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Abstract—In this paper we investigate the application of mulitple stage
filters in the context of pathwise processing. Pathwise processing pro-
poses to overcome one of the major difficulties encountered with linear
DS-CDMA receivers in time-varying multipath propagation, namely the
estimation of a large number of parameters from scarce training data.
Pathwise Interference estimation allows the separation of the parameters
into fastly and slowly varying parameters, thereby allowing the scarce
training data to be used in the estimation of the fastly varying parame-
ters with a short time constant while the slowly varying parameters can
be estimated over a much larger time interval. This paper focuses on the
application of polynomial expansion (PE) filters to pathwise processing
and proposes the use of a weighting factor per signal component. We
show that these weighting coefficients not only achieve significant im-
provements in the presence of power imbalances between users and paths
w.r.t. scalar weighting, but also achieve further improvement due to the
better estimation of the fastly varying parameters.
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I. I NTRODUCTION

O
NE of the main problems in linear multiuser detection
is the amount of parameters that have to be estimated

from relatively few training data. In particular, the fastly vary-
ing parameters of the mobile channel in a multipath, fading
environment can pose serious difficulties to interference can-
cellation and data detection. Pathwise Interference Cancel-
lation (PWIC) is an approach that allows to separate the pa-
rameters into fastly varying and slowly varying parameters,
thereby allowing the scarce training data to be used in the es-
timation of the fastly varying parameters while the whole of
the received signal can be used to estimate the slowly varying
parameters over a much larger time interval. Since the inter-
ference cancellation takes place between individual multipath
components before spatial-temporal recombination, the signal
thus obtained contains the desired parameters at an improved
SINR compared to the received signal and hence allows im-
proved channel estimation [1][2][3].

Polynomial expansion (PE) is an approximation technique
for LMMSE receivers and is particularly well suited for
CDMA due to the presence of a large number of small cor-
relations. The fundamental principle of PE is to avoid the
relatively costly correlation matrix inverse required by an
LMMSE/Decorrelator receiver by considering the correlation
matrix to be a small perturbation of an identity matrix and ap-
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proximating the inverse of the correlation matrix by a poly-
nomial expansion in the perturbation matrix or, equivalently,
in the correlation matrix itself. However, for PE to work,
adapted weighting factors have to be introduced. By appro-
priately choosing the weighting coefficients, every additional
term in the PE can be guaranteed to improve performance and
hence divergence concerns get eliminated.

PE has, in various forms, received a fair amount of attention
recently in theliterature [4] [5] [6] [7] etc. Some works on PE
have analysed the choice of scalar weighting factors on the
basis of asymptotic system analysis, leading to weight values
that can be determined a priori. In this paper, we propose to in-
troduce diagonal weighting matrices which corresponds to one
weighting factor per signal component. We shall see that such
multiple coefficients not only improve performance substan-
tially in the presence of power imbalances between users and
paths, but also further improvement due to the fast adaptation
of these weights is possible since the instantaneous channel
states will reflect the power imbalances very strongly.

Moshavi, who first introduced PE [8], applied the polyno-
mial expansion to the joint set of RAKE outputs for the var-
ious users. In this way, the polynomial expansion receiver
involves only (de)spreading and channel (matched) filtering
operations and hence is mostly parameterized in terms of the
channel parameters (as opposed to the general coefficients of
a general linear receiver). Honig and coworkers apply the PE
principle to the received signal directly and were able to show
[9] that PE is equivalent to theMultistage Wiener Filter[10]
in this case. We propose to introduce polynomial expansion
at the level of the pathwise RAKE outputs. As compared to
Moshavi’s approach, the PE is situated before the maximum
ratio recombination of the path contributions and leads to path-
wise interference cancellation which will allow to estimate
the path parameters (amplitudes, or even angles in the spatio-
temporal case) with improved SINR and hence with reduced
estimation error. The diagonal weighting factors we introduce
will hence provide a weighting per path (or even possibly per
antenna element per path in the spatio-temporal case). Max-
imum ratio combining after pathwise PE corresponds then to
a version of the G-RAKE (the path amplitudes multiplied by
arbitrary eighting factors become arbitrary recombination co-
efficients).



