
A Terminal-Based Approach to Multimedia Service Provision

Christian Blum, Refik Molva, Erich Rütsche1

Institut Eurécom
2229, route des Crêtes, 06904 Sophia-Antipolis, France

E-mail: {blum, molva, ruetsche}@eurecom.fr

1. The work of Erich Rütsche was funded
by the Swiss National Fund

Abstract - We describe an architecture that supports net-
worked multimedia applications. The architecture is based on a
separation of multimedia stream processing and application pro-
cessing. Applications reside inapplication pools whereas media
stream processing is performed inmultimedia terminals. An
application controls a set of terminals that exchange multimedia
data streams directly between each other. A tele-teaching and a
home shopping example demonstrate important aspects of our
architecture.

I. I NTRODUCTION

Current platforms for community networking are based on
PCs and on simple terminals such as the French Minitel. To
bring multimedia services to the home these devices must be
enhanced to multimedia terminals that offer the user a window
to the multimedia services and applications in the network.
Services will evolve from retrieval services such as video-on-
demand to interactive services such as video-conferences and
games.

To provide these multimedia services an architecture is
required that supports a wide variety of foreseeable services
and that can be extended to support upcoming services with
new features. Most of the multimedia architectures proposed
in literature build on powerful workstations that communicate
as peer-systems. Such architectures are not adequate for com-
munity networking because they do not support service diver-
sity. For multimedia communication to be successful in
community networking, an approach similar to theIntelligent
Network concept [1] is required, where terminals with simple
interfaces access a wide variety of services that are installed
on servers within the network. Corresponding to the Global
Functional Plane in the Intelligent Network architecture, there
must be a high-level implementation platform that eases the
introduction of new multimedia services to the community
network.

Customer premises equipment must be optimized for multi-
media communication and especially for the processing of
digital audio and video that have high requirements on the
CPU and on the I/O bandwidth. The customer equipment must
be able to guarantee a quality of service (QoS) for every pro-
cessed medium stream.

Although the focus of a new multimedia architecture is on
communication rather than processing it should not neglect
traditional networked applications. A multimedia application
often combines communication and processing, for which
computer supported collaborative work (CSCW) may serve as
an example.

We propose an architecture that supports fast service
deployment and that is optimized for multimedia communica-
tion without sacrificing traditional applications. Since most
multimedia applications do not process medium content it is
possible to divide them into a media processing part and an
application processing part. In our architecture, media pro-
cessing is performed by multimedia terminals that are opti-
mized for this purpose. Besides media acquisition, pre-
sentation and transport they also implement the user interface
that allows a user to interact with applications. Applications
run on central application pools within the network. They
implement the services that are offered to users. Application
pools provide an application programming interface to man-
age applications and build multiparty sessions between termi-
nals. Media data are directly exchanged between terminals,
while the control of the application and of the terminal is con-
centrated on the application pool. The control and data inter-
faces of our architecture are extensible to make it flexible
towards technical evolution.

In the next section we give an overview of the architecture
and its main components. The architecture of the terminal is
discussed in detail in Section III. Section IV describes the
control flows between terminal and application. Section V
presents two examples, tele-teaching and home shopping, that
demonstrate how services are deployed on top of our architec-
ture. We conclude with a discussion of the architecture and the
state of our work.

II. A RCHITECTURE OVERVIEW

Requirements of multimedia in terms of system architec-
ture, operating system and networking are quite different from
those of conventional applications. It is not trivial to come up
with a system that accommodates both multimedia stream
processing and application processing in an efficient way.

Most current systems are based on multimedia-enhanced
workstations. Workstations are designed for a very broad

1st International Workshop on Community Networking:
Integrated Multimedia Services to the Home,
San Francisco, July 1994.

range of applications; adding multimedia to such a general
system is likely to compromise the quality of the multimedia
services or the performance of the other applications. Multi-
media will finally be done on systems that are especially
conceived for this purpose and that are similar in spirit to the
one proposed in the Pegasus project [2]. Such systems will
integrate multimedia and traditional application processing
into a single workstation and might eventually become the
standard for future research and engineering environments.
They will not be adequate for public multimedia service pro-
vision because they will be expensive and because they
require the user to install software on her station for every ser-
vice she wants to use. This approach is not acceptable for
community networking where a high number of users want
access to rapidly changing and evolving services provided by
multiple independent parties.

