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Abstract—A communication platform is described that supports
the fast implementation of networked multimedia applications
with conference character and collaboration features. The plat-
form exhibits the notion of a site as one of its main abstractions. A
site is a collection of workstations, media input and output devices
that are, in terms of control, tightly coupled. Connection and
application control is centralized within one site, but distributed
among different sites. The platform exports a programming inter-
face with high-level abstractions for session and connection con-
trol, allowing application developers to concentrate on scenario
and user interface design. The platform was implemented in the
course of the European Beteus (Broadband Exchange for Trans-
European Usage) project. A tele-meeting application and a tele-
teaching application were developed on top of it. Platform compo-
nents and applications were tested on the European ATM pilot net-
work over a period of nine months. The paper first describes
platform architecture and programming interface; it then talks
about the implementation of platform and applications, and their
deployment in the harsh environment of a trans-national broad-
band pilot network.

I. INTRODUCTION

Today’s collaborative teleconferencing systems are usually
implemented as stand-alone applications with fixed interaction
and communication scenarios. They establish static audio and
video connection structures among the conference participants
and employ a specific tool for collaboration. The software
architecture of such systems is often highly rigid; since it is
designed with the requirements of a single application in mind
it does not automatically support the reuse of its components
within other application scenarios. This means that there is a
new software design and implementation process each time a
new application needs to be developed, with code reuse being at
the library level or lower. It is clear that the standalone system
approach to teleconferencing application development will give
way to a platform approach. Networked multimedia applica-
tions in general will be more and more implemented on top of
programming interfaces that provide different levels of control
for media acquisition, transmission and playout, or simply for
whatever building block is likely to be used by a large number
of applications. Some of these interfaces will be standardized,

allowing applications developed for one hardware architecture
to be easily ported to other ones. Authoring tools and applica-
tion development platforms will further ease the design and
implementation of networked multimedia applications. An
application development platform is especially necessary in the
case where an application is to be offered as a service in a large
public or private network. Much of the complexity there stems
from the necessity to integrate the application into the network
infrastructure and to make it interwork or coexist with other ser-
vices. Development platforms do exist for the creation of inter-
active retrieval services on residential cable networks. As the
customer access link becomes symmetric, there will be a
demand for multi-point and multi-user services like tele-confer-
ences, having life-cycles maybe just as short as those of
retrieval services. Development platforms for multi-user ser-
vices will have to deal with dynamic connection structures and
with multiple user interfaces, just to name two sources of added
complexity.

The platform approach may also be of advantage in areas
other than service provision. The particular problem we were
faced with was to develop a set of applications for the European
Beteus (Broadband Exchange for Trans-European Usage)
project [1]. The project definition of Beteus focussed on the net-
work communication aspects rather than the applications. The
main requirements on the applications were that one of them be
a tele-teaching application, and that they make the best use of
the high bandwidth available on the ATM network that inter-
connects the project partners in France (Eurécom in Sophia-
Antipolis), Switzerland (CERN in Geneva, EPFL in Lausanne,
ETHZ in Zürich) and Germany (TUB Berlin). Two applications
were vaguely envisaged, a tele-meeting application for informal
group meetings, and a distributed classroom application that
would allow to give a lecture at one site to a virtual classroom
that is the combination of classrooms at several Beteus sites.
Since there was no clear vision for the applications at the begin-
ning of the project, it was decided to build an application plat-
form rather than stand-alone applications for everyone of the
envisaged application scenarios. The platform should constitute
the highest common denominator between the envisaged appli-
cation scenarios and should allow to implement and to incre-
mentally improve an application scenario with significantly
reduced effort as compared to an approach based on stand-alone
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prototypes.
The Beteus platform and the initial application scenarios

were designed and developed in the period from August 1994 to
April 1995 [2]. In May 1995, the Beteus field trials started on
the European ATM pilot network. Two application scenarios
were successfully demonstrated to a commission of the Euro-
pean Union in July [3]. The field trials continued until the
beginning of December 1995, with the second major event
being the coorganization of a distributed conference on Novem-
ber 16 and 17 between a main site in Madeira and attached sites
in Madrid, Brussels and Sophia-Antipolis (IDC‘95). The
deployment of the platform on an experimental trans-national
ATM network turned out to be an important, but not always
easy experience.

The paper is roughly divided into an architecture part and an
experience part. The first part starts off with a section about the
design issues and constraints that underlie our main architec-
tural decisions (Section II). It then gives an introduction into the
Beteus application model and a complete description of plat-
form architecture and components (Section III), followed by a
summary of the main session and connection related abstrac-
tions (Section IV). Based on this, the application programming
interface is presented. An extended example demonstrates its
main features as well as the application development methodol-
ogy (Section V). The beginning of the second part of the paper
is marked by a section discussing implementation details of
platform and applications (Section VI). The Beteus network
configuration and the trials are described, with the main empha-
sis on how multicast is provided to applications (Section VII).
Following a short discussion of related work (Section VIII), a
final conclusion presents some ideas for the directions into
which the Beteus platform can be developed in the future.

II. OBJECTIVES AND DESIGNISSUES

Beteus is a follow-up to the Betel (Broadband Exchange over
Trans-European Links) tele-teaching project in which two of
the Beteus partners, Eurécom and EPFL, were engaged [4]. An
overview of Betel is given in order to clarify the historical back-
ground of Beteus.

A.  The Betel Project

Betel implemented a tele-tutoring application scenario in
which a professor in Lausanne supervised the laboratory exer-
cises of students in a classroom at Eurécom in Sophia-Antipo-
lis. Both professors and students had personal workstations that
were equipped with microphone, speaker, camera and an exter-
nal video screen. There was additional equipment on classroom
level: a large screen in front of the student workplaces, a camera
that overlooked the classroom, a speaker and a microphone. A
typical session started with the professor giving an introduction
into the laboratory exercise. He was visible and audible at class-
room level and saw and heard himself the whole class. The stu-
dents then started to work with some application, in this case an
intelligent network simulator, and the professor waited for ques-
tions to come up. A student who needed help pushed the ques-

tion button in the user interface and waited for the professor to
connect to him. The professor in turn would see the question on
his interface and push the answer button, which would make
him visible and audible at the student’s personal workplace. The
student could then share the simulator application with the pro-
fessor, and the professor could guide the student remotely to the
solution of his problem.