II. DATA MODEL

For the received DS-CDMA signal model, we assume the
K users to be transmitting linearly modulated signals over a
linear, specular multipath channel with additive gaussian noise
in an asynchronous fashion. Furthermore, we assume that the
basestation receiver utilizes an antenna array withQ elements.
The channel impulse response is characterised for usersk 2
[1 : : :K] by

hk(t) =
MX

m=1

Ak;mh(�k;m)�(t � �k;m)

wherehk andhk;m = h(�k;m) are column vectors of dimen-
sionQ, the number of sensors employed at the receiver.hk;m
defines the response of the antenna array and is a function
of the Direction of Arrival (DoA),�k;m, of the signal. For
identifiability reasons, we chose the anntenna response vector
to have unity power,hHk;mhk;m = 1. Further, the specular
channel is characterised byAk;m and�k;i, the complex am-
plitude and the path delays, respectively.M is the number of
specular paths. The channel parameters can be divided into
two classes: fastly and slowly varying parameters. The slowly
varying parameters are the delays,�k;m, the DoA,�k;m, and
the short-term path power,EjAk;mj2. Hence, the fast varying
parameters are the complex phases and amplitudes,Ak;m. At
the receiver front-end, the received signal before sampling is
written as

y(t) =
KX
k=1

n 1X
n=�1

MX
m=1

(Ak;mak[n]) (1)

�
L�1X
l=0

sk[l]hk;mp(t � �k;m � lTc � nT ) + n(t)
o

y(t) and the Additive White Gaussian Noise (AWGN),n(t),
are vector signals due to the use of multiple sensors and are
of dimensionsQ � 1. ak[n]; p(t) are the transmitted symbols
for userk and the pulse-shaping filter, respectively. At the
receiver front-end, the received signal given in equation (1) is
lowpass-filtered and sampled at1=Ts. The spreading codes,
sk(:) are assumed to be periodic of lengthLTc = T here. We
obtain therefore

y[n] =
1X

i=�1

P[n� i]SHAa[i] + v[n] (2)

wherey[n] = [y[n+ 0 � Tc=J ] : : :y[n+ (LJ � 1) � Tc=J ]
T ,

i.e. we stacked all samples of the received signal for the
duration of a symbol periodT into y[n]. v[n] is the sam-
pled and low-pass filtered contribution of the noise,n(t).
a[n] = [a1(n)a2(n) : : : aK(n)]

T contains the data symbols
of all K users for a givenn, T indicating the matrix trans-
pose,A = diag(A1 : : :AK) is the block diagonal matrix
containing the complex amplitude coefficients for each user
such thatAk = [AH

k;1 : : :A
H
k;M ]H , H = diag(H1 : : :HK)

whereHk = diag(hk;1 : : :hk;M) where bothHk andH
are block diagonal matrices andhk;m is a column vector.

S = diag(S1 : : :SK) whereSk = [IM 
 (sk 
 IQ)]; sk =
[sk[0] : : :sk[L � 1]]T represents the spreading code vector,
IM andIQ denote identity matrices of dimensionsM � M
andQ � Q, respectively.
 signifies the Kronecker product.
P = [pn;1 : : :pn;K];pn;k = [pn;k;1 : : :pn;k;M] and

pn;k;m =

2
64

pn;k;m;0;0 : : : pn;k;m;0;L�1

...
...

...
pn;k;m;LJ�1;1 : : : pn;k;m;LJ�1;L�1

3
75

wherepn;k;m;r;l = [p (nT + (r=J � l)Tc � �k;m)
 IQ]. Let
us define the received signal in the q-domain whereq is the
advance operator, i.e.qyn = yn+1 w.r.t the symbol period. To
this end, let us reformulate the received signal as given in (2)
in the q-domain.

y[n] = P(q)SHAa[n] + v[n]

= E(q)a[n] + v[n]

= Ek(q)ak[n] +
KX

i=1;i 6=k

Ei(q)ai[n] + v[n] (3)

whereP(q) =
P

iP[i]q�i and we split up the signal into user
k’s contribution and interference terms.