We are developing an architecture that should be efficient in
terms of multimedia stream processing and that supports the
introduction of new multimedia applications or services. Such
a system can then be deployed in both a research and a public
environment.

The following provides a closer look at the nature of multi-
media applications. Proceeding from this a new multimedia
system architecture is proposed.

A. Towards a New Architecture

A multimedia application can be classified according to the
way it treats media content. There are some applications in
science and engineering that analyze media content and that
take the result of such an analysis directly as control input,
with possibly no human user being involved [3]. Other appli-
cations treat the various media as transparent streams whose
content is only meaningful to human users. Such applications
are still indirectly influenced by media content simply because
the human user will be influenced by it in the way she inter-
acts with the application. The majority of distributed multime-
dia applications that are known today belong to the second
category and do not look at media content at all. This is espe-
cially true for applications whose purpose is human-to-human
communication or interactive multimedia information retrie-
val, and, in our opinion, for all multimedia services that are to
be offered to a greater public in the near future.

Applications that do not process media content can be
divided into a media part and an application part. Application
part and media part can be represented by entities that com-
municate by means of a control protocol. The protocol entity
on the media side executes media stream related application
requests as part of control protocol procedures. The introduc-
tion of a control protocol allows to completely insulate appli-
cation processing from media processing and in fact perform
the two at different locations. It is then conceivable to have a
terminal that implements the media part and that is remotely
controlled by an application whose location is hidden to the

terminal user. This terminal may communicate with other ter-
minals that are controlled by the same application. For the
provision of multimedia services to the public exactly such an
approach has to be taken. What is needed in addition is a pro-
gramming interface on the application side that supports
application development and thereby service diversity.

The set of available media is limited and applications tend
to deploy media streams in a similar fashion. It is thus
straightforward to have a programming interface that offers a
high-level control over commonly used media streams. Such
an interface is for instance presented in the Touring Machine
[4]. A programming interface allows to concentrate on appli-
cation design issues rather than media stream handling and
will therefore speed up application development considerably.

The separation of media and application processing and a
programming interface on the application side are the keys to
our architecture.

B. A Terminal-Based Multimedia Architecture

In our architecture we physically separate the multimedia
application from its media streams. Applications reside on
application poolsinside a network, whereas media stream
processing is performed onmultimedia terminalsin the
periphery. A multimedia terminal is optimized for the process-
ing of media streams and offers a standard control and data
interface to the outside. An application pool runs applications
on top of an interface that implements features for the control
of terminals. Two protocols provide the link between applica-
tion and terminal. Anapplication management protocoloffers
control on application level. It includes procedures for start,
modification and release of applications. Aconnection control
protocol allows an application to establish and modify con-
nection structures among participating terminals and to con-
trol media acquisition and rendering in each of them.

The basic elements of our architecture are depicted in Fig-
ure 1. The central entity of a terminal is theterminal control.
The terminal control uses the application management
protocol to communicate with the central entity of the applica-
tion pool, theapplication manager. Theconnection controlin
the terminal handles single connections or connection groups
with synchronized connections and does not have knowledge
about the application as a whole. It is directly accessed via the
connection control protocol and handles requests of applica-
tions that are authorized by the terminal control. The connec-
tion control invokes astream handler for every media
connection that it establishes. A stream handler implements
the complete processing path of a single stream within the ter-
minal, i.e., it does acquisition and transmission on the source
side and reception, synchronization and presentation on the
sink side of a stream.

In the application pool, applications are started and released
by the application manager following the corresponding pro-
cedures in the application management protocol. An applica-

tion programming interface (API) provides the services of the
session control and of the application manager to the applica-
tion. The session control translates requests for the establish-
ment of complex connection structures among participants
into simple connection control primitives towards the respec-
tive terminals. In addition to connections between terminals,
applications will also establish connectionswith terminals.
Interactive applications will use such connections for their
direct communication with terminal users, but they might also
serve to convey small amounts of multimedia data to termi-
nals. High volume multimedia data, e.g., video, on the other
hand are not supposed to originate from the application pool.
They bypass the application pool on connections in-between
terminals, as indicated in Figure 1.