In Betel, EPFL and Eurécom were connected with a 34 Mbit/
s ATM link via a cross-connect in Lyon. ATM was not directly
visible to applications; a Betel end-station was connected via a
router to a network adapter that encapsulated Internet Protocol
(IP) packets in Switched Multimegabit Data Service (SMDS)
packets before transmitting them over the ATM link. At Euré-
com, audio and video of the professor were distributed with an
analog switch. People that attended the demonstrations were
very much impressed by the dynamic changes of the connection
structure in the classroom, i.e., by the ease with which the pro-
fessor’s virtual presence moved from classroom level to particu-
lar students and back. The analog switch was hiding the fact
that there was at no point more than one digital audio and video
stream in one direction between Lausanne and Sophia-Antipo-
lis.

Beteus should build on the experience gained with Betel. It
should improve Betel in various respects: it should provide true
digital multi-point communication and a minimum of two appli-
cation scenarios. In addition to that, Beteus was to be employed
for at least one event involving real users, as opposed to the the-
atrical demonstration of Betel. One proposition for this was to
organize a distributed summer school for business students
where the Beteus platform would be used for formal lectures,
panels, group presentations and the like. It was clear that for
such an event to be successful the platform would need to have
a degree of maturity that allows non-skilled users to be let alone
with it.

B.  The Beteus ATM Network

At the beginning of the project it was not clear how exactly
the project partners would be interconnected with each other. It
was assumed that the majority of the project partners would
have access to the European ATM pilot network, but at least in
the case of Eurécom it looked a long time as if access would be
SMDS as in Betel. It was a clear objective to have ATM access
for all project partners since such an access was supposed to be
favorable for multipoint communication. The network configu-
ration that was finally reached is qualitatively depicted in Fig. 1.
All Beteus project partners had ATM LANs. The ATM LANs of
all partners but ETHZ connected to the ATM pilot via 34 Mbit/s
E3 interfaces. ETHZ is the only project partner that had a 155
Mbit/s STM 1 link to the ATM pilot. The ATM pilot itself is a
collection of ATM cross-connects in various European coun-
tries. Beteus ran over cross-connects in Paris, Cologne, Geneva
and Zürich as far as can be judged from the scarce information
provided by the network operators.

Although the resulting network was a pure ATM network it
was never seriously considered to use any network protocol for
the application platform other than the Internet Protocol (IP



over ATM), and any network programming interface other than
the Berkeley sockets. The use of proprietary ATM programming
interfaces was not considered, first because this would have
defeated platform portability, and then because of the perfor-
mance problems that implementations of such interfaces still
exhibit.

C.  Application Scenarios

The broadband ATM network interconnecting the project
partners was a key aspect of Beteus. The Beteus applications
were supposed to demonstrate the high quality of human com-
munication and interaction that can be achieved when band-
width is not a limiting factor. The people that were brought
together by a Beteus application should communicate and inter-
act as freely as if they were sitting together around a table in a
conference room [5]. This is only possible if the quality of the
audiovisual communication and of the collaboration tools is
such that geographically dispersed users are perceived as being
present at every implicated location. In addition to that, a user
must have the impression that he is seen and heard; he must
trust the system to really convey his image and speech to other
users.

With a possible summer school event in mind, two applica-
tion scenarios were envisioned at the beginning, a tele-meeting
scenario and a distributed classroom scenario. The tele-meeting
scenario should be a rather informal meeting environment
where people can come together for discussion and collabora-
tion. The distributed classroom scenario should combine class-
rooms at different sites to a single virtual classroom. A
professor can give a lecture in one classroom in which remote
classrooms participate. Every classroom is equipped with multi-
ple screens that show all other classrooms and possibly the
slides of the professor, and people within different classrooms
can communicate with each other and the professor in a way
similar to a panel discussion. The two scenarios differ funda-
mentally from each other in that the first one assumes a single

user terminal as standard endpoint equipment, whereas the sec-
ond uses a collection of workstations and media input and out-
put devices to assemble a classroom. None of the scenarios was
clearly specified at the beginning of the project, and it was not
even sure if both would be retained. It was assumed that the
application scenarios would evolve in the course of the project
as tests are performed and experience is gained.

These considerations led to the decision to implement a real
conferencing platform rather than stand-alone systems for
everyone of the envisaged application scenarios. The conferenc-
ing platform should offer a high-level application programming
interface (API) with which the effort to implement an applica-
tion scenario could be kept at a minimum, with this minimum
being not much more than the effort to implement the graphical
user interface (GUI). In addition to basic audio and video sup-
port the platform should also contain a collaboration tool. It was
therefore decided to integrate a shared window system into the
platform. It was also decided to integrate a light-weight direc-
tory service that provided a run-time framework for the applica-
tion scenarios. Users would log formally into the platform; once
logged they could consult the directory service to see who is
there, and then start or join applications or just remain passive.

At a later stage of the project it turned out that the official
event of the project would be a distributed conference, and not
the summer school. Since the distributed conference could be
handled with the tele-meeting the decision was taken to post-
pone the implementation of the distributed classroom scenario
and to implement instead a third scenario, the tele-tutoring sce-
nario, which is a replication of the Betel application on the
Beteus platform.