E
k
(q)HkAk =

MX
m=1

Ek;m(q)hk;mAk;m (4)

=
MX

m=1

Ek;m(q)Ak;m = Ek(q)Ak = Ek(q)

Furthermore, we can define

x[n] = HHEy(q)y[n] (5)

= HHE
y(q)E(q)H| {z }

R(q)=I+R(q)

Aa[n] +HHE
y(q)v[n]

= Ey(q)E(q)Aa[n] + E(q)yv[n]

whereEy(q) = EH (1=q�) is theparaconjugateandX
i

E
y

k;m[i]Ek;m[�i] = 1; 8 k 2 f1 : : :Kg;m 2 f1 : : :Mg

x[n] = [x1;1[n] : : :xK;M [n]]T are the matched filter or RAKE
outputs, spatially but not temporally recombined. Assum-
ing normalised spreading codes,R(q) = Ey(q)E(q) =P

iR[i]q�1 anddiag(R[0]) = I due to the normalisation of
hk;m : khk;mk = 1. From (5) it can be seen that the path-
wise zero-forcing receiver for estimatingAa[n] is given by
R�1(q).

III. POLYNOMIAL EXPANSION IN PATHWISE

INTERFERENCECANCELLATION

The principle of the polynomial expansion approach is
based on the polynomial expansion in the matrixR(q) as
introduced in the last section. In both the decorrelation
receiver and the LMMSE receiver, most of the complex-
ity is associated with the required correlation matrix in-
verse. Sincediag(R[0]) = I, we can writeR�1(q) =



�
I+R(q)

��1
=

P1

b=0

�
�R(q)

�b
, provided that there is a

matrix normjjjRjjj < 1 to ensure convergence. We can ap-
proximate the inverse of the correlation matrix and hence the
pathwise zero-forcing receiver by

R�1(q) � ~R�1(q) =
BX
b=0

(�R(q))b (6)

where we have truncated the infinite summation toB+1 terms.
However, as would be expected, such a truncation is subopti-
mal and can only improve SINR over the RAKE when the
off-diagonal elements inR(q) are few and small, i.e. for low
system loading factors. In [11] and [12] it was shown that
the potential gains of such a PE receiver are limited to ap-
proximately the inverse of the loading factor, i.e.1=�, where
� = K=L.

The performance of PE can be much improved by introduc-
ing scalar polynomial coefficientsdb according to some design
criterion in (6) as has been documented in various publications
e.g. [8][4][13][5] [9] and we will hence not treat this case here.
Instead, we propose to increase the degrees of freedom avail-
able to us by introducing a scalar coefficientper path. Let us
defineDb = diag[db;1 : : :db;KM ] and write the approximated
inverse ofR(q) as a polynomial inR(q) or equivalently in
R(q) since there is a one-to-one relationship between the ex-
pansions inR(q) andR(q). Hence,

~R�1(q) =
BX
b=0

DbR
b
(q) (7)

Typically, we would only be interested inB 2 f1; 2g stages
after the RAKE in order to keep complexity at a reasonable
level. Note that the additional complexity associated with ev-
ery PE stage is about twice the complexity of the RAKE.

A. Pathwise filter design

In a pilot-assisted estimation scenario, we can therefore ex-
press the PE filter estimatingAa[n] for an arbitrary number of
stages with a matrix polynomial coefficient per stage by

Do
i = arg min

Di:i20:::B
EkAa[n]�

BX
b=0

DbR
b(q)x[n]k2 (8)

which can be solved through a set of linear equations. Looking
at any rowj in equation (8), we can equivalently write

doj = argmin
dj

EjAjal[n]� dj�j [n]j
2

= AjE(al[n]�
H
j [n])(E�j[n]�

H
j [n])�1 (9)

where j 2 f1 : : :KMg is the path index,l = d j

M
e the

corresponding datasymbol,dj = [d0;j : : : dB;j] and �j =
[z0;j : : : zB;j ]

T , zb[n] = Rb(q)x[n] = [zb;1[n] : : :zb;KM [n]]T

and hence the problem decouples nicely into a path-by-path
solvable problem. It worth noting that this is not the case when
the polynomial coefficient matrixDb is replaced by a scalar as
the solution for the coefficients involves the summation over

the pathsj and hence there is no decoupling between paths nor
users, i.e.

doi = arg min
di:i20:::B

EkAa[n]�
BX
b=0

dbR
b(q)x[n]k2

=
X
j

E(Ajal[n]�
H
j [n])(

X
j

E�j [n]�
H
j [n])�1

A variant of the approach in (8) is the sequential computation
of the stages where each stage works on the error signal from
the last stage, i.e.

