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  ABSTRACT

As distributed multimedia applications are starting to be offered as services in enterprise and residential cable networks, there is
a growing interest in platforms that provide a standard framework for the development and deployment of these applications.
Key issues in platform design are service diversity, service portability and interoperability of user terminal equipment. We pro-
pose a platform architecture for the provision of multimedia communication services which logically separates application pro-
cessing from media processing. Applications are installed inapplication pools from where they control a set of communicating
multimedia terminals. Application-specific intelligence is downloaded into the terminals in the form of Tcl/Tk or Java scripts
that generate graphical user interfaces, control media processing components, and communicate with the application in the
pool. The platform architecture is based on CORBA and is defined as an extensible set of IDL interfaces for control and stream
interfaces for multimedia communication. The platform supports application development with high-level programming inter-
faces.
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1. INTRODUCTION

As distributed multimedia applications are starting to be offered as services in enterprise and residential cable networks,
there is a growing interest in platforms that provide a standard framework for the development and deployment of these appli-
cations. Platforms have to be seen in contrast to stand-alone applications with prototype character like they are found for
instance in research environments. Such applications implement media processing on top of low-level device interfaces and are
therefore highly dependent on hardware and operating system. They are built for a special purpose and require skilled person-
nel for setup and usage. While this is the normal approach to build research prototypes, it is clear that applications that are to be
deployed as services must be integrated into a general runtime environment. This runtime environment must support the short
life-cycles that are typical for multimedia applications and provide facilities for rapid development, deployment and removal of
services. A first step into the direction of such an environment is the introduction of application programming interfaces that
allow code and component reuse on a high level. Runtime platforms offer a certain amount of dynamically usable functionality
to the applications that run on top of them, like for instance connection management services. Platforms are further character-
ized by an application independent session model that defines the relationship between user and service.

Runtime platforms for distributed multimedia applications like video conferencing are already commercially available1, but
they do not interoperate among each other. Interoperability has to be achieved on both control and medium object level. A mul-
titude of standards exists for the definition of audio, video and graphics formats, allowing interoperability on medium object
level, but agreement on a common control architecture for distributed multimedia applications has not been reached yet. There
are ongoing standardization efforts to solve the framework problem for certain classes of applications, e.g. MHEG2 for multi-
media kiosk applications and the T.120 suite3 for videoconferencing, but one problem with these standards is that their even-
tual success will hinder the adoption of more general and unifying frameworks like the multimedia system services (MSS)
architecture of IMA4 or the TINA architecture5.

In order to come up with a common control architecture, agreement has to be reached on a distributed processing environ-
ment. The most promising candidate here is OMG’s Object Management Architecture (OMA) with the Common Object
Request Broker Architecture (CORBA) at its heart6. CORBA is an excellent platform for distributed applications in general,
and as such is also an excellent choice for distributed multimedia applications. The problem with CORBA is that some of its
important extensions are still in the process of being standardized, and can consequently not be used in other standards. Never-
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theless, OMG has recognized the role that it can play in the telecommunications market, and is considering for instance a
medium data stream extension for CORBA7.

In this paper, we propose a platform architecture based on CORBA that fosters development and deployment of distributed
multimedia applications. In this architecture, we separate application processing and media processing not only logically, but
also geographically. Applications reside in the network in so calledapplication pools from where they control a set of partici-
pating multimedia terminals. The architecture is geared to service provision because it provides a terminal with a clearly
defined and extensible interface that supports a wide variety of services. Toolkit-like reusable components can be added to the
application pool that provide comfortable interfaces for application development.

This paper provides insight into all issues that have been addressed so far in our architecture. It starts off with a general dis-
cussion of the benefits of distributed object computing principles and CORBA for networked multimedia applications (Section
2). It then presents an overview of our architecture (Section 3), followed by sections discussing its principal components, i.e.,
the multimedia terminal and the application pool (Section 4 and 5). A subsection is dedicated to the connection and configura-
tion manager in the application pool, an application pool component that allows applications to establish complex source-to-
sink connections among participating terminals. A final section before the conclusion describes the principal features of the
prototype that is being developed at our institute (Section 7).