D.  Basic Software Architecture

An important design issue was the control architecture of the
platform. In terms of control, the platform could be completely
centralized or completely distributed. The centralized solution
was declined, first because there would be a single point of fail-
ure, then because of performance and scalability considerations.
But it was felt that control should be centralized within the net-
work of a project partner. This is because it was assumed that an
application endpoint will not be a single multimedia worksta-
tion, but rather a logical unit that is assembled from a collection
of resources including workstations, multiple screens, cameras,
speakers and microphones, digital and analog switches. A com-
bination of equipment is found in the distributed-classroom sce-
nario, but it is also interesting for the realization of personal
workplaces like in the tele-meeting scenario where a single
workstation processing multiple audio and video streams may
easily run into performance problems. Some of this equipment,
especially workstations and analog switches, would be shared
by many logical application endpoints, making it necessary to
have some central connection management entity. The scope of
this central connection management entity is limited to the local
network, with the exact composition of an application endpoint
being hidden to the outside. The establishment of a connection
between the networks of two project partners must therefore
involve some communication between the respective connec-
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tion management entities. The resulting control architecture is
thus semi-distributed: control is centralized on the level of a
local network, but distributed on the level of the interconnection
network.

III. PLATFORM ARCHITECTURE

This section describes the platform architecture. It introduces
the main abstractions and an application model and discusses
the main building blocks of the platform from a functional point
of view. The description of implementation details is left to a
later section.

A.  Sites and Nodes

For the total amount of tightly coupled equipment within the
network of a project partner the abstraction of asite is intro-
duced. The abstraction of anode is introduced as the application
dependent mapping of equipment onto a logical application
endpoint. Connection and session control within a site is per-
formed by a central entity that knows about the application spe-
cific node mapping from a configuration file. Fig. 2 shows a
possible node mapping for the personal workplace. The node
shown uses different workstations for audio and video process-
ing and for the actual application process. The GUI of the appli-
cation is displayed on a terminal rather than a workstation
screen. Video is displayed separately from the GUI on a second
screen. The media input and output devices in Fig. 2 have the
logical namesPersMicrophone, PersSpeaker, PersCamera and
PersScreen. Such names are used by the application to denomi-
nate connection endpoints. The site configuration file contains
for every node a list of endpoint entries, with each entry con-
taining a logical name and its mapping onto a physical address.
This configuration information is used by the connection man-
agement for the establishment of audio and video connections.
Logical device names are in general application specific; they
describe the context in which a device like a camera or a micro-
phone is used within a specific application, and they can be as
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Fig. 2.     Node mapping example

exotic or unique as the application itself. The logical device
names shown in Fig. 2 are likely to be employed by more than
one application, simply because the node configuration itself is
quite common. To illustrate the concept of logical device
names, we could add to this node a camera that captures the
view from a laboratory window, and call itWindowCamera.

B.  Application Model

The Beteus application model introduces the abstractions of a
session, asession vertex and asession application. A session is
the abstraction for one instance of a distributed application that
runs on top of the platform. A session comprises, from a logical
point of view, a set of nodes as session members. From a com-
putational point of view, a session consists of a set of session
endpoints, called session vertices, which are processes that run
on the session nodes. The ensemble of session vertices within a
session constitutes the session application. In the following, we
will use the term session application interchangeably with
application or application scenario. If we want to refer to a pro-
cess running at a node within the framework of a session appli-
cation, we will explicitly refer to it as session vertex.

Participants are humans or groups of humans that register
their name and node with the platform. Once registered they can
participate in sessions. For every session in which they partici-
pate there will be a session vertex running at their node. Note
that it is the session vertex rather than the person that is the
actual session participant; the human participant appears as an
attribute or name tag of the session vertex.

Fig. 3 shows three sites with each of them having three nodes
defined in the site configuration file. An application is indicated
that spans all three sites, with three nodes being involved at site
A, one at site B, and two at site C. In fact, there is no limitation
on the location of the nodes that form a session; they can all be
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within a single site, or all within different sites. It is therefore
also completely hidden to the session vertex on a node if the
session in which it participates spans remote sites or if it is
local. Session vertices always interact with their local site con-
trol, but the processing of a session vertex request may trigger
inter-site communication, which is the case whenever connec-
tions need to be established in-between sites. The group com-
munication module indicated in Fig. 3 provides the messaging
services required for inter-site communication.

C.  Site Architecture

The three principal layers of the site architecture are depicted
in Fig. 4. The top layer is an application layer containing a
generic control panel and application processes - the session
vertices. In the middle there is the site control layer which com-
prises the site manager, the connection manager and the station
agents. The site manager implements the functionality offered
at the API, whereas the connection manager performs physical
connection establishment in collaboration with the station
agents. The communication layer finally contains the audio,
video and application-sharing software as well as the group
communication entity that supports the exchange of control
messages between site managers and between connection man-
agers.

The shaded architecture components in Fig. 4, i.e., the site
manager, the connection manager and the group communication
entity, have only one instantiation within a site. Station agents
on the contrary are daemons that are found on every machine on
the site network that may be source or sink of audio or video
connections or that may run application-sharing software.

D.  Site Management

The site manager offers the platform services to the session
vertices that run on top of it. Platform services are

• session management
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Fig. 4.     Site architecture.

• connection management
• endpoint control
• application sharing
• messaging service
• directory service

Some of the services offered by the platform will only be
used by the control panel, and others only by the session verti-
ces, although there is theoretically no such limitation.

Participants register with the platform via the control panel.
The site management keeps a list of all registered participants
and of all ongoing sessions. Participants can create new sessions
or join ongoing sessions. When a participant creates or joins a
session the control panel forks the session vertex that corre-
sponds to the session application. In case the session is created,
the forked session vertex will automatically become thesession
master. The session master has certain rights with respect to the
session that other session vertices do not have. This includes for
instance the right to delete nodes from a session, or to kill the
session. The session master is also the coordination center for
the distributed application; it is the session master who config-
ures the session at the beginning and who initiates connection
structure changes later on. Other session vertices communicate
with the session master via the messaging services of the plat-
form. Most of what the session master does will be in direct
response to messages received from other session vertices, or to
input from the local GUI. The session master role can be trans-
ferred to another session vertex, which is especially necessary
when the participant whose session vertex bears this role wants
to leave the session. Note that the session master functionality is
not necessarily visible at the GUI of the respective session ver-
tex - this is an application design choice.