Do
b = argmin

Db

jjAa[n]�
�cAab�1[n] +DbR

b(q)x[n]
�
jj2

= argmin
Db

jjeb�1�DbR
b(q)x[n]jj2

= diag
�
E eb�1[n]z

H
b [n]

� �
diag(E zb[n]z

H
b [n])

��1

eb[n] = Aa[n]� cAab[n] (10)

Numerical results are shown in section IV. Path recombining
after pathwise PE interference cancellation will give the sym-
bol estimates:

â[n] = KHF(q)
h
R(q)Aa[n] +Ey(q)v[n]

i

whereK is a general recombination matrix of the same block
diagonal structure asA, namelyK = diag(K1; : : : ;KK).
Maximum ratio combining isK = A. F(q) defines the linear
filter corresponding to the PE approach above in (8). For the
symbol estimate of user one, we have

â1[n] = KH
1

�
Z1(q)A1a1[n] + Z1(q)A1a1[n] +X(q)v[n]

�
where

K = diag(K1;K1)

[IM0]F(q)R(q) = [Z1(q)Z1(q)]

X(q) = [IM0]F(q)E
y(q)

a[n] = [a1[n]a
T
1 [n]]

T

A = diag(A1;A1)

and(:)1 is a signal model component acting on the useful sig-
nal contribution of user one whereas(:)1 defines the interfer-
ing terms. Hence, the output SINR of user one can be written
as

SINR =
�2ajK

H
1
Z1[0]A1j2

KH
1
R1K1

R1 = �
2

a

X

i6=0

Z1[i]A1A
H
1
Z
H
1
[i]

+�2
a

X

i

Z1[i]A1A
H

1
Z
H

1
[i] + �

2

v

X

i

X[i]XH[i]

Maximum ratio combining is, however, not optimal and per-
formance can be further improved by maximising the output
SINR for the symbol estimate with respect to the recombining
vector,K1. It can be shown that

SINRmax = �2aA
H
1 Z

H
1 [0]R1Z1[0]A1

when the optimised recombination is given byKo
1 =

R�1
1 Z1[0]A1 Numerical results are shown in the section IV.



B. Joint filter and recombination design

Using the pathwise recombination matrixA defined in the
last section, we can write the symbol estimate resulting from
the filtering and combining as

â[n] = AH

BX
b=0

DbR
b(q)x[n] =

BX
b=0

WbR
b(q)x[n] (11)

whereWb = AHDb = diag(!b;1 : : : !b;k) is another block
diagonal matrix of the same structure asK, stageb = 0 hence
corresponds to a G-RAKE. Note however, that the direct ap-
plication of this approach above would no longer provide the
pathwise, SINR enhanced, outputs but the number of coeffi-
cients at our disposal remains at one scalar per path as can be
seen from solving (11) per user:

!ok = argmin
!k

jjak[n]� !k
k[n]jj
2

= E(ak[n]

H
k [n])(E
k[n]


H
k [n])�1 (12)

where !k = [!0;k : : :!B;k], !k;b has dimensionsM �
1 and 
k[n] = [z0;k[n] : : :zB;k[n]]T . zb;k[n] =
[0 : : :0 IM 0 : : :0]zb[n] where0 is M � M andzb;k[n] is
simply the contribution inzb[n] for the paths of userk. Al-
ternatively, (12) can be solved using the Linearly Constrained
Minimum Variance (LCMV) approach, shown for user 1 to
simplify notation and without loss in generality, as follows

!o1 = argmin
!1

!1R
1
1!
H
1 subject to!1�1[0]A1 = 1

!o1 = AH
1 �H1 [0]R�1


1
1
(13)

where

�1[0] = (IB 
 [IM 0])[R[0] : : :RB+1[0]]T [IM 0]T

R
1
1 = E(
1[n]

H
1 [n]) (14)

The constraint ensures that the contribution of the dataa1[n] in

1[n] remains constant under the application of the filter while
minimising the estimate output variance.