C. The Multimedia Terminal

The terminal control of a multimedia terminal processes
user requests to start applications on remote application pools.
It also receives invitations to participate in ongoing multiparty
applications and forwards them to the user who may accept or
reject them. A terminal may participate in various applications

at a time. These applications may reside in different applica-
tion pools. The terminal control maintains an application man-
agement connection to every application pool from which it
has applications running. Before the terminal control starts a
new application it first checks if the system has enough
resources for this application. If so it reserves the resources
that are requested by the new application.

The connection control processes connection establish-
ment, modification and release requests from the application
side. The basic control protocol procedure is an operation
invocation for which the connection control returns a positive
or negative operation result. The connection control also gen-
erates error events towards the application in case a medium
connection perceives serious QoS problems.

The multimedia terminal has to be very flexible in the way
it deals with media streams and their synchronization. It must
export as much control over its features as possible, thus
allowing applications to control all aspects of media stream
processing.

The connection control protocol reflects the capabilities and
resources that a terminal may have. It is designed in a way that

Fig. 1. The General Architecture Showing one Application Pool and two Multimedia Terminals (API = Application Programming Interface).

Application Manager

Session Control

Application

Application

APPLICATION POOL

API

Application

Terminal
Control

Connection
Control

Terminal
Control

Connection
Control

Stream Handler

Stream Handler

TERMINAL TERMINAL

❶

❷

❸

❸

❷

❶

❶
❷ Connection Control Procedures
❸ Media Stream Data

Application Management Procedures

Stream Handler

Stream Handler

it does not restrict the evolution of terminals, i.e., it is possible
to integrate new terminal features into this protocol.

The control interface of the terminal is specified by the con-
nection control protocol and the application management pro-
tocol. In addition to this a data interface has to be specified,
which corresponds to a specification of every media stream
that is handled by the terminal. The variable parameters of the
media stream specification will be part of the connection con-
trol protocol.

 A terminal is the source or sink of multimedia streams.
Therefore, all major multimedia sources or sinks, e.g., a
multimedia file server, have the same control and data
interfaces as multimedia terminals. A multimedia terminal
will in the general case also have storage capabilities and in
some applications take the role of a file server towards other
terminals.

D. Application Pools

The application manager in the application pool processes
requests from terminals that want to start applications and
from applications that want to invite terminals to participate.
Running applications have the possibility to request the start
of other applications which is for instance necessary in the
case where a yellow page application wants to start a service
that was selected by a user. Applications are only started after
the negotiation procedure in the application management pro-
tocol has made clear that a terminal is compatible with an
application.

Applications run on top of the session control. The session
control views an application as a collection of connections
and terminals and does not deal with application specific
semantics. It offers a high-level interface to the applications
that allows applications to establish complex application
structures with single requests. The session control decom-
poses the request for a complex connection structure into a
number of connection control requests towards concerned ter-
minals. An application may for instance request the full inter-
connection of its participating terminals with video
connections. The session control will consequently establish
as many video multicast connections as there are terminals in
the session.

Another function of the session control is error message fil-
tering. The breakdown of a connection will result in the gener-
ation of as many error messages as there are terminals at the
endpoints of this connection. The session control has to find
out if an error message refers to an error condition that has
already been reported to the application.

The application programming interface offers an object-ori-
ented interface to the services of the application manager and
the session control. With the protocols that are used in these
services, an application can establish a multiparty session
between terminals. The goal of the API is to provide an inter-
face that allows the rapid development and introduction of

applications.
Some applications might be distributed over multiple appli-

cation pools. To support this the application manager and the
session control interface offer mechanisms to establish com-
munication sessions between multiple application pools and
terminals.

Every application pool runs a basic directory server appli-
cation that gives information on all installed applications and
the connected users and terminals.

III. A RCHITECTURE OF A MULTIMEDIA TERMINAL

The multimedia terminal is a software architecture that can
be implemented on a low-cost hardware platform such as a
multimedia PC, a multimedia X-station, or a multimedia
enhanced Minitel.

The terminal interface is completely specified by the appli-
cation control protocol, the connection control protocol and
the transmission protocols for media streams.

