real, and therefore

HM = HT
M : (5.29)

HM can then be expressed in the following form

HM = � IM + �
26664

1
...

1

37775
26664

1
...

1

37775
T

; (5.30)

where � and � are constant scalars. According to (5.30), the eigenvalues of HM are8<: �1 = � + M �

�2 = � � � = �M = �

From (5.28) we have for the diagonal elements of Hk;k:

Hk;k = 1 � M

2
1

M

E

1

j
MX

i=1

aij
= � + � : (5.31)
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and

� =

M

2
1

M

E

a�1 a2

j
MX

i=1

aij
: (5.32)

On the other hand we have

[1 � � �1] HM

26664

1
...

1

37775 = M(� + M �) = M �1

=M � 1
2�M

E
0BBBBB@
MX

k=1

MX
l=1

a�k al

j
P
M
i=1 aij

1CCCCCA = M � 1
2�M

M = M

2 ;

which gives
�1 = � + M � =

1
2

: (5.33)

Combining (5.33) and (5.32) we get

� =

M � 1
2

M � 1

� M2

2(M � 1)

1

Ej
MX

i=1

aij
E

1

j
MX

i=1

aij
: (5.34)

To summarize, the eigenvalues of HM are8>>>><>>>>:
�1 =

1
2

�2 =
M�

1
2

M�1 �

M 2

2(M�1)

1

Ej
MX

i=1

aij
E 1

j
MX

i=1

aij
: (5.35)

A bound for �2 can be obtained if we assume for a moment a continuous uniform distribution

of the angle �k of a transmitted symbol in [0; 2�). Then we have the following inequalities

E
�

1

jej �1 + ��� +ej �M j
�
=

Z 2�

0

� � �
Z 2�

0

1

jej�1 + � � �+ ej�M j
�

1
2�

�M
d�1 � � � d�M >

�

1
2�

�M (2�)M
M

=

1

M

;

1

Ejej �1 + � � � + ej �M j =

1Z 2�

0

� � �
Z 2�

0

jej �1 + � � � + ej �M j
�

1
2�

�M
d�1 � � � d�M

>

1

M

;

which give when combined with (5.35)

�2 <

M � 1
2

M � 1

� M2

2(M � 1)

1

M2 ;
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and therefore

�2 < 1 : (5.36)

Let us summarize. We have up to now for the eigenvalues of HM8<: �1 = 1
2

�2 < 1 :

(5.37)

In a first place, the fact that the eigenvalues are not all simultaneously negative (guaranteed

by the positiveness of �1) means that a stationary point cannot be a local maximum, thus

verifying the lemma 5.1 stated above. On the other hand, the information given in (5.37)

is not enough to further characterize the shape of the stationary points (5.13). This would

need a certainty about the sign of �2: if �2 was guaranteed to be positive, for example, this

would imply that all the stationary points are local minima, whereas if it was guaranteed to

be negative that would imply that all the stationary points were saddle points. In order to

take a closer look to the sign of �2 we have to examine separately the following two cases:

� M is even

This case has the following particularity: consider the following among the terms appearing

in the expression for �2 given in (5.35):

E
�

1

j
P
M
i=1 aij

�
:

For any discrete CM constellation whose alphabet size is L, the above expectation can be

computed as a sum of terms corresponding to all different (LM ) possibilities for the M

transmitted symbols:

E
 

1

j
PM

i=1 aij
!

=

1

LM

LMX
j=1

1

j
MX

i=1

a
(j)
i j

;

where superscript (j) accounts for the jth among the LM scenarios. For any symmetrical CM

constellation (meaning that for each constellation symbol its opposite is also a constellation

symbol), there will be some among the LM terms appearing in the above expression whose

denominator equals 0, due to the fact thatM is even. These terms correspond to singularities,

(they have contributions of the form 1
0 in the expectation). This means that in this case,

�2 = �1 : (5.38)

As �1 is positive, it turns out that the stationary points of the form (5.13) for M are saddle

points. We have therefore the following lemma:

Lemma 5.2: All stationary points of the form (5.13) for M even are saddle points of the

cost function (5.9).
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The above given proof of Lemma 5.2 verifies the following fact: for the case M = even

we have been able to find proper perturbations around the stationary points such that the

cost function takes a smaller value on them than on the stationary points. Such a perturbation

for example is

s��M = �M [
p

1 + � [� � �ej�1 � � �ej�M=2 ]
p

1� � [� � �ej�M=2+1 � � �ej�M ] ]

Combined with (5.27), this also proves the fact that forM even the stationary points are saddle

points.

� M is odd

A similar image as for the case M = even is not unfortunately obtained for the case M = odd.

Evaluating the expression of �2 for CM constellations, it turns out that for some of them there

exist values of M (especially M = 3) for which �2 > 0. For example, consider the case M = 3

and a 4-QAM input constellation. It can be easily found that in this case

�2 = 0:1862 :

Such counterexamples constitute enough evidence for the fact that for the case M = odd,

there exist stationary points that are indeed local minima (since �1 is also positive). Therefore

we can state the following lemma :

Lemma 5.3: Some of the stationary points of the form (5.13) for M odd are local minima

of the cost function (5.9).

The two Lemmas 5.2 and 5.3 contain the main conclusions of this study with respect to

the performance of the CMA 1-2 algorithm and show its inferior performance as compared to

that of the CMA 2-2: whereas the CMA 2-2 has been proven to have no local minima in the case

of an infinite equalizer length (for any constellation), the same does not hold for the CMA 1-

2, which we have proven to have some local minima in the case of a discrete CM constellation.

However, the following remark is of interest. As the number of constellation points on

the unit circle increases, the eigenvalues �2 head towards negative values, and therefore the

corresponding settings are saddle points. This can be observed for example in table 1, which

shows the evolution of �2 for the case M = 3. It should be noted that the case M = 3 is the

more difficult one, since it corresponds to the smallest possible number of even terms. In

all the other cases (M > 3), �2 takes on the negative values much quicker, if not already for

4-QAM.

By increasing even more the number of constellation points equispaced on the circle we arrive

to asymptotic case of a continuous input sequence whose angle in uniformly distributed in



5.3. ANALYSIS OF THE STATIONARY POINTS OF THE DDA COST FUNCTION 117

L- QAM ; M = 3

L �2

4 0.1862

8 0.0417

14 0.0144

26 -0.0053

34 -0.0095

52 -0.017

Table 5.1: The evolution of �2 for M = odd

[0; 2�). In this case �2 will be evidently negative for any M and therefore we may state the

following result.

Theorem 5.1: When the input signal is CM and its angle is continuously-uniformly dis-

tributed in [0; 2�), then all equilibria of the CMA 1-2 cost function of the form (5.13) are saddle

points, except for M = 1.

This result parallels the one stated by Benveniste et al in [BG84]: they have proven that

the Sato algorithm has no local minima in the case of several continuous input sequences.

Here we prove the same thing for the CMA 1-2 and the special case of a continuous CM input

sequence. This result even though never stated before, should be expected, since the CMA 1-2

is the natural extension of the Sato in the complex case (they share exactly the same update

formula).

Application to the DDA cost function

As already stated, in the case of the continuous input distribution considered, the CMA 1-2

and the DDA algorithms are identical. The same result in Theorem 5.1 applies therefore also

for the DDA:

Theorem 5.2: When the input signal is CM and its angle is continuously-uniformly dis-

tributed in [0; 2�), then all equilibria of the DDA cost function of the form (5.13) are saddle

points, except for M = 1.

This is our main result with regard to the performance analysis of the DDA: based on two

assumptions similar to the ones that have been used to analyze the performance of classical

BE algorithms, we arrive at a similar result: for an infinite-length equalizer and a continu-
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ous CM input distribution 4 , the DDA has no local minima in its cost function. From this

perspective, it seems not to be a less preferable BE method than the other CMA’s, since in

any case under realistic assumptions, none of them is optimal, whereas under the unrealistic

assumptions stated above they are all more or less equivalent (the CMA 2-2 being of course

always better since it only needs the infinite-length assumption). Moreover, the DDA has the

obvious advantage of a lower steady-state error.

We will now try to analyze the DDA in the non-CM case, in order to throw some light to

its observed misbehaviour in this case.

5.3.2 The non-CM case

In the case of non-CM constellations DD equalization usually does not have a satisfactory

performance, especially when the channel eye is initially closed. We consider for simplicity

the PAM case. The DD cost function in this case is

JD(s) = E(yk � dec(yk))

2 : (5.39)

For the partial first derivative we have

@JD
@sk

= 2E
�
yk � dec(yk)

�  @
@sk

X
i

an�isi �

@
@sk

dec
 X

i

an�isi
!!

;

= 2E
�
yk � dec(yk)

�
an�k

�

1 � @dec(yk)

@yk

�
:

Now we have that

@dec(yk)

@yk

= �
�
yk � bis(yk)

�
;

where bis(y) is the closest point to y that belongs on a bisector between the different PAM

levels (as shown in figure 5.3 for a multi-PAM case), and �(�) is the Dirac function.

dec(y )

y

k

k

bis(y )

k

Figure 5.3: The definition of the bis(�) function.

4Note that this is a sub-Gaussian distribution.
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From the two above relations we have

@JD
@sk

= 2E
 X

i

an�isi � dec
 X

i

an�isi
!!

a�n�k
 

1� �
 X

i

an�isi � bis
 X

i

an�isi
!!!

;

(5.40)

and therefore the stationary points are given by the equation

E
 X

i

an�isi � dec
 X

i

an�isi
!!

a�n�k
 

1� �
 X

i

an�isi � bis
 X

i

an�isi
!!!

= 0 ;

(5.41)

If we neglect the singularities introduced by the � function the above equation simplifies to

E
 

a�n�k
X

i

an�isi
!

= E dec
 

a�n�k dec
 X

i

an�isi
!!

: (5.42)

Assuming that s has M non-zero taps (s = (� � �0 sk1 0 � � �0 skM 0 � � �)), the non-zero elements

of s should satisfy

ski = E
0@a�n�kM dec
0@ MX

j=1

an�kj skj
1A1A : (5.43)

Notice the similarity between (5.43) and the corresponding equation (5.12) for the Sato algo-

rithm: in (5.43) the dec(�) function replaces the sign(�) function of (5.12). This seems natural

since it corresponds to the difference between the update equations of the two algorithms:

the Sato projects on a CM, whereas the DDA on the closest symbol. However, it should be

reminded that in order to arrive to (5.43) we have had to neglect some points corresponding

to singularities, and this reflects the fact that the DDA is by one degree of differentiability

more complicated than the Sato algorithm.

In the case of the Sato (or the CMA 1-2), we have been able to derive an analytical

expression for the solution of (5.12) by restraining the taps of each solution to have equal

magnitudes. If now we impose the same constraint on the solution for eq. (5.43) however, we

are still not able of obtaining an analytical solution for the stationary points, due to the strong

nonlinearity of the dec(�) function. This also reflects the fact that the solution of (5.43) is no

longer unique (as for the Sato or the CMA 1-2) for each M . This non-uniqueness of solution

for each set of stationary points that satisfy (5.43) has to do of course with the number and

the shape of the local minima of the cost function (5.39).

In order to have an idea of the solutions of (5.43) we have proceeded as follows. We have

numerically evaluated for some examples the two terms appearing in (5.43) in order to find

when they coincide, corresponding to a stationary point. For example, in a 4-PAM case with

M = 2 there exist 5 different stationary points for the DDA cost function, as compared to a

unique stationary point for the Sato cost function.

This can be seen in figure 5.4, where we have plotted the difference of the two terms in

(5.43) and the corresponding equation for Sato, respectively. Moreover, it can be proven that

2 of these solutions are local maxima (compared to the absence of local maxima for the Sato
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Figure 5.4: 4-PAM: The stationary points on the line s1 = s2 for DDA and Sato, respectively

or the CMA 1-2). This multitude of stationary points that can be either local minima, saddle

points, or local maxima is responsible for the very different shape of the DDA cost function

in a multi-level PAM system, as compared to the Sato (or CMA 1-2) cost function. This can be

seen in figure 5.5, where the two corresponding cost functions have been plotted for a 4-PAM

system and M = 2. Note in this figure the fact that in the Sato cost function, the regions

separating local minima are open cone-shaped regions, whereas the corresponding regions of

the DDA cost function are closed, and various local maxima and saddle points separate the

local maxima. This fact has also been discussed in [Maz80] (see also Appendix 5.B for more

details). This is why escaping from a local minimum is much more difficult in the DD case

(for non-CM constellations).

5.4 Other classes of DD algorithms

The LMS-like DD algorithm (5.1) is up to our knowledge the only adaptive algorithm that

has been proposed for DD equalization. This is probably due to the fact that it was always

used during the steady-state, after the initial convergence of either the blind or the training

algorithm. As according to the above analysis we have now good reason to believe that with

a DD equalizer the channel eye can open, there is interest in proposing other (non LMS-like)

algorithms with better performance in terms of convergence speed or steady-state error.

In this perspective, and since the DDA has the same form as the CMA 1-2, we propose the

following simple rule for the acquisition of algorithms suitable for DD-BE:

An algorithm suitable for DD blind equalization can be obtained if one considers any clas-

sical adaptive filtering algorithm and replaces the desired sample dk at each iteration by the

decision dec(yk).
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Figure 5.5: 4-PAM: the DDA and Sato cost functions for M = 2

This rule parallels the separation principle that was presented in chapter 3 5 . Table 5.2

shows some of the algorithms that can be obtained by applying it to the NLMS, APA, Regu-

larized APA and RLS, respectively

In this table, the quantity dec([v1 � � �vN ]) is the vector [dec(v1) � � �dec(vN)].
The various characteristics of the above adaptive filtering algorithms are expected to be re-

flected to the corresponding DD algorithms. Moreover, the DD algorithms are expected to

have a better steady-state behaviour w.r.t. the corresponding CMA’s, for the reason explained

in section 5.1.

5Normalized DD algorithms can be derived by minimizing exactly a deterministic criterion in a similar way as

the one followed for the derivation of the NSWCMA in chapter 3.
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LMS Wk+1 = Wk + �Xk(dk � yk)

DDA Wk+1 = Wk + �Xk(dec(yk)� yk)

NLMS Wk+1 = Wk +

��
kXkk

2
2

Xk(dk � yk)

NDDA Wk+1 = Wk +

��
kXkk

2
2

Xk(dec(yk)� yk)

APA Wk+1 = Wk + ��XkP
�1

k ( Dk �XH
k Wk)

NSWDDA Wk+1 = Wk + ��XkP
�1

k (dec(XH
k Wk)� XH
k Wk)

Reg. APA Wk+1 = Wk + �XkR
�1

k ( Dk � XH
k Wk)

Reg. NSWDDA Wk+1 = Wk + �XkR
�1

k (dec(XH
k Wk)�XH
k Wk)

RLS Wk+1 = Wk +R�1

k Xk(dk � yk)

‘RLS-DDA’ Wk+1 = Wk +R�1

k Xk(dec(yk)� yk)

Table 5.2: DD-type BE algorithms

5.5 A CMA-DD hybrid corresponding to a novel Generalized-Sato

scheme

The results of the previous section suggest that the principal factor that causes the misbe-

haviour of the DDA is the multiple constellation amplitudes, whereas in the case of a single

constellation amplitude its performance should be similar to the one of the CMA 1-2 algo-

rithm. Indeed, as can be observed in [Sat75], this has been the original motivation for Sato’s

work. Sato proposed his cost function empirically by applying a somewhat “reduced constel-

lation” philosophy: for any multi-level PAM constellation he formed his decisions by finding

the closest symbol of a corresponding 2-PAM constellation. This corresponds to projecting

the multi-PAM constellation (which is real) on the only real CM constellation: 2-PAM.

When the Sato algorithm was generalized to the GSA for QAM constellations, a similar

(even though not quite) philosophy was applied: the reduced constellation used was a 4-

QAM. However this principle deviates from Sato’s idea in the following: in the real-case Sato,

all the projected (2-PAM) symbols have the same angle as their initial multi-PAM counterparts.
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But in GSA, the use of a 4-QAM reduced constellation changes the angles of the projected

symbols.

Trying to keep unchanged the symbols angle in the complex case, has lead us to propose

the following CM-DD hybrid method for equalization:

� Construct from the non-CM constellation a reduced CM constellation by associating

each symbol ai with the complex number r1sign(ai)

� Use the CM constellation to take the decisions about the received samples.

This method can be used to derive LMS-like or other adaptive BE algorithm in the same way

as described in the previous section, the only difference being that now instead of using the

function dec(�) (DD) or sign(�) we use the following function cdec(�):

cdec(yk) = the closest symbol of fsign(ai)g to yk : (5.44)

An example of this principle can be seen in figure 5.6, where the non-CM constellation is

16-QAM (‘+’ denotes a constellation symbol, ‘�’ a projected symbol). Our hybrid principle
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A Cyclic Decision Directed Principle

Figure 5.6: A CMA-DD hybrid principle: 16-QAM

preserves the constant modulus character of the constellation, but not in the 4-QAM reduced-

constellation sense of the GSA. It is still however in some sense a DDA since it takes decisions,

but on the reduced constellation: in our opinion it is the kind of DDA that should be used

in non-CM constellations and its performance should verify the fact that DD equalization is

good if all the decisions taken have the same amplitude. Moreover, the fact that the number

of symbols in the projected constellation is in general higher than in the GSA is expected to

lead to a reduced steady-state error.

A short discussion about this principle can also be found in [PS94a] where different

algorithms for its implementation are given.
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5.6 Computer simulations
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Figure 5.7: The opening of the eye achieved by a DD algorithm

In this section we will provide some computer simulations that verify and support our theo-

retically obtained results. These simulations are by no means exhaustive, but just indicative

of the arguments of this chapter.

DD-BE simulation:

We consider a noisy FIR communication channel. The channel impulse response has four

non-zero taps: c = [1 � 3 3 2] and the SNR at the channel output has been fixed at 30dB. The

equalizer was taken to have 7 taps and was always initialized with a unique non-zero middle

tap equal to 1. The following three cases were tested:

� CM input signal, DD algorithm

In this case, the input signal is taken to be 4-QAM. We then use the NSWDDA (see table

5.2) with parameters �� = 0:1 and L = 2. The results obtained can be shown in figure

5.7. Note the form of the received data, indicative of the fact that the channel eye is closed

(the closed-eye measure is around 2 at the beginning of the algorithm), and how the 4-QAM

pattern is retrieved after the algorithm has converged.
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Figure 5.8: The opening of the eye achieved by a the CMA-DD hybrid in a non-CM case

This result shows that a DD algorithm is indeed capable of opening a closed channel eye,

and this in accordance with our theoretical claims, since the transmitted constellation is CM.

� Non-CM input signal, DD algorithm

In this case, the input signal is taken to be 16-QAM and we use again the same NSWDDA

as before, with parameters �� = 0:1; L = 2. Figure 5.8 shows the evolution of the closed-eye

measure (as well as the corresponding equalizer output) for this case, for 10000 iterations of

the algorithm. Notice that the channel eye hasn’t been opened in the case. This is due, as

expected, to the fact that the transmitted constellation is not CM. It should be noted here that

there have been observed some cases where an eye opening has been achieved even for a

non-CM signal. This has been very rare and can be explained by the fact that despite the

existence of many undesirable stationary points, in some cases the algorithm has by chance

converged to stationary points that correspond to open-eye settings.

� Non-CM input signal, CMA-DD hybrid algorithm

The same 16-QAM constellation as before is used, but now we use one of the CMA-DD hybrid

algorithms proposed in section 5.5, namely a NSW one with parameters �� = :05; L = 2 (same

as before). Note how now the channel eye gets gradually opened and how the 16-QAM

pattern is retrieved 6. This shows the success of our hybrid CMA-DD principle and verifies

6A better opening of the eye can be achieved of course if a longer equalizer is used.
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our initial intuition that the problem in DD equalization comes from the existence of multiple

amplitudes in the transmitted constellation.

5.7 Conclusions

We have taken a close look at the problem of DD BE in the particular case of CM signals. An

analysis of the stationary points of the CMA 1-2 cost function has shown the absence of local

minima for the DDA cost function in the asymptotic case of a CM distribution whose angle

is uniformly distributed in [0; 2�) 7 . This result parallels the one presented in [BG84], where

it was proven that the Sato algorithm has no local minima in the case of a continuous sub-

Gaussian input distribution and justifies the following statement: DD equalizers are capable

of opening an initially closed channel eye when the input signal is CM. Combined with the fact

that DD equalizers have a reduced steady-state error as compared to other blind equalizers,

this result indicates (in contrast to what is widely believed to date) that DD equalization is a

valid BE method for CM constellations.

Our stationary-point analysis also provides useful insight into the performance of DD

equalizers in the non-CM case: clearly, it is the existence of multiple constellation amplitudes

that is responsible for the bad shape of the cost function in this case. Based on this remark, we

propose a CMA-DD hybrid scheme for BE which constitutes a novel Generalized Sato-like

scheme for QAM constellations that respects Sato’s philosophy more closely than the already

existing GSA algorithm: a projected constellation on a circle of radius r1 is used (instead of

a reduced constellation) in order to form the decisions about the transmitted symbols. The

performance of algorithms based on this scheme as well as the ability of DD equalizers to

open an initially closed channel eye are verified by our computer simulations. A part of the

work presented in this chapter has been also presented in [PS94b].

7In the case of discrete symmetrical CM distributions, the difference between settings with an odd or an even

number of nonzero taps has been revealed.
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5.8 Appendix 4A: On the uniqueness of the stationary points (5.13).

Consider eq. (5.12). Combining it with (5.8) we get

s1 = E
�
e�j�1 sign(ej�1s1 + � � �+ ej�M sM )

�
;

= E
0BBB@e�j�1 sign
0BBB@[ej�1 � � �ej�M ]
26664
s1

...

sM

37775
1CCCA
1CCCA ;

which can be written in matrix form

s = E
�
(a sign(aHs)

�
; (5.45)

where we have defined

s =

26664
s1

...

sM

37775 ; a =

26664
e�j�1

...

e�j�M

37775 :

Eq. (5.45) can be written in the form

s = E
 

aaH
jaHsj s

!
: (5.46)

The solution to (5.46) is

s 2 N
 

IM � E
 

aaH
jaHsj s

!!
; (5.47)

where N (�) denotes the nullspace of a matrix.

Due to the stationarity of the input sequence, according to (5.46), if s is a solution of it,

then any reordering of its entries is also a solution of (5.46). Now if the solution of (5.46) was

guaranteed to be unique, then all elements of s should be equal between them. Or, if the

solution was at least guaranteed to have solutions with a unique magnitude, then all elements

of s would have the same magnitude, and in this case s would be of the form (5.13), which

is the solution given by Godard in [God80]. However if this uniqueness of solution of (5.46)

cannot be guaranteed, then there may exist also other solutions for s whose elements do not

share the same magnitude.

5.9 Appendix 4B: On the shape of regions separating local minima

We adhere to Mazo’s article [Maz80]. As explained in this article, the regions around local

minima of the DDA algorithm are defined by the equation

sli(yk) = constant ; (5.48)
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where i 2 f1; 2g, i = 1; 2 corresponding to the 2-PAM and 4-PAM case, respectively, and we

use the definitions

sl1(yk) =

8<: 1 yk > 0

�1 yk < 0 ;

(5.49)

and

sl2(yk) =

8<: 1 yk < 2

3 yk > 2

; sl2(�x) = �sl2(x) : (5.50)

The regions corresponding to i = 1 are cone-shaped because they are formed by intersecting

half planes. This is not however the case for i = 2, since due to the form of sl2(�) the resulting

regions are more complicated N -dimensional surfaces.

This fact is reflected also in figure 5.5. It is also worth noting that in the case of our hybrid

CMA-DD scheme, the local minima regions are also open cones, and this explains the fact

that the corresponding algorithms are able of opening an initially closed channel eye.



Chapter 6

A bilinear setup for globally

convergent blind equalization

IN this chapter we address the problem of ill convergence of constant modulus algorithms.

In order to face this problem we propose a different parameterization of the problem that leads

to the construction of a convex cost function with respect to an introduced parameter set. The

minimization of this cost function can be performed either by batch or by adaptive techniques,

by use of any multichannel classical adaptive filtering algorithm, which will converge to the

same minimum point regardless of the algorithm’s initialization. It is shown then how the

unique minimum of the cost function is linked to the ideal equalizer setting for zero forcing

equalization. The influence of various factors as additive noise and over-parameterization of

the problem is also discussed and computer simulations are provided in order to support the

claimed behaviour.

6.1 Introduction

In this chapter we are primarily interested in the problem of ill-convergence of Godard-

type algorithms for blind equalization. As previously mentioned, this is one of the major

problems related to the performance of these algorithms and has to do with the shape of

the corresponding cost functions. Consider for example the Godard minimization problem

which we repeat here for convenience:

min

W

Jp(W ) =

1
2p

E(jyjp� rp)

2 p 2 f1; 2; : : :g ; (6.1)

whereE denotes statistical expectation and rp =
Ejakj

2p

Ejakjp

. In the sequel we assume for simplicity

that rp = 1. The Godard cost function appearing above is not convex with respect to the
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equalizer parameters, due to the nonlinearity involved. As was already explained in previous

chapters this is the case for all Godard algorithms, at least when the equalizer is finite-length.

The direct implication of the non-convex shape of the cost function is the fact that there exists

a hole class of local minima some of which are undesired in the sense that they are different

than the global minima of the cost function. The equation that gives the stationary points

is, as already mentioned before, obtained by setting to zero the first derivative of the cost

function Jp(W ) with respect to the equalizer parameters W . This gives for example in the

case p = 2 (CMA 2-2 cost function):

E((jykj2 � 1)ykXk) = 0 : (6.2)

A stochastic gradient search that attempts to minimize the cost function will inevitably be

likely to end up to a non-desired local minimum. This is the heart of the problem of ill-

convergence of BE algorithms, a problem that has been discussed extensively in the literature

(see e.g. [Din91a],[DKAJ91],[DKAJ93],[JL92],[LDKJ94],[JLK92],[JDS88],[CS90]). Several at-

tempts to overcome this problem have also been realised ([CNP92],[BZA94],[VAK91],[KD92]).

In general there are three different factors that influence the ill convergence of such a cost

function:

� The shape of the cost function

� The algorithm’s initialization
� The algorithm’s stepsize

The first among these factors is of course the most important, since if one is able of obtaining

a convex cost function, this means that the algorithm will converge to its optimal setting

independently of its initialization or its stepsize (provided that the latter is within the stability

region). On the other hand, the other two factors are important when the cost function is

not convex, since they might help the algorithm converge to an acceptable (or even to its

optimal) setting. For example, a center-spike initialization has often been recommended as a

practical guideline for the use of BE algorithms (even though it has been shown that it might

not always be successful). On the other hand, the stepsize has an important role to play in the

sense that it can help escaping from local minima. We have discussed this issue in chapter 3,

where it was shown that normalized CMA algorithms have an improved performance with

respect to their non-normalized counterparts in terms of ill-convergence.

In this chapter we are interested in the first of the above factors, namely, we will propose

the construction of a convex cost function for blind equalization of the CM type.
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6.2 A new blind equalization principle

6.2.1 The idea

Figure 6.1 shows the basic principle used for BE by the CMA algorithm. Our emphasis

in this figure is the traditional receiver scheme: the received data sequence is first passed

through a linear equalizer. Then some kind of nonlinearity is applied to the equalizer output.

This nonlinearity has the role to provide the higher order statistics needed for the implicit

identification of the channel impulse response. The error computed with the help of this

nonlinear function is then used by an adaptive algorithm in order to update the current

equalizer setting. A direct consequence of this scheme is the fact that, as the nonlinearity

                                         

|   |   
-

+

1

  Equalizer   W ( z ) 

  Nonlinearity
ε
              k  x k                                              2

    +

Figure 6.1: The principle of a typical CM blind equalizer

is applied to the equalizer output (which is already a linear combination of the equalizer

parameters), the error at each time instant will be a nonlinear function of the equalizer

parameters. It is exactly this fact that differentiates the BE adaptive algorithms from their

classical adaptive filtering counterparts: in the latter case, the update error is a linear function

of the filter parameters (corresponding to a convex (quadratic) cost function), whereas in

the former it is nonlinear, and this is why the problem of local minima and ill convergence

appears.

In order to keep the algorithm’s error a linear function of the parameters the following

alternative equalization scheme could be proposed: instead of applying the nonlinearity to

the equalizer output, which will result in a nonlinear error for the equalizer parameters, one

might try instead to apply first the nonlinearity to the received data and then pass the resulting

process through a linear equalizer. In this case the update error will be a linear combination

of parameters and we will be confronted with a case similar to classical adaptive filtering. Of

course it is necessary to find a proper parameterization for the equalizer, as well as a proper

way to apply the nonlinearity to the input process in such a way so that the overall system

corresponds to an equivalent BE technique. In the following subsection we present a way to

do that for the CMA 2-2 algorithm.
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Figure 6.2: A proposed principle for CM blind equalization: an example

6.2.2 The formulation

Before giving our general formulation, we will first present a simple example in order to

explain better our idea. Consider a length-2 equalizer and the CMA 2-2 algorithm. Assume

also for the moment that all quantities are real. The nonlinearity jyk j2 used by the algorithm

can be then expressed as

jykj2 = y2
k = (xk w0 + xk�1 w1)2 = x2

k w

2
0 + x2

k�1 w

2
1 + 2xkxk�1 w0w1 ;

which can be put in matrix form as

y2

k = [x2

k xkxk�1 x2

k�1]
26664
w2

0

2w0w1

w2
1

37775 : (6.3)

In the above equation we have expressed the nonlinear quantity jykj2 as a linear combination

of the entries of the appearing column vector. The price paid for having such a linear relation

is that both the input data as well as the equalizer parameters are now appearing through

their corresponding bilinear terms (x2

k; xkxk�1, e.t.c.). However this expansion indicates to

us a way to implement a BE scheme that interchanges the position of the equalizer and the

nonlinearity. (6.3) can also be written in the form

y2

k = [x2

k x2

k�1]
24 w2

0

w2
1

35 + [xkxk�1]
h

2w0w1

i
= X T

1 W1 + X T

2 W2 (6.4)

Note than in (6.4) the output squared modulus is now a sum of two regressor-equalizer

products, where now the entries of each regressor are of the same type: X1 contains the

quadratic whereas X2 the cross bilinear terms. This can be seen in figure 6.2: the process fx2

kg

is passed through a length-2 filter that corresponds to the quadratic equalizer terms, whereas

the process fxkxk�1g through a length-1 filter corresponding to the cross term 2w0w1. Note
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that despite the interchanged order of the two stages (nonlinearity-equalization), the output

is the same as the one of figure 6.1: it can therefore be subtracted from 1 and provide the same

error at each iteration as the one provided in figure 6.1. This error can then be used in order

to update the two equalizers as shown in figure 6.2. Before we enter into the details of this

implementation we first give the formulation of this approach for the general complex case.