2. DISTRIBUTED OBJECT COMPUTING FOR MULTIMEDIA PLATFORMS

A history of multimedia platforms would start with the Touring Machine that was developed at Bellcore at the beginning of
this decade8. While antiquated with respect to today’s standards, it was at the time the distributed multimedia applications plat-
form with the most powerful application programming interface (API)9. The target applications for the Touring Machine were
teleconferences with collaboration support. The Touring Machine architecture is object-oriented in that it decomposes the func-
tionality of the platform into a set of interacting managers and agents of which some are dynamically created when needed. One
of the problems of the Touring Machine architecture is that it does not support the development of platform extensions by third
parties - the internal interfaces of the platform are hidden, and communication among the various platform objects is provided
by a proprietary message passing protocol. Also, every new feature or object that is added to the platform requires the modifica-
tion of the object implementing the monolithic API if it is to be visible to applications.

Early work in the area of object-oriented stream processing, with emphasis on programming aspects, has been performed by
Simon Gibbs at the University of Geneva10. Gibbs models stream processing with a network of source, sink and filter compo-
nents calledactive objects. An object has an operational interface for control and one or more media stream interfaces called
ports. An object is active because it performs actions in the absence of control messages, i.e., it is data driven. Such a model is
also at the base of the Open Distributed Processing (ODP) reference model11, and can be considered as the dominating para-
digm for the modeling of multimedia stream processing today.

An interesting platform deploying the object model is Medusa that was developed at Olivetti Research Labs12. It was built
for an ATM network that supports the direct interconnection of media processing hardware. Medusa workstations consist of a
standard workstation plus multimedia devices that are grouped around a small ATM switch which is itself connected to an ATM
backbone. Active objects in Medusa are calledmodules, with applications being a special kind of module. The platform is
designed to be extensible; reusable functionality is implemented within platform rather than application modules. Every appli-
cation developed for Medusa will thus enrich the platform by increasing the number of modules that are available. Just like the
Touring Machine, Medusa uses a proprietary mechanism for control communication among platform components. The Medusa
platform is a middle-ware layer for networked multimedia applications, and does not define a framework for sessions or service
provision. A similar platform is CINEMA developed at the University of Stuttgart13.

The major standardization effort in the area of multimedia middle-ware is the multimedia system services (MSS) architec-
ture of the Interactive Multimedia Association (IMA)4. As a standard, MSS is forced to either define its own control and media
communication frameworks, or to deploy existing standards for this purpose. MSS is built on top of CORBA to solve the con-
trol and programming problem, and will define its own media stream protocols. MSS only defines interfaces within a basic
inheritance tree; the richness of the architecture is then to be provided by third-party architecture extensions. One problem with
MSS is its complex connection establishment procedure. Another problem is that it was started at a time when CORBA itself
was not developed beyond the basic request broker architecture. CORBA features like the common object services that are now
available could not be foreseen in the architecture, and have to be forced into it now. An example for this is the event service.
Although MSS has been proposed to DAVIC14, and is part of the ISO PREMO standard15, its future appears to be unclear16.



The major standardization effort in the area of multimedia service provision is the TINA initiative5. TINA provides a com-
plete framework for all aspects of service provision in a future computation-oriented tele-communications network. TINA
adopts the ODP model at the base of the architecture, and, with reservations, CORBA as the best available distributed process-
ing environment on which it places its objects. Media processing objects are within the scope of TINA, which means that there
is an overlap between the activities of TINA and for instance MSS. Given its emphasis on service provision it is questionable if
TINA can come up with abstractions for multimedia programming that are as powerful as those foreseen for MSS. A future
standard for a service provision framework would do best in leaving space not only for new components, but also for new pro-
gramming paradigms.