The architecture of the terminal is shown in Figure 2. The
terminal is managed by theterminal control. Theconnection
control communicates with the session control on the applica-
tion pool and deals with all data communication and process-
ing issues. Data streams are processed by dedicatedstream
handlers and synchronized bystream coordinators. A
resource monitor administrates the resources of the terminal
and is consulted by the terminal control in the course of appli-
cation negotiation procedures, and by the connection control
during the actual connection establishment. Thepresentation
server is responsible for the interaction between application
and user and performs functions like windowing and data in-
and output. The terminal may also runlocal applications.

A. Terminal Control

The terminal control communicates by means of the appli-
cation management protocol with the application manager in
the application pool. Within the terminal it communicates
with the resource monitor, the connection control and local
applications. The terminal control treats all issues that concern
the application as a whole, e.g., all requests to start an applica-
tion. The terminal control consults the resource monitor for
the reservation of the resources that an application requests
during the startup phase. It rejects applications for which it
cannot provide mandatory resources and supports the
renegotiation of resources after the startup phase. To keep
track of the local state of an application it receives indications
of established connections from the connection control.
Applications that experience serious problems can be aborted
by the terminal control.

B. Connection Control

The connection control is the end-point of the connection
control protocol within the terminal. It receives requests from

the session control in the application pool to open connec-
tions, to synchronize them with other connections, to modify
them or to release them. To open a new connection the con-
nection control requests the respective terminal resources
from the resource monitor. The resource monitor grants them
on the basis of the reservation that was previously effected by
the terminal control. The connection control initializes a
stream handler for every connection and a stream coordinator
for a group of stream handlers that must be synchronized. It
supervises the performance of its stream handlers and coordi-
nators and demultiplexes connection control requests.

C. Stream Handlers and Coordinators

Stream handlers are the active entities that transport multi-
media data from the user interface to the network and vice
versa. Stream coordinators ensure the synchronization of
stream handlers.

A stream handler implements the protocol stack that is
required for the communication with a single medium. The
control interface of a stream handler is composed of a
medium-specific and a medium-independent part. The
medium-independent part is common to all stream handlers
and provides generic functions like the establishment of net-
work connections, or start and stop of medium data flow. A
stream handler performs the following functions:

• medium data acquisition and presentation
• compression and decompression
• transport protocol processing
• processing of a medium-specific communication protocol
• intra-stream synchronization

For a video stream the stream handler gets the video frames
from a camera, compresses the frames, builds network proto-
col packets and writes them to the network adapter. In the sink
terminal the stream handler receives the network packets from
the network adapter, extracts the video data from the com-
pressed video packets and writes them to a user interface
device, e.g., a video screen. If compression/decompression
hardware is available, the stream handler takes advantage of it
to speed up processing.

Stream handlers collect statistical data about their perfor-
mance and communicate them to the resource monitor. They
report serious QoS problems to the connection control which
will decide about necessary measures.

The control interface of a stream handler offers functions
for presentation timing. A stream coordinator uses this part of
the control interface to synchronize a group of streams. For
continuous synchronization the stream coordinator establishes
a common end-to-end delay among streams [5]. For event-
based synchronization the stream coordinator sends presenta-
tion requests to stream handlers.

D. Resource Monitor

The resource monitor is the entity that controls and moni-
tors all resources in the terminal. Resources are for instance
hardware devices, I/O bandwidth and CPU time.

 The resource monitor handles requests for the reservation,
assignment and release of resources. The terminal control
requests the reservation of resources for an application from
the resource monitor. The monitor calculates whether the
resources can be granted to the application and whether the
additional load can be taken without limiting existing applica-
tions. The monitor can for instance give a microphone only to
one application and might refuse to display two videos that
each take about 50% of the available I/O bandwidth. Reserved
resources are finally assigned to an application when the con-
nection control requests them for the establishment of connec-
tions.

The resource monitor watches the average load of the ter-
minal. Decisions are taken based on load averages, empirical
QoS data, and statistical data collected by the stream handlers.
Short term load fluctuations and QoS problems are handled by
the stream handlers and the stream coordinator.