E.  Connection Management

The connection manager receives connection control and
endpoint control requests from the site manager. Connection
control comprises connect and disconnect requests and is only
performed by the connection control of the session master; end-
point control stands for the setting of device parameters like
audio volume and video saturation.

The connection manager maps the logical endpoint names in
site manager requests to physical addresses. Endpoint control
requests can then be forwarded to the corresponding audio or
video processes. Connect requests result in immediate connec-
tion establishment if all of the connection endpoints are local. If
an endpoint is remote, the connection manager of the session
master asks the remote connection manager to establish the
respective endpoint. The site manager requests only point-to-
point connections from the connection manager, but every con-
nect request is accompanied by a hint as to whether the respec-
tive connection is part of a multipoint connection structure, in
which case the connection manager may use IP multicast [6] if
available.

F.  Inter-Site Communication

Both the site manager and the connection manager communi-



cate with remote peer entities, as is indicated in Fig. 4.
Site managers need to communicate as part of the directory

service, the messaging service and the session management ser-
vice. The communication between site managers is asynchro-
nous and consists of the reliable transfer of a message from one
site manager to one or more other site managers. As part of the
directory service, a site continuously broadcasts to all other
sites a list of logged participants and a list of sessions of which
it is the master site. The messaging service of the site manager
allows session vertices to send messages to one or more other
session vertices, requiring the reliable delivery of a message
from one site manager to a limited set of remote site managers.
The session management service deals with session member-
ship. A site indicates a new session vertex with a join message
to the site management of the session master. The session mas-
ter returns a message containing the session membership list to
the joining site and an update message to the other sites in the
session. The procedure for leaving session vertices is similar.

Connection managers need to communicate in order to estab-
lish inter-site connections. As for now, connection endpoints are
established sequentially. The connection manager sends an
establishment request and receives an acknowledgment once the
remote connection manager has established the endpoint.

The communication requirements raised by the site manager
and the connection manager are optimally addressed by the
Reliable Multicast Protocol (RMP) [7]. RMP supports the reli-
able delivery of messages to all members of a group with differ-
ent levels of service ranging from unreliable delivery to totally
resilient delivery. It runs efficiently on IP multicast, but allows
group members that are not multicast capable to be reached via
UDP.

IV. MAJORCONNECTIONABSTRACTIONS

This section presents the abstractions that are used at the
application programming interface to describe connections and
connection structures. Connection types are audio, video and
application-sharing.

A.  Roles

An application scenario is implemented within a single exe-
cutable. The session vertices of an application are therefore
identical in terms of code, but they behave according to dynam-
ically taken or assignedroles. The already introduced master
role and a generalparticipant role are the only roles which exist
by default - all other roles are defined by the application itself.
An application may define as many roles as it wishes to, and
session vertices may also hold multiple roles at the same time.
A session vertex will adapt the GUI that it produces to the role
or roles that it takes. Roles fall into two categories:static roles
and transientroles. A static role determines the main behavior
of the session vertex and is usually not transferred to another
session vertex. Examples for such roles would be the professor
role and the student role in the Betel tele-tutoring scenario.
Transient roles are created, assigned and deleted as needed; they
model whatever ephemeral position a session vertex may have

with respect to other members of the session. An example for
this would be the role of a momentary speaker in a panel discus-
sion. The application programming interface itself does not dif-
ferentiate between static and transient roles. This is more a
concept that the application designer needs to keep in mind
when analyzing an application scenario.

Applications use role names rather than session vertex names
or IP addresses to define the endpoints of a connection struc-
ture. An application specifies audio, video and application shar-
ing connection structures once on session start-up; later on it
will transfer roles inbetween session vertices when it wants to
change the connection structure. A typical example for this
would be the aforementioned speaker role at the root of an
audio and a video multicast connection. The infrastructure will
automatically rebuild this multicast connection whenever the
speaker role is passed from one session vertex to another.

B.  Bridges

The introduction of the role abstraction already provides con-
siderable comfort for application development in that it allows
to group connection endpoints. In addition to this the platform
provides abstractions for connection structures. Abridge is a
single-medium connection structure among session vertices. A
bridge has source and sink endpoints that are given as role
names. The nature of the bridge is determined by the cardinali-
ties of the roles at its endpoints, and may be anything between a
point-to-point and a multipoint-to-multipoint connection struc-
ture. Up to now it was not necessary to introduce another end-
point addressing scheme than the role-based one. The role-
based addressing scheme might become awkward when an
application scenario employs an excessive number of point-to-
point connections, but no such scenario has been identified until
now.

The concept of a medium bridge hides the underlying net-
work from the application. The connection management real-
izes bridges with whatever transport the network offers. It
knows the connection types and is thus able to handle media
specific endpoint issues. In a multipoint-to-multipoint audio
bridge it will automatically establish an audio mixer at every
sink node, whereas it will launch separate receiver processes for
every stream in the case of an equivalent video bridge.

The bridge abstraction can also be applied to X11 application
sharing. The majority of shared window systems intercept the
traffic between an X11 client and server, which allows them to
replicate the GUI of the application at various displays by dupli-
cating the client’s drawing requests towards the connected serv-
ers and by combining events evolving from these servers into
one event stream towards the client [8]. A bridge models the
group of endpoints on which the GUI of an application is repli-
cated, with the client application as source endpoint and the
remote displays as sink endpoints. The actual connection struc-
ture it represents is a combination of point-to-multipoint (draw-
ing requests) and multipoint-to-point (events).



C.  Bridge Sets

A number of bridges, typically an audio and a related video
bridge, can be assembled to form abridge set. An application
configures the platform on session start-up with a description of
the bridge sets that it uses. During the session, only one bridge
set can be active at a time. If an application changes the active
bridge set, the infrastructure will tear down any connection of
the old bridge set that is not included in the new one, and estab-
lish the connections that are missing.

The number of bridge sets an application defines corresponds
to the number of fundamental application states which in turn
corresponds to different temporal phases a session traverses
during its lifetime. The programming interface does not directly
support the notion of application state, but application state is,
like static and transient roles, a concept that the application
designer has to be aware of.