We now consider all the quantities (transmitted symbols, channel impulse response, equal-

izer) to be complex, and assume (as usually) that the corresponding linear equalizer has N

coefficients:

yk = [xk � � � xk�N+1]
26664
w0

...

wN�1

37775 = XH
k Wk :

The equalizer output squared modulus can be expanded in the following form

jykj2 = yky
�
k = (w0w

�

0 xkx
�
k + � � �+ w0w

�
N�1 xkx

�
k�N+1) + � � �

+(wN�1w
�

0 xk�N+1x
�
k + � � �+ wN�1w

�
N�1 xk�N+1x

�
k�N+1) :

(6.5)

We may now introduce a N2 � 1 bilinear regression vector

Xk = [xkx
�
k � � �xkx�k�N+1 xk�1x

�
k � � �xk�1x

�
k�N+1 � � �xk�N+1x

�
k � � �xk�N+1x

�
k�N+1]

H ; (6.6)

and a N 2 � 1 parameter vector

�k = [w0w
�

0 � � �w0w
�
N�1 w1w

�

0 � � �w1w
�
N�1 � � �wN�1w

�

0 � � �wN�1w
�
N�1]

T ; (6.7)

that contain all the bilinear terms xk�ix�k�j and wiw
�
j of the expansion in (6.5), respectively.

Then the squared modulus of the output yk can be written as:

jykj2 = zk = XH
k �k : (6.8)

Since inner products correspond to convolutions, zk may be viewed as the output of a linear

“filter” with impulse response � which is excited by the “bilinear” regression vector X , at

time instant k. Expressing the equalizer output squared modulus as in (6.8), the CMA 2-2

cost function can be written as

J2(W ) = 1
4E(jyj2� 1)2 = 1

4E(z � 1)2 :

Now keeping for z the parameterization (6.8), we can modify the minimization problem

(6.1) by considering it as a problem for the determination of the � parameters. The resulting

minimization problem will then take the form

min

�

Jbil(�) = min

�

E(z � 1)2 = min

�

E(XH� � 1)2 : (6.9)

In (6.9), the same exactly quantity as in (6.1) (p = 2) is minimized. From this point of view,

the two minimization criteria are equivalent. However, the fact that the involved parameters
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are different, changes the shape of the cost function with respect to its parameters. Indeed,

the cost function Jbil(�) as it appears in (6.9) is a quadratic function of the � parameters.

This has been exactly the role of the parameter transformation in (6.7): it is a mapping of

the N�dimensional W�parameter space to the N2�dimensional ��parameter space, such

that when the CMA 2-2 cost function is expressed in the �� parameter space, it is a convex

function. Of course the question of crucial importance is about the existence and uniqueness

of the inverse parameter mapping.

6.2.3 The main result

We now elaborate more upon the cost function (6.9) as a function of the � parameters. The

gradient of Jbil(�) w.r.t. � is given by:

5�J
bil(�) = 2E(X (XH� � 1)) ; (6.10)

and therefore any solution � to (6.9) should satisfy the following equation:

R � = d ; (6.11)

where
R = E(XXH)

d = E(X ) :

(6.12)

Now if the matrix R is invertible, the problem (6.9) has the following unique solution:

� = R�1d : (6.13)

So if the non-singularity of R can be guaranteed, we have achieved our principle aim: the

minimization criterion (6.9) has a unique solution. What is important now is to see how

channel identification (or equalization) is possible based on the solution (6.13). In a first step,

we assume the following ideal characteristics for the channel:

Assumption 6A: The channel is assumed to be a noiseless, all-pole filter of order N � 1

(and therefore its output is an AR(N � 1) process).

ak =
N�1X

i=0

cixk�i = XH
k C : (6.14)

In this case the corresponding equalizer can be found from � as follows: the optimal equalizer

of length N in the absence of noise is the ZF equalizer whose entries are the coefficients of the

impulse response of the inverse channel:

W o = [c0 � � � cN�1] = CT : (6.15)

The corresponding parameter vector will be given by:

�opt = [c0c
�

0 � � � c0c
�
N�1 c1c

�

0 � � �c1c
�
N�1 � � �cN�1c

�

0 � � �cN�1c
�
N�1]

T : (6.16)
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It is clear that �opt solves (6.9) since Jbil(�opt) = 0. Moreover, under the assumption (6A),

there exists no other solution that nulls exactly Jbil(�). Therefore the unique solution (6.13)

of (6.9), under the assumption (6A) is the one given in (6.16). This fact constitutes the main

result of this chapter and is expressed through the following theorem:

Theorem 6.1: When the channel satisfies the assumption (6A), the blind equalization cri-

terion (6.9) is a convex function in the � parameter space of dimension N2. The unique

solution �opt (given by (6.13) then contains the inverse channel coefficients as expressed in

(6.16).

What is left now in order to identify the channel inverse impulse response, is to determine

a way to acquire its coefficients from the obtained solution (6.16). This will show how the

inverse parameter mapping can be achieved, namely how one may go from the redundantN2

dimensional parameter space � back to the N� dimensional parameter space of W . Consider

a N � N matrix � that is created by filling in the N2 entries of the vector � according to the

following rule: the matrix is getting filled column by column, beginning from the first column

and from the top to the bottom:

� =
2666666664
�(0) �(N) � � � �(N

2�N)

�(1) �(N+1) � � � �(N

2�N+1)

: : � � � :

: : � � � :

�(N�1) �(2N�1) � � � �(N

2�1)

3777777775
= G(�) : (6.17)

In the case of the optimal setting �opt, the corresponding matrix will be

�opt =

26666664
jc0j2 c1c
�

0 � � � cN�1c
�

0

c0c
�

1 jc1j2
... cN�1c

�

1
...

...
...

...

c0c
�
N�1 � � � � � � jcN�1j2

37777775 : (6.18)

Then it follows that �opt = CCH , which means that in the ideal case, �opt is a rank-1 matrix.

A direct method to find back C from � is therefore to perform an eigendecomposition of

�. Ideally, there will be a unique non-zero eigenvalue and the corresponding vector will be

proportional to C:

C =

p
� V (�) ; (6.19)

where � and V (�) are the non-zero eigenvalue and the corresponding eigenvector of �,

respectively. Note that for a given �, any multiple ej� C still satisfies (6.18). This represents

the fact that in blind equalization we can only identify the transmission channel apart from

a rotational factor. We have therefore by now completed the presentation of a blind method
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that allows the identification of the inverse channel coefficients for a channel obeying the

assumption (6A). The method can be summarized as follows:

� Formulate a bilinear regressor (6.6) and a bilinear parameter vector (6.7).

� Minimize the cost function (6.9)

� Calculate the coefficients of the channel inverse from (6.19)

It is important to note that this method allows for perfect ZF equalization of the CMA 2-2

type, with no ambiguity, in contrast to the CMA 2-2 algorithm itself that has the problem

of local minima and ill convergence (even for channels obeying the assumption (6A)). The

problem of ill convergence has been therefore solved for this case.

In practice the matrix � will not be rank-1. In this case an easy way to approximate from

it the channel inverse impulse response is to still use an eigenvalue decomposition:

W opt �
p
�max V (�max) ; (6.20)

where now�max andV (�max) simply denote the maximum eigenvalue and the corresponding

eigenvector of �. Note that there exist other also methods to obtain approximations of C.

For example, one might just consider the first column of � and try to approximate C by

dividing all its elements by the square root of its first element. However (6.20) is a more

proper approximation since it takes into account all the elements of the matrix (the superior

performance of (6.20) has been also verified by computer simulations).

6.2.4 Discussion

Apart from offering a method that overcomes the problem of ill-convergence, our bilinear

formulation has allowed us to obtain an interesting alternative way to express the CMA 2-2

cost function. Namely, we have proven the following equivalence

min

W

E(jyj2 � 1)2 �
8<: min

�

E(XH� � 1)2

subject to: rank(�) = rank(G(�)) = 1
(6.21)

Under the assumption (6A), the two problems have the same global solution, however the

second one has the advantage of having no local minima. In section 6.4 we will examine

the case in which the above condition rank(�) = 1 does not hold. This will give valuable

insight to the bilinear cost function and an interesting interpretation of local minima. This is

the second important contribution of the bilinear formulation.

The fact that we have been able of identifying the (generally non-minimum phase) trans-

mission channel by minimizing the cost function Jbil(�) w.r.t. � should not be an astonishing

result, since the matrix R contains 4th order moments of the received signal (it is known that

identification of a non-minimum phase channel is not possible at the baud rate by use of
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only second order statistics). A different point of view for the obtained identification result

is the following: by making our parameter transformation, we introduce redundancy to our

problem. The number of parameters introduced is greater than the number of parameters

that need to be estimated. This redundancy may be viewed as some form of diversity, that

allows the identification of the channel.
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Figure 6.3: A representation of the bilinear method concept

6.2.5 Implementation

The inverse channel identification procedure we have formulated above can be used to obtain

various blind equalization algorithms according to the different ways it can be implemented.

Corresponding to two different criterion minimization philosophies, we can classify them as

either batch or adaptive methods.

Batch methods

In batch methods, the general procedure followed is the following:

� Estimate from data the two stochastic quantities appearing in (6.11): R and d

� Use (6.13) to calculate �

This is a typical off-line procedure, in which we suppose that enough data have been collected

so as to provide accurate enough estimates for R and d. The quality of the method used will
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depend not only on the amount of data available but also on the particular estimation method

used (corresponding e.g. to different windows for the data et.c.) which will determine

the variance and bias of the estimated quantities. Batch methods are usually employed in

stationary environments.

Adaptive methods

In this case the minimization of the cost function in (6.9) is done adaptively, given an ini-

tial guess �0. The convexity of the cost function (when R is non-singular) guarantees the

uniqueness of the solution and the global convergence of the adaptive algorithm employed,

independently of the initialization. The advantages of adaptive methods are that they can

be used on-line, they require less storage capabilities, often have a reduced computational

complexity and that they may be used as well in non-stationary environments.

The general philosophy of “bilinear blind adaptive equalization” is depicted in figure 6.3.

In contrast to batch techniques which compute their final equalizer setting at once (after all

data have been collected and processed), with the setting of figure 6.3 the equalizer Wk can

be computed at each iteration (decomposition stage) and be used in order to open gradually

the channel eye. However this is not necessary and can be done at any frequency, depending

on the computational requirements. We first present some classical adaptive techniques that

can be adapted to the needs of this setup.

� Classical adaptive filtering

LMS:

The simplest adaptive algorithm that can be used is the LMS algorithm, which corresponds

to a stochastic gradient minimization of the criterion in (6.9). The adaptation of the parameter

vector � is then given by 8<: �k = 1� XH
k �k

�k+1 = �k + �Xk�k ;

(6.22)

where �k is the a priori error at time instant k and � the stepsize parameter that controls

both the convergence speed and steady-state error of the algorithm. The only difference of

(6.22) and the classical way in which the LMS is used in system identification resides in the

particular form of the regression vectorX : it is not stationary in the sense that all its entries do

not correspond to the same process, as is usually the case. This does not influence however

the performance characteristics of the algorithm. Of course the longer length (N2) of the

regressor with respect to the order of the underlying FIR filtering (N � 1) will increase the

algorithm’s complexity, which will be now 2N2 multiplications/iteration. An NLMS analog

can be as well implemented with roughly the same complexity.
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RLS:

Similarly, an RLS-like algorithm can be used that will allow for faster convergence (in ap-

proximately 2N2 iterations) but at the expense of a higher computational complexity (O(N4)

multiplications/iteration):8>>><>>>:
�k = 1�XH
k �k

R�1

k = ��1R�1

k�1 � ��1R�1

k�1Xk(1 + XH
k ��1R�1

k�1Xk)�1 XH
k ��1R�1

k�1

�k+1 = �k +R�1

k Xk�k ;

(6.23)

where Rk is N2 �N2 and � is the forgetting factor.

In the case of the RLS algorithm, a reduction in computational complexity can be achieved

if a multichannel structure is employed. Such a structure can be obtained by grouping the

entries of the regressor X so as to create a number of stationary regressors. Due to its

simplicity, we will present this structure for the real case, the extension to the complex case

being straightforward. When the received samples xk are real (which corresponds to a PAM

modulation and a real channel), a reduction in the required number of parameters for the

bilinear method is possible. Namely, in this case the expansion in (6.5) will have onlyN�(N+1)

2

terms, and therefore the regression and parameter vectors will be defined as :

Xk = [x2

k 2xkxk�1 � � � x2

k�1 2xk�1xk�2 � � � x2

k�N+1]
T ; (6.24)

and

� = [�(0) �(1) � � � �(
N�(N+1)

2 �1)]T ; (6.25)

respectively. All the above-mentioned equations are still valid in this case, the only difference

being the dimensions of �, X and the matrix R. All Hermitian transposes can also be replaced

by simple transposes in this case. Then the multichannel implementation of the equalizer

consists in splitting the entries of X into N stationary regressors as follows

XT

1 (k) = [x2

k � � � � � �x2

k�N+1]

XT

2 (k) = [2xkxk�1 � � �2xk�N+2xk�N+1]

...
...

XT
N(k) = [2xkxk�N+1]

of lengths N;N � 1; : : : ; 1, respectively. The same holds for the corresponding equalizers.

Figure 6.4 shows the setup for bilinear equalization in the real case. Note that all the equalizers

share the same error function.

If a multichannel Fast Transversal Filter algorithm [Slo89] is used for this setup, the

complexity is reduced to O(N3) multiplications/iteration.

This multichannel structure is equally applicable to any classical adaptive filtering algo-

rithm and offers implementation advantages.
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� A bilinear rank-1 approach

A different philosophy that takes into account the specific form of the bilinear regression

vector can be used in order to obtain adaptive algorithms of a different type. For this we

define first a matrix Wk as follows

Wk = Wk W
H
k : (6.26)

The minimization problem (6.10) can then be written as

min
W

Jbil(W)

subject to:rank(W) = 1
(6.27)

A bilinear rank-1 approach to solve adaptively this problem is8>>><>>>:
�k = 1� (WH
k�1Xk)

2

Wk�1W
H
k�1 + �k �k XkX

H
k = �1V1V

H

1 + �2V2V
H

2

Wk =

p
�1 V1 sign(V
H

1 Wk�1) :

(6.28)

In (6.28), �1; V1 can be found from Wk�1; Xk in O(N) operations. (6.28) is an adaptive proce-

dure of the stochastic gradient type (similar to the LMS) but applied to a parameter matrix

instead of a parameter vector. Even though the global convergence property cannot in gen-

eral be guaranteed for (6.28), some simple computer experiments have shown its successful

performance in correctly parameterized cases. Such an example will be given in the computer

simulations section.

6.3 The influence of additive noise

When additive noise is present in the received signal, it will corrupt both the quantities R

and d and therefore the solution (6.13) will be biased and no longer correspond to a ZF

equalizer (even in the absence of order mismatch). We will study the influence of additive

white zero-mean Gaussian noise nk in the real case (ak , xk , yk are all real):

xk = x0k + nk ; (6.29)

where x0k is the noiseless channel output. The fourth order moments involved in R are:

E(x4

k�i) = m4;x0(0; 0; 0) + 3�4

n + 6m2;x0(0)�2

n

E(x3

k�ixk�j) = m4;x0(0; 0; ji� jj) + 3m2;x0(ji� jj)�2

n

E(x2

k�ix

2

k�j) = m4;x0(0; ji� jj; ji� jj) + 2m2;x0(0)�2

n + �4

n

E(x2

k�ixk�jxk�l) = m4;x0(0; ji� jj; ji� lj) +m2;x0(ji� jj)�2

n

E(xk�ixk�jxk�lxk�m) = m4;x0(ji� jj; ji� lj; ji�mj) ;

(6.30)
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If the noise variance �2

n is known, then the noise-free fourth order moments can be calculated

as follows:

E((x2

k�i � 3�2

n)

2)� 6�4

n) = m4;x0(0; 0; 0)

E((x2

k�i � 3�2

n)xk�ixk�j) = m4;x0(0; 0; ji� jj)

E((x2

k�i � �2

n)(x

2

k�j � �2

n)) = m4;x0(0; ji� jj; ji� jj)

E((x2

k�i � �2

n)xk�jxk�l) = m4;x0(0; ji� jj; ji� lj)

E(xk�ixk�jxk�lxk�m) = m4;x0(ji� jj; ji� lj; ji�mj) ;

(6.31)

Proof:

� E(x2

k�i � �2

n)(x

2

k�j � �2

n) = Ex02k�ix
02

k�j � 2�2

nEx
02 + �4

n

= E(x02k�i + v2

k�i + 2x0k�ivk�i)(x
02

k�j + v2

k�j + 2x0k�jvk�j)� 2�2

nE(x
02 + v2 + 2x0v) + �4

n

= Ex02k�ix
02

k�j :

� E(x2

k�i � �2

n)xk�jxk�l = Ex02k�ix
0
k�jx

0
k�l � �2

nEx
0
k�jx

0
k�l

= E(x02k�i + v2

k�i + 2x0k�ivk�i)(x
0
k�j + vk�j)(x

0
k�l + vk�l) � �2

n E(x
0
k�j + vk�j)(x

0
k�l + vk�l)

= E(x02k�i + v2

k�i + 2x0k�ivk�i)(x
0
k�jx

0
k�l + vk�jx

0
k�l + vk�lx

0
k�j + vk�jvk�l) � �2

n Ex
0
k�jx

0
k�l

= Ex02k�ix
0
k�jx

0
k�l :

� E(x2

k�i � 3�2

n)xk�ixk�j = Ex03k�ix
0
k�j � 3�2

nEx
0
k�ix

0
k�j

= E(x03k�i + 3x02k�ivk�i + 3x0k�iv

2

k�i + v3

k�i)(x
0
k�j + vk�j)� 3�2

nEx
0
k�ix

0
k�j = Ex03k�ix

0
k�j

� E(x2

k�i � 3�2

n)

2 � 6�4

n = E(x04k�i + 9�4

n � 6�2

nx
02

k�i)� 6�4

n

= E(x04k�i + 4x03k�ivk�i + 6x02k�iv

2

k�i + 4x0k�iv

3

k�i + v4

k�i) + 9�4

n � 6�2

nEx
02 � 6�4

n = Ex04

� E(xk�ixk�jxk�lxk�m) = E(x0k�i + vk�i)(x
0
k�j + vk�j)(x

0
k�l + vk�l)(x

0
k�m + vk�m)

= E(x0k�ix
0
k�jx

0
k�lx

0
k�m)

2

The second order noise-free moments can also be obtained as:

E(x2

k�i)� �2

n = m2;x0(0)

E(xk�ixk�j) = m2;x0(ji� jj) :

(6.32)

In the above expressions

m4;x(i; j; l) = E(x(k)x(k+ i)x(k+ j)x(k+ l))

m2;x(i) = E(x(k)x(k+ i)) :

Therefore, the influence of additive noise can be theoretically completely eliminated, given

knowledge of its variance. Similar results are also obtained in the complex case.
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6.4 Special case: the crucial role of over-parameterization

6.4.1 The singularity related to the over-parameterized case

In this section we consider the case where the true channel is all-pole of orderN�1 (AP(N�1))

and the equalizer FIR of order M � 1 (FIR(M � 1)), M > N . This case does not seem to be

of practical interest, since in practice the transmission channel is a FIR filter and therefore an

equalizer of any length will never exceed the order of the channel’s inverse impulse response.

However, it merits special attention because it gives insight in the behaviour of the bilinear

method. Suppose that the equalizer is FIR(N ) (M = N + 1). Now consider the following two

equalizer settings

W 1 =

24 C
0

35 ; W 2 =

24 0

C

35 :

Obviously, both W1 and W 2 are zero forcing, and therefore if we denote by �1 and �2 the

corresponding bilinear parameter vectors, respectively, they will both satisfy (6.11):8<: R�1 = d
R�2 = d :

Moreover, any vector of the form ��1 + ��2, where � and � are scalars such that � + � = 1

will also satisfy (6.11): 8<: R(��1 + ��2) = d

�+ � = 1 :

(6.33)

In the general case M = N + L, the eq. (6.11) will be satisfied by any vector of the form:

� =

LX
i=1

�i�
i; with

LX
i=1

�i = 1 ; (6.34)

where �i is the bilinear parameter vector corresponding to

W i =
26664

01�(i�1)

C

01�(L�i+1) :
37775

This means that when the equalizer is over-parameterized w.r.t. the inverse of the channel

impulse response, the matrix R is singular, and as a consequence, the problem (6.9) has an

infinite number of solutions. Running an adaptive algorithm like the one in (6.22) or in (6.23)

will converge to one of these solutions. The same will happen if one uses a batch technique to

estimate R and d and a pseudo-inverse for the matrix inversion needed in (6.13). In all cases,

the solution obtained will no longer correspond to a rank-1 matrix �: (6.17) and (6.20) will

no longer yield the optimal ZF equalizer. Therefore the problem of ill-convergence appears

(under a different form) also in the bilinear method. In the case of a FIR channel (which is a

realistic one), one might think that the problem should not arise since the impulse response
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Figure 6.4: A multichannel implementation of the proposed blind equalization setup
of the channel is theoretically of infinite length and thus an equalizer long enough should

be able to approximate fairly well the ZF equalizer. However, as in practice the channel’s

inverse impulse response will be very close to zero out of a specific interval, if the equalizer’s

length is bigger than the number of samples in this interval, the same over-parameterization

problem will exist and the matrix R will be very ill-conditioned. This makes the choice of the

equalizer length N in this case a problem of critical importance, as, unlike in conventional

equalization, the longest possible length will not necessarily yield the best possible equalizer!

In the next section we present a method to calculate the ZF equalizer from any solution of the

form (6.34) when L is given.

6.4.2 A remedy: using a subspace fitting approach for the calculation of a ZF

equalizer

Our task is to try to extract a ZF equalizer from the matrix � that corresponds to a vector

� of the form in (6.34). As will be shown, this will be possible due to the known specific

structure of �. The channel inverse is assumed to be of length N and the equalizer of length

M = N + L. Consider the eigenvalue decomposition of the matrix �:

� =

MX
i=1

�iViV
H
i ; (6.35)

where the (real) eigenvalues �i are in descending order of magnitude andVi is the eigenvector

corresponding to �i. When M = N(L = 0), we saw that the ZF equalizer can be found based
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on a rank-1 decomposition of �. When L > 0 we will try to determine the ZF equalizer

based on a rank-(L+1) decomposition of � by the following subspace fitting approach: we

first construct an extended equalizer vector of M + L entries:

W e = [w�L � � �w�1 w0 � � �wM�1]
T ; (6.36)

where w�L � � �w�1 and wN � � �wM�1 stand for the additional coefficients. If the length of the

channel inverse is indeed N , then ideally

W e = [0 � � �0 w0 � � �wN�1 0 � � �0]T :

We now create a Toeplitz matrix W as follows:

W =
266666666664
w0 w�1 � � � w�L

w1 w0
. . .

...
...

...
. . . w0

...
...

. . .
...

wM�1 wM�2 � � � wM�1�L
377777777775

: (6.37)

We will try to fit the matrixW to a subspace of the space CM created by the firstL eigenvectors

of �. This fitting may be accomplished by minimizing the following criterion:

min

Q;W e

kW � VQk2

F ; (6.38)

where k:kF denotes the Frobenius norm of a matrix (kAk2

F = tr(AHA)), Q 2 C(L+1)�(L+1) and

V is a matrix containing the L+ 1 first eigenvectors of �:

V = [V1 � � �VL+1] : (6.39)

Minimization w.r.t. Q only, yields:

Q = (VHV)�1VHW : (6.40)

The problem (6.38) now becomes:8<: min

W e

kP?
VWk2

F

s:t:kW ek2
2 = 1

=
8<: min

W e

trfWHP?
V Wg

s:t:kW ek2
2 = 1 :

(6.41)

Noting that

trfWHP?
V

Wg = tr(WHW)� trfWHPVWg ;

the problem (6.41) may be written as:

max

W e

trfWHV(VHV)�1VHWg

= max

W e

F (W ;V) = trfWHVVHWg :

(6.42)
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The quantity F (W ;V) can be written as:

F (W ;V) = W eH

24 0L�(L+1)

V

3524 0L�(L+1)

V

35H W e+

+W eH

26664

0L�1�(L+1)

V

01�(L+1)

37775
26664

0L�1�(L+1)

V

01�(L+1)

37775
H

W e + � � �+

+W eH

24 V

0L�(L+1)
3524 V

0L�(L+1)
35H W e ;

(6.43)

which gives the following expression for (6.42):

max

W e

W eH(
L+1X

i=1


i

H
i )W

e ; (6.44)

where


i =

26664

0(L�i+1)�(L+1)

V

0(i�1)�(L+1)

37775

The solution to (6.44) is:

W e = max eigenvector of � =
L+1X

i=1


i

H
i : (6.45)

WhenL is known, (6.45) will give the optimal ZF equalizer (in the absence of additive noise).

6.4.3 Discussion

The analysis presented in this section has thrown light to the mechanism that provokes the

singularity of the matrix R: clearly, it is the existence of ZF equalizers that are shifted versions

of the same FIR equalizer that is responsible for the singularity of the matrix and therefore

for the existence of undesired solutions. The fact that we have been able to develop a method

that allows for the determination of the correct solution when the order mismatch is known,

by taking into account different shifted versions of eigenvectors is also indicative of this

phenomenon. Not astonishingly, the misbehaviour of the CMA 2-2 when used with finite

length equalizers has also to do with the positioning of the strongest equalizer tap 1. Our

work has revealed the same phenomenon by its reflection to the singularity of the matrix R.

The fact that the order mismatch L needs to be known for the above proposed subspace-

fitting method may give rise the following question: if L was to be known, then why not

1In [LD94] it is proven that within a cone that preserves the position of the strongest equalizer tap, the CMA

2-2 is convex. In [BZA94] and in [VAK93], globally convergent methods have been proposed by constraining the

position of the strongest tap to remain fixed.
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use from the beginning the correct equalizer length? The answer to this is that in practical

implementations the equalizer length is usually fixed. We can then proceed as follows: after

the convergence of �, one may apply (in a batch mode) the subspace-fitting method given

above, for different values of L, and choose by trial and error the one that gives the best

performance.

6.5 Computer simulations

The above claimed theoretical performance of the proposed methods has been verified

through computer simulations. The following cases have been considered.

6.5.1 The correctly parameterized case

In the case of all-pole noiseless channels of the same order as the equalizer, as expected,

the optimal (ZF) equalizer was obtained with the help of (6.20) in all cases (irrespective of

initialization) by using either an adaptive (6.22), (6.23) or a batch technique (6.13), whereas the

CMA converged as well to other equalizer settings for some initializations (ill-convergence).

Figure 6.5 shows a comparative simulation that verifies this fact. In the left part, the starting

and ending points of the equalizer setting are shown for the bilinear method implemented

with the LMS algorithm, whereas in the right part the corresponding figure is shown for the

standard CMA algorithm. On may note how the bilinear method converges to its unique

optimal setting whereas the CMA (as already seen in chapter 2) may end up (depending on

its initialization) on two undesired local minima. The channel used is an all-pole filter with

coefficients [c0 c1] = [1 0:25] and 40 different initializations on a circle of radius 2 are used.
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Figure 6.5: Comparative simulations for the noiseless case
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Figure 6.6: A simulation for the over-parameterized case

6.5.2 Noiseless over-parameterized case: subspace fitting technique

In the case of noiseless AP(N � 1) channels and an over-parameterized equalizer FIR(M � 1),

M = N + L > N , the optimal (ZF) equalizer was obtained with the help of (6.45) instead of

(6.20). This of course implies knowledge of L. An example of this performance is shown in

figure 6.6, where the equalizer input process is AR of order 4, whereas the equalizer order

is 6 (the roots of the corresponding polynomial are shown on the figure). We use an LMS

algorithm and the eigendecomposition method mentioned in section 4, considering the order

mismatch (L = 2) to be known. The fact that the algorithm converges to its optimal setting

verifies the success of our subspace-fitting method.

6.5.3 FIR noisy channels

The standard technique

In the case of FIR channels, the method is sensible to the choice of the equalizer length, as

already explained. However, for a given length, one can still use (6.45) for different values

of L ranging from 0 to M � 2, and then choose the best among the M � 1 derived equalizers

by evaluating for each the constant modulus criterion and choosing the one that best satisfies

it. In our simulations, there was always one among the equalizers that sufficiently opens

the system’s eye, provided of course that the equalizer’s length is long enough to be able to

approximate well the channel’s inverse. It was also observed that the influence of additive

white Gaussian noise resulting in an SNR up to 20dB did not in general cause serious damage

to the obtained solution. A realistic simulation is shown in the upper and lower part of figure

6.7 where one may see the evolution of the closed-eye measure of a linear noisy (SNR=30
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Figure 6.7: Comparative simulations for the noisy FIR case

dB) communications system using the algorithm in (6.23) (� = 1) and CMA, respectively.

The channel’s impulse response is [1 0:6 0:36] and an equalizer W of 8 taps is used (28 taps

for �). One may see how the opening of the system’s eye may be achieved for 2 different

initializations by using a bilinear algorithm, while CMA gets trapped by a local minimum

for one of these initializations. The successful performance of the bilinear technique has of

course to do with the fact that the number of taps used matches well the length of the impulse

response of the channel inverse.

The bilinear rank-1 technique

We have also tested the bilinear rank-1 approach (6.28). We considered a FIR(1) channel with

impulse response [c0 c1] = [1 0:5] and an equalizer of length 2. Additive white Gaussian noise

(SNR=30dB) is added to the channel output. Figure 6.8 shows the convergence trajectories

for 30 different initializations on a circle of radius 1. The algorithm was run over 3000

iterations for each initialization, and we have plotted the equalizer setting every 30 iterations.