E. Presentation Server

The presentation server presents applications to the user. It
controls the appearance of the application and offers the user
the control interfaces to interact with the application. The pre-

Fig. 2. Terminal Architecture

User Interface Devices

Presentation Server

S
tr

ea
m

 H
an

dl
er

S
tr

ea
m

 H
an

dl
er

Stream
Coordinator

Network Devices

Local
Applications

Remote Terminals and
Applications

Data Flow

Control Flow

API

Connection
Control

Terminal
Control

Resource
Monitor

Session
Control

Application
Manager

sentation server provides the functionality of an X-server but
supports also non-visual interfaces such as audio in- and out-
put. The presentation server is controlled in a X-like protocol.

The user interface of an application is composed of a set of
functions with local or remote significance. The presentation
server demultiplexes user-generated events to local stream
handlers or to the remote application which then takes the
appropriate actions. A function with local significance would
be a control panel that allows to adjust the volume of an audio
output channel. Of remote significance are all functions that
require some action from the application itself.

F. Local Applications

Local applications give our architecture compatibility with
existing applications. Typically, these applications are single
user programs for text- and data processing.

The terminal architecture provides an API for the imple-
mentation of local applications that is a subset of the API in
the application protocol. The difference between the two is
that the terminal API does not offer session control functions.

Every terminal runs a minimal local application that inter-
faces the user with the application management functions of
the terminal control. This application allows the user to start
and to stop both remote and local applications and to receive
incoming calls. It offers access to the directory service and
keeps a hotlist of favorite applications.

Before a local application can run it must obtain terminal
resources from the terminal control. For some applications
this may be the only interaction with the terminal API.

G. Implementation Issues

The concept of stream handlers and coordinators lends
itself to an implementation in the user space of a multi-
threaded operating system. A stream handler can be imple-
mented as a single task with the different processing functions
being performed by a set of threads. This allows to optimize
protocol processing and, since the whole processing path is
within one task, to enforce QoS of a stream in the terminal.
An implementation in user space allows to avoid the operating
system and copying overhead of kernel based implementa-
tions [6]. The operating system must support the implementa-
tion of stream handlers and coordinators with real-time
features, especially with control over scheduling [7]. Its mem-
ory management must allow to move data between network
adapters, stream handlers and I/O devices with a minimum
amount of copies.

IV. CONTROL INTERFACES

The terminal is conceived as an open system and is not
restricted to a certain software or hardware environment [8]. It
is specified by a terminal interface that is located above the
network layer. Whichever end-system conforms to the termi-

nal interface can connect to an application pool and request a
service.

The terminal interface consists of a control part and a media
part. The control part of the terminal interface is divided into
two logical layers. The application management protocol
specifies the terminal interface on the application level and
provides services for invocation, modification and release of
applications. The connection control protocol provides the
services to setup single connections between terminals within
the framework of an application. The control part requires the
specification of a transport service for control protocol flows
in addition to the specification of the protocols themselves.

A. Application Programming Interface (API)

The API provides an object-oriented interface to the appli-
cation. An application is based on a user group. A group can
consist of one, two or many users. To this group users can be
invited, they can join the group and leave it. The application
management protocol describes the function to create and
modify a group session and to negotiate the session resources
that satisfy the application requirements. Resources are seen
as objects upon which the application can get control.

Once an application is negotiated the session must be estab-
lished. The API provides the functions of the connection con-
trol protocol to initiate a stream handler and to control the
negotiated resources.

B. Application Management Protocol

The application management protocol consists of proce-
dures that are initiated by the terminal control and others that
are initiated by the application manager in the application
pool. The terminal control initiates among others the proce-
dures

LAUNCH procedure for the start of an application.

ABORT procedure for the abortion of an application.

The procedureLAUNCH is solicited by a user request. This
procedure includes the negotiation of the resources that are
initially granted to the application. The procedureABORT can
be initiated by both a user or the terminal control following an
error condition. Other procedures offer for instance access to
the directory service or allow to join ongoing applications.

The application manager initiates the procedures

INVITE procedure for the invitation of a terminal to an
ongoing application.

RESOURCE procedure for the negotiation of additional
resources or the release of held resources.

RELEASE procedure for the orderly release of an application.

The RESOURCE procedure allows an application to obtain
additional terminal resources or release those that are not
needed any more. TheRELEASE procedure releases an appli-

cation after all of its connections have been closed. A terminal
does not have to initiate such a procedure since it is supposed
that every application offers an exit instruction in its user
interface. Having received such an instruction from its user,
an application will take all necessary measures to release the
respective terminal.