V. APPLICATIONPROGRAMMING INTERFACE

The API is based on synchronous remote procedure calls
(RPC) and asynchronous event notifications as is indicated in
Fig. 5. The RPC package chosen for the communication
between session vertices and the site manager is Tcl-DP [9], the
distributed programming package for Tcl/Tk [10]. Since simple
applications will mainly deal with GUI issues, it is possible to
implement them completely in Tcl. More complex applications
will have C or C++ code in addition to the Tcl/Tk GUI script;
they will use the C library of Tcl-DP to call site manager proce-
dures or to register callback functions for event notification.

The API procedure calls [11] are grouped into the following
categories:

• Registration: user registration and deregistration
• Endpoint handling: audio and video device control
• Session directory: directory service related calls
• Session information: convenience calls
• Session control: session membership and lifetime control
• Bridge set handling: changing the active bridge set
• Messaging: communication among session vertices
• Role handling: role assignment and removal
• Application sharing: X11 application sharing

The convenience calls allow session vertices to query the ses-
sion configuration. Session vertices do not maintain records
about actual role assignment, actual bridge set or session partic-
ipants; they retrieve this information from the site manager as

they need it.
The main event notifications are:

• Receive: a message from another session vertex
• Join: there is a new session vertex in the session
• Left : a session vertex left the session
• Kill : the session got killed or disrupted
• RoleAdd: a role is assigned to the session vertex
• RoleDel: a role is removed from the session vertex

API procedure call usage and event occurrence are illustrated
in Fig. 6. Two session vertices A and B are shown; A creates a
session that is joined by B. This session is killed by A when B
leaves again. The lifetime of a session stretches from the point
of time when it is announced to the point of time when it is
killed. The three principal states of the session areannounced,
initializing andongoing. An announced session is a session that
is scheduled for a certain date and time in the future.
Announced sessions are visible via the directory service and
help people discover each other’s activities. The announcement
phase can be skipped by callingSessionInit right afterSession-
Announce. TheSessionInit call marks the beginning of the ini-
tialization phase where the creator of the session configures the
site manager for the actual session application. Initialization
comprises role, bridge and bridge set definition. Roles have to
be defined before bridges since role identifiers are necessary to
specify bridge endpoints. For the same reason, bridges are
defined before bridge sets. With theSessionStart call the ses-
sion enters the state ongoing where it can be joined by other ses-
sion vertices. This call contains as parameter the initial bridge
set identifier. The session creator becomes the first session
member and gets automatically the session master role
assigned. If he takes additional roles he will assign them to him-
self withAddRole calls. The session master then has to wait for
others to join the session. As is indicated in Fig. 6, B finds out
about A’s session via aSessionOngoingQuery call. B joins the
session with a call toSessionJoin, which is indicated to A with
a Join event notification. Connections other than those defined
for the general participant role are not established before the
session master A assigns a first role to B. The connection struc-
ture that is then established between A and B depends on their
respective roles and the active bridge set. The example in Fig. 6
continues with a message transfer from B to A that prompts A
to change the active bridge set. When B leaves the session, the
site management tears down all connections between A and B.
The session is formally finished with A’s call toSessionKill.

Table 1 shows as example the parameter fields of theDefine-
Bridge API call. The first two parameter fields identify partici-
pant and session. The type field marks the bridge as audio,
video or shared application bridge. Information granularity is
interpreted as window size in the case of video and as sample
encoding in the case of audio. Similarly, time granularity is
interpreted as frame rate in the case of video and sample rate in
the case of audio. Source and sink endpoint names define the
logical devices that terminate the connections of the bridge. The
call allows further to define a list of role identifiers for sources
and one for sinks. The connection type is determined by the car-
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Fig. 5.     Procedure calls and event notification at the platform interface.



dinality of source and sink roles within the session:

• no connection: no session vertex holds any of the source
roles, or no session vertex holds any of the sink roles.

• point-to-point connection: one session vertex holds one of
the source roles, and one session vertex holds one of the
sink roles.

• point-to-multipoint connection: one session vertex holds
one of the source roles, and multiple session vertices hold
one of the sink roles.

• multipoint-to-multipoint connection : both source and
sink roles are held by multiple session vertices.

• multipoint-to-point connection: only one session vertex
holds one of the sink roles, and multiple session vertices
hold one of the source roles.

The DefineBridge call returns an identifier that can conse-
quently be used to include the bridge in one or more bridge sets.

A.  Example Scenario

An example shall serve to illustrate how application scenar-
ios are translated into role, bridge and bridge set definitions.
Imagine a distributed school with professors and students all
geographically dispersed. Professors have application scenarios

for all kinds of teaching purposes at hand, among them a sce-
nario that supports translation work on stage-plays written in a
foreign language. The scenario has four states or phases. In a
first phase, the professor gives an introduction into the transla-
tion assignment that was previously distributed by E-mail. Stu-
dents see and hear the professor, and they hear each other,
which allows them to hear questions asked to the professor by
fellow students. In a second phase, the students start to work on
the translation of the stage-play. The professor goes from stu-
dent to student and answers their questions. The editor of the
current student is automatically shared with the professor. The
professor may return to phase one if one of the questions is of
general interest. Once students have finished the translation,
phase three begins where students present their results. The pro-
fessor and the momentarily presenting student are visible to all
other students and to each other. The editor of the student is
automatically shared with all others, and audio is like in phase
one. In phase four, students take roles in the stage-play and
recite them. Their image and voice is distributed to the profes-
sor and to the other students. The professor finishes the course
with some remarks, with the application being again in phase
one. During the whole session the professor has as the replace-
ment of a classroom-view an icon-sized video image with low
frame rate from every student.

The roles that can be identified in this scenario are:

• professor: static professor role
• student: static student role
• studentSpeaker: visible students in phase two, three, four
• master: held by the professor
• participant : professor and students

The transient role studentSpeaker is assigned to the visited
student in phase two, to the presenting student of phase three,
and to the acting students in phase four.