3. APPLICATION POOLS AND MULTIMEDIA TERMINALS

With our architecture we try to provide a complete framework for the development and deployment of multimedia services
17. This framework is a superset of MSS since it defines a relation between application and user in addition to a multimedia
middle-ware. It is a subset of TINA because it does not go beyond a lightweight session model - it does not try to integrate itself
into the network. It is thus an overlay architecture, and as such it is a normal user of the transport services of the underlying net-
work.

Service provision in a network requires the existence of standard terminal equipment at the user’s premises. The terminal
architecture must be extensible in order to accommodate new software devices possibly representing new hardware. It must
also take into account that the services to which the terminal can connect will be numerous and will have short life-cycles. This
means that is not at all practical to install application specific software on a terminal or a network file system. In our architec-
ture we chose is to distribute application intelligence between servers and terminals. An application residing on an application
pool will download scripts into the terminals that serve as intelligent sensors and deal with every issue that is local to the termi-
nal. Connections among the terminals that participate in a multipoint application are established by a central connection man-
ager within the application pool that acts on behalf of the application. The application pool must be considered as a center of
control and coordination, and will rarely be the source or sink of media data. Media acquisition, transmission, processing and
presentation is performed by standard hardware and software devices within the terminals. A terminal can activate a certain
application only if it has the devices that the application requires. The administrational effort associated with the terminal is
thus the installation of hardware and of component software with comparatively long life-cycles. The architecture of both the
application pool and the multimedia terminal is device independent, i.e., new devices can be introduced without any modifica-
tion of the major building blocks of the architecture. The architecture is based on CORBA, and is thus specified via an extensi-
ble collection of IDL (Interface Definition Language) definitions.

The left side of Fig. 1 shows, from an engineering perspective, the major components of application pool and multimedia
terminal along with control and media flows. The right side depicts the architecture from the application point of view. At the
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bottom is the extensibleterminal compatibility layer that is provided by the totality of visible terminal object interfaces. The
application compatibility layer is built on top of the terminal interfaces and provides high-level support for applications that do
not want to deal directly with certain terminal objects. It is provided by the totality of application pool object interfaces that are
visible to the application. The application interfaces to both terminal and application pool services. It can only run in pools that
offer the application services it needs.

For convenience, we will refer to our architecture as APMT (Application Pool - Multimedia Terminal). The following sub-
sections give an overview of APMT.

3.1. Overview of the multimedia terminal

The brain of the multimedia terminal is theterminal control(see Fig. 1). The terminal control manages the application life-
cycle on the terminal side: it starts and joins applications in the application pool on behalf of the user, or on behalf of applica-
tions that are already running on the terminal, and processes invitations to applications. It grants applications access to the
major terminal interfaces and supervises application actions within the terminal. Every major object created by the application
has a hidden interface to the terminal control which allows it to be queried, monitored, and deleted.

The operations defined for the terminal control interface constitute together with equivalent interface operations in the appli-
cation pool an application control protocol. Since this protocol is application independent, it can be expected to remain stable
over an extended period of time. Protocol extensions, and the eventual existence of different protocols for different terminal
types, can be handled via interface inheritance.

The two principal servers an application accesses are thescript handler and thestream agent. A script handler executes a
script downloaded from the application. This script generates the graphical user interface of the application and controls the
locally generated device networks. As a result of user action it will call operations in application interfaces, and will itself
respond to application calls. An adequate scripting language for simple tasks is Tcl/Tk18. If the downloaded script is to per-
form more advanced tasks than the user interface, strongly typed languages like Java19 or ScriptX20 must be used. Java and
ScriptX perform better than Tcl/Tk because they are precompiled. The major requirement on the scripting language to be used
is the existence of a respective CORBA language mapping. The multimedia terminal will have separate script handlers for
every scripting language that it supports.

A stream agent assembles, controls and modifiesstream graphs. A stream graph is an arbitrarily structured network of media
processing devices similar to the module pipelines of Medusa or the virtual device graphs of IMA. Stream graphs are generated
in single operations that return a list of device object references. The script handler can claim such object references for local
control, as is indicated in Fig. 1. A straightforward example for this would be the reference to an audio device that allows the
terminal user to control audio volume via the graphical interface generated by the downloaded script.