The following gives a list of important protocol parameters:

applicationName is the name of an application. The name
may be unique or local to an application pool.

applicationProfile describes the application and its hard- and soft-
ware requirements.

terminalProfile describes the hard- and software configuration
of the terminal.

resourceList lists the resources that the application wants
to obtain.

grantedResources lists the resources that the terminal grants to an
application.

sessionSummary describes the state of an ongoing application
in terms of connections and participants.

The use of these parameters is illustrated in the example at
the end of this section.

C. Connection Control Protocol

 The connection control protocol is used to establish a com-
munication session between two or more terminals. Applica-
tions require communication sessions of a guaranteed QoS.
The session control resolves this QoS and creates transport
connections between the terminals with a guaranteed QoS.
The QoS is handled depending on the network. For ATM net-
works the ATM QoS parameters are used. For other networks
empirical QoS service parameters, e.g., equivalent or mean
bandwidth, are used.

Multicast groups are built based on the available multicast
services in the network. In the worst case a multicast group is
built by grouping point-to-point connections. However, the
implementation is transparent to the application which sees
the session control interface.

The resources granted in the application management pro-
tocol are used to create multimedia streams by connecting the
devices and resources of the terminal over the network.

The following are some protocol primitives used [9]:

CreateSH creates a stream handler and connects it with
an input or an output stream (or device).

ConnectSH opens a network connection to one or multiple
 stream handlers.

Send and receive operations set the stream handler in a state
where it moves data between the network connection and the
input and output streams or devices. The data movements are
triggered by the data source or by a timer that is controlled by
the stream coordinator.

D. An Example

The establishment of an application is shown in Figure 3.
The user on Terminal A wants to use a service and requests it
from his terminal control. The terminal control connects to an
application pool that offers this service and initiates the
LAUNCH procedure (❶). In its initial message the terminal
control will just give theapplicationName of the application
that corresponds to the requested service. The application
manager will return aLAUNCHaccept message if it can offer
this service. This message contains theapplicationProfile and
the initial resourceList. The terminal control examines if its
own profile matches theapplicationProfile and returns a
LAUNCHstart message if it finally wants to start the application.
This message contains the list ofgrantedResources and the
terminalProfile. In the following the application manager will
set up the application which will, once running, connect to the
presentation server in Terminal A (❷). The application creates
a user interface on Terminal A, which allows the user to spec-
ify that she wants to call the user of Terminal B. The applica-
tion will prompt the application manager to invite this
terminal. The application manager connects to Terminal B and
initiates theINVITATION procedure (❸). The initial request of
the INVITATION procedure contains theapplicationName, the
applicationProfile, the sessionProfile, and the initial
resourceList. The connection control of Terminal B is thus
informed about the kind of application that initiated theINVI-

TATION procedure, its momentary state and the resources that
the terminal is supposed to grant, if it agrees to participate.
The connection control of Terminal B answers with anINVITA-

TIONproceeding message and consults its user. After a positive
answer of the user the connection control will finally send an
INVITATIONstart message to accept the invitation. This message
contains theterminalProfile and thegrantedResources along
with theterminalProfile. Now that Terminal A and Terminal B
are participating the application is able to establish a medium
connection between the two by means of connection control
procedures (❹). Following a respective application request the
session control in the application pool will send aCreateSH

message to both of them, with configuring Terminal A for
active-open and Terminal B for passive-open. After the con-
nection controls of both terminals have sent a positive
acknowledgment, the session control will ask the connection
control in Terminal A to establish the network connection (❺).

In the following the application might establish further con-
nections and add other participants. An application knows the
terminalProfile of every participating terminal and will use this
knowledge in connection related decisions. The momentary
state of the application is reflected in thesessionProfile which
is given to every terminal that enters the application.

V. SERVICE EXAMPLES

The following two examples demonstrate how services are
implemented on top of our architecture. The examples are

tele-teaching and home shopping. Both services are offered by
private service providers. The service provider owns the
application pool whose address and services he will advertise.
He may at any time install new services in its pool and remove
other ones.

A. Tele-teaching

This example is derived from the Betel tele-teaching
project in which our institute participated [10].