The bridges that need to be defined are shown in Table 2. The
first audio bridge is the all-to-all audio of phase one and three.
Audio bridge 2 and video bridge 6 form a bidirectional audiovi-
sual connection for phase two. Audio bridge 3 and video bridge
7 form the virtual stage of phase 4. The multipoint-to-point
bridge 5 represents the icon-sized classroom view.

TABLE 1
THE API BRIDGEDEFINITION CALL

DefineBridge  pid sid type ginfo gtime srcepname rslist sinkepname rrlist

pid Integer participant identifier

sid Integer session identifier

type Enum{1,2,3} 1=audio,2=video,3=sharedXapp

ginfo Integer information granularity [0..100]

gtime Integer time granularity [0..100]

srcepname String source endpoint name

rslist Integer list of source role identifiers

sinkepname String sink endpoint name

rrlist IntegerList list of sink role identifiers

returns: bid Integer bridge identifier
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Fig. 6.     API procedure calls during a session with two participants.



Four bridge sets are defined according to the four phases of
the application scenario:

• bridge set one: audio bridge 1, video bridges 4+5
• bridge set two: audio bridge 2, video bridge 5+6, sharedX

bridge 8
• bridge set three: audio bridge 1, video bridges 5+7,

sharedX bridge 9
• bridge set four: audio bridge 3, video bridge 5+7

 Connection control during the session consists of changing
between bridge sets and assigning the transient role stu-
dentSpeaker.

B.  Application Development

The example scenario already illustrates some aspects of
application development on top of the Beteus API. Starting
point is the invention of an application scenario. Then comes a
problem analysis phase during which the roles, bridges and
bridge sets within the application scenario are identified. This is
an iterative process because the analysis of the scenario will
likely influence the scenario itself. The following design phase
comprises the dimensioning of bridge parameters, the specifica-
tion of the messages that are exchanged between session verti-
ces, and the specification of the functionality to be put into the
graphical GUIs. The final implementation phase is mainly con-
cerned with the development of the GUIs. The tight match
between scenario analysis methodology and API functionality
reduces greatly the effort needed to implement the connection
management part of a teleconferencing application.

VI. IMPLEMENTATION

This section describes the implementation of the Beteus plat-
form and of the applications that have been developed so far.
Platform and applications run on Sun workstations under SunOs
4.1.3 and are developed in C++ and Tcl/Tk.

A.  Audio and Video Transmission

Both audio and video are built on top of the User Datagram
Protocol (UDP). One of the biggest issues in Beteus was how to
implement multipoint communication with audio and video. It

turned out that the structure of the Beteus network is a hostile
environment for IP multicast, which would be the natural choice
for multipoint communication. This is why the audio and video
sender components implement simple stream duplication in
addition to IP multicast. The connection managers that control
the establishment of connections over the network may employ
whichever scheme is possible.

B.  Audio

The multipoint nature of audio in Beteus requires some sort
of processing on multiple incoming audio streams at the receiv-
ing side, which can be either stream selection or mixing. Both
stream selection and mixing require silence detection at the
sending side and support for talkspurt transmission at sender
and receiver. The Beteus audio component implements silence
detection at the sending side with an adjustable threshold value
and is built on top of the Real-time Transport Protocol (RTP)
[12], which in turn uses UDP for transmission. The receiving
side supports both stream selection and mixing. Both sender
and receiver generate activity events that can be graphically dis-
played on the GUI. The sender indicates begin and end of talk-
spurt to the local user, whereas the receiver indicates activity for
each of the incoming streams on which it listens. The two audio
encodings that are supported are 8kHz/8bit and 16kHz/16bit.

C.  Video

Video transmission is built around the XVideo board from
Parallax. The compression of the Parallax board follows the
JPEG standard for the compression of still images [13]. On con-
nection setup, the video sender allows to specify a target data
rate that is consequently enforced by means of a control loop in
which maximum and measured data rate are constantly com-
pared, with the JPEG compression factor being modified
according to the result of this comparison. Such a mechanism
was clearly necessary in the case of Beteus where there are data
rate restrictions per video stream and traffic policing within the
network. The video receiver adapts automatically to the actual
compression factor as it also adapts to frame rate and window
size. Care was taken to have a constant frame rate within the
receiver window because the human eye is extremely sensitive
to frame rate irregularities. The benefit of this is that the subjec-
tive quality of the Beteus video component is excellent even at
frame rates as low as five frames/s.

D.  Application Sharing

The application sharing component of the platform is
Xwedge from project partner ETH Zürich [8]. Xwedge is a dis-
tributed shared window system that has agents running at all
implicated client and server sites. X11 clients connect to the
local Xwedge agent which in turn communicates via the Trans-
mission Control Protocol (TCP) with remote agents and the
local X11 server. The Beteus API offers three calls for applica-
tion sharing control: a session vertex can get a list of sharable
applications, which are the clients that are momentarily con-
nected to the Xwedge agent, and it can share and unshare an

TABLE 2
EXAMPLE BRIDGEDEFINITIONS

No. Medium Source Roles Sink Roles

1 audio participant participant

2 audio professor,studentSpeaker professor,studentSpeaker

3 audio studentSpeaker participant

4 video professor student

5 video student professor

6 video professor,studentSpeaker professor,studentSpeaker

7 video studentSpeaker participant

8 sharedX studentSpeaker professor

9 sharedX studentSpeaker participant



application. Sharing means that the interface of the chosen
application is replicated at the sink endpoints of the currently
active X11 bridge. As for now, the platform does not implement
the rich set of floor control mechanisms that Xwedge offers.
The platform uses the default floor control mode where the floor
follows mouse clicks and keyboard input.

E.  Site Control

The persistent components of the platform are the site man-
ager, the connection manager, the group communication com-
ponent and the station agents. A station agent launches audio
and video processes and Xwedge agents and relays operation
requests from the connection manager to these processes and
operation results and asynchronous events back to the connec-
tion manager. The connection manager is forked by the site
manager and establishes TCP control connections to all station
agents when coming up. The site manager exists in two ver-
sions: the normal runtime version and a development version.
The development version of the site manager forks a dummy
connection manager that reads the site configuration file and
returns positive responses to site management connect and dis-
connect requests. This allows to test session vertices in emu-
lated sessions on a single screen and without establishing audio
and video connections.