The stepsize used is � = 0:01. Note that the algorithm converges only to one of the two
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Figure 6.8: A simulation of the bilinear rank-1 algorithm

symmetrical settings, despite the fact that it is not proven to be globally convergent and

despite the presence of the additive noise.

6.6 Conclusions and further discussion

In this chapter we have presented a new, namely, a bilinear formulation for the problem of

equalization of the CMA 2-2 type. This formulation has allowed us to express in a different

way the CMA 2-2 cost function and offers the advantage of leading to globally convergent BE

techniques.

The same formulation has been independently presented in literature during the last

two years. In [JWC92], the bilinear formulation has been introduced (under the name of

“Kronecker product” Godard equalizer), however the problem of over-parameterization and

methods to overcome it have not been discussed there. The formulation also appears in

[VP94], where it is applied to a different context, namely to the setup of constant modulus

arrays. An interesting method based on eigenvalue decomposition is also presented there.

Finally, the concept appears also in [Kennedy94]. Interesting aspects related to the rank of

the matrix R appear also there, as well as a test to determine the singularity of the matrix.

This can be used to determine the order mismatch and then be combined with our subspace

fitting approach. In chapter 8 of the thesis we will also discuss the application of the bilinear

formulation to a multichannel context. The work contained in this chapter has partially

appeared in [PS93a] and [PS94c].
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Chapter 7

New blind techniques for

multichannel identification/

equalization

IN this chapter we analyze a multichannel setup for blind equalization. This setup is appli-

cable to the case of fractionally-spaced equalization and to the case of reception through an

antenna array. A review of some recent results in this domain is given. The important issue of

cyclostationarity in this context is presented and the identifiability of the multichannel setup

based only on Second Order Statistics (SOS) is discussed. We are interested in both linear and

Maximum Likelihood (ML) equalization. In the first category, we show how MMSE and ZF

equalizers can be obtained by multichannel linear prediction and discuss several related as-

pects. In the second, we propose ML techniques and analyze their performance by calculating

their corresponding Cramer-Rao bounds.

7.1 Introduction

In the first part of this thesis we have been interested in linear channels whose discrete-

time baseband equivalent corresponds to a single-input-single-output (SISO) system. Even

though this is a standard structure for a digital communication system, there exist other

setups also that correspond to either single-input-multiple-output (SIMO) or even multiple-

input-multiple-output (MIMO) systems. For example, consider first the typical i/o relation

for a linear channel with continuous-time impulse response h(t)

x(t) =

1X
i=�1

a(i)h(t� iT ) + v(t) : (7.1)
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This equation (if one ignores the additive noise v(t)) corresponds to a SISO continuous-time

signal x(t). As we saw in the introduction of the first part of the thesis, the sampling of the

received continuous-time signal at the symbol rate 1

T

results in the following discrete-time

equivalent of the above i/o relation 7.1) 1 :

x(k) =

1X
i=�1

a(i)h(k� i) + v(i) : (7.2)

An alternative way to sample the received continuous-time signal x(t) is to use a sampling

T

T

T/2

1

2  {x    }

{x    }

{x }
a i

h(t)

T/2

h

h

{x    }

{x    }
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   2  

  1
a i

{    }

{    }

Figure 7.1: T=2 fractional spacing

rate greater than the symbol rate 1

T

. This is the principle of fractionally-spaced equalizers

which are often used in practice. Consider for example a sampling rate of 2

T . In this case

one may separate the even from the odd samples of x(k) and write down the i/o relationship

corresponding to each one of these two discrete signals:

x1(k) =

1X
i=�1

a(i)h1(k � i)

x2(k) =

1X
i=�1

a(i)h2(k � i) ;

(7.3)

where fx1g; fx2g and fh1g; fh2g account for the even and odd discrete time received sequences

and impulse responses, respectively. A graphic way to represent (7.3) can be shown in figure

7.1. As can be seen in the figure, an equivalent way to obtain the two discrete sequences

fx1g and fx2g is to implement a “parallel” configuration in which the input sequence faig is

passed through the two discrete channel impulse responses that consist of the even and odd

samples of the discrete-time impulse response fhig. Therefore the fractional spacing results

to a SIMO structure, or in other words in a multichannel setup.
1In this chapter indices will be denoted with parentheses instead of subscripts. Subscripts will be reserved to

denote the phase of a channel or an equalizer.
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A similar multichannel setup may arise when we consider reception through multiple

antennas. In this case, the different antennas receive different continuous-time waveforms,

due to the different physical channels that separate them from the transmitter. However

after sampling (e.g. at the symbol rate) the corresponding discrete sequence of each receiving

antenna can be modeled as the output of a discrete time impulse response. An example for

the case of two receiving antennas can be shown in figure 7.2. The same SIMO structure

that models fractional spacing is therefore also suitable for the modeling of symbol-rate

transmission through several antennas. Both operations mentioned above, i.e. fractional

1

2 {x    }

{x    }

{a }

{x    }

{x    }2 

    1
H

H

1

2 

{a }

Figure 7.2: Another SIMO setup: multiple antennas

spacing and reception through an antenna array can be viewed as different ways to introduce

some diversity when receiving the continuous-time waveform. In the case of fractional spacing

the diversity is due to the fact that we sample at a higher rate than the one strictly needed for

the retrieval of the transmitted information, whereas in the case of antenna array reception, the

diversity is due to the fact that we receive multiple waveforms. The introduction of diversity

at the receiver of a communication system has been shown to have several advantages, for

example fractional-spaced receivers allow for better equalization for a fixed equalizer length,

antenna array reception allows for the estimation of the directions of arrival (DOA) of the

received waveforms, etc. In this part of the thesis we will be interested in the influence

of such diversity on the issues of blind identification and equalization of a communication

channel. As will be shown in the sequel, a key element of the multichannel setup is the issue

of stationarity of the received signal, which is treated in the next section.

7.2 Fractional spacing and stationarity

7.2.1 Stationarity and cyclostationarity

We will confine ourselves to fractionally-spaced receivers (the extension of the results to the

case of antenna arrays being straightforward). We consider uniform sampling at a rate m
T ,
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where m > 1 is an integer that we call Oversampling Factor (OF). This corresponds to m

received phases (discrete sequences), each one of which is described by

xn(k) =

1X
i=�1

a(i)hn(k � i) + vn(k) ; n = 1; : : : ; m ; (7.4)

where fhn(i)g corresponds to the nth phase of the channel impulse response h(t). The

degenerate case of symbol-rate sampling corresponds to the choice m = 1 in (7.4). We are

interested in the deconvolution problem of finding the transmitted sequence faig from the

samples of the m received phases fxng ; n = 1 : : : ; m. A particularity of the deconvolution

problem as appearing in (7.1) is that x(t) is a cyclostationary signal. This is due to the kind of

linear modulation we have assumed (h(�) is a narrow-band pulse) and to the stationarity of

both the discrete input process faig and additive noise v(t).

At this point we give some definitions needed for the characterization of cyclostationary

signals as given by Gardner [Gar94], [Gar91].

Cyclic correlation function: The cyclic correlation function R�x(�) of a deterministic signal

x(t) is defined as

R�
x(�) = lim

T!1

1

T
Z T

2

�

T

2

x(t+
�

2

) x�(t� �

2

) e�j2��t dt : (7.5)

In (7.5) � denotes the frequency and � the time lag at which R�
x(�) is evaluated. In the case of

stochastic processes we use the following modified definition for R�x(�):

R�
x(�) = lim

T!1

1

T
Z T

2

�

T

2

E(x(t+
�

2

) x�(t� �

2

)) e�j2��t dt : (7.6)

The cyclic correlation function is a measure of cyclostationarity of a signal according to the

following definition:

Second order cyclostationarity: x(t) is said to be second-order cyclostationary iff its cyclic

correlation function R�
x(�) is not identically zero for all � 6= 0. All nonzero values of � for

which R�
x(�) 6= 0 are called cycle frequencies. The set of all cycle frequencies is called cycle

spectrum.

In the sequel we will use the term “cyclostationary” instead of “second-order cyclostation-

ary”. Qualitatively, a cyclostationary signal is a random process whose statistical parameters

vary in time with single or multiple periodicities. A signal x(t) for which R�x(�) is identically

zero for all � 6= 0 will be called “purely stationary”. We are interested in the stationarity of

the continuous-time received signal of a linear communication channel as given by (7.1). We

assume that faig is a white discrete-time stochastic process with variance �2

a (and therefore

wide-sense stationary). The additive noise v(t) is also assumed to be wide-sense stationary
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(not necessarily white) with varianceRv(0) = �2

v . Under the above assumptions we can prove

the following lemma:

Lemma 7.1 The continuous-time stochastic process x(t) defined in (7.1) is a cyclostation-

ary signal.

Proof: (see also [Din94])

From (7.6), it is clear thatR�x(�) is the Fourier coefficient at frequency � of the autocorrelation

function Rx(t1; t2) evaluated at t1 = �

2 ; t2 = � �

2 . For x(t) as in (7.1) we have

Rx(
�

2 ;�
�

2 ) = E
0@( 1X

i=�1
a(i)h(t� iT +

�

2

) + v(t+
�

2

))(
1X

k=�1
a�(k)h�(t� kT � �

2

) + v(t� �

2

))
1A

=

1X
k=�1

�2

a h(t � kT +
�

2

)h�(t� kT � �

2

) + Rv(
�

2

;��

2

) ;

and therefore

Rx(
�

2

;��

2

) = Rx(
�

2

+ T;��

2

+ T ) : (7.7)

Hence Rx(
�

2 ;�
�

2 ) is periodic with fundamental period T . This periodicity implies that

Rx(
�

2 ;�
�

2 ) has non-zero frequency content at frequencies m
T

, m being an integer. There-

fore, the Fourier coefficient of Rx(
�

2 ;�
�

2 ) (which is R�
x(�)) is nonzero at all frequencies � = m
T

.

This means that x(t) in (7.1) is cyclostationary with period T . Its cycle spectrum is the discrete

set f�m = m
T
; m = 1; 2; : : :g. 2

The cyclostationarity of x(t) in (7.1) is of great importance in what concerns the deconvo-

lution problem we cited above, as will be clear in the sequel. Before that, it is interesting to see

how the cyclostationarity of x(t) reflects in the stationary characteristics of sampled versions

of x(t). We will prove the following two lemmas:

Lemma 7.2 The discrete sequence fxig obtained by sampling x(t) at the symbol rate 1

T

is

purely (wide-sense) stationary.

Lemma 7.3 The discrete sequence fxig obtained by sampling x(t) at the rate m
T

, m > 1 is

cyclostationary.

Proof:

We consider sampling of x(t) with sampling period Ts, where Ts obeys

Ts =
T

m

: (7.8)
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This results in the discrete sequence fx(nTs)g. In the case of discrete-time stochastic processes

the cyclic correlation function is defined as [Gar94]

R�
x(kTs) = < rx(kTs) e�j2��nTs > e�j��kTs ; (7.9)

where the discrete autocorrelation function rx(�) is defined as

rx(kTs) = E(x(nTs + kTs)x
�(nTs)) ; (7.10)

and < � > denotes discrete-time averaging. In order to determine whether fx(nTs)g is

cyclostationary or purely stationary we have to find if there exist nonzero frequencies � 6= 0

for which R�
x(kTs) is not identically zero. With the employed notation, (7.1) takes the form

(in the absence of noise)

x(nTs) =

1X
i=�1

a(iT ) h(nTs � iT ) : (7.11)

The autocorrelation rx(kTs) can then be found to be given by

rx(kTs) =

1X
i=�1

�2

a h((n+ k)Ts � iT )h�(nTs � iT ) : (7.12)

Therefore frx(kTs)g is periodic with period T and contains m samples into each period. Now

consider the quantity < rx(kTs) e�j2��nTs > appearing in (7.9). As frx(kTs)g contains m

(due to (7.8)) samples during a period of length T , this quantity equals
< rx(kTs) e�j2��nTs > =

1

m

m�1X
k=0

rx(kTs)e
�j2��nTs : (7.13)

If one expresses the frequency � as

� =
k

T

; (7.14)

one recognizes that

< rx(kTs) e�j2��nTs > = fF(rx)g(
n

T
) ; (7.15)

where F(rx) denotes the DFT of rx(kTs). In other words, the quantity < rx(kTs) e�j2��nTs >

equals (up to a scalar factor) the coefficient of the DFT of rx(kTs) corresponding to the fre-

quency n
T

. When we have sampling at the symbol rate, m = 1; T = Ts and there is only

one sample of the DFT in one period, corresponding to the zero frequency. In this case the

quantity < rx(kTs) e�j2��nTs > is nonzero only for � = 0 and this will hold also for R�x(kTs).

Therefore the discrete process fx(nT )g is purely (second-order) stationary. This concludes

the proof of lemma 7.2. 2

On the other hand, when m > 1, there exist apart from � = 0 another m � 1 samples

of the DFT in one period (� = k
T
; k = 1; : : : ; m � 1), which correspond to nonzero values

for R�
x(kTs). Therefore when m > 1 the discrete process fx(nTs)g is cyclostationary. This

concludes the proof of lemma 7.3 2

A graphic representation of the above interpretation can be found in figure 7.3.
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Figure 7.3: Time-frequency representation of the cyclostationary and stationary autocorrela-

tion functions

According to lemmas 7.2 and 7.3 it is clear that the value of the OF is of critical importance

in what concerns the stationarity of the oversampled signal: this will be purely stationary

when OF = 1 but it will be cyclostationary when OF > 1. This fact is a key-element for the

identification of the channel based on its output statistics, as will be made clear in the sequel.

7.2.2 Vector stationarity

A different way to represent the output of the fractionally-spaced channel is the following:

instead of considering the output to be scalar, we may group together in a vector of m

entries the m consecutive samples that belong to the same symbol period ( these are the m

discrete-time phases). We therefore define the vector output xk as

xk = [x1(k) x2(k) � � �xm(k)]T : (7.16)

We now give the following definition:

Vector-stationarity: We call a vector process (wide-sense) stationary (in the vector sense),

when the scalar process corresponding to each of its entries is a (wide-sense) stationary pro-

cess.

In the sequel we will use the term “vector-stationary” instead of “wide-sense vector sta-

tionary”. According to the following definition and due to the stationarity of each of the

phases of (7.4) we have the following lemma:

Lemma 7.4: The vector output of the communication channel xk defined in (7.16) is sta-

tionary in the vector sense.
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The lemmas stated in this section are summarized in figure 7.4. As it will be clear in the

sequel, these stationarity properties have to do with the identifiabilty of the over-sampled

channel from output measurements.
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x(t)  cyclostationary

x(t)  cyclostationary

1/T

1/T

1/T

m
 . .

m/T

x(kT/m) cyclostationary

x(kT)   stationary

(kT)

vector - stationary

x
 .
 .

.

.

.

.

Figure 7.4: The effect of sampling and oversampling on the stationarity of x(t)

7.3 Channel identifiability from output measurements

7.3.1 Phase ambiguity and determinancy with SOS

We saw in chapter 2 that a necessary condition for the identifiability of a linear channel

sampled at the symbol rate from its output SOS is that the channel should be minimum

phase. This conclusion has been drawn by the fact that the PSD of the output contains no

phase information. For example, if the channel and equalizer transfer functions are denoted

by H(f) and F (f) respectively, then if one tries to equalize the PSD’s of the input and the

output of the overall system channel-equalizer, one gets

jH(f)j jF (f)j = 1 ; (7.17)

due to the i/o relation for the overall system G(f) (G(f) = H(f)F (f)):

Syy(f) = jG(f)j2 Saa(f) : (7.18)

According to equations (7.17),(7.18), only the magnitude of the transfer function of the ideal

equalizer can be identified from the output PSD and this reflects the fact that the PSD itself

carries no information about the channel phase. The phase can be uniquely identified only in

the special case that the channel is known to be MP. The fact that the PSD of a stationary signal

contains all information about its second-order statistics (SOS) has lead to the conclusion that

equalization (or identification) of a NMP system is not possible when only the SOS of the
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output are given. This is true for stationary signals; however in the case of cyclostationary

signals, all second-order statistical information is not contained in the PSD. In this case,

important information is also contained in the SCD of the cyclostationary signal. The i/o

relation of the system G(f) in terms of SCD is (see [Gar94])

S�yy(f) = G(f +
�

2

) G�(f � �

2

) S�aa(f) ; (7.19)

where the SCD S�xx of a signal x(t) is defined as

S�xx(f) = S�x (f) =

1X
�=�1

R�
x(�) e

�j2�f� : (7.20)

The important feature of eq. (7.19) is that, in contrast to (7.18) which shows the absence of

phase information in the PSD, (7.19) shows the existence of phase information in the SCD of

y, provided that S�yy is nonzero for at least one frequency � 6= 0. But this is the condition for a

cyclostationary signal!2 This implies that identification (or equalization) of a NMP system is

not a priori impossible based exclusively on SOS, provided that the received signal is cyclo-

stationary. Such a case may arise as we saw in the previous section when the received signal

is oversampled. We therefore have the following lemma:

Lemma 7.5: When the received signal of a linear communication channel is oversampled,

information about the channel phase is contained in the SCD of the sampled process and

therefore in its SOS.

A theoretical way to identify completely the channel transfer function can be found for

example in [Din94]. This proves the identifiability of the oversampled channel based on SOS.

7.3.2 Identification by vector - spectral factorization

Another point of view is the following (see also [Lou94]). Consider the vector output xk

defined in (7.16). As already noted, this is a stationary vector-process. For a stationary m� 1

vector (x), its correlation matrix is defined as

Rxx = E(xxH) ; (7.21)

and the corresponding power spectral density is also a m�m matrix each element of which

is the Fourier transform of the corresponding element of Rxx:

Sxx(f) = F(Rxx) : (7.22)

The stationary output vector xk is a discrete-time process and therefore we use the z instead

of the Fourier transform. The i/o relationship of the SIMO system shown in figure 7.4 in

2This condition also explains why no phase information can be extracted from SOS of a purely stationary signal,

even if its SCD is used, since for � = 0 (7.19) takes the same form as (7.18).
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terms of the PSD of the oversampled received signal is given as

Sxx(z) = H(z)HH(z��) Saa(z) ; (7.23)

where H(z) is the z-transform of the multichannel h(k):

h(k) =
26664
h1(k)

...

hm(k)
37775 ; (7.24)

(H(z) =
N�1X

k=0

h(k)z�k : FIR assumption). In (7.23) the input power spectral density Saa is

scalar since the input is scalar too. According to (7.23) Sxx is an m �m polynomial spectral

density of rank 1. Before giving an important theorem that has to do with the identifiability

of the multichannel from its PSD, we need to give the following definition:

Minimum phase property in the vector sense A m � 1 rational transfer function K(z) is said

to be minimum phase iff there exists no z; jzj > 1 for which all the m entries of K(z) become

simultaneously zero:

K(z) 6= 0m�1 8z 2 fz : jzj > 1g : (7.25)

The following spectral factorization theorem has been stated for the general case of a rational

m�m spectral density:

Theorem 7.1: Consider an m �m rational spectral density matrix Sxx of rank 1. Then there

exists a rationalm�1 transfer matrix K(z) that is causal, stable, minimum-phase, unique up to

a unitary constant, of minimal McMillan degree 3 deg(K) = 1
2deg(Sxx) such that it factorizes

Sxx as

Sxx = K(z) KH(z��) : (7.26)

Applying the above theorem to the PSD Sxx of the multichannel h(k) (which has a polynomial

transfer function in the FIR case) we obtain the following theorem:

Theorem 7.2: If the multichannel h(k) is minimum phase (in the above sense), the factor-

ization of the output spectral density Sxx (according to (7.23) and theorem 7.2) gives the

channel transfer function H(z) up to a complex constant:

K(z) = �� e
j� H(z) : (7.27)

The importance of this theorem is that it proves explicitly the identifiability of the SIMO system

described above based on second order statistics of the output: the channel is identified as

3See [Lou94] for more details.
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the spectral factor of the output multichannel PSD. This is therefore a method to identify

the multichannel transfer function in the frequency domain. Eq. (7.26) is a counterpart of

(7.19) in the following sense: (7.19) shows the existence of phase information in the PSD

of the cyclostationary scalar output x(kTs), whereas (7.26) shows the existence of channel

information in the PSD of the stationary vector x(kT ). These are two different ways to

prove the identifiability of the multichannel from SOS of its output. One is based on scalar

cyclostationarity, the other on vector stationarity. In fact, theorem 7.2 has also the following

interesting interpretation: in the case of a scalar stationary process (e.g. the channel output

sampled at the symbol rate), the channel can be identified from SOS up to its minimum-phase

equivalent, i.e. SOS-based identification is only achieved if it is minimum phase. According

to theorem 7.2, this property is immediately generalized in the case of a stationary vector

output: the multichannel can be identified from its output PSD only if it is minimum-phase in

the sense of the above definition. One might think that due to that, nothing has been gained

from the oversampling of the channel output in the sense that the MP requirement is still

there. However one must realize that the MP requirement is much less strong in the vector

than in the scalar case. For example, if the different channels hi(k) ; i = 1; : : : ; m have no

zeros in common (i.e. there exists no z such that all entries of H(z) are simultaneously 0),

then it is guaranteed that the multichannel is MP! This is another important feature provided

by theorem 7.2: it provides a necessary condition for multichannel ID based on output SOS.

The above identification results have been given in the frequency domain. In the sequel

we will see how multichannel identification can be achieved in the time domain.

7.4 Zero Forcing equalization of the SIMO channel

7.4.1 Fractionally-spaced equalization

At this point we introduce the notation and the basic assumptions that will be used through

the rest of this chapter.

The continuous-time channel h(t) is assumed to be FIR with duration of approximatively

NT . The oversampling factor (OF) is assumed to be m and the sampling instants for the

received signal x(t) in (7.1) are t0+T (k+ j
m
) for integer k and j = 0; 1; : : : ; m�1. t0 represents

the initial sampling time instant. In principle, it suffices to introduce a restricted t0 2 [0; T ) to

be fully general. However, we shall take t0 = t00 +dT where t00 2 [0; T ) in order to incorporate

also an inherent delay due to transmission. d is chosen as the smallest integer such that

�
h(t00 + dT ) � � �h(t00 + (d+

m� 1

m

)T )
�
6= 0 : (7.28)

The channel being causal implies that d will be nonnegative.

We introduce now the polyphase description of the received signal, the channel discrete-time
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impulse response and the additive noise, respectively, as follows

xj(k) = x(t0+T (k +

j
m
))

hj(k) = h(t0+T (k +

j
m )) j = 0; 1; : : : ; m�1 ;

vj(k) = v(t0+T (k+

j
m
))

(7.29)

where k is an integer. The oversampled received signal can now be represented in vector

form at the symbol rate as

x(k) =

N�1X
i=0

h(i)ak�i + v(k) = HNAN (k) + v(k) ; (7.30)

where x(k);h(k); v(k) are defined as

x(k) =
26664
x1(k)

...

xm(k)
37775 ; v(k) =
26664
v1(k)

...

vm(k)
37775 ;h(k) =
26664
h1(k)

...

hm(k)
37775 : (7.31)

The sub-channels are defined as
Hi = [ hi(0) � � � hi(N � 1) ] ; (7.32)

and the channel matrix HN is a m�N matrix defined as

HN =

26664
h1(0) � � � h1(N � 1)

... � � �

...

hm(0) � � � hm(N � 1)
37775 =

�

h(0) � � �h(N�1)
�
=

26664
H1

...

Hm

37775 : (7.33)

Finally, we denote by AN(k) the N � 1 symbol regressor:

AN (k) =
h
aHk � � �aHk�N+1

iH
: (7.34)

We formalize the finite duration NT assumption of the channel as follows

FIR assumption: (single user case)4 h(0) 6= 0, h(N�1) 6= 0 and h(i) = 0 for i < 0 or

i � N .

In order to equalize the fractionally-spaced channel, we will use a fractionally-spaced equal-

izer so that an m=T -rate equalizer corresponds to each sub-channel. The channel-equalizer

structure in the case of an oversampling factor m = 2 will then look as in figure 7.5.

In the frequency domain, the z-transform of the channel response at the sampling rate m
T

is given as

H(z) =

mX
j=1

z�(j�1)Hj(z
m) : (7.35)

4A generalized FIR assumption for the case of multiple users (MIMO system) can be found in [Slo94b].
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Figure 7.5: Polyphase representation of the T=m fractionally-spaced channel and equalizer

for m = 2.

Similarly, the z-transform of the fractionally-spaced (Tm ) equalizer can also be decomposed

into its polyphase components:

F (z) =

mX
j=1

z(j�1)Fj(z
m) : (7.36)

Although the equalizer defined by (7.36) is slightly noncausal, this does not cause a problem

because the discrete-time filter is not a sampled version of an underlying continuous-time

function. In fact, a particular equalizer phase z(j�1)Fj(zm) follows in cascade the correspond-

ing channel phase z�(j�1)Hj(z
m) so that the cascade Fj(zm)Hj(z
m) is causal. We assume the

equalizer phases to be causal and FIR of length L:

Fj(z) =
L�1X

k=0

fj(k)z
�k; j = 1; : : : ; m: (7.37)

So far we have obtained multiple received signals by unraveling the multiple phases of the

oversampled continuous-time received signal. As already mentioned, an alternative way to

arrive at the same picture as in figure 7.5 is to have several antennas. Each of the antenna

signals can then be oversampled or not. Hence, the total number of received signals is the

product of the number of antennas times the oversampling factor. Some of the frequency-

domain interpretations we have given above and that will follow below only apply to the

case of an oversampled signal coming from one antenna only.

The SIMO deconvolution problem now reduces to the calculation of the optimal equalizer

coefficients fj(k); j = 1; : : : ; m; k = 0; : : : ; N � 1. In the next subsection we are inter-

ested in the noiseless case. The optimal equalizer then is the one that completely eliminates

intersymbol interference i.e. a zero forcing equalizer.

7.4.2 FIR Zero-Forcing (ZF) Equalization

We introduce first the following notation: f(k) is a 1 �m vector that contains the kth sample

of each one of the m equalizer phases and FL a 1� Lm vector that contains the L consecutive

164 CHAPTER 7. MULTICHANNEL BLIND IDENTIFICATION AND EQUALIZATION

vectors f(k) ; k = 0; : : : ; L� 1:

f(k) =

�
f1(k) � � �fm(k)

�

FL =

�

f(0) � � �f(L�1)
�
:

(7.38)

We also introduce the following multichannel z-transforms of the channel and the equalizer:

H(z) =

N�1X
k=0

h(k)z�k
F(z) =

N�1X
k=0

f(k)z�k :
(7.39)

Then the z-transform ^A(z) of the equalizer output f^akg is given by

^A(z) = F(z) H(z) A(z) : (7.40)

In order to achieve zero-forcing equalization in the absence of noise, we should have ^A(z) =

A(z), or if we allow for a constant discrete delayn; ^A(z) = A(z) z�n which gives the following

ZF condition for the equalizer parameters:

F(z)H(z) = z�n ; n = 0; 1; : : : ; N+L�2 : (7.41)

Eq. (7.41) is the ZF condition in the z-domain. The counterpart of (7.41) in the time domain is

f � h = �(k � n) ; (7.42)

where � denotes convolution. By expressing this convolution as a matrix-vector product,

(7.42) takes the form
[f(0) � � � f(L� 1)]

26666664

h(0) � � � h(N � 1) 0m�1 � � � 0m�1

0m�1 h(0) � � � h(N � 1)

. . .
...

...
. . . . . . . . . . . . 0m�1

0m�1 � � � 0m�1 h(0) � � � h(N � 1)
37777775 =

26666666666666664

0
...

0

1

0
...

0

37777777777777775
T

;

(7.43)

or equivalently,

FL TL (HN ) = [0 � � �0 1 0 � � �0] (7.44)

where the 1 is in the n+1st position and we define TM (x) as a (block) Toeplitz matrix with M

(block) rows and

h

x 0p�(M�1)
i

as first (block) row (p is the number of rows in x).

(7.44) is a linear system of L+N�1 equations in the Lm unknowns f(0); : : : ; f(L� 1). For

the existence of a solution the system needs to be exactly or underdetermined, i.e. the number
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of equations needs to be equal to or greater than the number of unknowns in (7.44). This

imposes the following constraint to the length L of each equalizer phase:

L � L =

�
N � 1

m� 1

�
: (7.45)

The matrix TL (HN ) is a generalized Sylvester matrix (see Appendix 7.A) It can be shown that

for L � L it has full column rank if H(z) 6= 0; 8z or in other words if the Hj(z) have no zeros

in common (note that in this case the multichannel is MP and therefore it can be identified

from SOS according to theorem 7.2)). The same condition was given (in a different form) by

Tong et al. in [TXK94]

To find a ZF equalizer (corresponding to some delay n), it suffices to take an equalizer

length equal to L. Then there exists at least one solution that satisfies exactly the system of

equations (7.44). Every such solution therefore corresponds to a FIR ZF equalizer FL that

completely eliminates ISI! Therefore we have the following result:

Theorem 7.3: Under the FIR assumption, a ZF FIR equalizer can be found from (7.44) provided

that the equalizer length L satisfies (7.45) and that the channel phases Hj(z); j = 1; : : : ; m

have no zeros in common (in which case the multichannel H(z)will be MP in the vector sense).

The fact that there exist equalizers with a finite number of parameters that are ZF (com-

pletely eliminate ISI) seems to be an astonishing result because in the classical case of a SISO

discrete channel, it is well known that even in the absence of noise, a ZF equalizer needs to

be infinite-length, and is therefore not implementable in practice. This is due to the fact that

for an FIR SISO channel with transfer function H(z), the condition for ZF equalization in the

z-domain is

H(z) F (z) = z�n ; (7.46)

as compared to (7.46), which is the corresponding condition for the fractionally spaced channel

and equalizer setup. Two things are worth noticing in (7.46): the first is that the ZF equalizer

transfer function is the inverse of a polynomial, and therefore has an infinite number of terms.

Each one of these terms corresponds to a tap for the ZF equalizer. This is why in this case

there exists no ZF equalizer of finite length! The second is that the inversion of H(z) in (7.46)

is of course impossible if H(z) has zeros on the unit circle (this corresponds to a singularity

for the channel, or in other words to spectral nulls in the channel frequency response). In this

case ZF equalization is impossible, even if the equalizer length is infinite.