The service provider in this example is a school that offers
services for the remote training of people on word-processors
or other software products. The school itself consists basically
of an application pool on which all of its tele-teaching appli-
cations are installed. Both teacher and students work on their
personal multimedia terminals at home. The teacher starts a
tele-teaching application remotely at a given time and waits
for the students to connect to it. Initially the teacher’s image
and voice is distributed to all class members. The teacher will
give a short introduction into the goal of the lesson and possi-
bly demonstrate it by starting the word-processor, sharing its
user interface with the students and explaining certain features
directly on the program itself. If a student has a question an

audio connection is established between her and the teacher.
Student questions are fed back into the teacher’s audio chan-
nel so that everybody can hear them. After this initial phase
every student starts her own word-processor and begins to
work on the assignment. The teacher is no longer visible to
everybody. Instead, she connects herself to single students,
asks for their progress and helps them if they have problems.
In this case a bidirectional audio-visual connection is estab-
lished between the teacher and the student. The student can
share her word-processor with the teacher and thus demon-
strate her results to the teacher or get direct help. Students
may also call the teacher who will then connect to them as
soon as she is free. If there are questions coming up in these
private consultations that are of general interest, the teacher
may choose to talk again to the whole class and answer them
for everybody. Once the lesson is finished the teacher waits
until all students have disconnected and releases the tele-
teaching application.

On the side of the teacher and the student, the tele-teaching
service requires a standard multimedia terminal with key-
board, mouse and audiovisual capabilities. Since student and
teacher want to use the screen of the terminal as workspace it
makes sense to have an extra screen for the video image. This
will also improve the quality of the communication between
teacher and student.

The tele-teaching application in the application pool of the
school contains functions for the interaction with one teacher
and a set of students, the taught word-processor, and a func-
tion to share the user interface of the word-processor. The
application has a connection to the presentation server of
every participating terminal. It generates a user interface for
the teacher that allows her to control the application, to switch
between a communication with the whole class and single stu-
dents and to share the user interface of the word-processor.
The user interface for the student allows to ask questions
when the teacher is addressing the whole class, to call the
teacher and to start the word-processor. Every student will run
one instantiation of the word-processor in the application pool
of the school. The instantiations of the program might be dis-
tributed onto multiple machines. An application-sharing com-
ponent allows to connect more than one terminal presentation
server to the word-processor.

Figure 4 shows the service-specific connections that may
exist during a tele-teaching session. The tele-teaching applica-
tion can have two control connections to the presentation
server of a terminal, one for the word-processor user interface
and another for the application user interface. The tele-teach-
ing application uses three different types of media connec-
tions; an audio and video multicast connection between the
professor and all students, a bidirectional audio and video
connection between the professor and a single student, and
unidirectional audio connections for student questions. The
API in the application pool supports the creation and dynamic
modification of the session connection structure. The applica-

Fig. 3. Application Establishment Example.

Application PoolTerminal A Terminal B

INVITATION

LAUNCH

LAUNCHaccept

LAUNCHstart

INVITATIONstart

INVITATIONproceeding

time

CreateSH

CreateSH

ConnectSH

open, send data

Application Management Message
Connection Control Message

CreateSHack

CreateSH

CreateSHack CreateSHack

ConnectSHack

❶

❷

❸

❹

❺

tion will once request a multicast connection for audio and
video between the teacher and the students. The session con-
trol will then automatically add every student to this connec-
tion that enters the session. When the teacher goes from
student to student, the application will just call a switch func-
tion. The session control will then release the connection
between the teacher and the student she is currently talking to,
and establish the connection to the next student. The API may
allow the specification of connection policies. In this case the
tele-teaching application will specify that the multicast con-
nection and a bidirectional connection to a single student can-
not be simultaneously active. The session control will then
automatically deactivate a bidirectional connection when the
teacher switches to multicast, and vice versa.

B. Home Shopping

Home shopping is an interactive application that allows a
user to see the latest products of a vendor or to walk through a
virtual mall. The application consists of short video clips that
show the products and a hypermedia structure that leads a cus-
tomer through the offers or through the mall.

The distributor advertises its service on the directory ser-
vice of the application pools. As this service is supposed to
attract many users, the distributor will install its own applica-
tion and its media terminals that act as video and image serv-
ers. To process the transactions and orders a transaction server
is required.