3.2. Overview of the application pool

The counterpart to the terminal control in the application pool is the application pool manager (APM). The APM launches
applications on behalf of terminals, and invites terminals on behalf of applications. The APM grants applications access to the
application pool objects and monitors them.

Applications can access the terminal interfaces directly or via intermediate modules that reduce the complexity of multi-user
scenarios. One such module is theconnection and configuration manager (CCM). The CCM provides support for the establish-
ment of complex connection structures among groups of terminals and configures the device graphs within these terminals. An
application will usually prefer to deal with one connection manager rather than many stream agents. Multiple connection man-
agers can be imagined that provide support for different categories of applications.

The componentMiscellaneous Core Services in Fig. 1 alludes to modules other than the CCM, like for instance a module
that handles multiple graphical user interfaces within a session. Note that an application may itself start another application, so
as to run multiple applications on top of a single session.

3.3.  Additional components

The most important additional component to be mentioned is the directory service that is needed for example to register ter-
minal addresses, user identifiers, momentary user locations, as well as announced and ongoing sessions. The directory service
could be transparently accessed via the CORBA trading service21. Another important component would be a service gateway
between terminal and application pool that transparently routes service requests to application pools, so as to provide for load



balancing on application pool level. Both the directory service and the service gateway will be described in a future publication
about APMT.

Media servers are supported by the terminal abstraction and do not require any extension of the architecture.

4. MULTIMEDIA TERMINAL

This section discusses the major building blocks of the terminal. It starts with a description of the multimedia middle-ware
layer that is implemented by the terminal, and describes based on this the terminal components that are grouped around this
middle-ware.

4.1. Terminal middle-ware

The elementary unit of processing functionality in APMT is thedevice. A device has an operational IDL interface that is vis-
ible to the application, and a management IDL interface that is hidden from the outside. A device can generate events for which
interested APMT objects register. Events may contain processing results, or they may inform other APMT objects about
changes in the state of the device. The latter is important given that the control of devices can be shared among multiple client
objects. Devices may also become active in the sense that they obtain object references and invoke operations of the respective
interfaces.

A device contains a set of ports that are classified into input ports and output ports. Media data enter the device via input
ports, and leave it via output ports. There is no inherent constraint on the relationship between the data that enter a device and
the data that leave it, i.e., outgoing data may be of a completely different type than incoming data. Ports appear as simple iden-
tifiers in the definition of a device, and not as active objects with an externally visible IDL interface. Port identifiers are used to
interconnect compatible ports of different devices. An output port can be connected to an input port if both ports support the
same medium format. Media formats are given as chained identifiers that form a medium format hierarchy that starts at the root
any and has subtrees for major media types like image, audio, video or text. Again, formats do not appear as objects with an
IDL interface as for instance in MSS. In fact, APMT devices are closer to the format abstraction than MSS devices, which
allows to set format parameters in the operational interface of the device rather than the one of a format object. The result of
this is that APMT defines different devices for MPEG and JPEG compression, whereas MPEG and JPEG appear as port format
objects in MSS. The benefit of renouncing on format objects is reduced complexity when it comes to matching port formats in
a device network that is spanning multiple terminals. It is assumed that a device supporting a certain format does automatically
support a certain range of parameter values associated with this format. Format parameter settings of source devices are con-
veyed as part of the medium stream data, with receiving devices adapting themselves to these parameters on-the-fly. A device
definition restricts the formats available on a port to a subtree in the medium format hierarchy. The formats that are then sup-
ported on the port must be equivalent with respect to the operational interface of the device. This allows to introduce a wide
variety of formats into the architecture without adding new devices. It is even imaginable that subformats are defined that corre-
spond to different parameter value settings in a parent format, e.g., different types of MPEG1 video.