On the other hand, the “inversion problem” appearing in (7.46) is somewhat different:

by decomposing the channel and equalizer in their polyphase components, eq. (7.46) can be

written as

mX
i=1

Hi(z) Fi(z) = z�n : (7.47)
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This expression shows why the ZF condition can be exactly satisfied in the multichannel case

with finite length equalizers. There is no need any more to invert a polynomial: in (7.47) the

different phases of channel and equalizer are coupled in such a way so that the overall sum

can be a constant each phase being a polynomial with a finite number of terms. (7.47) has

more degrees of freedom than (7.46) in the sense that there are more than one polynomials

to determine, but on the other hand it requires less (7.46) in the sense that it does not require

the inversion of a polynomial. So the redundancy that we introduced by oversampling the

received signal has resulted in the forming of a multi-equalization problem which allows for

perfect equalization with a finite number of parameters.

Eq. (7.47) is known as the “Bezout” equation, and it is known that the condition for it to

be satisfied is that the different channel phases fHig; i = 1; : : : ; m have no zeros in common
5 . Therefore we find again the same identifiability condition that was obtained in the time-

domain. This condition now takes the place of the “no zeros on the unit circle” condition that

has to be satisfied by the channel in the SISO case. This shows yet another astonishing result

for the oversampled case: even if one of the channel phases is such that it has zeros on the

unit circle, if these do not coincide with those of any other channel phase, ZF FIR equalization

is still possible!

7.4.3 An equivalent SISO setup using upsampling and downsampling

In this section we will be interested in an alternative representation of the SIMO setup of

the fractionally spaced channel and equalizer. Our point of departure is the following: does

there exist a single-input single-output setup equivalent to the SIMO setup described in the

previous sections such that the transmission line consists of one only phase instead of being

split in m channel-equalizer phases? And in this case, how does the transfer function of this

setup compare with the m phases of the SIMO setup?

The answer to this question resides in the area of multirate filter banks. We therefore present

at this point some key facts of multirate filter banks that will be applicable to our SIMO setup.

We first define the functions of upsampling and downsampling as follows:

The upsampled by a factor L version of a discrete signal x(kT ) is defined as

xu(k Tu
L) = xu(k (

T
L

)) =
8<: x( kLT ) if k mod L = 0

0 else :

(7.48)

The downsampled by a factor M version of a discrete signal x(kT ) is defined as

xd(k T d
M) = xd(k (TM)) = x(kM T ) : (7.49)

5The Bezout equation can be seen as a counterpart for polynomials of the following equation analyzed by the

Greek mathematician Diophantos for real numbers: the equation

P
m
i=1 �ixi =  ( 6= 0) has a solution even if

some of the�i are 0, provided that they are not all simultaneously 0. On the contrary, the equation�x =  ( 6= 0)

is of course impossible if � = 0!
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Figure 7.6: The transmitting part of the SIMO setup and an equivalent representation

The corresponding relations in the z� domain are

Xu(z) = Z(xu(k T u
L)) = X(zL) ; (7.50)

and

Xd(z) = Z(xd(k T d
M)) =

1

M

M�1X
i=0

X(wiz

1

M ) ; (7.51)

respectively, where

w = e�j

2�
M .

In the sequel, we assume for simplicity that m = 2 (however the results that will be pre-

sented are valid for any integer m > 2). Consider first the figure 7.6. Figure 7.6(a) shows

the transmitting part of the SIMO system, namely the splitting of the input into the two

channel phases. Figure 7.6(b) shows a similar SIMO structure which uses upsampling and

downsampling elements and in which instead of the two channel phases, one only channel

(having the z� transform of the channel at the sampling rate 2=T ) is used. 6 We will now

prove the following lemma:

Lemma 7.6: The setup of figure 7.6(a) is equivalent to the setup of figure 7.6(b).

Proof:

For the setup of figure 7.6(b) we have (by making use of (7.50) and (7.51)) the following i/o

relationships

6The circled arrows in the figures of this section denote upsampling or downsampling devices, depending on

whether the arrow points upwards or downwards, respectively. The up(down)-sampling factor is indicated next

to the arrow.
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Figure 7.7: The receiving part of the SIMO setup and an equivalent representation

U(z) = A(z2)

X
0
(z) = (H1(z2) + z�1H2(z2)) U(z)

X
0

1(z) =

1
2 (X

0
(z1=2) +X

0
(�z1=2))

X
0

2(z) =

1
2 (X

00
(z1=2) +X

00
(�z1=2)) = 1

2 (z

1=2X
0
(z1=2)� z1=2X

0
(�z1=2)) ;

which gives for the two outputs X
0

1(z) and X
0

2(z):

X
0

1(z) =
1
2 (A(z)(H1(z) + z�1=2H2(z)) + A(z)(H1(z)� z�1=2H2(z)))

X
0

2(z) =

1
2 z

1=2 (A(z)(H1(z) + z�1=2H2(z))�A(z)(H1(z)� z�1=2H2(z))) ;

and therefore

X
0

1(z) = A(z) H1(z)

X
0

2(z) = A(z) H2(z) :

(7.52)

Now the i/o relations of (7.52) are exactly the same for figure 7.6(a). Therefore the two setups

are equivalent. This concludes the proof. 2

An equivalent representation can also be found also for the receiving part that contains

the equalizer phases as depicted in figure 7.7(a). In a similar way as for the transmitting part,

the following lemma holds:

Theorem 7.7: The setup of figure 7.7(a) is equivalent to the setup of figure 7.7(b).

Proof:

For the setup of figure 7.7(b) we have the following i/o relationships

X
00

1 (z) = X
0

1(z

2)

X
00

2 (z) = z�1X
00

2 (z

2)

X
000
(z) = (F1(z

2) + zF2(z

2)) (X
00

1 (z) +X
00

2 (z))

^A(z) = 1
2(X

000
(z1=2) +X

000
(�z1=2))
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which gives for X
000
(z):

X
000
(z) = X 0

1(z

2)F1(z

2) +X 0

2(z

2)F2(z

2) + z�1X 0

2(z

2)F1(z

2) + zX 0

1(z

2)F2(z

2) ; (7.53)

and therefore for the output ^A(z) :

^A(z) = X 0

1(z)F1(z) +X 0

2(z)F2(z) : (7.54)

The i/o relationship (7.54) is the same as the one corresponding to figure 7.7(a). Therefore the

two setups are equivalent. This concludes the proof. 2

As the setups in figures 7.6(a) and 7.7(a) correspond to the transmission and reception part of

the SIMO setup depicted in figure 7.5, it turns out that the series of the setups in figures 7.6(b)

and 7.7(b) is also equivalent to the setup of figure 7.5. It can be easily seen that the rightmost

part of the setup of figure 7.6(b) (the one that contains the downsampling and shift elements),

connected in series to the corresponding leftmost part of the setup of figure 7.7(b), is simply

equivalent to a channel with an ideal Dirac transfer function. Therefore it can be eliminated

from the series of the two setups. Figure 7.8 depicts the corresponding setting (in our case

m = 2). We therefore have the following theorem:

Theorem 7.4: The setup of figure 7.5 (for m = 2) is equivalent (in the absence of noise) to

the SISO setup of figure 7.8.

It is straightforward to verify that the same result holds for any integer oversampling factor

m > 2, leading to the following theorem:

     k  ak

vu
     k        a kk ^H(z)      F(z)m m

Figure 7.8: Fractionally-spaced channel and equalizer.

Theorem 7.5: The fractionally-spaced channel and equalizer corresponding to an integer over-

sampling factor of OF = m can be represented as in figure 7.8, where H(z) and F (z) are

defined as

H(z) =

nX
i=1

z�(i�1)Hi(z
m)

F (z) =

nX
i=1

zi�1Fi(z
m)

(7.55)
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The SISO setup of figure 7.8 is an appealing alternative to the poluphase representation

presented in the previous sections. It provides a scheme closer to the classical SISO symbol-

rate setup in that it employs a single transmission line. The oversampling aspect is now

present in the upsampling and downsampling devices, as well as in the construction of the

single phase channel and equalizer. In the degenerate case of no oversampling (m = 1), the

symbol-rate setup is immediately provided. Moreover, as will be shown in the sequel, this

setup allows for an interesting frequency-domain analysis. Before that, we examine first the

zero forcing equalization aspect in the light of the new setup.

Zero-forcing equalization

We require ZF equalization at the output of the setup of figure 7.8. This gives

^A(z) = A(z) z�n ; (7.56)

if we allow also for a delay n as in (7.41). Using again the identities (7.50) and (7.51) we get

for the case m = 2

^A(z) = 1
2(V (z

1=2) + V (�z1=2))

V (z) = (F1(z2) + zF2(z2))(H1(z2) + z�1H2(z2)) U(z)

U(z) = A(z2)

which gives combined with (7.51)

1
2f[(F1(z) + z1=2F2(z))(H1(z) + z�1=2H2(z))] + [(F1(z)� z1=2F2(z))(H1(z)� z�1=2H2(z))]g =

z�n ;

resulting to

H1(z) F1(z) + H2(z) F2(z) = z�n : (7.57)

Eq. (7.57) is, as expected, identical to the one derived for the setup of figure 7.5, since the two

setups have been shown to be identical. The above demonstration just shows an alternative

way to derive the Bezout equation (7.47) using multirate filter banks instead of a polyphase

structure. It can be shown that the Bezout equation is also derived from the setup of figure

7.8 for any integer oversampling factor m > 2. In the sequel we assume for simplicity a zero

delay (n = 0).

An interesting interpretation of the ZF condition in the light of the setup of figure 7.8 is the

following. We denote by G(z) the overall filter corresponding to the cascade of oversampled

channel and equalizer:

G(z) = F (z) H(z) : (7.58)

The equalizer output can be written in the z� domain as (m = 2)

^A(z) = 1
2 [V (z

1=2 + V (�z1=2)] = [G(z1=2A(z) + G(�z1=2)A(z)] ;
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which gives the following i/o relationship in terms of G(z).

^A(z) =

G(z1=2) + G(�z1=2)

2

A(z) : (7.59)

In the case of m > 2 the above relation generalizes to

^A(z) =

1

m

mX
i=1

G(wi�1z1=m) A(z) : (7.60)

If one now focuses on (7.60) it is clear that the transfer function

Pm
i=1 G(w

i�1z1=m) represents

just a downsampled by a factor m version of G(z) (compare to (7.51). Now let’s consider the

m phases of g(�) in the time domain:

gi(k) = g(T (mk+ i� 1)) ; i = 1; : : : ; m : (7.61)

The ZF requirement then takes the following form in the time domain

gi(k) = �(k) ; i is one of f1; : : : ; mg : (7.62)

Eq. (7.62) provides interesting insight to the ZF equalization aspect in the multichannel setup:

in order to be ZF, one only among the m different phases of the channel-equalizer cascade as

defined in (7.58) needs to be a Dirac function! This is a different point of view that explains

why ZF equalization is possible with finite-length equalizes in the case of a multichannel

setup: if all the phases of G(z) were required to be Dirac functions, this would not be achiev-

able with finite-length equalizers; however, the fact that only one of the phases needs to be

a Dirac, and the rest can be whatever, can be achieved due to the many degrees of freedom

present in the m phases. At this point we present an example that demonstrates the above

mentioned characteristics.

Example:

We consider the case of two channel phases with transfer functions given as

H1(z) = 1 + z�1

H2(z) = 1 + 1
2z

�1 ;

(notice that the first channel has a zero on the unit circle). Figure 7.9 refers to the equivalence

of the setups of figures 7.6(a) and 7.6(b): on top one can see the samples of the upsampled

input binary signal and in the middle the result of the convolution of this signal with the

SISO channelH(z) = H1(z

2)+z�1H2(z

2). The bottom graph shows the sequence obtained by

embedding the two outputs of the SIMO structure of figure 7.6(a). As expected, this coincides

with the output of H(z), thus verifying the equivalence between the two representations.

Now we are interested in the ZF aspect: we choose an equalizer length of L = 2 for each

equalizer phase (this exceeds the minimum required value given by (7.45), L = 1). By solving

the system of equations (7.43), we find easily that a pair of ZF equalizers is
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0 20 40 60 80 100
-2

0

2
aa * (H1(z^2) + z^(-1)H2(z^2)

0 20 40 60 80 100
-2

0

2
[yy] = [ . . .   y1_k    y2_k    y1_{k-1}    y2_{k-1}  . . . ]

0 20 40 60 80 100
-1

0

1
[aa] = [  . . .  a_k    0    a_{k-1}    0    a_{k-2}    0   . . . ]

Figure 7.9: A verification of the equivalence of the setups of figures 7.6(a) and 7.6(b)

F1(z) = 1
2 +

3
4z

�1

F2(z) = 1
2 �

3
2z

�1 :

This pair of equalizers will completely eliminate ISI in the absence of noise. Now let’s calculate

the cascade of H(z) and F (z) as given by (7.55). It turns out that

G(z) = H(z)F (z) = 1
2z + 1z0 � 1

2z
�1 + 0z�2 � 1

2z
�3 + 0z�4 + 3

8z
�5 :

Figure 7.10 shows the corresponding impulse response fg(k)g. Circles correspond to samples

of the even phase of g, and crosses to samples of the odd phase. Note that only the even

phase corresponds to a Dirac function. This shows that forcing one only phase to be a Dirac

function suffices for ZF equalization as shown by eq. (7.62).

Figure 7.10: The overall system G(z) corresponding to ZF equalization

In the next section we will examine the setup of figure 7.8 in the frequency domain.
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Figure 7.11: Nyquist condition for the oversampled channel

Frequency domain analysis

According to eq. (7.60), the transfer function of the channel-equalizer cascade of the setup of

figure 7.8 is given in the z� domain as

G(z) =

1

m

mX
i=1

G(wi�1z1=m) : (7.63)

So the ZF condition in the z� domain is

1

m

mX
i=1

G(wi�1z1=m) = 1 : (7.64)

By substituting ej2�f for z we find the corresponding expression in the frequency domain:

1

m

mX
i=1

G(ej2�( f�k
m

)) = 1 ;

which can be written as follows if now we denote by G(f) the frequency response instead of

the z� transform of g(�)

1

m

mX
i=1

G(
f + k

m

) = 1 � 1
2

< f <

1
2

: (7.65)

G(f) is a periodic function with period 1=T where T is the symbol period. Now the following

interpretation can be drawn from eq. (7.65): in order to have (7.65) satisfied, there needs to

be some aliasing between adjacent frequency characteristics G(f+km ) (otherwise, if there are
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some frequency regions with no aliasing, it will be impossible to have a non-zero sum within

these regions). Let’s suppose now that G(f) is band-limited with a bandwidth B

B = fd : (7.66)

Since the distance between adjacent frequency-pulses in (7.65) is 1=T and each pulse occupies

a frequency range of width 2fd, it turns out that the condition for aliasing is

fd >

1
2T

: (7.67)

A graphical representation of the condition (7.67) can be found in figure 7.11, in which we

assume m = 2. One can see the two different situations that arrive in this case when (7.67) is

satisfied or not, respectively. Therefore we have established the following necessary condition

for ZF equalization in the frequency domain:

Theorem 7.6: A necessary condition in order to achieve zero ISI in the multichannel setup

is that the bandwidth of the overall system G(f) defined in (7.63) satisfy (7.67).

Since now G(f) = H(f)F (f), in order to have G(f) satisfy (7.67) it is necessary that H(f)

satisfies it too. Therefore we have the following theorem

Lemma 7.7: Let fhd denote the bandwidth of the channel transfer function H(f) that cor-

responds to H(z) as defined in (7.55). Then a necessary condition in order to achieve zero ISI

in the multichannel setup is that

fhd >

1
2T

: (7.68)

where T is the symbol rate.

This theorem is actually the counterpart of the Nyquist condition presented in chapter 2,

for fractionally-spaced equalization. This shows another advantage of using the representa-

tion of figure 7.8: it has allowed to obtain the Nyquist condition for the multichannel setup

as a simple extension of the classical case: the condition has exactly the well-known classical

form, the only difference being that the bandwidth fd refers now to the channel H(z) as

defined in (7.55).

Moreover, (7.67) is a counterpart of the identifiability condition mentioned before in the

frequency domain. Namely, when the channel bandwidth fhd does not satisfy (7.68), this

means that the m channel phases with have zeros in common into the frequency regions that

correspond to non-overlapping. But this is exactly the necessary condition that was derived

in our time-domain analysis. So our frequency-domain analysis of the setup of figure 7.8 has

allowed for the acquisition of the same identifiability condition from a different point of view.

Finally, theorem 7.6 gives us some insight on whether band limitations influence or not

the channel estimation problem. If the channel is bandlimited with bandwidth fhd 2 ( 1
2T ;

m

2T ),



7.4. ZERO FORCING EQUALIZATION OF THE SIMO CHANNEL 175

this poses no particular problem for the determination of a ZF equalizer (assuming infinite

length). If fhd < 1
2T however, then the Hj(f); j = 1; : : : ; m are zero simultaneously for some f

rendering ZF equalization impossible. This is the infinite length equivalent of the condition

of no zeros in common in the FIR case.

7.4.4 ZF equalization and noise enhancement

In this section we will remain in the frequency domain in order to analyze the problem of

noise enhancement of ZF equalizers for the multichannel system. As mentioned in chapter

1, the noise enhancement produced by ZF equalizers is of great importance in the single

channel case. We are therefore interested in studying the same phenomenon in the case of

our multichannel setup.

We begin with the following remark: consider for simplicity the case m = 2 and suppose

that the setting 8<: F 0
1

F 0
2 ;

corresponds to a ZF equalizer and therefore satisfies

H1F

0
1 +H2F

0
2 = 1 :

Now consider another setting, namely

F
0

1 = F 0
1 � G H2

F
0

2 = F 0
2 � G H2 ;

(7.69)

where G is any stable filter of finite or infinite length7. It can be easily verified that

H1F
0

1 +H2F
0

2 = 1 ;

which means that any equalizer of the form (7.69) is also zero forcing! The variety of filters G

that can be used represents a lot of degrees of freedom to determine different ZF equalizers

for a given equalizer length. These will be all equivalent in the absence of noise, however one

will be the optimal in the presence of noise in terms of noise enhancement. Now the optimal

equalizer for a given length is only a special case of an equalizer of greater length, which

can be still optimized (due to the degrees of freedom introduced by increasing the length)

resulting to a better performing ZFE. We can sum up this discussion as follows:

� There is an optimal FIR equalizer in terms of noise enhancement for a given equalizer

length.

� The length of a ZFE can be increased so as to reduce noise enhancement.

7In the equations of this section we assume all the filters to be extended with 0’s so that they have compatible

lengths, when needed.
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This second remark shows that in practice (where of course noise will be present), even

though ZF equalizers of finite length exist (as mentioned before), it will still be useful to use

greater equalizer lengths in order to reduce noise enhancement. The difference with the single

channel case resides in the fact that there increasing the equalizer length not only reduces the

noise enhancement, but also improves the matching of the channel inverse, whereas in the

multichannel case it only reduces the noise enhancement 8. In the following subsection we

derive the overall optimal ZF equalizer in terms of noise enhancement, namely the optimal

infinite-length ZF equalizer.

Optimal infinite-length ZF equalizer

Considering the noise variance at the input of each equalizer Fi to be of variance �2

v , the

corresponding variance at the equalizer output will be given as

�2

v;o = �2
v

mX
i=1

LX
j=1

jfi(j)j2 = �2

v

mX
i=1

jFi(j)j2 ; (7.70)

where we recall that fi(j) denotes the jth coefficient of the ith equalizer phase. In the case of

infinite-length equalizer, using Pisarenko we get the following criterion that must be satisfied

by the optimal infinite-length ZFE8>>>><>>>>:

min

fi(f)
Z 1

2

�

1
2

mX
i=1

jfi(f)j2 df

subject to

mX
i=1

Hi(f)Fi(f) = 1 ;

(7.71)

As the integrated quantity in (7.71) is positive, the criterion reduces to8>>>><>>>>:

min

fi(f)

mX
i=1

jfi(f)j2

subject to

mX
i=1

Hi(f)Fi(f) = 1 ;

(7.72)

which can be written in matrix form as8><>:

min
F(f)

kF(f)k2

subject to < H�(f);F(f) > = 1 ;

(7.73)

where F(f);H(f) are defined as

F(f) =
26664
F1(f)

...

Fm(f)
37775 ; H(f) =
26664
H1(f)

...

Hm(f)
37775 : (7.74)

As can be seen in figure 7.12, the solution Fo to the minimization problem (7.73) is
8An exception to this fact exists in the particular case when the channels have zeros in common: in this case

increasing the equalizer length results in a better equalizer, even in the absence of noise.
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< H�

(f);F(f)>= 1

. F(f)

H�(f)

Figure 7.12: Finding the optimal ZFE by orthogonality

Fo =

1

mX
i=1

jHi(f)j2
H�(f) (7.75)

Eq. (7.75) gives the optimum infinite-length ZF equalizer in terms of noise enhancement in

the frequency domain. According to (7.70), the corresponding minimal noise variance at the

equalizer output will be given by

�2

min = �2

v
Z 1

2

�

1
2

df

mX
i=1

jHi(f)j2

: (7.76)

This is therefore the lower bound of output noise variance that can be achieved by a ZF

equalizer. In order to give some insight to the expression (7.76) we examine the case m = 2.

Then (7.76) can be written as

�2

min = �2

v

Z 1
2

�

1
2

df

jH1(f)j2

� �2

v

j
R 1

2

�

1
2

H�

2 (f)

H�

1 (f)
df j2

R 1
2

�

1
2

 2X
i=1

jHi(f)j2

!
df

(7.77)

The first term in the right-hand side of (7.77) represents the optimal output noise variance in

the case of symbol-rate sampling (m = 1). On the other hand, the second term represents

the modification due to the fact that we have 2 channels. In fact, as this second term is

positive, it reduces the noise variance of the first term, which means that the degrees of

freedom introduced by oversampling give the potential to achieve better ZFE performance.

We therefore arrive at the following conclusion.

� Increasing the oversampling factor m (or the number of receiving antennas) can help

improve the zero-forcing equalization performance.

Moreover, this fact doesn’t seem to be influenced by bandwidth limitations of the channel,

provided of course that (7.68) is satisfied in order to be able to derive ZF equalizers. This is
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another point of view (independent of blind aspects) that proves the advantages related with

the introduction of extra degrees of freedom by introducing diversity.

7.5 ZFE and ID by multichannel linear prediction

In the case of symbol-rate sampling, as we saw in section 7.3, the channel can be identified

by spectral factorization if it is minimum-phase. The counterpart of spectral factorization in

the time-domain is linear prediction: in the absence of noise, the input sequence equals the

innovation process as described in eq. (2.61). In this section we shall see how a multichannel

linear prediction problem can be formulated for the case of a MP SIMO system and how it

allows for the acquisition of the transmitted symbols in the absence of noise.

7.5.1 Zero-forcing equalization by multichannel linear prediction

1-step ahead forward linear prediction

� Forward linear prediction and second-order statistics

We consider the noiseless case:

v(t) � 0.

We are interested in identifying the channel coefficients of the SIMO setup based on linear

prediction. Intuitively this should be possible, since linear prediction is based on second-order

statistics of the received data and we have already seen (Theorem 7.2) that the identifiability

of the SIMO channel can be achieved based on SOS.

The input-output relation of the SIMO channel can be written in the absence of noise as

XL(k) = TL (HN ) AL+N�1(k) ; (7.78)

where

XL(k) =
h

xH(k) � � �xH(k�L+1)
iH
: (7.79)

Therefore, the covariance matrix Rx

L of the received signal x(k) has the following structure

Rx

L = EXL(k)XH
L (k) = TL (HN ) Ra
L+N�1T H
L (HN ) ; (7.80)

where

Ra
L = EAL(k)A

H
L (k) : (7.81)

The covariance matrix Rx

L is of dimension Lm � Lm, and its rank is L +N � 1 (the number

of columns in TL (HN )). Therefore, in the absence of noise we have

Rx

L =

8<: full-rank; Lm � L+N � 1

singular; Lm > L+N � 1
(7.82)
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When Rx

L is singular, each further increase of L by 1 results in an increase of rank(Rx

L) by 1

and an increase of the dimension of its nullspace by m�1.

We consider the following linear prediction problem:

Predict x(k) as a linear combination of the components of XL(k�1).

This problem corresponds to vector-forward linear prediction. The predicted signal is a linear

combination of the L most recent received vector-samples:

^x(k) = p1x(k � 1) + � � � + pLx(k � L) ; (7.83)

where fpig are m � m matrices and represent the LP coefficients. The prediction error can

then be written as ex(k)jXL(k�1) = x(k)� bx(k)jXL(k�1)

= [Im �PL] XL+1(k) ;

(7.84)

where

PL = [p1 � � � pL] :

The prediction error variance is by definition

�2ex;L = Eex(k)exH(k) =

[Im � PL] Rx

L+1 [Im � PL]H :

(7.85)

The minimization of the prediction error variance leads therefore to the following optimization

problem

min
PL

[Im � PL] Rx

L+1 [Im � PL]H = �2ex;L : (7.86)

This gives, in a way similar to the case of scalar forward linear prediction:

[Im � PL] Rx

L+1 =

h
�2ex;L 0 � � �0

i
: (7.87)

By partitioning the covariance matrix Rx

L+1, the above equation can be written ash
Im �PL

i 26666664

r0 r

rH Rx

L

37777775
=

h
�2ex;L 0 � � �0

i
:

(7.88)

This gives 8<: �2ex;L = r0 � r(Rx

L)
�1rH

PL = r(Rx

L)
�1 :

(7.89)

Equation (7.89) shows how both the prediction error variance and the prediction coefficients

can be computed from the SOS of the cyclostationary received signal. The importance of

this equation lies in the fact that those two quantities may allow the identification of the

multichannel, as will be shown in the sequel.
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� Forward linear prediction and multichannel identification/equalization

WhenLm > L+N�1, TL (HN ) has full column rank. Therefore, due to (7.78) (applied at time

instant k � 1), we have

span
�

XL(k � 1)
�
= span

�
AL+N�1(k � 1)

�
: (7.90)

Due to (7.90), the prediction error can be expressed as

ex(k)jXL(k�1) = ex(k)jAL+N�1(k�1) : (7.91)

By definition, the prediction error ex(k) is orthogonal to the set of samples XL(k � 1):

ex(k) ? XL(k � 1) : (7.92)

Using (7.90) and (7.84), (7.92) reads

[Im � PL] TL+1 (HN ) AL+N (k) ? AL+N�1(k�1) ; (7.93)

or

[Im � PL] TL+1 (HN ) E
�
AL+N (k)A
H
L+N�1(k�1)

�
= 0m�(L+N�1) : (7.94)

Now we have that

E
�
AL+N (k)A
H
L+N�1(k�1)

�
=

26666664
Eaka
�
k�1 � � � Eaka

�
k�(L+N�1)

Ra
L+N�1

37777775 =

26666664
� Eaka
�
k�1 � � � Eaka

�
k�(L+N�1)

�

... Ra
L+N�1

�

37777775 �
26666664

0 � � � 0

IL+N�1

37777775 ;

(7.95)

where �may be any scalar. If instead of arbitrary values for this column we use the following

elements:

[ � � � � � �] = [Ejakj2 Ea�kak�1 � � � Ea�kak�(L+N)+1 ] ;

then (7.95) takes the form

E
�
AL+N (k)A
H
L+N�1(k�1)

�
= Ra
L+N

24 0 � � �0

IL+N�1

35 ; (7.96)

which gives when combined with (7.94)

[Im � PL]TL+1 (HN ) Ra
L+N

24 0 � � �0

IL+N�1

35 = 0m�(L+N�1) : (7.97)
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Now let us consider the prediction problem for the transmitted symbols. We get similarly

^a(k)jAM (k�1) = QM AM(k�1) ; (7.98)�

1 �QM

�

Ra
M+1 =

h
�2ea;M 0 � � �0

i
; (7.99)

where now the elements of QM are scalars. For M = L+N � 1, equation (7.99) becomes

�

1 �QL+N�1

�

Ra
L+N =

h
�2ea;L+N�1 0 � � �0

i
= �2ea;L+N�1 [1 0 � � � 0] : (7.100)

Now note that (7.97) can be written in the form

[Im � PL] TL+1 (HN ) Ra
L+N =

26664
�

... 0m�(L+N�1)

�

37775 =

26664
�

...

�
37775 [1 0 � � � 0] ; (7.101)

where � can be again any scalar. Combining (7.101) with (7.100), we get

[Im � PL] TL+1 (HN ) =

1

�2ea;L+N�1

26664
�

...

�
37775 �1 �QL�N+1

�
: (7.102)

From (7.97) we note also that

[Im � PL] TL+1 (HN ) =

h

h(0) �
i
: (7.103)

Combining (7.102) and (7.103) we get

[Im � PL] TL+1 (HN ) = h(0)
�

1 �QL+N�1

�
: (7.104)

The minimum prediction error variance is therefore:

�2ex;L = h(0)
�

1 �QL+N�1

�
Ra
L+N

�

1 � QL+N�1

�H hH(0)

= h(0)
h
�2ea;L+N�1

0 � � � 0

i24 1

�QH
L�N+1

35 hH(0) :

We therefore have

�2ex;L = �2ea;L+N�1h(0)hH(0) : (7.105)

Therefore, in the case Lm > L+N � 1 the prediction error variance �2ex;L is rank-1. Moreover,

(7.105) allows us to find h(0) up to a scalar multiple.

At this point we discriminate between two cases

� Uncorrelated input sequence
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In this case,

Ra
L+N = �2

a IL+N : (7.106)

Combining (7.106) with (7.100) we find

QL+N�1 = 01�(L+N�1) : (7.107)

In this case instead of (7.104) we will have

[Im � PL] TL+1 (HN ) = h(0)
�

1 0L+N�1

�
;

and therefore  

1
hH(0)h(0)

hH(0) [Im � PL]
!

TL+1 (HN ) =

�

1 0L+N�1

�
: (7.108)

We therefore have the following result:

� When the transmitted data are uncorrelated, the channel is noiseless and L > L, then a

ZF equalizer can be found by linear prediction and equals

FZF =

1
hH(0)h(0)

hH(0) [Im � PL] :

Using (7.44), we could also determine the channel HN up to a scalar multiple.