F.  Applications

The applications that have been developed so far are the
generic control panel, a tele-meeting application and a tele-
tutoring application.

Fig. 7 shows the main window of the control panel with the
audio and video device control fields and the list of logged users
at the bottom. From this window the directory service window
shown in Fig. 8 can be invoked. The directory service window
lists ongoing and announced sessions and allows, among other
things, to join or create sessions.

The tele-meeting scenario is a simple framework for work
meetings that can be used within many environments. The audio
and video connection structure is all-to-all, i.e., everybody sees
and hears everybody else. There are simple GUIs for a chairman
and a normal participant, with the chairman being able to assign
the role of a presenter to one of the session participants. The
presenting person can share one of its X11 applications with the
other participants. The chairman interface allows to transfer the
chairman role to another participant, in which case this partici-
pant gets his interface exchanged for a chairman interface. The
tele-meeting scenario is implemented with a single bridge set
containing an all-to-all audio bridge, an all-to-all video bridge
and a one-to-all application-sharing bridge with the presenter
role as source. Connection management gets active only when
the presenter role is assigned, or when participants join or leave
the session, in which case their connection endpoints are added
or removed automatically from the audio and video bridges.

The tele-tutoring application is a remake of Betel on the
Beteus platform with the difference, that students are geograph-
ically dispersed. Fig. 9 shows the GUIs of professor and stu-
dent. The application can be in the statesglobal andtalk. In the
state global, the professor has a video window for every student,
and can himself be seen and heard by all students. In the talk

Fig. 7.     Control panel user interface.

Fig. 8.     Directory service window of the control panel user interface.

Fig. 9.     The user interfaces for the tele-tutoring application (professor/student).



state, the professor talks to a single student, but audio and video
of both professor and student are distributed to all other students
so that everybody can follow their discussion. The student can
also share an X11 application to show his work. The roles,
bridges and bridge sets defined for this scenario resemble the
ones described in the example scenario of Section V. The tele-
tutoring application is still a simple application, but it already
has much more connection structure dynamics than the tele-
meeting scenario.

VII. THE BETEUSNETWORK

A global view of the Beteus network was already shown in
Fig. 1. Fig. 10 provides additional information on the local site
configuration used during the tests. Every project partner has an
ATM LAN on the basis of a Fore Systems ASX-200 switch [14]
that connects via a 34Mbit/s E3 interface to the ATM pilot net-
work and via 100Mbit/s TAXI interfaces to two Sun Sparc10
workstations that together form one node (see Fig. 2).

The only service provided so far by the ATM pilot is the
interconnection of bidirectional permanent virtual paths (PVP)
or semi-permanent virtual paths (SPVP). The PVP service
offers connectivity over a longer period of time, whereas SPVP
requires occasional or periodic reservation. Beteus was most of
the time using the SPVP service and had connectivity on Tues-
day mornings from 8:00 to 12:00.

The issue that came up after the interconnection problem was
solved was the topology of the Beteus SPVP overlay network.
Two extreme proposals were full interconnection and serial
alignment. It was possible to arrange the project partner LANs
in a chain starting at Eurécom and going over CERN, EPFL and
ETHZ to the TUB in Berlin. While such a configuration would
have had a minimal number of PVPs on the ATM pilot and
therefore a cost advantage as compared to other solutions, it
would have forced every project partner to participate in every
test and it would have made a possible point of failure out of
every intermediate ATM switch on the line, which is why it was
declined. The topology that was finally adopted was the fully
meshed network where a given project partner has PVP connec-
tions to every other one.

Another issue was the dimensioning of the PVP connections.
The calculation of the maximum bandwidth for a PVP is based
on the following assumptions about the traffic originating from
a Beteus site:

• one low quality video stream (12fps): < 1 Mbit/s
• one high quality video stream (25fps): < 2 Mbit/s
• one audio stream: 64 kbit/s or 256 kbit/s
• control and application sharing: negligible

It was decided to reserve a maximum bandwidth of 3 Mbit/s
for every PVP.

A.  Multicast

The most important problem to be solved was multicast. It
was clear that multicasting had to be done within the local net-
works of the project partners given that the ATM pilot does not

support any form of multicasting. At the beginning there was
the hope that Fore Systems’ proprietary SPANS signalling
could be tunnelled through the ATM pilot, and that then either
Fore Systems’ native ATM multicast or its implementation of IP
multicast could be used. This did not work because the then
actual ForeThought 3.0 switch software did not support more
than one signalling channel at a given network interface port.
Since a Beteus ATM switch accessed the ATM pilot via a single
E3 port it was not possible to establish signalling tunnels with
more than one remote site, which is, there was no way to estab-
lish a fully meshed network of signalling channels between the
Beteus switches.

ATM-based multicast itself turned out to be hard if not
impossible to achieve. The ASX-200 switch does not allow an
incoming cell stream to be duplicated into two streams that
leave through the same output port, as was required by Beteus.
This is a natural restriction if one considers that output ports of
switches are usually connected to input ports of other switches
or to host interfaces. In both cases there is no need to send one
cell stream twice over the same link. A solution proposed by
Fore Systems was to let the switch multicast an incoming
stream to as many switch output ports as there are final destina-
tions, and loop the streams back into the switch and then finally
out via the E3 interface. This proposal was not further pursued
because such a solution would have monopolized the Beteus
switches of which some where used in parallel for other
projects.