Device ports are interconnected viaconnectors. Connectors can be unicast or multicast, i.e., they can connect one output port
with various input ports. They do not exist in an isolated fashion, but are under control ofconnector boxes. A connector box can
connect the input and output ports of attached devices in variable ways by activating or deactivating its connectors. It must
therefore be considered as a controllable software switch for media streams.

Devices and connector boxes are assembled to form arbitrarily shapedstream graphs. Stream graphs provide a way to exe-
cute compound operations on the devices and connector boxes they contain. The two principal operations the graph interface
defines arestart()  andpark() . Thestart()  operation activates a graph, which results in an activation of all devices and
connector boxes. Thepark()  operation deactivates a graph, which corresponds to the release of all resources that the graph
holds. It is assumed that it is much faster to restart a parked graph than to create an identical graph all over again, for instance
from persistent object storage. Parked graphs keep state - parking a graph in our prototype means putting the process to sleep
that implements the graph. A graph is also a device factory since it allows to add and to remove subgraphs.

Graphs themselves are created by the stream agent (see Fig. 1). The two principal operations of the stream agent interface
arecreate_graph()  andremove_graph() . Thecreate_graph()  operation is the most complex one defined by APMT. It
takes as arguments a list of instantiation requests that describes the graph in terms of devices and connector boxes. Every
instantiation request contains initialization data, which is for instance a list of connectors in the case of a connector box. The
benefit of this approach is speed - a complex device network can be created with a single call instead of one call per device and
connector box. Remote procedure calls do not come for free; they perform orders of magnitude worse than normal function



calls, and a platform for distributed applications like APMT must take this into account. As another point, the way graphs are
created requires that the client has prior knowledge as to what objects are supported by the terminal. Information about this is
made available to the client as part of a compatibility negotiation procedure on application startup.

Fig. 2 depicts on the left side the interface inheritance diagram for terminal devices. Both the connector box and the device
are derived from a common base interface calledterminal resource that defines the operationsactivate()  anddeacti-

vate() . It is assumed that devices take hardware and computation resources, whereas connector box may take inter-process
communication resources. Terminal resources, just like graphs, are deactivated after creation, and their activation may fail due
to resource problems. When deactivated they keep state, but they release resources and stop processing.

The inheritance diagram further shows branches fortransport andmedium transport. The transport branch contains the
devices with which the terminal interfaces to the network. Since unicast transmission is assumed there is a classification into
sender and receiver, and then further into the transport protocols UDP, TCP and IP multicast. A medium transport device knows
how to transmit a certain medium over the network. which concerns mainly packetization and transmission timing. Both cate-
gories of devices are intended to be used by application pool services like the CCM, and are of no interest for the application
itself.

The inheritance diagram also shows a couple of video devices, among them a video coder that generates a window contain-
ing the video signal it is digitizing. The video window coder interface is also derived from thevisible endpoint interface. A
device is a visible endpoint if it has an address, or some kind of visibility at the user interface. A visible endpoint has some cor-
respondence to the source/sink abstraction in other frameworks, but it does not put any restrictions on the ports endpoint
devices contain. A visible endpoint can therefore be source (one output port), sink (one input port) or a mixture of the two.

The right side of shows as an example a graph that transmits video. This graph contains three visible devices: a camera, a
video window coder, and a file. The camera is a visible endpoint because it needs to be addressed among the cameras that can
be accessed by the terminal. The video window coder has a visible window with an identifier which allows the video to be dis-
played in a specific window, possibly one under control of the script handler. The file device finally has a pathname under
which its content can be accessed on a storage medium. The JPEG compression device on the contrary does not need any
address beyond its object reference. The connector box to the left of the JPEG compression device may contain a point-to-point
connector in addition to the multicast connector which allows to control the recording of the compressed video stream simply
by switching between the two connectors.
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4.2. An internal stream interface

Device development is confronted with a stream interface that may be terminal architecture specific since it is hidden to the
outside. It is clear that it is preferable to have a stream interface, and in general a device API, that is independent from the ter-
minal architecture. As an example, we sketch the stream interface as it has been implemented in our prototype.