In this case, the prediction problem allows us also (in theory) to check whether the Hj

have zeros in common. Indeed, the common factor colors the transmitted symbols (MA pro-

cess) and hence once �2ex;L becomes of rank 1, its one nonzero eigenvalue �2ea;L+N�1hH(0)h(0)

continues to decrease as a function of L since for a MA process, �2ea;L is a decreasing function

of L.
� Correlated input sequence

If the transmitted symbols are correlated, we proceed as follows (Pisarenko-style [Sch91, page

500]). Linear prediction corresponds to the LDU factorization LRxLH = D. The prediction

filters are rows of L while the prediction variances are the diagonal elements of D. Let’s take

l prediction filters corresponding to singularities in D and assume the longest one has block

length L. So we obtain FbL of size l�Lm. We introduce a block-componentwise transposition

operator t, viz.
Ht

N =

�

h(0) � � �h(N�1)
�t =

h

hT (0) � � �hT (N�1)
i

FtN =

�

f(0) � � �f(N�1)
�t =

h

fT (0) � � �fT (N�1)
i
;

(7.109)

where T is the usual transposition operator. Due to the singularities, we have

FbL TL (HN ) = 0 () Ht
N TN

�

Fb tL
�
= 0 : (7.110)

Since FbLXL(k) = 0, we call FbL a blocking equalizer. We find: if l(L+N�1) � mN�1 , then

dim

�
Range?

n
TN

�

Fb tL
�o�
= 1 : (7.111)
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In that case, we can identify the channel HtH
N (up to scalar multiple) as the last right singular

vector of TN
�

Fb tL
�

. In particular, let h? be m � (m�1) of rank m�1 such that h?Hh(0) = 0,

then with L = L+1 and l = m�1, we can take

FbL+1 = h?H �Im � PL
�
: (7.112)

From (7.104), one can furthermore identify QL+N�1 and via (7.99), this leads to the identi-

fication of the (Toeplitz) symbol covariance matrix RaL+N up to the multiplicative scalar �2

a

(which may be known).

n-step ahead prediction

In order to avoid the dependence on h(0), we propose the following more flexible LP scheme.

We consider an (n+1)-step ahead prediction of x(k) of order L:

^x(k) is predicted from x(k � n� 1); x(k � n � 2); � � �x(k� n� L) : (7.113)

Then in the absence of noise the prediction error will be equal to:

~x(k) = x(k)� ^x(k) =
nX

i=o

h(i)ak�i = P (z)x(k) : (7.114)

Now if one performs a backward prediction on the prediction error in (7.114), the resulting

prediction error will equal h(n)ak�n :

h(n)ak�n = Q(z)~x(k) ; (7.115)

(P (z) and Q(z) are m �m matrices). From (7.114) and (7.113), we deduce that a ZFE can be

determined as:

F 0
ZF =

hH(n)

hH(n)h(n)
Q(z) P (z) ; (7.116)

and corresponds to an overall impulse response of the form:

[01�n1 0 � � �0] : (7.117)

In this way, the dependence on h(0) is eliminated, and moreover, the kind of ZF equalizer we

want can be a priori determined.

7.5.2 Linear prediction in the frequency-domain

We consider the z-transform of the linear prediction filter:

PL(z) = [Im � PL]
26666664
Im

Imz
�1

...

Imz
�L

37777775 : (7.118)
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P (z)L

~
x(k) x(k)

Figure 7.13: The prediction filter

The m � m matrix PL(z) is the prediction filter in the frequency (z) domain. As can be

deduced from figure 7.13, we have the following i/o relationship for the prediction error

spectral density:

PL(z)Sxx(z)PH
L (z��) = SexexL(z) : (7.119)

When the prediction order L is infinite, then the prediction error ex is white, and therefore its

spectral density is flat and equal to the prediction error variance:
Sexex1(z) = �2ex;1 ; (7.120)

and therefore in this case (7.119) will take the form

P1(z)Sxx(z)PH
1(z��) = �2ex;1 ; (7.121)

which gives when solved for Sxx(z):

Sxx(z) = P�1

1 (z)�2ex;1P�H
1 (z��) (7.122)

We now consider separately two cases.
� Noiseless case

In this case, we have for the PSD of x(k):

Sxx(z) = �2

a H(z)HH(z��) ; (7.123)

where we have assumed the input data to be i.i.d. Since we have no noise, (7.105) holds,

which gives when combined with (7.122)

Sxx(z) = �2

a P
�1

1 (z)h(0) hH(0)P�H
1 (z��) : (7.124)

Now combining (7.123) and (7.124) we get

H(z) = P�1

1 (z) h(0) : (7.125)

According to (7.125), in the noiseless case, the SIMO channel can be identified in the frequency

domain from the inverse linear prediction filter of infinite order. This is an identifiability result

that shows the role of the linear prediction filter in the frequency domain.
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� Noisy case

We assume Gaussian i.i.d. additive noise, in which case Sxx(z) will be given as

Sxx(z) = �2

a H(z)HH(z��) + �2

vIm : (7.126)

Now the rank of Sxx(z) will be m (instead of 1 in the noiseless case). The PSD Sxx(z) can

now be factored as

Sxx(z) = S+xx(z)S
+H

xx (z��) : (7.127)

S+xx(z) will be in general of size r � m, where r is the rank of Sxx(z), in our case it will be

therefore m�m. We also factor the prediction error variance as

�2ex;1 = �ex;1�Hex;1 : (7.128)

Combining (7.128) with (7.126) and (7.127) we find for the channel:

H(z) = �a P
�1

1 (z) �ex;1 : (7.129)

This is the analog of (7.125) in the noisy case.

7.6 MMSE equalization

Minimum-mean-square-error equalizers (MMSEE’s) are known to perform better in general

than ZFE’s in the presence of noise. This fact has already been discussed in chapter 2, where

it was shown that when the channel has very deep spectral nulls, then the noise enhancement

introduced by a ZF equalizer is very high (in the extreme case of channel zeros on the unit

circle, the noise enhancement introduced by the ZFE is infinite). On the other hand, MMSEE’s

avoid this problem by trying to combat jointly both kinds of interference: ISI and noise. In

this section we are interested in MMSE equalization in the context of the multichannel setup.

Before proceeding in the derivation and analysis of the MMSEE, we first derive the ex-

pression of the output SNR for the multichannel setup that will be used in the sequel as a

measure of equalizer performance.

The SNR at the output of the multichannel setup

If we denote by fs(i)g the oversampled impulse response of the channel-equalizer cascade

then the equalizer output can be written as

^a(k) = s(1)a(k) +
X

i6=1

s(i) a(k � i) + b(k) ; (7.130)

where b(k) represents the noise at the equalizer output and where we have assumed zero delay

in transmission. The output noise fb(k)g is the input noise filtered by the equalizer bank, it is
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therefore given as

b(k) =

mX
i=1

L�1X
j=0

vi(k � j)fi(j) ; (7.131)

where subscript i denotes, as usual, the equalizer or noise phase. Therefore the energy at the

equalizer output is

E j^a(k)j2 = Ejs1ak +
P

i6=1 s(i)a(k� i) + b(k)j2 :

Assuming that all channels have i.i.d. additive noise of the same variance �2

v, independent of

the input sequence and that the input sequence is i.i.d. of variance �2

a, the above expression

becomes

E j^a(k)j2 = �2

a
0@js(1)j2 +

X
i6=1

js(i)j2

1A + �2

v

mX
i=1

L�1X
j=0

jfi(j)j2 : (7.132)

Therefore the SNR at the equalizer output will be equal to

SNRo =

�2

ajs(1)j2
�2

a
X

i6=1

js(i)j2 + �2

v

mX
i=1

L�1X
j=0

jfi(j)j2

: (7.133)

7.6.1 Derivation of the MMSE equalizer

In order to obtain a formulation similar to the one used in the classical symbol-rate case, we

define the regression vector XL(k) and the equalizer vector FL(k) as follows

XH
L (k) = [xT (k) � � �xT (k � L+ 1)] = [x1(k) � � �xm(k) � � �x1(k � L + 1) � � �xm(k � L+ 1)]

FTL(k) =

h

fT (0) � � �fT (L� 1)
i
=

�
f1(0) � � �fm(0) � � �f1(L� 1) � � �fm(L� 1)

�
:

(7.134)

Then the equalizer output at time instant k can be written as

^ak = XH
L (k) FL(k) : (7.135)

The MMSE criterion will then have the typical form

min

F

E

�
j^ak � ak�ij2

�
; (7.136)

where F is the sought equalizer setting and i accounts for an introduced delay 9. The solution

to the criterion (7.136) is the MMSE equalizer corresponding to delay i and has the following

form (taking into account (7.135))

FMMSEi = E
�

XL(k)XH
L (k)

��1

E
�

XL(k)ak�i
�
= (Rx

L)
�1 di : (7.137)

Notice that the form of the equalizer given in (7.137) is the same as the one of the classical

MMSE equalizer, the only difference being the different composition of the regression and

9We will see in a next section that the choice of this delay may influence considerably the equalizer performance
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equalizer vectors. All that is needed in (7.137) for the determination of the quantities Rx

L

and di is information about the channel and the second-order statistics of the input and the

channel noise. In the presence of noise, the channel i/o relationship can be written as

XL(k) = TL(HN ) AL+N�1 + VL(k) ; (7.138)

and therefore the matrix Rx

L is equal to 10

Rx

L = TL(HN )R
�
L+N�1T H
L (HN ) + Rv
L : (7.139)

Let’s see now how the channel information reflects in the vector di. For example, when i = 0

(no delay) and the input sequence is white with variance �2

�, we will have (using also the FIR

assumption)

dT0 = �2

a

�
h�1(0) � � � h�m(0) 0 � � � 0

�

(7.140)

(the case of non-zero delays will be discussed in a subsequent section). According to (7.139)

and (7.140), the MMSE equalizer can be easily determined if the channel has already been

identified. Of course, the MMSE can be also calculated iteratively by using an adaptive

algorithm like LMS or RLS if a training sequence is available.

7.6.2 MMSE equalizers and ZF equalizers

In this section we examine jointly MMSE and ZF equalizers. In the first part we compare

them in terms of noise enhancement (by deriving in the frequency domain similar conditions

as the ones existing for the continuous-time case). Then we show how an MMSE equalizer

can be derived from a ZF equalizer. This will help obtain the MMSEE blindly.

Comparing MMSEE’s and ZFE’s in terms of noise enhancement

In the frequency domain, the MMSEE minimizes the following quantity (assuming infinite

length equalizers, a white input sequence of variance �2

a and white additive noise of variance

�2

v at each channel)

�2 = min

Fi(f)
Z 1

2

1
2

8<:�2

a

�����
mX

i=1

Hi(f)Fi(f) � 1

�����

2

+ �2

v

 
mX

i=1

jFi(f)j2

!9=; df ; (7.141)

10It is worth showing the structure of this matrix in the special case of a white input sequence of variance �2

a:

R

x

L =

2666664

HNHH
N HNJ

�

1 HH
N � � � HNJ

�
L�1HH
N

HNJ
+

1 HH
N HNHH
N

. . .
...

...
. . .

. . .
...

HNJ
+
L�1HH
N � � � � � � HNHH
N

3777775 + R

v
L ;

where J+
i

and J
�
i

are shift matrices that have as only non-zero elements their ith upper or lower anti-diagonals,

respectively, which are full of 1’s. Note the block Toeplitz form of the above matrix and how it depends on the

channel matrix HN .
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which represents the SNR at the equalizer output. In the right hand side of the expression

(7.141), the first term represents the ISI and the second term the noise contribution. It is

actually due to this second term that the MMSEE differs from the ZFE (compare to (7.70)).

Now the solution to the problem (7.141) is

F(f) =

1

mX
i=1

jHi(f)j2 +

�2

v
�2

a

H�(f) ; (7.142)

which gives the optimal infinite-length MMSE equalizer. Eq. (7.142) should be compared to

(7.75). The similarity to the corresponding relation presented in chapter 2 is obvious. The

additive term in the denominator of the expression appearing in (7.142) is the one that makes

the compromise between reducing ISI and noise enhancement. It is also this term that protects

against the infinite noise enhancement that can be produced by a ZFE since the denominator

in (7.142) is always strictly positive. It is also worth noting that in contrast to the symbol-rate

case in which the problem of infinite noise amplification of the ZFE appears when the channel

has zeros on the unit circle, according to equation (7.75) and (7.142) in the multichannel case

this will happen when the channels have zeros in common. This is one more point that

shows that the counterpart of “zeros on the unit circle” in the multichannel case is “zeros in

common”.

In the noiseless case, according to (7.142) the optimal (infinite-length) MMSE and ZF equal-

izers coincide. However in the noisy case, the MMSE equalizer has a superior performance.

This can be proven as follows: the output SNR in the case of the optimal MMSE is

�2

MMSE = �2

v

Z 1
2

1
2

df

mX
i=1

jHi(f)j2 +

�2

v
�2

a

: (7.143)

Due to the fact that �2

v
�2

a

> 0, comparing (7.143) with (7.76) gives

�2

MMSE < �2

ZFE : (7.144)

Therefore, as in the classical case, the optimal MMSE equalizer will always be superior to the

corresponding ZF equalizer.

The relation between MMSEE’s and ZFE’s

In this section we will show the fact that there exists a direct relation linking FIR ZFE’s to

MMSEE’s of equal length in the time-domain. The MMSEE can be written in the case of white

additive Gaussian noise of variance �2

v as

FM = (Rx;s
L + �2

vILm)
�1 di (7.145)

(note that the term di remains unaffected by the additive noise). The corresponding ZFE is

given by

Fz = (Rx;s
L )�1 di (7.146)
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Now by applying the matrix inversion lemma (MIL) to the inverse matrix appearing in (7.145)

we get

(Rx;s
L + �2

vILm)
�1 = (Rx;s
L )�1 � �2

v(R

x;s
L )�1[ILm + �2

v(R

x;s
L )�1]�1(Rx;s
L )�1 ;

which gives combined with (7.146)

FM = FZ � �2

v(R

x;s
L )�1[ILm + �2

v(R

x;s
L )�1]�1 FZ ;

FM =

n
ILm � �2

v(R

x;s
L )�1[ILm + �2

v(R

x;s
L )�1]�1

o
FZ ;

FM =

n
ILm � �2

v(R

x;s
L )�1[ILm � �2

v(R

x;s
L )�1]

o
FZ :

The multiplying matrix appearing above can be simplified by noting that

Rx

L = R

x;s
L + �2

vILm ;

(Rx;s
L )�1Rx

L = ILm + �2

v(R

x;s
L )�1 ;

(Rx;s
L )�1Rx

L � �2

v(R

x;s
L )�1 = ILm ;

(Rx;s
L )�1 � �2

v(R

x;s
L )�1(Rx

L)
�1 = (Rx

L)
�1 ;

ILm � �2

v(R

x;s
L )�1 + �4

v(R

x;s
L )�1(Rx

L)
�1 = ILm � �2

v(R

x

L)
�1 ;

ILm � �2

v(R

x;s
L )�1[ILm � �2

v(R

x;s
L )�1] = ILm � �2

v(R

x

L)
�1 :
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Fmmse

[ros,rs,RLs,ro,r,RL,PL,PLs,s2s,s2L,varn]=bfse2(d1,d2,50,30)
Fm=RL_inv*[conj(d1(1));conj(d2(1));zeros(98,1)]

d1=[1 2] ; d2=[1 3]
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3
Fmmse calculated as O*Fz

Fz=RLs_inv*[conj(d1(1));conj(d2(1));zeros(98,1)]
O=eye(100)−varn*RLs_inv*(eye(100)−varn*RL_inv)

Figure 7.14: A verification of eq. (7.147)

Therefore the MMSEE and ZFE are related through

FM = 
 FZ ; (7.147)

where 
 is the matrix defined as


 = ILm � �2

v
�
Rx

L
��1 (7.148)
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The usefulness of (7.148) is that it shows that there exists a simple linear relation that allows

to obtain a MMSEE from the corresponding ZFE. A verification of (7.147) can be found in

figure 7.14. We have simulated the simple case of two (m = 2) MA(1) channels with impulse

responses h1 = [1 2]; h2 = [1 3]. The input sequency is binary with variance �2

a = 1

and the noise variance �2

v = 0:005 (which corresponds to an SNR of 30 dB at the output of

the first channel). The equalizer length is L = 50. In the upper graph the MMSE equalizer

(corresponding to a zero delay) obtained by (7.145) is plotted, whereas the lower graph shows

the setting obtained by (7.147). As can be seen, the two settings are identical.

Moreover, the MMSEE according to (7.147) can be obtained blindly (it has been already

shown in the previous section how the ZF equalizer can be obtained blindly). Eq. (7.147)

however requires the inversion of the Lm � Lm matrix 
, which can be costly in terms of

computational complexity. In the next session we will show that a method with a reduced

computational complexity can be derived based on linear prediction.

7.6.3 MMSE equalization and linear prediction

In the case of zero-delay in the criterion (7.147) (i = 0), the corresponding MMSE can be easily

found by LP as follows: we have from section 7.5 that

[Im � PL]
H = Rx

L
�1

26666664
ILm

0
...

0

37777775 �2

~x (7.149)

In the case of zero-delay, according to (7.137) and (7.139), the MMSE equalizer takes the form

FMMSE0 = (Rx

L)
�1

26666664
ILm

0
...

0

37777775 �2

a h�(0) : (7.150)

From (7.149) and (7.150) we deduce that

FMMSE0 =
24 Im

�PH
L�1

35��2

~x h�0�

2

a ; (7.151)

where�2

~x is the prediction error matrix. Eq. (7.151) offers an alternative to (7.147) in that it gives

a different way to obtain the MMSE equalizer. Now the MMSEE is obtained by performing

first linear prediction in the received vector sequence. All this can be done blindly as discussed

in the previous section. Moreover, (7.151) has the advantage that only the inversion of the

m � m prediction-error matrix that is used instead of the Lm � Lm covariance matrix of

the received signal needed in (7.147). This leads to a substantial reduction in computational

complexity.
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Figure 7.15 shows an example that demonstrates the superiority of MMSE with respect

to ZF equalizers as well as the performance of the method described by (7.151). We use the

typical multipath radio channel given in [SGKC91] which has been oversampled at a double

symbol rate (m = 2). The SNR at the equalizer input is 30dB. The solid and dashed horizontal

lines represent the output SNR (see (7.133)) produced by the corresponding MMSEE and ZFE

equalizers (both for 0 delay), respectively. One may note the superior performance of the

MMSEE (as predicted by (7.144)). The other dashed line shows the performance attained by

the equalizer derived from (7.151) for different amounts of data. Note that asymptotically

(as the number of available grows towards infinity) the curve attains the performance of the

MMSEE thus verifying (7.151). In this figure it is also worth noting that all the performances
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Figure 7.15: MMSE, LP and ZF equalization

are very poor. This is due to the fact that we have only considered 0 delay. In the next

subsection we discuss this problem.

7.6.4 The influence of the lag

It is well-known that the delay parameter i in the MMSE criterion is of crucial importance

to the performance of the equalizer in the symbol-rate case. No exact method to choose this

parameter optimally exists up to our knowledge, a practical guideline being that it should

be such that all the channel coefficients appear in the cross-correlation di vector that post-

multiplies the covariance matrix in the expression of the MMSE equalizer. In the case of
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fractionally spaced equalization, when this happens, the MMSE equalizer will look like

FMMSEi = E
�

XL(k)XH
L (k)

��1

E
�

XL(k)ak�i
�
= (Rx

L)
�1

26666666664

0
h�(L� 1)

...

h�(0)

0

37777777775
: (7.152)

On the other hand, when this does not happen, there will be some channel coefficients missing

either from the top or the bottom of di. In these cases the performance is expected to degrade

exactly for the same reasons that this happens in the symbol-rate equalizers.

In order to provide an example where this phenomenon shows up we will compare differ-

ent MMSEE’s corresponding to different delays by plotting the corresponding output SNR’s.

Figure 7.16 shows how the output SNR is influenced by the delay parameter i for the channel

that was simulated in the previous example. Note how much the performance is getting

improved as the delay increases and how it decreases again when it gets too big. Therefore

the same kind of behaviour as in classical cases is observed.
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Figure 7.16: MMSEE performance: the influence of the lag

Discussion:

At this point it is worth noting two more things. First, the relation (7.147) is valid for

any delay i, which means that if a ZFE corresponding to any delay is already known, 11 it is

straightforward to obtain the MMSEE corresponding to the same delay. Another thing is that

in the absence of noise, the ZFE (and therefore the MMSEE also) corresponding to a specific

11For example by using the n�step ahead prediction described in section 7.5
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delay can be adjusted to a different delay by a simple shift. However this is obviously not the

case in the presence of noise.

7.6.5 Further discussion

In this section we have been interested in the problem of MMSE equalization in the multi-

channel context. Seen either from the point of view of fractionally-spaced equalization or

from that of reception through multiple antennas, this problem seems to be receiving quite

some attention nowadays. In [Cre94], an interesting geometrical interpretation of the MMSE

fractionally-spaced equalizer is given as well as an analysis that shows the advantages of

the oversampling case w.r.t. the symbol-rate one. In [BD94] a performance analysis is given

for a decision feedback equalizer in the case of reception through an antenna array. In this

study it is also shown also that the performance improves as the diversity (in this case the

number of receiving antennas) increases. It is therefore possible that using diversity in one

way or another, linear equalizer methods can be used in such a way so as to achieve good

performance for several systems.

7.7 Signal and Noise subspaces

7.7.1 Parameterization of the signal and noise subspaces

Suppose now that we have additive white noise v(t) with zero mean and unknown variance

�2

v (in the complex case, real and imaginary parts are assumed to be uncorrelated, colored

noise could equally well be handled). Then since

Rx

L = TL (HN ) Ra
L+N�1T H
L (HN ) + �2

vILm ; (7.153)

for L � L, �2

v can be identified as the smallest eigenvalue of Rx

L. Replacing Rx

L by Rx

L��2

vILm,

all results of the prediction approach in the noiseless case still hold. Given the structure of

Rx

L in (7.153), the column space of TL (HN ) is called the signal subspace and its orthogonal

complement the noise subspace. In [Slo94a], a linear parameterization of the noise subspace is

given in terms of a blocking equalizer form = 2. Form > 2, a linear minimal parameterization

can be found by using linear prediction [Slo94c].

Consider now the eigendecomposition of Rx

L of which the real nonnegative eigenvalues

are ordered in descending order:

Rx

L =

L+N�1X
i=1

�iVi V
H
i +

LmX
i=L+N

�iVi V
H
i

= VS�SV
H
S

+ VN�NV
H
N

;

(7.154)

where�N = �2

vI(m�1)L�N+1 (see (7.153)). AssumingTL (HN ) and Ra
L+N�1 to have full rank, the

sets of eigenvectors VS and VN are orthogonal: VH
S VN = 0, and �i > �2
v ; i = 1; : : : ; L+N�1.
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We then have the following equivalent descriptions of the signal and noise subspaces

Range fVSg = Range fTL (HN )g ; V H
N TL (HN ) = 0 : (7.155)

7.7.2 Sinusoids in noise: comparison

The form of the covariance matrix Rx

L, as it appears in (7.153), is similar to the form of the

covariance matrix that appears in the classical problem of sinusoids in noise. Indeed, in the

latter case the covariance matrix has the form

R = V D V H + �2

v I ; (7.156)

whereV is a Vandermonde matrix. Now the signal subspace is the column space of V , and the

noise subspace is its orthogonal complement. The noise subspace in this case is the column

space of a Toeplitz matrix that contains the prediction filters for each sinusoid (a sinusoid can

be perfectly predicted). On the other hand, in the case of (7.153), the signal subspace is the

column space of TL (HN ) which is a block Toeplitz matrix. The noise subspace is the column

space of a matrix that contains (m� 1)L�N + 1 blocking equalizers (see [Slo94c]). It has the

form of a banded block-Toeplitz matrix (apart from some missing lines in the first block). The

following table shows a comparison between of the signal and noise subspaces in the two

cases.

Sin. in noise SIMO channel

Signal Subspace Vandermonde matrix Toeplitz matrix

Noise Subspace Toeplitz matrix Block-Toeplitz matrix

7.8 Channel Estimation by Subspace Fitting

When the covariance matrix is estimated from data, it will no longer satisfy exactly the prop-

erties we have elaborated upon. We assume that the detection problem of the signal subspace

dimension L+N�1 has been solved correctly. The signal subspace will now be defined as the

space spanned by the eigenvectors corresponding to the L+N�1 largest eigenvalues, while

the noise subspace is its orthogonal complement. Consider now the following subspace fitting

problem

min
HN ;T

kTL (HN ) � VS TkF ; (7.157)

where the Frobenius norm of a matrix Z can be defined in terms of the trace operator:

kZk2

F = tr

n
ZHZ

o

. The problem considered in (7.157) is quadratic in both HN and T . If

VS contains the signal subspace eigenvectors of the actual covariance matrix Rx

L, then the

minimal value of the cost function in (7.157) is zero. If Rx

L is estimated from a finite amount

of data however, then its eigenvectors (and eigenvalues) are perturbed w.r.t. their theoretical

values. Therefore, in general there will be no value for HN for which the column space of
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TL (HN ) coincides with the signal subspace Range fVSg. But it is clearly meaningful to try

to estimate HN by taking that TL (HN ) into which VS can be transformed with minimal cost.

This leads to the subspace fitting problem in (7.157). The optimization problem in (7.157) is

separable. With HN fixed, the optimal matrix T can be found to be (assuming VH
S

VS = I)

T = V H
S TL (HN ) : (7.158)

Using (7.158) and the commutativity of the convolution operator as in (7.110), one can show

that (7.157) is equivalent to

min
Ht

N

Ht
N

0@ LmX
i=(m�1)L�N+1

TL
�
V H t

i

�
T H
L

�
V H t

i

�1AHtH
N

=min
Ht

N

"
L

Ht
N

2

2

�Ht
N

 
L+N�1X

i=1

TL
�
V H t

i

�
T H
L

�
V H t

i

�!

HtH
N

#
;

(7.159)

whereV H
i (like FL) is considered a block vector withL blocks of size 1�m. These optimization

problems have to be augmented with a nontriviality constraint on Ht
N . In case we choose the

quadratic constraint

Ht
N



2

= 1, then the last term in (7.159) leads equivalently to

maxHt
N



2

=1

Ht
N

 
L+N�1X

i=1

TL
�
V H t

i

�
T H
L

�
V H t

i

�!

HtH
N (7.160)

the solution of which is the eigenvector corresponding to the maximum eigenvalue of the

matrix appearing between the brackets.
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Figure 7.17: Channel id in the case of a noisy but perfectly estimated cov. matrix
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7.9 Channel Estimation from Data using Conditional ML

Maximum Likelihood estimation is by definition the most efficient (in terms of estimation

accuracy) technique when one has to deal with a finite amount of data. In order to be able

to implement ML techniques, one needs to know the way that the data set depends on the

parameters, as well as the statistical description of the parameters and the noise that usually

corrupts the data. This results in a likelihood function, which is the criterion that has to be

optimized.

In some cases however, the actual pdf of the parameters is not used (either because

it is not available or because using it would result to a more computationally demanding

method). Then we usually attribute to the parameters an arbitrary (not corresponding to

the true) statistical distribution. The resulting problem is then called a Conditional Maximum

Likelihood (CML) technique. This problem is sub-optimal in the sense that it will always

contain some estimation error due to its modeling, but may nevertheless combine a good

estimation quality with a low computational complexity. In the sequel of this section we will

propose two different CML techniques for the joint problem of estimating the transmitted

data and channel parameters from the available channel output data set. The reason why we

propose such techniques is that in the case of given data (samples of y(:)), the subspace fitting

approach of the previous section involves the data through the sample covariance matrix,

which leads to computationally tractable optimization problems, but not to very efficient

estimates.

7.9.1 Deterministic Maximum Likelihood

As its name indicates, the principle of DML is to consider some of the stochastic parameters

as deterministic quantities. The formulation of the problem in the multichannel context is

given below.

Problem formulation

We make the following assumption for the transmitted data parameters

� The transmitted data fa(k)g are assumed to be deterministic quantities.

This means that not only we do not assume the actual marginal pdf for the transmitted data,

but that moreover, we consider them to be deterministic quantities. The channel parameters

are of course also assumed to be deterministic quantities, and therefore, the only stochastic

part is assumed to come from the additive noise at the channel output. We now make the

following assumption for the statistical description of the additive noise.

� The additive noise samples fv(k)g are assumed to be i.i.d. complex random variables,

that are Gaussian with zero mean and unknown variance �2

v. We also assume, as usually,

that the real and imaginary parts of the noise are independent between them.
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Therefore, the additive noise variance is another deterministic parameter that can be esti-

mated.

We finally assume a snapshot of M vector channel outputs to be available.

XM(k) =

26664

x(k)

...

x(k �M + 1)
37775

As the only stochastic part comes from the noise, the likelihood function is the pdf of the

noise, and we write it in such a way so as to make appear the involved parameters in it. The

noise samples are expressed in terms of the channel and symbol parameters as

VM(k) = XM (k) � TM (HN )AM+N�1(k) ; (7.161)

and therefore the likelihood function is

p(XM (k) ; �(k)) =

1

(2��2

v)
mM=2 e

�

1
2�2

v

kXM(k)�TM (HN)AM+N�1k

2

; (7.162)

where �(k) represents the parameter vector defined as

�(k) = [AT
M+N�1(k) H1 � � � Hm]

T : (7.163)

The goal is to determine the parameter vector �(k) that maximizes the likelihood that the

received data snapshot has been produced in the presence of additive white Gaussian noise:

max

�(k)

p(XM (k) ; �(k)) : (7.164)

The maximization of the likelihood function therefore boils down to the following least-

squares problem

min
HN ;AM+N�1(k)

kXM (k)� TM (HN )AM+N�1(k)k2
2 : (7.165)

The optimization problem in (7.165) is separable. We therefore proceed in two steps. As-

suming HN to be a constant, the problem (7.165) is a classical least-squares problem for the

parameters AM+N�1(k) whose solution is

AM+N�1(k) = (T H
M (HN )TM(HN ))

�1 T H
M (HN)XM (k) : (7.166)

Replacing the expression (7.166) in (7.165) we get the following equivalent expression for

(7.165)

min
HN ;AM+N�1(k)

XM(k)
�
ImM � TM (HN ) (T H
M (HN )TM(HN ))

�1 T H
M (HN)

�2

2

; (7.167)

which can be written as 8>>><>>>:

min
HN

P?
TM

�

HN

�XM(k)
2

2
or

max
HN

PTM�HN

�XM(k)
2

2

;

(7.168)
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since the projection operators are defined as8><>:
P
TM

�

HN

� = TM (HN ) (T H
M (HN )TM(HN ))

�1 T H
M (HN)

P?
TM

�

HN

� = ImM � P
TM

�

HN

� :

(7.169)

Since T H
M (HN ) XM(k) = T T
N

�

Xt T
M

�

HtH
N , we can rewrite the second approach in (7.168) as

max
Ht

N

Ht
N T �
N

�

XtT
M (k)

� �
T H
M (HN ) TM (HN )

��1
T T
N

�
Xt T

M (k)
�

HtH
N : (7.170)

Algorithmic organization

The optimization problem (7.170) is highly nonlinear w.r.t. the channel parameters. Moreover,

it has to be augmented with a non-triviality constraint such as for example a norm restriction

on the channel. In this case, one might think of solving it iteratively following a 2-step

procedure:

� Use the previous estimate of HN to calculate the inverse matrix appearing in the middle

of the expression (7.170).