A user who wants to go shopping will select her favorite
home shopping service and launch the home shopping appli-
cation. The application pool of the distributer will instantiate
the application and connect the user terminal with the media
server. The user will get an attractive welcome screen that
shows her how to get to the desired information. These hints
are virtual links to hyperdocuments. If a link is selected, a
control message is sent to the application, which triggers the
media server to transmit the document, e.g, a video clip. Con-
trol messages that indicate the decision to order a product are
forwarded by the application to the transaction server.

VI. DISCUSSION

The architecture has been designed to facilitate the devel-
opment of distributed applications such as tele-teaching in
Betel. The API should relieve the application designer and
developer from caring about the details of the distributed ter-
minals and their interconnection. Instead she can concentrate
on the functions of the application and the user interface.
Toolkits for CSCW could further facilitate application devel-
opment.

A main benefit of our architecture is that it supports a fast
introduction of new services into a network. A service is
accessible through a terminal as soon as it is implemented on
an application pool. Service diversity is made possible by the
object-oriented API that supports a wide range of terminal
features and communication services. New service features
corresponding to terminal extensions are introduced as exten-
sions of the control protocols.

The terminal interfaces should be normalized such that the
architecture is open for the development of applications,
application pools and terminal equipment. The requirements
on terminals are minimal to provide the portability of the
architecture to a wide range of equipment. The terminal and
application pool are software systems that can be imple-
mented on any hardware platform that provides sufficient
resources. The integration of local applications in the terminal
allows the interoperability with traditional applications.

We plan to build a multimedia service infrastructure based
on this architecture in our institute. Currently, we are
implementing the stream handlers with their connection con-
trol and the session control on the application pool. For the
stream handlers users space protocol implementations are
under way. All our developments efforts are based on our
institute’s infrastructure; on SUN stations that are used as
multimedia terminals and as application pools, and on a local
ATM network.

Fig. 4. Tele-Teaching Service Scenario.

Teacher

School

Tele-teaching
Application

Audio/Video Multicast or Bidirectional

Application User Interface Connection
Word-Processor User Interface Connection

Student

Student

Student

Audio for Student Questions

REFERENCES

[1] J. J. Garrahan, P. A. Russo, K. Kitami, and R. Kung, "Intelligent Network
Overview",IEEE Communications Magazine, Mar. 1993.

[2] S. J. Mullender, I. M. Leslie, and D. McAuley, "Pegasus Project Descrip-
tion", University of Cambridge Computer Laboratory, Technical Report
No. 281, Sep. 1992.

[3] N. Williams, G. S. Blair, "Distributed Multimedia Applications: A
Review",Computer Communications, Vol. 17 No. 2, Feb. 1994.

[4] V. Mak and others, "Touring Machine: A Software Platform for Distrib-
uted Multimedia Applications",Proc. 1992 IFIP International Confer-
ence on Upper Layer Protocols, Architectures and Applications,
Vancouver, Canada, May 1992.

[5] C. Blum, "Continuous Stream Synchronization", Eurecom Internal
Report, 5/24/1994.

[6] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvoskis, and C.
Dalton, "User-space protocols deliver high-performance to applications
on a low-cost Gb/s LAN", to appear in Proceedings SIGCOMM ’94.

[7] G. Coulson, G. S. Blair, P. Robin, and D. Sheperd, "Extending the Chorus
Micro-Kernel to Support Continuous Media Applications",Proceedings
of the 4th International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Lancaster, England, Nov. 1993.

[8] Y. Chang, D. Coggins, D. Pitt, D. Skellern, M. Thapar, and C. Venkatra-
man, "An Open-Systems Approach to Video on Demand",IEEE Com-
munications Magazine, May 1994.

[9] L. Gautier, E. Rütsche, "A Communication API for the Eurecom Multi-
media Networks", Eurecom Internal Report (Draft), 6/14/94.

[10] Y.-H Pusztaszeri, J.-P. Hubaux, M. Goud, E. Biersack, P. Dubois, and P.
Gros, "Multimedia Teletutoring over a Trans-European ATM Network",
to appear in theProceedings of the 2nd International Workshop on
Advanced Teleservices and High-Speed Communication Architectures
(IWACA), Heidelberg, Germany, Sep. 1994.