Inside the terminal, medium data is moved withincontainers. A container is an object that can store headers along with
medium data. It provides methods for deep and shallow copies of medium data and headers and relieves the device programmer
from memory management issues. Many devices will have some sort of relationship with peer devices in other terminals, or
even with devices in the same graph. It is therefore practical to use the medium stream as a oneway control communication
channel in downstream direction. A device that needs to communicate information that is needed by a downstream device for
correct data processing will add anattribute header to the container. Another form of header is themedium header that
describes the physical format of the medium data. A container provides access to a single medium header, and allows to add
multiple attribute headers.

Ports are implemented as C++ objects that are dynamically created by devices when needed. The connector box connects
ports for instance by setting a list of pointers to input ports in an output port. There are three mechanisms for communication
among ports:push, pull, andimplicit. The connector box makes sure that there is no mismatch between connected input and
output ports with respect to the supported mechanism. With the push mechanism, a device transmits a container by calling the
respective procedure in the output port interface, and receives a container via a callback from an input port. With the pull mech-
anism, a device retrieves a container by calling the pull method in aPullInPort  which in turn will call the same method in a
PullOutPort . ThePullOutPort  will then retrieve a container out of a buffer maintained by the upstream device and return
it via thePullInPort  to the downstream device. With the implicit mechanism, data is actually not exchanged, for instance
because it is in analog form. The implicit mechanism is used when the APMT object modeling does not match the reality of
data exchange and control on a particular endsystem. As an example, the window coder and the camera in the example graph in
Fig. 2 will be linked via an implicit mechanism. The camera object is a proxy that forwards operation invocations to the video
coder object which is known to it.

4.3. A stream format on transport level

A sender transport device transforms a container into a PDU and transmits it over the network. A receiver transport device
recreates a container from a received PDU and forwards it to downstream devices. An APMT medium data PDU contains a
main header, a medium header, a variable number of attribute headers, and the medium data.

The PDU format is part of the terminal interface specification. This means that the format of medium headers attribute head-
ers, and medium data must be specified. It is an open issue if the header format specification must be linked with the device
specification, so as to be able to perform compatibility checks upon graph creation.

4.4. Script handler

The Tcl/Tk script handler that was implemented for the terminal is based on a proprietary IDL language mapping for Tcl and
an equivalent extension of the Tcl interpreter22. Applications download a Tcl/Tk script into the script handler where it is eval-
uated. The script generates a Tk user interface and may be fed by the application with object references, or discover object ref-
erences via the CORBA name service. Button clicks by the user will then result in operation invocations either to local terminal
objects or to distant application specific objects via the CORBA dynamic invocation interface (DII). The IDL interface of the
script handler exports a part of the Tcl/Tk C library and allows for instance to download icons and photos, set or get variable
values and to call script procedures. Security is a major concern: the script accesses system services like file I/O via a set of Tcl
procedures provided by the script handler, rather than directly and unchecked.

While Tcl/Tk is excellent for the generation of graphical user interfaces, it is not a good language for the programming of
complicated tasks. The language of choice here is Java19. Java will make it possible to develop the APMT application model
towards scenarios where script handlers in terminals communicate directly with each other.

4.5. Terminal control

The terminal control is a container for application related interfaces. It implements theTerminal  interface to which applica-
tion pools direct session invitations and announcements. There is further an interface of the terminal control to the local user
that offers, among other operations, a registration operation which associates the terminal with the user. The registration opera-
tion returns a reference to anApplicationControl  interface that allows to start and join applications in application pools.