� Then maximize the expression (7.170) considering as only parameters the channel ma-

trices appearing as outer factors in (7.170).

The second step mentioned above can be easily solved since it has a classical quadratic form

and has analytical solutions depending on the non-triviality constraints imposed. Of course

a good initialization for this method is needed, which may be provided for example by the

subspace-fitting approach discussed above.

However, the fact that the problem (7.170) is a maximization and not a minimization one

poses a problem in what concerns the success of such an iterative procedure. 12 We are

therefore interested in replacing the problem (7.170) by a similar minimization problem. We

now discern between two cases:

� m = 2

In (7.170), the problem is parameterized in terms of the signal subspace parameters (i.e. the

channel coefficients). A minimization problem would appear if one were able of finding a

minimal parameterization of the noise subspace (by minimal parameterization we mean one

in which the degrees of freedom used equals the number of parameters to be determined,

12This has to do with the fact that, contrary to what happens in the corresponding minimization problem, in

the maximization one, the value of the middle matrix influences the global solution even in the absence of noise.

On the other hand, in the minimization problem, one will always find the correct solution in the absence of noise,

for any matrix in the middle (the role of the middle matrix in this case is only to “weight” the expression and has

an optimal setting in the noisy case). This is why an iterative procedure will be successful for the minimization

problem.
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in our case, the channel coefficients). In the case m = 2, as we already saw, a minimal

parameterization of the noise subspace is achieved if we parameterize everything in terms of

the blocking equalizer. Assuming that TM(HN) has full rank, as already mentioned, TM(HN)

spans a space orthogonal to the one spanned by T H
M�N+1(F

b
N). Therefore the orthogonal

projections w.r.t. TM (HN ) correspond to orthogonal projection complements to THM�N+1(F

b
N)

and vice versa. Therefore the problem (7.168) can be written as

min
HN

P?
TM

�

HN

�XM (k)
2

2

= min
Fb

N

PT H
M�N+1

�

Fb
N

�XM(k)


2

2

=

= min
Fb

N

XH
M (k) T H
M�N+1

�

FbN
� �
TM�N+1

�

FbN
�
T H
M�N+1

�

FbN
��
�1

TM�N+1

�

FbN
�

XM (k) :

Now because of the commutativity of convolution we can write

TM�N+1(FbN ) XM (k) = HM�N+1

�

Xt
M (k)

�

Fb TN ; (7.171)

where

Xt
M (k) =

26664

xT (k)

...

xT (k �M + 1)
37775 (7.172)

and HL(u) is a block Hankel matrix with L block rows, obtained by taking the block entries

from the block vector u and filling up a Hankel matrix starting from the top left corner:

u =
26664

u(0)

...

u(M � 1)
37775 ; HL(u) =

26666664

u(0) u(1) � � � u(M � L)

u(1) . . .
. . .

u(M � L+ 1)

... . . .
. . . ...

u(L� 1) � � � � � � u(M � 1)

37777775 : (7.173)

Taking into account (7.171), the minimization problem takes now the form

min
Fb

N

Fb�N HH
M�N+1

�

Xt
M (k)

� �
TM�N+1

�

FbN
�
T H
M�N+1

�

FbN
���1

HM�N+1

�

Xt
M(k)

�

FbTN :

(7.174)

The minimization problem (7.174) can now be easily solved in an iterative way as described

before. As the cost function in nonlinear, it is important to have a good initial guess (e.g. use

the outcome of the subspace fitting approach mentioned before). It can be proven that if the

initial estimate is consistent, then one iteration of the iterative solution suffices to obtain an

asymptotically best consistent (ABC) estimate. 13

� m > 2

13The problem (7.174) has a form identical to the one presented in [BM86], even though the latter corresponds

to a different (DOA) context. Moreover, the same iterative procedure is proposed and simulated as well.
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In order to have a minimization problem as in (7.174) we need again a minimal parameter-

ization of the noise subspace. The signal subspace (which is the column space of TM(HN ))

has mN � 1 degrees of freedom (the channel coefficients apart from a multiplicative factor).

The noise subspace can also be determined as the column space of (a slight modification of)

some block Toeplitz matrix G(G) which is determined by G. As shown previously, G can be

taken to be (an appropriate parameterization of) the first set of m � 1 prediction filters that

give zero prediction error (in the noiseless case with uncorrelated transmitted symbols). Each

such filter corresponds to a blocking equalizer. The number of degrees of freedom in G is

again mN � 1. HN (apart from a scaling factor) and G can be uniquely determined from one

another. The optimization problem now becomes

min

G

kPG(G)XM (k)k2
2 : (7.175)

Due to the commutativity of convolution, we can write

G(G)XM (k) = X (XM (k))[1 GT ]T :

Therefore (7.175) can be written as

min
G

24 1
G

35H XH(XM(k))
�
GH(G)G(G)

��1

X (XM(k))
24 1

G

35 (7.176)

The optimization problem (7.176) now has the same form as (7.174) and can be iteratively

minimized as before. This is therefore the method that should be used for the general case of

m > 2.

Performance analysis: Cramer-Rao bounds

In this paragraph we will pursue a performance analysis of the DML method above by

determining the corresponding Cramer-Rao bounds.

We consider first the case m = 2. In order to discriminate between the channel and the

transmitted symbol parameters, we partition the parameter vector �(k) defined in (7.163) as

�(k) = [bT aT ]T ; (7.177)

where bT = AT
M+N�1(k) and aT = [H1 H2]. Now our problem has the same form as the

linear separable problem appearing in [MS93]:

X0M = TMb ; TM = TM (a) ; (7.178)

where X0
M denotes the noiseless data vector and where we have dropped all indices indicating

time. The Fisher information matrix J(�) is then given by

J(�) =

1

�2

v
 
@xT

@�
! 
@xT

@�
!T

: (7.179)
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Taking into account the structure of the linear separable model, the Fisher matrix take the

form

J(b; a) =

1

�2

v
24 HHH HHK

KHH KHK

35 ; (7.180)

where the elements of the matrices H and K are defined as

H = [hi] hi =

@X0M
@bi

K = [ki] ki =

@X0
M

@ai

=

@H
@ai

b :

(7.181)

By performing the necessary derivations, we find that the matrix K is given as

K =

26666666666666664
a0 a1 � � � aN�1 0 0 � � � 0

0 0 � � � 0 a0 a1 � � � aN�1

a1 a2 � � � aN 0 0 � � � 0

0 0 � � � 0 a1 a2 � � � aN

...
...

...
...

...
...

...
...

aM�1 aM � � � aM+N�2 0 0 � � � 0

0 0 � � � 0 aM�1 aM � � � aM+N�2

37777777777777775
: (7.182)

The CR bounds are found from the inverse of the Fisher matrix which has the form

J�1(a; b) = �2

v

24 [HH(I � PK)H ]�1 F

FH [KH(I � PH)K]�1

35 : (7.183)

We are primarily interested in the CR bound for the channel, which is therefore given as

C(a) � �2

v(K
HZK)�1 ; (7.184)

where Z is

Z = I2M � TM (T H
M TM)�1T H
M : (7.185)

The generalization to the case m > 2 is straightforward. By noting that the quantity

TM (HN )AM+N�1(k) can be expressed as

TM (HN )AM+N�1(k) = AM;N(k)Ht T
N ;

where AM;N(k) = AM;N(k)
 Im and

AM;N(k) =
26664
a(k) � � � a(k�N+1)

... . . . ...

a(k�M+1) � � � a(k�M�N+2)
37775 ; (7.186)

(Hankel matrix), the CR bound for the casem > 2 takes the form (if we consider the estimation

of the channel modulo the problem of determining the proper scale factor)

C( bHtT
N ) � �2

v
�
AH
M;N(k)P

?
TM

�

HN

�AM;N(k)
�+

; (7.187)
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where + denotes pseudo-inverse. Note that this leads to a singularity in the joint information

matrix for AM+N�1(k) and Ht T
N , which translates into a singularity for the information matrix

for HtT
N separately (we can only determine HN up to a scalar multiple).

In order to get an idea of the quality of this estimation, we will compare it to the one that

would be obtained if we had at our disposal a training sequence, i.e. if the data were known.

Suppose that we have a set of L symbols :

AL = fa0 a1 � � � aL�1g :

Then the noiseless output would be given as

X0 = HL AL ; (7.188)

where HL is defined as

HL =

26666664
H1(0) � � � H1(N � 1) 0 � � � 0

0 H1(0) � � � H1(N � 1) 0
...

...
. . . . . . . . . . . .

...

0 � � � 0 H1(0) � � � H1(N � 1)

:
37777775 (7.189)

Now the corresponding matrix K0 will be

K0 =

26666664
a0 � � � aN�1

a1 � � � aN

...
...

...

aL�N � � � aL�1

37777775 : (7.190)

Therefore the corresponding CR bound (per channel) is

C(H1) � �2

v (K
0HK0)�1 : (7.191)

Now note that the following inequality holds�
AH
M;N(k)P

?
TM

�

HN

�AM;N(k)
�+
�

h
AH
M;N(k)AM;N(k)

i�1

: (7.192)

The last expression is according to (7.191) the CR bound if the data AM+N�1(k) were known

(training sequence). For small m (e.g. 2), we find that the quality of the channel estimate may

be relatively bad if the channel impulse response tapers off near the ends (channel length

detection problem!). For large m however, the CR bound approaches the value correspond-

ing to known data (which is independent of the channel)! These remarks can be seen in the

following computer simulation example:

Examples

We will present some computer simulation examples in which we compare the CR bounds

obtained by the DML method to the ones obtained by the corresponding ML method that

uses a training sequence.



7.9. CHANNEL ESTIMATION FROM DATA USING CONDITIONAL ML 203

� First example: m = 2, the two channels have impulse responses given as

h1 = [0:6912 � :5364 � 0:0434 0 0 0]

h2 = [0:6771 0:3404 0 0 0]

(N = 6). We assume M = 500 data. The average CR bound/channel then turns to be

CR1 = �2

v � 10:1382 :

Now suppose we make the same estimation based on 26 only training data 14. Then the

corresponding CR bound is

CRt;1 = �2

v � 0:4341 :

This shows that the estimation by the DML method, based even on as much as 500 data

samples is clearly worse than the one of a training sequence of only 26 samples. This has to

do primarily with two factors: the fact that the channel have 0 coefficients at their ends and

the fact that the oversampling factor is small. We now present a counterexample.

� Second example: m = 8, the eight channels have impulse responses given as

h1 = [0:8259 1:0397 � 0:6167 � 0:0823 0:2224 0:1834]

h2 = [�1:3291 0:0389 0:4373 0:0228 � 0:0445 � 0:0144]

h3 = [�0:0365 0:2892 0:0972 � 0:0179 0:0036 0:0454]

h4 = [0:4128 � 0:4918 0:0664 � 0:0193 0:0179 � 0:0273]

h5 = [0:5506 0:3144 � 0:0803 � 0:0187 0:0535 0:0426]

h6 = [�0:8631 0:1622 0:0394 � 0:0286 � 0:0403 0:0155]

h7 = [�0:5345 0:2110 � 0:0068 � 0:0549 0:0255 � 0:0409]

h8 = [�0:2299 0:5997 � 0:0253 � 0:0055 0:0310 0:0577]

The corresponding CR bound based on 148 data samples with the DML method is

CR2 = �2

v � 0:0921 :

whereas the corresponding CR bound based on 26 training data is

CRt;2 = �2

v � 0:4221 :

In this case the blind method performs clearly better. This reflects the severe oversampling

employed as well as the absence of 0 coefficients in the channels.

14This is the case for the training sequence of a GSM time-slot.
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7.9.2 Conditional ML assuming a Gaussian prior for the symbols

A problem with the optimization criterion (7.165) is that the joint information Fisher matrix for

the channel and the data is singular, thus necessitating the use of a pseudo-inverse operation

for the acquisition of the Cramer-Rao bound for the channel estimation. Moreover, computer

simulations have shown that for small m, the channel estimation can be relatively bad if the

channel impulse response tapers off near the ends.

We now propose a modified DML method that seems to avoid these problems: we con-

sider the transmitted symbols to be no longer deterministic quantities but random variables

that obey to a zero-mean Gaussian distribution of variance �2

a. This may be an unrealistic

assumption, it helps however to regulate the ML problem and provide a better estimation

quality. The conditional likelihood function will now be

f(X;AjH) = f(X jA;H) f(A) : (7.193)

f(X jA;H)represents the likelihood function conditioned on both the channel and transmitted

data :

f(X jA;H) =

1

(2��2

v)
mM=2 e

�1
2�2

v

jjXM(k) � TM (HN )AM+N�1(k)jj

2

; (7.194)

and corresponds to the ML function of the previous DML method. f(A) now represents the

likelihood function for the assumed Gaussian transmitted data:

f(A) =

1

(2��2

v)
mM=2 e

�1
2�2

a

jjAM+N�1(k)jj2 (7.195)

Combining (7.194) and (7.195) we obtain the ML function for our problem:
f(X jA;H) =

1

(2��2

v)
mM=2 e

�1
2�2

v

jjXM (k) � TM(HN )AM+N�1(k)jj2 +

�1
2�2

a

jjAM+N�1(k)jj2

:

(7.196)

The maximization of the ML function in (7.196) leads to the following problem:

min
HN ;AM+N�1(k)


24 XM (k)

0N+M�1

35�
24 TM (HN )

�v
�a
IN+M�1

35AM+N�1(k)


2

2

: (7.197)

Under this formulation, the problem (7.197) has the same linear-separable form as the DML

problem presented before. The Fisher information matrix has the form

eJ(b; a) =

1

�2

v
24 eHH eH eHHfKfKH eH fKHfK
35 ; (7.198)

where the elements of the matrices eH and fK are now defined as

eH = [ehi] ehi = @
fX0
M

@bifK = [eki] eki =

@gX0
M

@ai

=

@ eH
@ai

b ;

(7.199)
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and

fX0M =

24 X0
M

0N+M�1

35 ; (7.200)

(X0M is defined in (7.178)). It turns out that

fK =

24 K

0N+M�1

35 ; (7.201)

(K is defined in (7.182)).

Therefore the Cramer-Rao bound CRBbHt T
N

for the channel is given as

C( bHtT
N ) = �2

v
�fKH

M;N(k)P
?eTM (HN )
�

HN

�fKM;N(k)
��1

; (7.202)

where

eTM(HN ) (HN ) =
24 TM (HN )

�v
�a
IN+M�1

35 : (7.203)

Due to the modification w.r.t. the criterion (7.165), there is no longer a singularity problem re-

lated to the Cramer-Rao bound. Moreover, as computer simulations have shown, the quality

of the estimation is good even for channels whose impulse response tapers off near the ends,

conversely to the criterion (7.165).

Example

The following simulation result shows the increased quality in estimation of the criterion

(7.197). We consider two channels (m=2) of 6 coefficients each:

h1 = [0:3651 0:5983 � 0:0825 0 0 0]

h2 = [0:4076 � 0:0625 0 0 0] :

The following table shows the mean CR bound for the estimation of a channel coefficient,

using either the criterion (7.197), the criterion (7.165) based on 140 data samples or a training

sequence (non-blind estimation) of 26 data samples (a typical situation for the European GSM

cellular phone) . The SNR is 10 dB.

DML GDML TRS

99.9062 0.0149 0.0198

Notice the very good quality in estimation of the criterion (7.197), especially as compared

to the very bad quality provided by (7.165). This shows clearly the improvement in estimation

quality achieved with the GDML method.
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7.10 Further discussion

Some of the results presented in this chapter have been also presented in [SP94a], [SP94b],

[SP95]. It should be noted that after the appearance of the article of Tong, Xu, and Kailath

[TXK94] the area of blind fractionally spaced equalization has been given a lot of attention

during the last two years, and remains always a hot topic. Similar results to some of the

ones that were presented in this chapter have been independently obtained as well by other

researchers, namely: Moulines et al. have presented in [MDCM93] the same essentially i/o

modeling as in (7.43) and a subspace fitting approach similar to the one presented in section

7.8 (see also [MLM94]). A linear prediction approach similar to the one presented in section

7.5 was presented in [MDG+94]. Hua has proposed in [Hua94] a DML approach that results to

the same minimization problem as the one presented in section 7.9.1 (but a different algorithm

to optimize the criterion is proposed by Hua).

Some comparative studies that show the improvement of the modeling (7.43) w.r.t. the

one proposed in [TXK94] may be found in [dMB94], [QH94].
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7.11 Appendix 7A: Sylvester matrices

Sylvester matrices are associated with the coefficients of two polynomials. Consider the two

polynomials

A(z) = a0z
na + a1z
na�1 + � � �+ ana

B(z) = b0z
nb + b1z
nb�1 + � � �+ bnb ;

(7.204)

Then the corresponding Sylvester matrix is a (na + nb)� (na + nb) defined as

S(A;B) =

266666666666666666664
a0 � � � ana 0 � � � 0

0 a0 � � � ana

. . .
...

...
. . . . . . . . . . . . 0

0 � � � 0 a0 � � � ana

b0 � � � bnb 0 � � � 0

0 b0 � � � bnb

. . .
...

...
. . . . . . . . . . . . 0

0 � � � 0 b0 � � � bnb

377777777777777777775
: (7.205)

The upper partition of S(A;B) has nb rows and the lower one na rows. na, nb must satisfy

min(na � na; nb � nb) = 0 : (7.206)

Then the following holds:

Lemma 7A.1: Consider the Sylvester matrix S(A;B). Assume that A(z) and B(z) as defined

in (7.204) have exactly k common zeros. Then

rank(S(A;B)) = na + nb � k : (7.207)

Corollary 7A.1: A(z) and B(z) are coprime if and only if S(A;B) is nonsingular.

These results extend also to the case of A(z) being a vector polynomial as follows. Con-

sider the polynomial A(z) and B(z) to be defined now as

A(z) = A0z
na + A1z
na�1 + � � �+Ana

B(z) = b0z
nb + b1z
nb�1 + � � �+ bnb ;

(7.208)
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where the coefficients Ai are now 1�m vectors. The generalized Sylvester matrix S(A;B) is

a (mna + nb)� (m(na + nb)) matrix defined as

S(A;B) =

266666666666666666664
A0 � � � Ana 0 � � � 0

0 A0 � � � Ana

. . .
...

...
. . . . . . . . . . . . 0

0 � � � 0 A0 � � � Ana

b0Im � � � bnbIm 0 � � � 0

0 b0Im � � � bnbIm
. . .

...
...

. . . . . . . . . . . . 0

0 � � � 0 b0Im � � � bnbIm

377777777777777777775
: (7.209)

The upper partition of S(A;B) has nb and the lower mna rows. In the case m = 1 the matrix

S(A;B) is obtained. When m > 1 the generalized Sylvester matrix is rectangular with more

columns than rows. The following holds for S(A;B):

Lemma 7A.2: Consider the generalized Sylvester matrix S(A;B). Assume that A(z) and

B(z) as defined in (7.208) have exactly k common zeros 15. Then

rank(S(A;B)) = mna + nb � k : (7.210)

Corollary 7A.2: A(z) and B(z) are coprime if and only if S(A;B) has full rank equal to
mna + nb.

Other generalizations that lead to rectangular Sylvester matrices exist, the common property

of all being that their rank decreases with the number of zeros in common for the correspond-

ing polynomials. Such a generalized Sylvester matrix is the matrix TL (HN ) defined in section

7.4.

15A complex number ~z is said to be a zero of the vector polynomial A(z) as defined in (7.208) if A(~z) = 0



Chapter 8

Applying existing blind techniques to

the multichannel setup

THE focus of this chapter is on equalization rather than channel identification. We ap-

ply the blind equalization techniques that were presented in the first part of the thesis to the

fractionally-spaced setup presented in chapter 7. The general methodology that allows to

apply these techniques to the fractionally spaced case is presented and the performance of the

algorithms in the fractionally-spaced case is demonstrated through computer simulations.

8.1 Introduction

In the first part of this thesis we presented several BE methods (mostly of the CMA type)

that improved the performance of the classical CMA in several aspects. Even though in the

presentation of these algorithms we used a Baud-rate formulation, these algorithms can be

equally well adapted so as to be applied to the case of fractionally-spaced receivers. The

advantages of fractional spacing that were discussed in the previous chapter are expected to

reflect to the performance of these algorithms. Moreover, it has been recently stated [LD94],

[May94], [LFHJ95], that the classical CMA 2-2 itself has an essentially increased performance

when combined with fractional spacing: under certain conditions it is globally convergent. In

this chapter we will discuss the adaptation of the algorithm of the first part of the thesis to the

fractionally-spaced setup and will show some computer simulation results that correspond

to multipath transmission.
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8.2 Formulation

8.2.1 CMA - like and DD algorithms

It is straightforward to apply the algorithms of this kind to the setup of a fractionally-spaced

receiver. Namely, if one defines the regressor at each time instant Xk and the corresponding

equalizer as

Xk =

2666666666666664
x

(1)
k
� � �

x
(m)

k
� � �

x
(1)
k�N+1

� � �

x
(m)

k�N+1
3777777777777775
�

; Wk =

266666666666666664
w

(1)

0 (k)

...
w

(m)

0 (k)

...

w
(1)

0 (k �N + 1)

...

w
(m)

0 (k�N + 1)
377777777777777775

; (8.1)

then the corresponding equalizer output at time instant k will equal

yk = XH
k Wk :

The corresponding fractionally-spaced BE algorithms will have the following general form

Wk+1 = Wk + � Tk P
�1

k ek : (8.2)

The essential difference with respect to the Baud-rate case is that in (8.2) the regression vector

is not stationary in the scalar but in the vector sense. This implies that it should be shifted by

m (instead of 1) positions at each iteration. The following table shows how different choices

for the quantities in (8.2) lead to different algorithms.

� CMA p-q: TL = Xk; Pk = 1; ek = yk jykjp�2(rp � jykjp)

� NCMA: Tk = Xk; Pk = (XH
k Xk); ek = sign(yk)� yk

� NSWCMA: Tk = Xk; Pk = XH
k Xk ; ek = sign(XH
k Wk)�XH
k Wk; Xk = [Xk � � � Xk�L+1]

� NSWERCMA:

8<: Tk = Xk; Pk = �Pk�1 + XkXH
k ; ek = sign(XH
k Wk)� XH
k Wk;

Xk = [Xk � � � Xk�L+1]; Xk = [xk � � � xk�L+1]T

� RLSCMA: Tk = Xk; Pk = �Pk�1 +XkX
H
k ; ek = sign(yk)� yk

� DDA: Tk = Xk; Pk = 1; ek = dec(yk)� yk

� NSWDDA: Tk = Xk; Pk = XH
k Xk ; ek = dec(XH
k Wk)�XH
k Wk; Xk = [Xk � � � Xk�L+1]

� NSWERDDA:

8<: Tk = Xk; Pk = �Pk�1 + XkXH
k ; ek = dec(XH
k Wk)� XH
k Wk;

Xk = [Xk � � � Xk�L+1]; Xk = [xk � � � xk�L+1]T

� RLSDDA: Tk = Xk; Pk = �Pk�1 +XkX
H
k ; ek = dec(yk)� yk
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� CMDDHA: Tk = Xk; Pk = 1; ek = cdec(yk)� yk

� NSWCMDDHA:Tk = Xk; Pk = XH
k Xk ; ek = cdec(XH
k Wk)�XH
k Wk ; Xk = [Xk � � � Xk�L+1]

� NSWERCMDDHA:

8<: Tk = Xk ; Pk = �Pk�1 + XkXH
k ; ek = cdec(XH
k Wk)�XH
k Wk;

Xk = [Xk � � � Xk�L+1]; Xk = [xk � � � xk�L+1]T

� RLSCMDDHA: Tk = Xk; Pk = �Pk�1 +XkX
H
k ; ek = cdec(yk)� yk

These algorithms are expected to combine two things: the performance characteristics of their

Baud-rate counterparts and the features of linear fractionally-spaced equalizers. Namely, the

ability of opening a closed channel eye is expected to be preserved: all the above classes

of algorithms (except for the DDA, NSWDDA, NEWDDA, RLSDDA) should open a closed

channel eye for any QAM constellation, whereas the decision-directed ones should open

a closed channel eye for CM constellations. The convergence speed is also expected to be

increasing with the number of constraintsL imposed by the criterion of each algorithm at each

iteration. Moreover, these algorithms will benefit from the structure of the fractionally-spaced

setup, namely:

� They will be able of providing FIR ZF equalizers in the absence of noise.

� They will be able of dealing with channels that have zeros on the unit circle -as long as

these zeros are not shared by all the sub-channels-.

� They will be able of providing acceptable equalizer settings even for channels that have

zeros in common - as long as these zeros are not on the unit circle-. In this case they will

not exist of course FIR ZF equalizers, however the performance will increase with the

equalizer length.

The fact that these techniques will work even when the no-zeros-in-common condition is vio-

lated is due to the fact that, as they are of the Bussgang-type (they make implicit use of HOS),

they do not depend only on second order statistics for their implicit channel identification.

Moreover, it has been stated recently [LD94], [May94], [LFHJ95], that the CMA 2-2 algo-

rithm is globally convergent in the fractionally-spaced setup under the following conditions:

� The FIR assumption (mentioned in chapter 7) should be satisfied

� The sub-channels must have no zeros in common

� No additive noise should be present

In the presence of noise, the FS-CMA 2-2 will still have a unique solution into each cone (de-

scribed in [LD94]), however all these solutions will not be equivalent between them. However,

the result stated above promises an improved performance of the CMA in the fractionally-

spaced case, and we expect this to be reflected to the other algorithms presented above as well.
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It should be noted at this point, that applying a reasoning similar to the one in [LD94],

the characteristics of the DD algorithm that we analyzed in chapter 5, can be reflected to the

FS case: when the input signal is CM, there are very few sets of local minima, which vanish

as the number of points on the circle increases. This fact promises an “almost-sure” global

convergence of the DDA (and of its normalized counterparts) in the fractionally-spaced case

when the transmitted signal is CM (and if there is no ambiguity about the transmitted fre-

quency). Combined with the fact that the DDA will provide in general a better steady-state

error than the CMA, these remarks predict a very promising behaviour of the FS-DDA when

used with CM constellations.

8.2.2 The bilinear case

We have also adapted the bilinear approach of chapter 6 to the framework of fractionally-

spaced equalization (the application is straightforward if one takes into account cyclostation-

arity as in (8.1)). The motivation for this was the following: in contrast to the Baud-rate case,

in the fractionally-space one, FIR ZF equalizers exist. This means that if the channel length

is given, then the minimal length of the FS equalizer in order to be ZF is known. Therefore

knowledge of the channel length may help avoiding over-parameterization in the FS case,

whereas knowledge of the channel inverse length is needed to deal with over-parameterization

in the Baud-rate case. This gives a potential advantage to the FS setup, since the length of a

channel can be more easily known or estimated than the length of the channel inverse impulse

response.

It turns out that in the FS setup, there are two mechanisms that may result to a singular-

ity in the bilinear method:

� The excessive equalizer length (as in the Baud-rate case)

� The existence of several ZF equalizers for a given equalizer length that correspond

to different position of the non-zero entry of the overall channel-equalizer impulse

response

As a result of these two factors, the covariance matrix R appearing in the solution of the

bilinear cost function will be singular (in the absence of noise), even when the equalizer

length N = N 1 (in which case it is -strictly speaking- perfectly parameterized). However,

the problem is nonsingular for all equalizer lengths N < N , the best choice being of course

N = N � 1. This will regulate the problem and will provide a unique solution at the cost

of an introduced sub-optimality. However, as it will be shown in computer simulations, this

1Note that, contrarily to chapter 7, in this chapter N (instead of L) is the equalizer length. This was done in

order to avoid confusion with L: the number of constraints imposed by the algorithms.
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suboptimality is often not very important, especially in cases where the channel coefficients

decay towards the tails.

8.3 Simulations

At this point we provide some computer simulation results that support the above claims.

These results (which are by no means exhaustive) are indicative of the behaviour of some of

the above algorithms and add to the value of the methods proposed in the first part of the

thesis, since they show their very good performance when combined with fractional spacing.