The only solution that remained after the ATM-based multi-
cast alternative was discarded was multicast on application
level. One possibility for this was to have one central multicast
daemon running on one site, with each of the other sites having
a point-to-point connection to the daemon machine. Such a con-
figuration is similar to the multipoint control units found in N-
ISDN conferencing systems. Another possibility was to distrib-
ute the multicast functionality onto all sites and have one multi-
cast daemon per site. None of the two solutions was adopted
because it was thought to be awkward to have delay sensitive
media streams pass four times through the UNIX user space.
The solution that was finally implemented was source-based
stream duplication whereby audio and video senders transmit

Fig. 10.     Site configuration at  Eurécom.
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streams to more than one destination. While this multicast
scheme missed any elegance, it seemed to be the best of all pos-
sible compromises. It might appear to be a drawback of source-
based stream duplication that it sends identical streams over the
same network link, but note that this would have been equally
the case in an ATM-based solution. A real drawback of source-
based stream duplication is the extra load it puts on the source
machine, but this did not really matter in the case of Beteus
where media streams were sent to a very limited number of des-
tinations. The platform architecture takes such performance
issues into account and allows machines that are dedicated to
audio and video transmission. Stream duplication avoids addi-
tional processes and thus additional points of failure, and in
terms of end-to-end delay it is almost as optimal as ATM-based
multicast.

As a consequence of the chosen multicast scheme and the
lack of signalling, Beteus hosts needed to be interconnected via
a fully meshed network of permanent virtual circuits (PVC) of
which the endpoints were mapped to IP addresses. This made
the ATM network pilot transparent to the Beteus platform that
runs on top of IP.

B.  Platform Deployment

 A never ending source of problems was the administration of
the Beteus overlay network. Every project partner had to manu-
ally configure four PVPs, sixteen permanent virtual channels
and sixteen IP/ATM address mappings for a trial. At many sites,
Beteus interfered with other projects that used the same equip-
ment and that had their own configuration. It often happened
that machines were not available for the tests, or were replaced
at short notice by others, for instance because of hardware fail-
ures. The general configuration file that was used by the project
partners was therefore often not up-to-date, or if it was it could
happen that switches or interfaces were badly configured.
Another error-prone procedure was the reservation of the ATM
pilot connections that had to be done for every irregular event.
During the project we gained some experience in detecting and
solving connectivity problems, and made extensive use of net-
work management tools to this purpose.

The performance of the network was excellent. The round
trip time measured between Eurécom in France and the Swiss
sites was around 30ms. The Swiss sites among themselves mea-
sured round trip times of as low as 4ms [15]. A network man-
agement platform tailored to Beteus was monitoring
performance at levels from the ATM layer up to the video and
audio application processes. An example measurement for the
bit loss rate at ATM level is 3.03x10-9 [16], which indicates a
very reliable network. The quality of the network was directly
visible at the application level. Audio and video had low losses
and low latency.

The complete platform ran more often on the local test-bed at
Eurécom than on the ATM pilot. This was mostly due to the
aforementioned time-consuming connectivity problems. As a
result of this the main attention of the project shifted away from
the applications to basic audiovisual communication. Although
the platform was up and running, there was no time to really

evaluate and improve the tele-meeting and tele-tutoring applica-
tion scenarios, as it was foreseen at the beginning. The two sce-
narios were demonstrated to the European Union as they were
originally conceived, i.e., without having traversed a cycle of
gradual improvements as it is supported by the platform API. It
is therefore also the audiovisual transmission that received most
of the feedback during the network trials, and not the platform
itself.

VIII. RELATED WORK

The Beteus platform features an API for multipoint telecon-
ferences. Such an API was first found in the Touring Machine
developed at Bellcore [17]. The Touring Machine API reflects
the limitations of the underlying analog network, and does not
offer high-level abstractions comparable to those of Beteus.
This is equally true for the API of the LAKES platform devel-
oped at IBM [18]. The Beteus, Touring Machine and LAKES
APIs are complete in that they offer both session and connec-
tion management functionality. More recently, object-oriented
frameworks for multimedia middleware have been described
that concentrate on connection and configuration management
and that are much more flexible than monolithic APIs. One
example for this is the Medusa platform developed at Olivetti
[19]. Another example is the multimedia system services (MSS)
architecture of the Interactive Media Association (IMA) [20]. A
platform similar in spirit to IMA, but with a complete session
framework, is currently being developed at Eurécom [21].
High-level APIs like the one of Beteus can be implemented as
toolkits on top of a lower-level multimedia middleware.

Another important point about the Beteus platform is that it is
designed to be deployed on a high-speed WAN with multipoint
communication support. It may be compared with standalone
applications like ISABEL [22] or JVTOS [23] that were also
deployed on the European ATM pilot. What Beteus distin-
guishes from these applications is that it allows more complex
connection structures, and that it allows dynamic changes to the
connection structure. Most teleconferencing applications,
including those found on the Internet MBone [24], establish
static connection structures.

IX. CONCLUSION

The platform, as it is implemented now, supports conference-
style communication among a small number of sites with a
static relationship to each other. Examples for such groups of
sites are

• universities with a common tele-teaching program
• laboratories working on a common project
• administrative units of an international enterprise.

The platform is not designed for ad-hoc communication on a
network with a large number of sites like the MBone. Such a
deployment is imaginable, but it would require a redesign of at
least the directory service and the group communication com-
ponent.

The main emphasis of the design of the Beteus platform is on



the application. The platform exports an API that considerably
reduces the effort it takes to implement a multipoint tele-confer-
encing application. The platform is also a runtime environment
for such applications; it allows applications to run in parallel
and offers a directory service that informs logged users about
what is happening on the platform.

The main emphasis of the field trials should also have been
on the applications, but this goal was not achieved. The experi-
ence of Beteus is that the broadband network needs to be much
more transparent than it is now in order to support advanced
multipoint applications. The configuration effort necessary to
allow for connectivity on IP level in a network as small as the
one of Beteus was perceived as a major obstacle.

The Beteus platform is now being deployed on France Tele-
com’s ATM WAN in Sophia-Antipolis that became operational
at the beginning of 1996. Work on it will continue in various
directions. In a general move to shorten communication paths
and to increase distribution within a site, we started to reimple-
ment our platform on top of the Common Object Request Bro-
ker Architecture (CORBA) [25]. A future version of the API
will be defined in CORBA’s interface definition language IDL.
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