While the two solutions (by LMMSE and LCMV) are
equivalent when all the parameters are known, note that the
computation of the LMMSE filter from (12) requires the de-
sired data signal,ak[n] or an estimate thereof, whereas no in-
formation on the fastly varying amplitudesAk is required. For
the LCMV approach, the situation is the inverse and for both
cases, the estimates of eitherak[n] orAk need to be provided
through an approach such as (8). Alternative structures for the
data/amplitude estimate can also be found in [12].

In an adaptive filtering setting, the LCMV approach would
be expected to be more sensitive to estimation errors, partly
because of the error introduced in the minimisation constraint,
partly because the estimation of the data can be assumed to
be more robust than the estimation of the amplitudes since the
data originates from a strictly finite alphabet.

A natural extension to our proposal to introduce diagonal
weighting coefficient matrices instead of scalars, as well as
providing an interesting basis for comparison, is to introduce

a symbolwise (joint) approach where we apply a single scalar
coefficient per symbol per stage instead of per path, i.e.

Do
b = argmin

Db

jja[n]�
BX
b=0

Db(A
HR(q)A)bAHx[n]jj2

(15)

whereDb = diag(db;1 : : : db;K) anddb;k are scalars. This can
be solved in a user-by-user fashion, analogue to the procedure
used in the LMMSE approach above. Comparitive results will
be shown in the Simulation section. Note that this approach
is a simple extension of the work in [8] which used a scalar
coefficient per stage instead of a scalar per user.

IV. SIMULATIONS

The simulations show the output SINR at the symbol es-
timate as a function of the input SNR and are obtained for
user 1. The SNR is computed w.r.t. the power of user 1.
The spreading codes are periodic, and made up of iid ran-
dom variablessk;l 2 1

L
f+1;�1g. Delay spread is half a

symbol period and the user delays are uniformly distributed
for asynchronous channels. Where path recombining is nec-
essary, maximum SINR recombining is used unless otherwise
stated. Users have equal power on average and the simulations
are run over 100 realizations. PE-D, PE-D SER, PE-D JOINT
and PE-D SYMB denote the filters obtained in (8),(10),(11)
and (15), respectively. In figure 1 we can see that both PE-
D and PE-D SER are clearly outperformed by the two jointly
optimized approaches, PE-D SYMB and PE-D JOINT. Com-
pared with 3 where the situation is inversed. Note that the
approaches PE-D and PE-D SER while being inferior to PE-D
SYMB and PE-D JOINT by construction, have in effect M de-
grees of freedom more than than the joint approaches for the
same number of stages due to the optimisation at recombin-
ing. Due to the small number of stages and the relatively low
number of interferers (users and paths) in these simulations,
this difference is quite notable. Comparing figure 2 and figure
3, one notices that the total number of paths in the system is
equal in both, while the degrees of freedom are not. Indeed,
in figure 2 we see that the pathwise approaches clearly outper-
form the symbolwise approach due to the higher number of
paths. With a reduction in the number of paths, however, we
can see from figure 3 and figure 1 that the performance gap
narrows between the pathwise approach and the symbolwise.

V. CONCLUSIONS

Polynomial expansion (PE) is an approximation technique
for LMMSE receivers and is particularly well suited for
CDMA, due to the presence of a large number of small cor-
relations. However, for PE to work, adjustment factors have
to be introduced. We have shown that giving each signal com-
ponent a separate scaling factor allows for improved perfor-
mance at a small cost. Also, we have introduced PE at the path
level, which allows for interference cancellation and hence im-
proved parameter estimation at the path level. Further, new
approaches to PE at symbol level have been introduced, pro-
viding more degrees of freedom than previous methods.
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Fig. 1. L = 8,K = 4,M = 3, max. ratio combining

−10 −5 0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

15

20
PE

Input SNR

O
ut

pu
t S

IN
R

RAKE      
PE−D      
PE−D SER  
PE−D JOINT
PE−D SYMB 

Fig. 2. L = 8,K = 3,M = 4, max. SINR combining
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Fig. 3. L = 8,K = 4,M = 3, max. SINR combining
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