8.3.1 NSWCMA

We have simulated the NSWCMA for the case of the mobile multipath channel given in

[SGKC91]. The channel output has been sampled at the rate 2=T , has 27 coefficients and is

considered to be a typical mobile propagation channel. Figure 8.1 shows the zeros of the two

subchannels (note that there exist indeed some pairs of zeros in common!). We have simulated

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

real

im
ag

* : zeros of first subchannel

o : zeros of second subchannel

Figure 8.1: The zeros of the two subchannels

the CMA and the NSWCMA algorithms for the transmission of a 4-QAM sequence, and an

output SNR of 30 dB. The equalizer used had 33 coefficients and was initialized with a unique

non-zero center tap equal to 1. Figure 8.2 shows the evolution of the closed-eye measure for

the CMA and two members of the NSWCMA algorithms, used with the following parameters:

�� L N

a 0.3 4 33

b 1 1 33

c � =0.05 - 33

Note how all the algorithms open fast the channel eye and how the convergence speed

increases drastically with the number of CM constraintsL. This verifies the good performance
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of CMA-like algorithms in the FS setup, and moreover shows the considerable increase in

convergence speed that can be achieved by the NSWCMA. Note that the good behaviour is

observed despite the fact that the two sub-channels have zeros in common.
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Figure 8.2: Comparative simulations of the NSWCMA and the CMA for a T/2 fractionally-

spaced channel

8.3.2 NSWERCMA

A further increase in convergence speed (by keeping also down the steady-state error) can

be provided by the NSWERCMA algorithm. This can be shown in figure 8.3, which shows

the evolution of the closed-eye measure for the NSWERCMA, the NSWCMA and the CMA

algorithm. The transmitted constellation is again 4-QAM, and we use the same channel and

SNR as before. The parameters used are shown in the next table.

�� L �

a 0.2 15 0.99

b 0.5 5 -

c 1 1 -

d � =0.02 - -

Notice the very fast convergence of the NSWERCMA algorithm as compared to its other

counterparts. This is due to the very bog value (15) given to L.
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Figure 8.3: Comparative simulations of the NSWERCMA, the NSWCMA and the CMA for a

T/2 fractionally-spaced channel

8.3.3 Bilinear method

We tested the bilinear method of chapter 6 applied to the fractionally spaced setup through the

following simulation: we consider T=2 sampling and two channels with impulse responses

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 8.4: Simulating the bilinear method for the T/2 fractionally spaced setup

h1 = [0:311 0:637 0:965 0:069 0:383 0:367]

h2 = [0:657 0:151 0:755 0:160 0:9680 0:239]

We considered a fractionally-spaced equalizer of length 9 (one less than what strictly needed

for FIR ZF equalization in the absence of noise), which was initialized at an all-zero setting.
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The transmitted constellation is 4-QAM. Figure 8.4 shows the constellation after 1000 iterations

of the algorithm. The dark points correspond to zero-noise, whereas the circles to an SNR of

20 dB

8.4 Conclusions and further discussion

Similar results have been obtained for a number of other tests (including DD-like algorithms

in the context of a GSM channel). In all cases, the expected behaviour was verified: the

combination of the techniques developed in the first part of this thesis with the advantages

of fractionally-spaced equalization provides some very well performing methods for blind

equalization.
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APPENDICES

Appendix A

Sommaire détaillé en français

CET appendice contient un sommaire détaillé en français du travail effectué dans cette

thèse.

A.1 L’ état de l’art en égalisation aveugle

A.1.1 Le principe d’égalisation linéaire

L’égalisation est une procédure qui est utilisée par les récepteurs des systèmes de commu-

nications numériques afin de réduire l’effet d’Interférence Entre Symboles (IES), due à la

propagation du signal modulé à travers un canal linéaire. La figure A.1 montre le schéma

classique d’ égalisation linéaire adaptative:

Channel Equalizer

Adaptive Blind
Algorithm

Decision

-1C(z   ) -1W(z   )
k{a    } k  {y    } ^{ a     }k

Device

                 +

{η   }k

{x   }
 k

Figure A.1: Un schéma classique d’égalisation aveugle

Dans cette figure, fakg représente la séquence discrète des données émises, f�kg les échan-

tillons du bruit additif à la sortie du canal, fxkg les échantillons bruités à la sortie du canal,

fykg la séquence discrète à la sortie de l’égaliseur et f^akg la séquence des données estimées à

la sortie de l’ élément de décision. Le canal C(z) est supposé être linéaire, il peut donc être

paramétrisé par sa réponse impulsionnelle, que l’on suppose être finie (ayant une Réponse

218
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Impulsionnelle Finie: RIF) de longueur L:

C = [c0 � � � cL�1]
T : (A.1)

La sortie discrète du canal (qui inclut aussi le bruit additif) peut être écrite sous la forme

xk = AH
k C + �k ; (A.2)

où Ak est un vecteur de N échantillons émis consécutivement:

AH
k = [ak � � �ak�L+1] : (A.3)

L’égaliseur est aussi un filtre linéaire à RIF qui a N coefficients. La sortie de l’égaliseur peut

donc être écrite sous la forme

yk = XH
k Wk ; (A.4)

où

XH
k = [xk � � �xk�N+1] ; (A.5)

et

Wk = [w0(k) � � � wN�1(k)]
T : (A.6)

Xk est le vecteur dit régresseur et Wk est l’égaliseur à l’instant k. Le principe de l’égalisation

linéaire adaptative est le suivant: la sortie de l’égaliseur à chaque instant k, yk, est utilisée

par un algorithme récursif qui adapte les coefficients de l’égaliseur selon un critère inhérent

d’optimisation. Après plusieurs itérations, l’algorithme doit converger vers un régime sta-

tionnaire où les échantillons à la sortie de l’égaliseur s’approchent de la séquence de données

émises. Dans ce cas, l’oeil du canal est dit “ouvert” et l’élément de décision fournit à sa sortie

les symboles émis avec une petite probabilité d’erreur.

Typiquement, une séquence dite “d’apprentissage” est utilisée au début de la transmission

des données afin de permettre à l’égaliseur de converger vers une solution qui ouvre l’oeil du

canal. Cette séquence est connue d’avance par le récepteur, elle lui permet alors de créer un

signal d’erreur

�k = ak � yk ;

qui pourra ensuite être utilisé par un algorithme adaptatif standard afin d’aider l’égaliseur à

converger. Dans le cas de l’algorithme LMS, l’équation récursive de l’adaptation de l’égaliseur

sera donnée par

Wk+1 = Wk + � Xk(ak �XH
k Wk) ; (A.7)

où � représente le pas d’adaptation. Cet algorithme est un algorithme à gradient stochastique

pour le critère de minimisation suivant

min

W

J(W ) = E(jyk � ak j2) = E(jXH
k W � ak j2) : (A.8)
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Ce critère correspond à une fonction de coût convexe qui a un seul minimum. Si le pas

d’adaptation � est choisi de façon à ce que l’algorithme soit stable, il va alors converger

vers le minimum unique de sa fonction de coût (A.8). Donc si la séquence d’apprentissage

comprend un nombre d’échantillons suffisant, l’algorithme va converger vers une solution

qui correspond à un oeil de canal ouvert.

Comme, après l’ouverture de l’oeil, les décisions f^akg approximent assez bien la séquence

émise fakg, ils peuvent être utilisés à leur place pour l’étape finale de l’algorithme. L’adaptation

de l’égaliseur dans ce cas suit l’équation suivante8<: �k = ^ak �XH
k Wk

Wk+1 = Wk + �Xk�k :

(A.9)

Cet algorithme s’appelle “L’algorithme Dirigé par les Décisions (DD)” et est utilisé en pratique

pour améliorer l’ouverture de l’oeil pendant la phase finale de la convergence de l’égaliseur.

A.1.2 Egalisation aveugle

Dans certains cas, cette procédure standard d’égalisation à l’aide d’une séquence d’appren-

tissage n’est pas convenable pour des raisons qui sont liées soit à la réduction du débit

d’information à cause de cette séquence, soit à l’applicabilité de la méthode (par exemple,

dans les réseaux locaux la déconnection d’un utilisateur nécessiterait la retransmission de

la séquence d’apprentissage à plusieurs utilisateurs). Il serait alors souhaitable d’essayer

d’égaliser la séquence d’information transmise en ayant seulement accès à la séquence des

données reçues fxkg, et non pas aux fakg. Ceci est le principe d’égalisation aveugle (dite

aussi “égalisation autodidacte”), qui se base seulement sur les données reçues (et sur quelques

informations a priori sur les statistiques de fakg) pour égaliser le canal. Dans certains cas

où on souhaite l’identification des coefficients du canal au lieu de l’égalisation, on parle

d’identification de canaux aveugle.

Résultats fondamentaux

Avant de présenter les classes d’algorithmes d’égalisation aveugle qui nous intéressent, on

va citer quelques résultats fondamentaux sur l’égalisation et identification de canal aveugles.

Condition nécessaire pour l’identification d’un canal linéaire à partir de sa sortie:

L’identification d’un canal linéaire à partir de sa sortie en utilisant les statistiques du sec-

ond ordre est seulement possible pour un canal à phase minimale. Dans les autres cas,

l’exploitation des moments d’ordre supérieur à 2 de la sortie du canal est nécessaire pour son

identification.
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Ce fait peut s’expliquer de la façon suivante: si Saa(!) et Syy(!) sont respectivement les

densités spectrales de l’entrée et de la sortie du canal et C(!), la réponse fréquentielle du

canal, nous avons la relation d’ entrée-sortie suivante

Syy(!) = jC(!)j2Saa(!) ; (A.10)

ce qui veut dire qu’en mesurant la densité spectrale à la sortie du canal (et en sachant la

densité spectrale de son entrée) on peut seulement identifier le module de la réponse fréquen-

tielle du canal: l’information sur la phase est perdue! Seulement dans le cas où il est connu

d’avance que le canal est à minimum de phase (où à maximum de phase) il est possible

de trouver aussi la phase correspondante à chaque fréquence. Ce fait explique pourquoi

l’identification aveugle à l’aide de la densité spectrale (ou des moments de deuxième ordre de

la sortie) est impossible, ce qui nécessite l’utilisation des statistiques d’ordre supérieur pour

l’identification ou l’égalisation aveugle. Une conséquence immédiate de cette condition est

la limitation suivante:

Limitation 1: impossibilité d’identification aveugle quand le signal d’entrée est Gaussien:

Un canal linéaire ne peut pas être identifié à partir de sa sortie si son entrée est un pro-

cessus Gaussien.

Cette exclusion des entrées Gaussiennes est due au fait que pour les processus Gaussiens

toute leur information statistique se concentre dans leurs moments d’ordre 1 et 2: il n’y a

donc pas d’information sur les statistiques d’ordre supérieur qui puisse être exploitée pour

l’identification du canal dans ce cas. Deux autres limitations majeures pour l’identification

de canal aveugle sont:

Limitation 2: identification aveugle à une constante près:

La réponse fréquentielle (ou impulsionelle) d’un canal ne peut être identifiée qu’à un scalaire

complexe unitaire près.

Ceci dit que si la réponse fréquentielle du canal est C(!), la réponse identifiée sera de la

forme

C0(!) = C(!)ej� ; (A.11)

où � sera une phase indéterminée. Ce phénomène arrive toujours en égalisation aveugle

et a souvent comme resultat la rotation de la constellation émise. Cet effet peut être enlevé

à l’aide du codage differentiel appliqué sur le signal émis (au détriment de la réduction des

performances du système de quelques dB).
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Limitation 3: identification à un décalage temporel près:

La séquence émise peut être identifiée seulement à un décalage temporel près.

Ceci est dû au fait qu’un canal à Non Minimum de Phase (NMP) aura un inverse qui sera

non-causal. Dans ce cas, l’égalisation a pour but d’identifier le canal “inverse” qui satisfait:

C�1(z�1)C(z�1) = z�l ; (A.12)

où l est un entier constant.

A part ces limitations, quelques conditions sur l’identification aveugle d’un système sont

les suivantes:

Condition suffisante pour l’identification d’un canal NMP par sa sortie:

Un canal linéaire sera parfaitement égalisé si les fonctions de densité de probabilité de tous les

ordres de la séquence reçue sont égales aux fonctions correspondantes de la séquence émise.

L’importance de ce résultat (paru dans [BGR80]) se situe dans le fait que les fonctions de

densité de probabilité conjointes de l’entrée et de la sortie ne sont pas nécessaires. Néanmoins,

cela ne permet pas la construction d’une méthode simple d’égalisation aveugle, car cela né-

cessiterait l’égalisation de tous les moments de la sortie avec les moments correspondants de

l’entrée. Un résultat beaucoup plus fort qui est apparu dans [SW90] est le suivant:

Condition nécessaire et suffisante pour l’identification d’un canal NMP par sa sortie:

Un canal linéaire sera parfaitement égalisé si et seulement si les deux conditions suivantes

sont satisfaites: 8<: E
�
jyj2

�
= E

�
jaj2

�

jK(y)j = jK(a)j ;

(A.13)

où K(�) est la Kurtosis d’un processus défini comme:

K(zi) = E
�
jzij4

�
� 2E2

�
jzij2

�
�

���E(z2

i )
���2 : (A.14)

L’importance de cette condition réside dans le fait que deux quantités statistiques seulement

sont nécessaires pour l’égalisation parfaite du canal.

A.1.3 Algorithmes de type “Bussgang” pour l’égalisation aveugle

Le schéma géneral des algorithmes Bussgang pour l’égalisation aveugle est montré dans la

figure A.2. Le principe des algorithmes de Bussgang est le suivant: une fonction non linéaire
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Figure A.2: Le principe d’ égalisation de Bussgang

G est appliquée à la sortie du canal afin de fournir la fonction d’erreur qui sera ensuite

utilisée par l’algorithme aveugle pour adapter l’égaliseur. Cette fonction non linéaire est

utilisée pour fournir l’information statistique d’ordre supérieur qui permettra l’égalisation

(ou l’identification implicite) du canal. Quelques algorithmes classiques de Bussgang pour

l’égalisation aveugle sont les suivants:

� L’algorithme de Sato

Cet algorithme a été proposé par Y. Sato en 1975 [Sat75] et a été conçu dans sa forme originale

pour des constellations MDP (Modulation De Phase). La fonction de coût à minimiser est la

suivante:

min

W

JSato(W ) = E((y � sign(y))2) ; (A.15)

où la fonction sign(�) est défini comme ci-dessous pour un argument réel:

sign(r) =

r
jrj =

8<: 1; r > 0

�1; r < 0

; (A.16)

et  est un facteur défini comme

 =

Ea2

k

Ejakj
: (A.17)

L’idée de Sato était la suivante: ayant remarqué que l’algorithme dirigé par les décisions

ne convergait pas vers une solution acceptable quand le signal modulé avait plus de deux

niveaux, il a utilisé une constellation réduite à deux niveaux pour prendre ces décisions:

l’échantillon reçu est seulement classé comme positif ou négatif. Cette intuition a en effet

mené à un algorithme qui réussissait en pratique à ouvrir un oeil de canal initialement fermé.

L’algorithme de Sato (qui est un algorithme de gradient stochastique pour le critère (A.15))

est donné par

Wk+1 = Wk + �Xk(sign(yk)� yk) : (A.18)
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Cet algorithme est applicable seulement au cas des signaux réels. Son extension au cas

complexe est l’algorithme de Sato généralisé:

� L’algorithme de Sato Genéralisé (GSA)

Cet algorithme est décrit par l’équation suivante

Wk+1 = Wk + �Xk( csign(yk)� yk) ; (A.19)

où la fonction csign(�) d’un scalaire complexe r = rR + jrI se définit comme

csign(rR+ jrI) = sign(rR) + jsign(rI) : (A.20)

Cet algorithme est une extension de l’algorithme de Sato dans le cas complexe. Nous verrons

par la suite qu’une meilleure extension est possible.

� Les algorithmes de Godard

Ces algorithmes ont été proposé par D. Godard en 1980 [God80]. Le critère minimisé par ces

algorithmes est le suivant:

min
W

JGodp (W ) =

1
2p

E
�
jyjp � rp

�2

; p = 1; 2; : : : ; (A.21)

où rp est un scalaire appellé constante de dispersion et défini comme suit

rp =
Ejakj2p

Ejakjp
: (A.22)

Le principe de ce critère est qu’il pénalise les déviations du module du signal reçu par rapport

à une constante. Les algorithmes résultants sont de la forme

Wk+1 = Wk + �Xkyk jykjp�2(rp � jyk jp) : (A.23)

Les deux premiers membres de cette classe d’algorithmes sont aussi appellés “les algorithmes

à module constant” (CMA), et ont été aussi proposé par J. Treichler et B. Agee en 1983 [TA83].

L’algorithme de Godard correspondant à p = 1 est le CMA 1-2:

Wk+1 = Wk + �Xk(r1

yk
jyk j

� yk) ; (A.24)

tandis que le choix p = 2 correspond au CMA 2-2:

Wk+1 = Wk + �Xkyk(r2 � jykj2) : (A.25)

Ces algorithmes sont bien connus pour leur bonne performance: ils arrivent en géneral à

ouvrir l’oeil du canal, ils sont insensibles au décalage fréquentiel de la porteuse et ont un

meilleur comportement que d’autres algorithmes en régime permanent. La performance de

ces algorithmes a été analysée par plusieurs chercheurs, le résultat dominant étant présenté

par Shalvi et Weinstein en 1990 [SW90]. Ce résultat est le suivant:

Supposons que les hypothèses suivantes soient satisfaites:
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� Il n’y a pas de bruit additif

� Le signal émis suit une distribution sous-Gaussienne 1

� L’égaliseur est de longueur infini

Dans ce cas l’algorithme CMA 2-2 a un seul minimum dans sa fonction de coût, qui est le

minimum optimal. Il en résulte que l’algorithme sera toujours capable d’ouvrir parfaitement

l’oeil du canal quand ces conditions sont satisfaites. Ce résultat est très fort et montre pourquoi

l’algorithme CMA 2-2 est capable de converger même quand le signal émis n’est pas à module

constant (il suffit qu’il soit sous-Gaussien).

Sous des conditions réelles quand même, tous les algorithmes de Godard ont le problème

suivant: leur fonction de coût n’est pas convexe. Il n’y a donc pas uniquement un minimum

global mais également plusieurs minima locaux sous optimaux. Ces points d’attraction peu-

vent être atteints par l’algorithme; dans ce cas on parle du problème de “ill-convergence”:

l’algorithme converge vers une solution qui n’ouvre pas suffisamment l’oeil du canal. Les

points stationnaires de l’algorithme sont trouvés en mettant à zero la dérivée de la fonction

de coût, ce qui donne pour l’algorithme de Godard

E
�
Xkykjykjp�2(jykjp � rp)

�
= 0 : (A.26)

Cette équation réprésente un système non linéaire deN équations àN paramètres, elle a donc

plusieurs solutions, parmi lesquelles quelques-unes sont des minima locaux non-désirables

de la fonction de coût.

A.1.4 Objectifs de la thèse

Les objectifs de cette thèse sont liés aux problèmes des méthodes de Bussgang pour l’identification

aveugle. Une liste de ces problèmes est la suivante:

� La vitesse de convergence des algorithmes de Bussgang

� Le problème des minima locaux

� La dépendence de leur pas d’adaptation par la couleur du signal reçu

� L’impossibilité d’égalisation quand le canal a des zéros sur le cercle unité

� L’impossibilité d’égalisation parfaite avec des égaliseurs à RIF

� L’impossibilité d’égalisation aveugle quand le signal émis est Gaussien

� L’impossibilité de l’algorithme DD d’ouvrir un oeil initialement fermé

1Un processus fyg est dit sous-Gaussien si et seulement si sa kurtosis est négative: K(y) < 0.
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� Le besoin d’utiliser des statistiques d’ordre supérieur pour l’identification ou l’égalisation

de canal aveugle

Les méthodes qui seront présentées par la suite ont été motivées par les problèmes indiqués

ci-dessus.

A.2 Egalisation et identification aveugle non sur-échantillonné

A.2.1 L’algorithme NSWCMA

Une solution qui pourrait améliorer la performance des algorithmes aveugles de type Buss-

gang est la normalisation. Par normalisation on entend la modification d’un algorithme adap-

tatif de façon à ce que son pas d’adaptation puisse varier dans un intervalle connu d’avance

tout en garantissant l’opération stable de l’algorithme. Un exemple typique d’un algorithme

normalisé est l’algorithme NLMS (Normalized LMS), qui est donné par

Wk+1 = Wk +

�

kjXkjj2

Xk(ak �XH
k Wk) : (A.27)

Cet algorithme peut être vu comme un algorithme LMS à pas d’adaptation variable:

� = ��
jjXkjj

2 :

Le résultat de cette normalisation est que l’algorithme (A.27) est stable pour toutes les valeurs

�� dans la région suivante

0 < �� < 2 : (A.28)

Il est à noter que cet intervalle est indépendant du signal d’entrée, contrairement au cas du

LMS. Cette normalisation améliore la vitesse de convergence de l’algorithme (la plus grande

est atteinte pour �� = 1). De plus, la normalisation engendre un autre effet positif dans le

cas d’égalisation aveugle: il a été déja remarqué par Mazo en 1980 [Maz80] que l’algorithme

DDA arrive à s’échapper plus facilement des minima locaux de sa fonction de coût quand le

pas d’adaptation utilisé est grand. Les algorithmes normalisés ont l’avantage que la borne

maximale du pas d’adaptation qui garantie la stabilité soit connue: on peut donc utiliser

un pas qui est grand pour aider à éviter minima locaux sans provoquer la divergence de

l’algorithme.

Outre la normalisation, on veut aussi ajouter de la mémoire dans les algorithmes: une

façon d’améliorer encore plus la vitesse de convergence est d’imposer à l’égaliseur plusieurs

contraintes qui n’impliquent pas seulement le dernier vecteur de regression, mais également

quelques autres vecteurs du passé.

On peut récapituler: on cherche un algorithme normalisé du type Bussgang pour l’éga-

lisation aveugle, qui introduit aussi une mémoire pour améliorer la vitesse de convergence.

En choisissant l’algorithme de type “à module constant”, on propose le critère suivant:

min

Wk+1

�
ksign(XH
k Wk)�XH
k Wk+1k2

P�1

k

+ (

1

��
� 1)kWk+1 �Wkk2

�
; (A.29)
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où Pk = XH
k Xk, Xk est une matrice N � L définie comme:

Xk = [Xk Xk�1 : : :Xk�L+1] =
26666664
x�k x�k�1 � � � x�k�L+1

x�k�1 x�k�2 � � � x�k�L

...
...

...
...

x�k�N+1 x�k�N+2 � � � x�k�N�L+2

37777775 ; (A.30)

et on définit la fonction sign(V ) où V est un vecteur (V = [v0 � � �vK�1]
T ), comme ci-dessous

sign([v0 � � � vK�1]
T ) = [
v0

jv0j
� � � vK�1

jvK�1j
]T : (A.31)

Le critère (A.29) est un critère déterministe qui impose un ensemble de L contraintes de

type “module constant” à l’égaliseur Wk+1. Le rôle de la matrice de covariance instantanée

Pk est d’effectuer un “pré-blanchissement” du signal d’entrée, ce qui doit amener à une

convergence plus rapide de l’algorithme résultant. Le rôle du pas d’adaptation �� est de

contrôler la déviation de Wk+1 par rapport à Wk. Dans le cas où �� = 1 le critère (A.29)

est équivalent à minimiser le premier terme additif sous contrainte de minimisation de la

quantité jjWk+1 �Wkjj2.

Le critère ci-dessus (A.29) est minimisé exactement par l’algorithme suivant

Wk+1 = Wk + ��XkP
�1

k (sign(XH
k Wk)� XH
k Wk) : (A.32)

L’équation (A.32) décrit l’algorithme NSWCMA (Normalized Sliding Window Constant Mod-

ulus Algorithm). Il s’agit en effet d’une classe d’algorithmes à deux paramètres:

� Le nombre de regresseurs L impliqués à chaque itération

� Le pas d’adaptation ��

Il peut être démontré que ces algorithmes sont stables pour toute valeur de �� dans la région

(0; 2) (comme en (A.28).) Ces algorithmes de type “ à module constant”, sont normalisés, et

utilisent une fênetre glissante pour les données. Leur complexité peut être amenée à 2N+20L

multiplications/itération (voir le chapitre 3 de la thèse).

L’analyse théorique des algorithmes NSWCMA mène à trois conclusions principales:

� Leur vitesse augmente avec L

� Des grandes valeurs de �� peuvent aider à s’échapper des minima locaux

� Leur performance en présence de bruit peut décroı̂tre quandL s’approche de la longueur

N de l’égaliseur

Cette dernière remarque indique aussi un conseil pratique pour l’utilisation de l’algorithme:

L doit être choisi clairement plus petit que N .
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Figure A.3: Comparaison de la vitesse de convergence du NSWCMA et du CMA pour un

canal bruité linéaire

Ce comportement a été vérifié à l’aide des simulations par ordinateur, comme il peut être

remarqué dans les deux figures suivantes: la figure A.3 montre l’évolution de l’ouverture de

l’oeil d’un canal de communication linéaire bruité à l’aide du CMA et du NSWCMA. Dans

cet exemple N = 21. Il est clair que l’augmentation de L peut accélérer considérablement la

vitesse de convergence ( à remarquer que pour L = 7 l’oeil du canal s’ouvre 7 fois plus vite

que pour le CMA). Notons également que dans cet exemple l’oeil est initialement fermé (le

coefficient d’ouverture d’oeil est plus grand que 1).

La figure A.4 montre un exemple où le problème des minima locaux est adressé: à gauche,

on peut voir l’évolution du CMA pour deux initialisations différentes: il est clair qu’une des

deux converge vers une solution inacceptable. A droite, on peut voir la même expérience pour

le NSWCMA. On peut observer que malgré le fait que la mauvaise initialisation le NSWCMA

avance vers un minimum inacceptable, il arrive rapidement à s’échapper et arrive au même

point que la bonne initialisation. Ceci montre l’amélioration de performance du NSWCMA

en ce qui concerne les minima locaux.

A.2.2 Un principe de séparation

L’algorithme NSWCMA présenté au paragraphe précédent peut être vu comme une modifica-

tion de l’algorithme APA pour être appliqué à l’égalisation aveugle. Le APA est un algorithme

de filtrage adaptatif classique qui minimise à chaque itération le critère déterministe suivant:

min

Wk+1

�
kDk � XH
k Wk+1k2

P�1

k

+ (

1

��
� 1)kWk+1 �Wkk2

�
; (A.33)

où Dk est un vecteur L� 1 qui contient L échantillons du signal désiré:
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Figure A.4: Comparaison des performances respectives du NSWCMA et du CMA en terme

de “ill-convergence”

Dk = [dk � � �dk�L+1]T :

L’algorithme résultant est le APA (Affine Projection Algorithm) et est donné par

Wk+1 = Wk + ��XH
k P

�1

k (Dk �XH
k Wk) : (A.34)

En comparant (A.34) à (A.32), on peut remaquer que le NSWCMA aurait pu être derivé par

le APA en remplaçant le vecteur Dk par le vecteur sign(XH
k Wk):

Dk � sign(XH
k Wk) :

D’ailleurs, le NSWCMA n’a pas été derivé de cette façon-ci, mais en minimisant un critère de

type “module constant”. Le fait que l’algorithme résultant ressemble à une modification du

APA nous motive à formuler le principe de séparation suivant:

Un principe de séparation pour l’égalisation aveugle: Un algorithme adaptatif de type “Mo-

dule-Constant” pour l’égalisation aveugle peut être dérivé par un algorithme de filtrage adap-

tatif classique en remplacant le signal désiré fDkg par fsign(XH
k Wk)g.

Ce principe nous permet d’obtenir plusieurs classes d’algorithmes pour l’égalisation aveugle

sans passer par une dérivation exacte, en étant motivé par le fait que dans le cas du NSWCMA,

cela donne le même algorithme. Le tableau A.1 montre quelques algorithmes dérivés en ap-

pliquant ce principe.

La performance de certains algorithmes derivés avec ce principe sera montrée par la suite.
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LMS Wk+1 = Wk + �Xk(dk � yk)

CMA 1-2 Wk+1 = Wk + �Xk(
yk
jykj
� yk)

NLMS Wk+1 = Wk +

��
kXkk

2
2

Xk(dk � yk)

NCMA Wk+1 = Wk +

��
kXkk

2
2

Xk(
yk
jyk j
� yk)

APA Wk+1 = Wk + ��XkP
�1

k ( Dk �XH
k Wk)

NSWCMA Wk+1 = Wk + ��XkP
�1

k (sign(XH
k Wk)� XH
k Wk)

RLS Wk+1 = Wk + P�1

k Xk(dk � yk)

‘RLS-CMA’ Wk+1 = Wk + P�1

k Xk(
yk
jykj
� yk)

Table A.1: Certains algorithmes du type “à Module Constant” et leur correspondants pour le

filtrage adaptatif classique

A.2.3 Une classe d’algorithmes regularisés

Comme indiqué dans le paragraphe A.2.1, le NSWCMA pose le problème suivant de APA:

quand le nombre L de contraintes imposées devient grand (comparable à la longueur N

de l’égaliseur), l’algorithme amplifie beaucoup le bruit additif de son signal d’entrée, ce

qui peut amener à un mauvais comportement en régime stationnaire. Un exemple où ce

problème se manifeste est présenté dans la figure A.5. Dans cette figure on a choisi L = N

pour une expérience d’égalisation aveugle. L’amplification du bruit est dûe au mauvais

conditionnement de la matrice de covariance Pk = XH
k Xk. La figure A.5 montre en haut

l’évolution du conditionnement de cette matrice pendant la convergence de l’algorithme et en

bas l’évolution de l’ouverture de l’oeil: il est clair que malgré la convergence initiale vers une

bonne solution, l’algorithme est incapable de rester dans une région de bonne performance.

Comme ce problème existe aussi pour le APA, on va d’abord proposer une solution pour

celui-ci.

Le problème étant dû au mauvais conditionnement de la matrice de covariance, on va

essayer de régulariser cette matrice afin de garantir un meilleur conditionnement. Une méth-

ode permettant d’effectuer une telle régularisation est de remplacer Pk par une matrice de
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0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

iterations

cl
os

ed
−

ey
e 

m
ea

su
re

(b) : ISI evolution

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
2

10
4

10
6

10
8

10
10

iterations

co
nd

iti
on

 n
um

be
r

(a) : Evolution of the condition number of the sliding−window covariance matrix

Figure A.5: Le mauvais effet d’une fenêtre glissante longue

covariance qui est pondérée de façon exponentielle:

Rk = �Rk�1 + XkXH
k ; (A.35)

où Xk est la première colonne de XH
k :

Xk =
2666664
xk

xk�1

: : :

xk�L+1

3777775 ; (A.36)

et � est un facteur d’oubli. Maintenant on considère le critère déterministe suivant:

min

Wk+1

�
kDk �XH
k Wk+1k2

S�1

k

+ kWk+1 �Wkk2

�
; (A.37)

avec

Sk = ��1Rk � XH
k Xk : (A.38)

Ce critère est minimisé exactement à chaque itération par l’algorithme suivant:

Rk = �Rk�1 + XkXH
k

Wk+1 = Wk + �XkR
�1

k (Dk � XH
k Wk) :

(A.39)

L’équation (A.39) est une nouvelle classe d’algorithmes pour le filtrage adaptatif classique.

Grâce à la fenêtre exponentielle appliquée aux données, on attend des algorithmes de cette

classe d’éviter le problème de grande amplification de bruit présent dans APA quand L est
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proche deN . Une organisation du calcul proposée dans le chapitre 4 conduit à une complexité

de 2N + 6L2 + 10L multiplications/iteration.

En appliquant le principe de séparation à l’algorithme (A.39) on obtient une contrepartie

pour l’égalisation aveugle:

Rk = �Rk�1 + XkXH
k

Wk+1 = Wk + �XkR
�1

k (sign(XH
k Wk)�XH
k Wk) :

(A.40)

On appelle cette classe d’algorithmes (A.40) NSWERCMA (Normalized Sliding Window

with Exponential Regularization Constant Modulus Algorithms). L’amélioration du com-

portement de l’algorithme quand L est choisi près de N peut être observé dans la figure A.6:

Dans cette figure on montre la performance du NSWERCMA pour le même canal que celui
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(a) : Evolution of the cond. number of an exp. weighted slid. window cov. matrix

Figure A.6: L’amélioration en performance dûe à l’utilisation d’une fenêtre exponentielle

utilisé pour la figure A.5. Notons (figure A.6(b)) que le NSWERCMA arrive à ouvrir l’oeil et

rester dans un régime stationnaire acceptable. Cela reflète le meilleur conditionnement de sa

matrice de covariance (figure A.6(a)).

Un autre exemple de simulation comparative dans le cadre d’égalisation aveugle est

montré dans la figure A.7. Il est intéressant de remarquer comment le nouvel algorithme

arrive à ouvrir l’oeil du canal considérablement plus rapidement que les autres algorithmes

(il est même plus rapide que le RLS-CMA).
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Figure A.7: L’amélioration en vitesse de convergence atteinte par le NSWERCMA

A.2.4 Egalisation Dirigé par les Décisions (DD)

L’Algorithme Dirigé par les Décisions (DDA) est donné par l’équation suivante:

Wk+1 = Wk + �Xk(dec(yk)� yk) ; (A.41)

où dec(y) représente le symbole de la constellation émise qui est le plus proche de y.

Comme déjà indiqué, cet algorithme a été proposé pour la phase finale d’une procédure

d’égalisation: quand l’oeil du canal est déjà ouvert, cet algorithme peut être utilisé pour con-

tinuer l’adaptation et même améliorer la performance en régime stationnaire. Cela est dû au

fait que quand l’oeil du canal est suffisament ouvert les décisions prises seront très souvent les

bonnes, et donc la sortie de l’ élément de décision ressemble à une séquence d’apprentissage.

D’ailleurs, le DDA peut être vu comme un algorithme d’égalisation du type de Bussgang

qui utilise la non linéarité dec(yk). Néanmoins, le DDA n’est pas utilisé en pratique pour

ouvrir l’oeil du canal car il est connu pour “ne pas être capable d’ouvrir un un oeil initialement

fermé”. Cette conclusion a été faite sur la base des remarques sur la performance du DDA

([Sat75], [God80]) ainsi que des études théoriques sur le sujet ([Maz80], [ME84]). D’ailleurs

c’est à cause de cette idée que les algorithmes hybrides qui modifient le DDA ont été proposés

(voir [PP87], [HD93]).

Dans ce travail on effectue une étude de l’algorithme DDA pour le cas particulier où la

constellation émise a un module constant (ce qui correspond à une modulation de phase). La

motivation pour cette étude était basée sur l’intuition suivante: le DDA ressemble beaucoup
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à l’algorithme CMA 1-2:

Wk+1 = Wk + �Xk(r1sign(yk)� yk) : (A.42)

En effet, les deux algorithmes diffèrent seulement par le choix de leurs signaux d’erreur, qui

sont donnés par 8<: eDk = yk � dec(yk)

eCk = yk � r1sign(yk) ;

(A.43)

pour le DDA et le CMA 1-2, respectivement. La figure A.8 montre ces deux signaux d’erreur

dans le cas d’une constellation MAQ-4.

Re(y  )

      Im(y  )

 k

 k

 k

CMA 1-2

DD

 y+

+

Figure A.8: La similarité entre le CMA 1-2 et le DDA

Il est évident que pour une modulation de phase avec plusieurs symboles équi-répartis

sur le cercle, les deux signaux d’erreur se rapprochent de plus en plus. En effet, dans le cas

asymptotique où la constellation a une infinité de points sur le cercle, les deux algorithmes

sont identiques! Cela fait penser que si le CMA 1-2 arrive à ouvrir l’oeil fermé d’un canal, le

DDA devrait être aussi capable d’avoir une performance similaire.

Pour examiner cette intuition, on a d’abord effectué une étude de l’algorithme en sup-

posant que:

� Le signal émis faig est un signal i.i.d. à module constant

� L’égaliseur a une longueur infinie

� Il n’y a pas de bruit additif

De cette analyse, on trouve que dans le cas asymptotique d’une infinité de symboles sur le

cercle, le CMA 1-2 (qui est équivalent dans ce cas au DDA) n’a pas de minima locaux. Ce

résultat est parallèle à celui présenté par Benveniste et al [BG84] pour l’algorithme de Sato:
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le Sato n’a pas de minima locaux sous les conditions d’égaliseur infini, d’absence de bruit, et

des constellations continues sous-Gaussiennes. En plus, il montre que le DDA devrait être

capable d’ouvrir l’oeil d’un canal, même dans des cas pratiques, si le signal émis a un module

constant. Combiné avec le fait que le DDA a en général un meilleur comportement dans son

régime stationnaire comparé aux CMA, notre étude motive l’utilisation de l’algorithme DDA

avec des constellations CM.

Un exemple qui vérifie nos arguments théoriques est montré dans la figure A.9. Il est à

-1 0 1

-1

0

1

      transmitted data

-1 0 1

-1

0

1

equalized data

-2 0 2
-2

-1

0

1

2
received data

0 1000 2000
0

1

2

3

iterations

cl
os

ed
-e

ye
 m

ea
su

re

ISI evolution

Figure A.9: L’ouverture de l’oeil effectué par le DDA

noter dans cette figure que l’algorithme DDA arrive à récupérer la constellation MAQ-4 émise

malgré le fait que l’oeil du canal était initialement fermé.

Un schéma hybride CM-DD pour les constellations non-CM

Les résultats de nos recherches indiquant que la raison principale qui empêche le DDA de se

comporter correctement est la présence de plusieurs amplitudes dans l’alphabet des symboles

émis, on propose le schéma suivant pour éviter ce problème:

� Construire à partir de la constellation émise une autre constellation réduite en rempla-

cant chaque symbole ai par sa projection sur le cercle: r1sign(ai) .

� Utiliser cette constellation réduite à module constant pour prendre les décisions pour

les échantillons reçus.
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Dans ce cas, on remplace la fonction dec(�) par la fonction cdec(�) définie comme

cdec(yk) = le symbole de fsign(ai)g le plus proche de yk : (A.44)

Cet algorithme est en effet un alternatif à l’algorithme GSA, qui respecte mieux l’idée originale

de Sato: supprimer les multiples niveaux. La différence avec le GSA est que la constellation

réduite qui est utilisée par le GSA a seulement 4 symboles, tandis que dans notre schéma il

y en a plusieurs. Un exemple de ce principe, pour une constellation MAQ-16, est montré

dans la figure A.10. Dans cette figure la constellation originale est indiqué avec des ‘+’ et la

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4
A Cyclic Decision Directed Principle

Figure A.10: Un principe hybride CMA-DD: 16-QAM

constellation projetée avec des ‘�’. Un exemple qui montre la performance de ce schéma est

montré dans la figure A.11. Il est à noter que l’algorithme hybride arrive à converger vers

une bonne solution, tandis que le DDA n’arrive pas à ouvrir l’oeil du canal.

A.2.5 Un principe bilinéaire pour l’égalisation aveugle

Comme indiqué auparavant, un problème essentiel des algorithmes de type Bussgang est

le problème de “ill-convergence”. On a déja vu que ce problème peut être surmonté à

l’aide des algorithmes normalisés: ces algorithmes ne correspondent pas à des fonctions de

coût convexes, mais arrivent souvent à s’échapper des minimas locaux. Ici on propose une

autre approche pour ce problème: on propose une fonction de coût convexe pour garantir la

convergence vers un optimum global unique.

Le concept qu’on propose est le suivant: considérons le developpement suivant du module

au carré du signal reçu:

jykj2 = yky
�
k = (w0w

�

0 xkx
�
k + � � �+ w0w

�
N�1 xkx

�
k�N+1) + � � �

+(wN�1w
�

0 xk�N+1x
�
k + � � �+ wN�1w

�
N�1 xk�N+1x

�
k�N+1) :

(A.45)
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Figure A.11: L’amélioration de l’algorithme hybride par rapport au DDA

Dans ce cas le module au carré jykj2 peut s’écrire comme

jykj2 = zk = XH
k �k ; (A.46)

où �k est un vecteur de paramètres défini comme

�k = [w0w
�

0 � � �w0w
�
N�1 w1w

�

0 � � �w1w
�
N�1 � � �wN�1w

�

0 � � �wN�1w
�
N�1]

T ; (A.47)

et Xk un vecteur de régression défini comme

Xk = [xkx
�
k � � �xkx�k�N+1 xk�1x

�
k � � �xk�1x

�
k�N+1 � � �xk�N+1x

�
k � � �xk�N+1x

�
k�N+1]

H :

(A.48)

A noter que ces deux vecteurs contiennent des termes bilinéaires des coefficients de l’égaliseur

et des échantillons reçus, respectivement. Avec cette notation, la fonction de coût de l’algorithme

CMA 2-2 peut être écrite sous la forme

J2(W ) = 1
4E(jyj

2� 1)2 = 1
4E(z � 1)2 ;

ce qui peut mener au problème d’optimisation suivant

min

�

Jbil(�) = min

�

E(z � 1)2 = min

�

E(XH� � 1)2 : (A.49)

En ayant donc effectué une transformation des paramètres on a pu construire une fonction de

coût quadratique, et donc convexe par rapport aux paramètres �. En définissant les quantités
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R et d comme

R = E(XXH)

d = E(X ) ;

(A.50)

on arrive à la conclusion que si R est non-singulière, le problème (A.49) a une solution unique,

donnée par

� = R�1d : (A.51)

A partir de cette solution l’égaliseurW correspondant peut être calculé de la manière suivante:

W opt =

p
� V (�) ; (A.52)

où � et V (�) sont respectivement l’unique valeur propre non-nulle et le vecteur propre

correspondant, de la matrice suivante:

� =
2666666664
�(0) �(N) � � � �(N

2�N)

�(1) �(N+1) � � � �(N

2�N+1)

: : � � � :

: : � � � :

�(N�1) �(2N�1) � � � �(N

2�1)

3777777775
= G(�) : (A.53)

Le problème de “ill-convergence” et des minima locaux est donc surmonté: en utilisant cette

méthode on peut trouver sans ambiguı̈té l’égaliseur optimal.

Plusieurs manières d’implanter ce principe sont données dans le chapitre 6. Le principe

général d’égalisation aveugle bilinéaire est affiché dans la figure A.12. Remarquez que la dé-

composition (A.52) ne doit pas nécessairement être effectuée à chaque itération de l’algorithme

adaptatif.

Une analyse plus profonde de la méthode bilinéaire est aussi présentée dans le chapitre 6,

notamment l’influence du bruit additif et le problème de sur-paramétrisation sont analysés.

Une méthode pour éliminer l’influence du bruit additif est donné pour le cas Gaussien.

Une méthode pour surmonter le problème de sur-paramétrisation est aussi présentée. Les

figures A.13 et A.14 montrent deux exemples où la “ill-convergence” de l’algorithme CMA est

surmontée en utilisant la méthode bilinéaire: la figure A.13 montre un cas idéal (sans bruit,

parfaitement paramétrisé). L’ égaliseur a deux coefficients. A gauche, on peut voir les points

initiaux et finaux de la méthode bilinéaire pour 40 initializations différentes sur un cercle.

Notez qu’il n’y a qu’un seul point de convergence (qui est aussi optimal). A droite, on a la

même expérience pour le CMA, où on peut voir qu’il y a une paire des points de convergence

non optimaux.

La figure A.14 montre un résultat similaire pour le cas plus réaliste d’un canal RIF bruité.

On peut à nouveau constater la convergence globale de la méthode bilinéaire, contrairement

au CMA.
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Figure A.12: Le principe de l’égalisation adaptative bilinéaire

A.3 Egalisation et identification aveugle multicanal

A la suite des méthodes de type Bussgang présentées précédemment on a regardé le problème

d’égalisation multicanal. On s’intéresse à la structure d’un canal SIMO (Single Input - Multiple

Output). Une telle structure apparaı̂t dans la figure A.15. Les m canaux ont la même entrée

discrète faig, et leurs sorties discrètes sont de la forme

xj(k) =

1X
i=�1

a(i)hj(k � i) ; j = f1; : : : ; mg : (A.54)

Une telle structure peut être appliquée pour décrire soit un système d’égalisation à sur-

échantillonnage, ou un système d’égalisation multi-capteurs. Dans le premier cas les m

signaux fxj(k)g, j = 1; : : : ; m représentent les m phases différentes du signal reçu sur-

échantillonné à la cadence T=m. Dans le deuxième cas ils représentent les sorties des m

capteurs.

La structure d’un canal SIMO a des conséquences importantes et ce à plusieurs niveaux ne

concernant pas seulement les propriétés de la sortie multicanal mais aussi son identification à

partir de la sortie. Dans la suite on va se concentrer sur le cas d’une réception suréchantillonné

par un seul capteur. On définit le facteur de suréchantillonnage OF (Oversampling Factor)

comme

OF =

T
Ts

; (A.55)

où T et Ts sont respectivement les périodes de Baud et d’échantillonnage à la sortie du canal.
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Figure A.13: Simulations comparatives pour un cas idéal

Le résultat suivant est fondamental:

� Le signal discret fxig obtenu par suréchantillonnage de la sortie d’un canal linéaire avec

un facteur OF> 1 est cyclostationnaire.

D’autre part, si on considère la sortie multicanal comme un vecteur qui contient les m phases

consécutives de la sortie de la façon suivante

xk = [x1(k) x2(k) � � �xm(k)]T ; (A.56)

on a le résultat suivant:
� Le signal vectoriel fxkg à la sortie du système SIMO est stationnaire au sens vectoriel:

chacune de ses entrées est un signal scalaire stationnaire.

Cet impact du suréchantillonnage sur la stationnarité du signal continu reçu x(t) est affiché

dans la figure A.16. Une conséquence importante de la proprieté de cyclostationnarité de la

sortie du canal suréchantillonné est la suivante: le canal SIMO peut être identifié en utilisant

les statistiques de second ordre de sa sortie (sauf si les m canaux partagent des zéros en

commun) (ce résultat a été récemment donné par plusieurs chercheurs). Avant de s’intéresser

à l’aspect aveugle, nous étudions l’égalisation ZF (Zero-Forcing) du canal SIMO.

A.3.1 Egalisation ZF (Zero-Forcing)

Le schéma d’égalisation linéaire multicanal pour le cas m = 2 est montré dans la figure A.17.

Dans le cas général (m canaux, m égaliseurs) la sortie vectorielle x(k) définie en (A.56) peut

être mise sous la forme

x(k) =

N�1X
i=0

h(i)ak�i + v(k) = HNAN (k) + v(k) ; (A.57)
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Figure A.14: Simulations comparatives pour le cas d’un canal RIF bruité

où h(k); v(k) sont définis comme

v(k) =
26664
v1(k)

...

vm(k)
37775 ;h(k) =
26664
h1(k)

...

hm(k)
37775 ; (A.58)

et représentent le bruit et le canal discret vectoriel, respectivement. Si on définit les sous-

canaux Hi comme

Hi = [ hi(0) � � � hi(N � 1) ] ; (A.59)

la matrice du canal HN de taille m�N est définie comme

HN =

26664
h1(0) � � � h1(N � 1)

... � � �

...

hm(0) � � � hm(N � 1)
37775 =

�

h(0) � � �h(N�1)
�
=

26664
H1

...

Hm

37775 : (A.60)

Finalement, AN(k) représente un vecteur N � 1 des symboles émis, défini comme

AN (k) =
h
aHk � � �aHk�N+1

iH
: (A.61)
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Figure A.16: L’effet du suréchantillonnage de x(t) à sa stationnarité

Dans le domaine des z on définit les transformées en z du canal et de l’égaliseur suréchantil-

lonné comme

H(z) =

mX
j=1

z�(j�1)Hj(z
m) ; (A.62)

et

F (z) =

mX
j=1

z(j�1)Fj(z
m) ; (A.63)

respectivement. En définissant aussi les tranformées en z vectoriels du canal et d’égaliseur

comme

H(z) =

N�1X
k=0

h(k)z�k

F(z) =

N�1X
k=0

f(k)z�k :

(A.64)

Dans ce cas la condition d’égalisation ZF prend la forme

F(z)H(z) = z�n ; n = 0; 1; : : : ; N+L�2 : (A.65)
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Figure A.17: Principe de l’égalisation multicanal pour le cas m = 2

La contrepartie de (A.65) dans le domaine temporel est l’équation suivante

[f(0) � � � f(L� 1)]
26666664

h(0) � � � h(N � 1) 0m�1 � � � 0m�1

0m�1 h(0) � � � h(N � 1)

. . .
...

...
. . . . . . . . . . . . 0m�1

0m�1 � � � 0m�1 h(0) � � � h(N � 1)
37777775 =

26666666666666664

0
...

0

1

0
...

0

37777777777777775
T

;

(A.66)

ou de façon équivalente,

FL TL (HN ) = [0 � � �0 1 0 � � �0] : (A.67)

L’équation (A.67) étant un système linéaire de L + N � 1 équations à Lm inconnues, elle

aura donc au moins une solution si la longueur L de chaque égaliseur satisfait la condition

suivante

L � L =

�
N � 1

m� 1

�
; (A.68)

et si la matrice TL (HN ) est de rang plein (ce qui est vrai si les canaux Hj(z); j = 1; : : : ; m

n’ont pas de zéro en commun). On arrive donc à la conclusion suivante:

� Des égaliseurs ZF de longueur finie qui égalisent parfaitement en l’absence de bruit

existent pour le canal SIMO, si les m sous-canaux n’ont pas de zéro en commun et si la

longueur L de chaque égaliseur satisfait (A.68).

Une interprétation intéressante de l’égalisation multicanal est la suivante: on a demontré que

la structure canal SIMO - égaliseur MISO est équivalente à la structure SISO affichée dans

la figure A.18, où H(z) et F (z) sont définies respectivement en (A.62) et (A.63). Désignons

maintenant par G(z) la cascade de H(z) et de F (z):

G(z) = F (z) H(z) : (A.69)
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Figure A.18: Représentation équivalente de la structure d’égalisation multicanal

La condition pour l’égalisation ZF prend maintenant la forme

1

m

mX
i=1

G(wi�1z1=m) = 1 : (A.70)

La contrepartie de cette équation dans le domaine fréquentiel est

gi(k) = �(k) ; i est un parmi f1; : : : ; mg : (A.71)

L’équation (A.71) permet l’interprétation suivante de l’égalisation ZF multicanal: une seule

des m phases de la cascade fgig doit être un Dirac pour atteindre une égalisation ZF parfaite.

Cela indique pourquoi il est possible d’égaliser avec un nombre fini de paramètres: il n’est

pas nécessaire d’inverser un polynôme (voir eq. (A.70)) comme dans le cas de l’égalisation

non-suréchantillonnée. Un problème existera seulement si tous les canaux ont des zéros en

commun, car dans ce cas il faudra invertir leur facteur commun qui sortira de la somme dans

(A.70).

Selon les résultats de ce paragraphe, trois problèmes importants de l’égalisation non-

suréchantillonée peuvent être surmontés avec l’égalisation suréchantillonnée: d’une part il

n’est plus nécessaire d’avoir des égaliseurs de longueur infinie pour atteindre une égalisation

parfaite en l’absence du bruit. D’autre part, même si les différents sous-canaux ont des zéros

en commun (pourvu qu’ils ne soient pas les mêmes), l’égalisation ZF peut être tout de même

atteinte. En plus, l’égalisation est possible même si quelques canaux ont des zéros sur le cercle

unité (pourvu que ces zéros ne soient pas partagés par tous les canaux).

On démontre aussi dans le chapitre 7 comment se traduit la condition d’égalisation ZF

multicanal dans le domaine des fréquences, ce qui se traduit par une condition fréquentielle

de Nyquist pour le multicanal. L’effet de la longueur de l’égaliseur dans le cas bruité est

aussi analysé: clairement, en présence du bruit l’augmentation de la longueur améliore la

performance. L’égaliseur optimal pour une longueur donnée est aussi dérivé.

A.3.2 Egalisation aveugle multicanal par prédiction linéaire

La faisabilité de l’identification multicanal à l’aide des statistiques du second ordre de sa

sortie a été demontrée dans le domaine fréquentiel. Il s’ avère que l’égalisation aveugle du
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multicanal peut être effectuée dans le domaine temporel aussi à l’ aide de la prédiction linéaire

multivariable. Le problème de prédiction dans le cas multicanal prend la forme

min
PL

�2ex;L ; (A.72)

où �2ex;L est une matricem�m qui représente la variance de l’erreur de prédiction multivariable

d’ordre L:

�2ex;L = Eex(k)exH(k) ; (A.73)

où ex(k) est l’erreur de prédiction:

ex(k)jXL(k�1) = x(k)� bx(k)jXL(k�1)

= [Im �PL] XL+1(k) ;

(A.74)

et PL le filtre de prédiction de dimension m� Lm:

PL = [p1 � � � pL] : (A.75)

Il en résulte que la solution à (A.72) PL donne un égaliseur ZF à travers l’équation suivante:

FZF =

1
hH(0)h(0)

hH(0) [Im � PL] : (A.76)

Le coefficient h(0) d’ailleurs peut s’identifier à partir de la relation

�2ex;L = �2ea;L+N�1h(0)hH(0) ; (A.77)

où �2ea;L+N�1 est la variance d’erreur de prédiction des symboles. A l’aide des équations

(A.76) et (A.77) on peut donc obtenir un égaliseur ZF par la prédiction linéaire multivariable,

de façon aveugle! Cela enlève encore un problème présent dans les méthodes d’égalisation

aveugle standards: l’utilisation des statistiques d’ordre supérieur (implicites ou explicites) ne

sont pas necéssaires! Une autre conséquence importante de ce résultat est que l’égalisation

aveugle est maintenant possible même si le signal émis est Gaussien!

A.3.3 Egalisation MMSE

Dans le cas non-suréchantilloné il est bien connu qu’en présence du bruit, les égaliseurs

MMSE (Minimum-Mean-Square-Error) (minimisant l’érreur quadratique moyenne) ont une

meilleure performance que les égaliseurs ZF. On constate que ce phénomène se repéte aussi

dans le cas des égaliseurs suréchantillonnés. De plus, on trouve une relation qui lie un

égaliseur MMSE à un égaliseur ZF. Cette relation est la suivante

FM = 
 FZF ; (A.78)

où 
 est une matrice définie comme


 = ILm � �2

v
�
Rx

L
��1 (A.79)
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et FM est l’égaliseur MMSE. Remarquez que des statistiques de second ordre (matrice de

covariance) sont seulement nécessaires pour calculer 
. De cette façon, en utilisant les

statistiques de second ordre on peut calculer un égaliseur MMSE de façon aveugle (en passant

par l’égaliseur ZF d’abord). La validité de cette méthode se confirme dans la figure A.19. En

haut, on peut voir l’égaliseur MMSE dans le cas où m = 2. En bas, figure l’égaliseur calculé à

l’aide de (A.79).

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3
Fmmse

[ros,rs,RLs,ro,r,RL,PL,PLs,s2s,s2L,varn]=bfse2(d1,d2,50,30)
Fm=RL_inv*[conj(d1(1));conj(d2(1));zeros(98,1)]

d1=[1 2] ; d2=[1 3]

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3
Fmmse calculated as O*Fz

Fz=RLs_inv*[conj(d1(1));conj(d2(1));zeros(98,1)]
O=eye(100)−varn*RLs_inv*(eye(100)−varn*RL_inv)

Figure A.19: Une vérification de (A.78)

Il se trouve qu’une méthode de complexité réduite peut être obtenu en utilisant la prédic-

tion linéaire. L’égaliseur MMSE peut être obtenu par la relation suivante

FMMSE0 =
24 Im

�PH
L�1

35��2

~x h�0�

2

a ; (A.80)

où �2

a est la variance des symboles émis (considérés indépendants). L’équation (A.80) permet

l’acquisition d’un égaliseur MMSE avec une complexité réduite (seule l’inversion de la matrice

m�m �2

~x est nécessaire pour (A.80)).

A.3.4 Méthode sous-espace

La matrice de covariance du signal reçu suréchantillonné a la forme suivante

Rx

L = TL (HN ) Ra
L+N�1T H
L (HN ) + �2

vILm ; (A.81)

en présence de bruit additif blanc de variance �2

v . Etant donné cette structure de matrice,

on appelle l’espace colonne de la matrice TL (HN ) l’ “espace signal” et son complément
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orthogonal l’ “espace bruit”. Ces espaces sont caractérisés par les ensembles de vecteurs

propres VS et VN définis par

Rx

L =

L+N�1X
i=1

�iVi V
H
i +

LmX
i=L+N

�iVi V
H
i

= VS�SV
H
S

+ VN�NV
H
N

;

(A.82)

respectivement. Si la matrice de Toeplitz TL (HN ) a un rang plein, alors elle sera généré par

son espace signal:

TL (HN ) = VS T : (A.83)

Par contre, si la matrice de covariance est estimée par les données, la relation (A.83) n’est plus

valable. Une façon d’estimer le canal dans ce cas est de résoudre le problème d’optimisation

suivant

min
HN ;T

kTL (HN ) � VS TkF ; (A.84)

où kZk2

F = tr

n
ZHZ

o

. (A.84) est un problème de sous-espace: on essaie de trouver le canal

de façon que ça soit le plus proche possible du sous-espace signal de la matrice estimée.

Il se trouve que la solution du problème (A.84) (si on incorpore aussi la contrainte de

non-trivialité

Ht
N



2

= 1) est le vecteur propre qui correspond à la valeur propre maximale

de la matrice suivante

L+N�1X
i=1

TL
�
V H t

i

�
T H
L

�
V H t

i

�
:

On obtient ainsi une méthode aveugle pour l’estimation du multicanal basée sur une matrice

de covariance estimée.

A.3.5 Méthodes de Maximum de Vraisemblance Conditionelle

Pour améliorer la qualité d’estimation, on peut aussi envisager des méthodes de maximum de

vraisemblance (Maximum Likelihood). On va se concentrer sur des méthodes de maximum de

vraisemblance conditionnelles: on attribut une certaine distribution statistique aux données

émises qui ne correspond pas forcément à leur vraie distribution (ceci est fait pour avoir une

complexité réduite). On propose deux méthodes différentes:

Méthode de Maximum de Vraisemblance Déterministe

Dans ce cas on suppose que les données sont des quantités déterministes, qui font partie des

paramètres à estimer. Le problème d’optimisation correspondant peut s’écrire sous la forme

min
HN ;AM+N�1(k)

kXM (k)� TM (HN )AM+N�1(k)k2
2 : (A.85)
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Ce problème peut être minimisé de façon adaptative comme indiqué dans le paragraphe

7.9.1. Pour analyser la qualité de l’estimation atteinte par cette méthode on calcule la borne

de Cramér-Rao correspondante. La borne pour le canal est donnée par

C( bHtT
N ) � �2

v
�
AH
M;N(k)P

?
TM

�

HN

�AM;N(k)
�+

; (A.86)

où + est le pseudo-inverse d’une matrice.

Maximum de Vraisemblance Conditionelle Gaussienne

Dans ce cas on suppose que les données émises ont une distribution Gaussienne. Cela ne

correspond pas à la réalité, mais cette hypothèse peut aider à améliorer la qualité d’estimation.

Le problème d’optimisation correspondant est le suivant

min
HN ;AM+N�1(k)


24 XM (k)

0N+M�1

35�
24 TM (HN )

�v
�a
IN+M�1

35AM+N�1(k)


2

2

: (A.87)

La borne de Cramèr-Rao correspondante à ce problème est la suivante

C( bHtT
N ) = �2

v
�fKH

M;N(k)P
?eTM (HN )
�

HN

�fKM;N(k)
��1

: (A.88)

Cette méthode améliore considérablement dans certains cas la qualité d’estimation, grâce à

la régularisation implicite dûe à l’hypothèse de Gaussiannité. Le tableau suivant montre une

comparaison des performances des ces deux méthodes (aveugles) de maximum de vraisem-

blance dans le cas du système GSM d’une part et avec la méthode qui utilise la séquence

d’apprentissage (TRS) d’autre part. On suppose deux sous-canaux de réponses impulsion-

nelles

h1 = [0:3651 0:5983 � 0:0825 0 0 0]

h2 = [0:4076 � 0:0625 0 0 0] :

DML GDML TRS

99.9062 0.0149 0.0198

Notons l’amélioration atteinte par la méthode Gaussienne, qui est même plus performante

que la méthode non-aveugle.

A.3.6 Application des méthodes existantes à la structure multicanal

Motivés par les avantages de la structure multicanal, nous avons appliqué les méthodes

proposées dans la première partie de la thèse à l’égalisation sur-échantillonnée. Comme

attendu, (voir chapitre 8), l’utilisation de suréchantillonnage améliore la performance de tous

les algorithmes. La figure A.20 montre une simulation comparative des performances de
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Figure A.20: Simulations comparatives pour un canal sur-échantillonné avec un facteur 2

divers algorithmes dans le cas d’un canal typique des communication mobiles. Le facteur de

sur-échantillonage dans ce cas est égal à 2. Notons l’amélioration en performance atteinte par

les nouveaux algorithmes NSWCMA et NSWERCMA.
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