Both operations return anApplication  interface via which an application can be controlled in which the local user partici-
pates. TheApplication  interface allows to pause, resume, hide, show, quit and kill an application. The terminal control pro-
vides a reference to aTerminalControl  interface to every application in which it participates. The application, probably the
script that is running on the terminal, can use this interface to get access to anApplicationControl  interface. This allows
applications to start themselves other applications. A striking example for this is the yellow-page application that browses the
directory service for available applications or ongoing sessions and allows the user to transparently start or join a displayed
application. TheTerminalControl interface contains in addition a name service that allows objects to register themselves on
instantiation with their object reference and a name. The script in the script handler may register callbacks for the instantiation
of objects with a certain name. The object name service is necessary because most of the graphs, devices and connector boxes
in the terminal will be instantiated by auxiliary servers like the CCM in the application pool, which means that their object ref-
erences are not automatically available to the application. One solution for this is to have the CCM call the application when-
ever it instantiates a graph, but this is tedious. Instead of that, an application may assign names to the devices it requests, and
once these devices are instantiated in a terminal they are registered with the terminal control which in turn forwards the respec-
tive object references to the interested local application script.

5. APPLICATION POOL

This section describes the application pool manager and the CCM, with emphasis on the latter.

5.1. Application pool manager

The application pool manager (APM) provides a control framework for the application pool similar to the one that is pro-
vided by the terminal control for the terminal. The interface towards the terminals is thePool  interface. This interface allows
terminals to request a reference to anApplication  interface by providing an application name in the case of application star-
tup, or an application identifier for joining an ongoing session. TheApplication  interface offers operations to determine ter-
minal compatibility, and to start, join, kill or quit the application. The APM implements further an interface towards the
applications that allows an application to invite users. Applications themselves implement a management interface towards the
APM.

5.2. Connection and configuration manager

The CCM is the most important auxiliary component that can be envisaged for the application pool23. It has to be consid-
ered as a special application offering connection establishment and configuration services to real user applications running on
top of it. The CCM is not a canonical component of the application pool that has to be used by all applications that require con-
nection services; it is rather foreseen that there are different CCMs for different classes of applications. The interface of a CCM,
which is in fact an API, is adapted to the class of applications it supports. The CCM presented here is tailored to conferencing
applications with a possibly large and dynamically changing number of participating terminals. To distinguish it from the gen-
eral CCM we will refer to it as conference CCM (CCCM).

The CCCM supports the establishment of simplex, duplex, multicast, all-to-all and all-to-one connection structures called
bridges. Bridges are instantiated onsubsets of terminals that participate in the application session. The endpoints of such
bridges are formed by device graphs within the interconnected terminals. An application registers so-calledgraph models with
the CCCM. Graph models indicate the device ports on which they interface to the network, but they do not contain any trans-
port or medium transport devices. As an example, a graph model for the video sender in Fig. 2 does not contain theVideo-

Sender  and theIPmcastSender  devices. When creating a bridge, an application will identify two of the registered graph
models that serve as bridge endpoints: a sender graph and a receiver graph. A sender graph contains exactly one network port.
The situation with receiver graphs is more complex because a receiving terminal in a bridge may have to handle streams from
multiple sources. There are basically two options for the receiver graph, which are replication or concentration. In the case of
replication one receiver graph is instantiated for every incoming stream. In the case of concentration, the application indicates a
concentrating device within the graph model that will be the sink of all incoming streams. An example for a concentrating
device is the audio mixer.

When asked to activate a bridge the CCCM adds appropriate transport devices to the respective graph models and instanti-
ates the resulting complete graphs on the terminals that are interconnected via the bridge. Note that the CCCM does not know
any other devices than transport devices and connector boxes, and does not have a notion of audio, video or other media types.
This is necessary to keep the platform open for the introduction of new media devices in the terminals.



Fig. 3 illustrates the usage of the CCCM. On startup, the application registers a set of graph models with the CCCM. It then
creates a terminal subset that represents a subsession with respect to the application session. The callcreate_subset()  con-
tains already an initial list of terminals, in this case T1, T2 and T3. The interfaceSubset  itself allows to add or remove termi-
nals from the subsession. Whenever a new terminal is added to any of the subsets, the CCCM will immediately bind to its
stream agent. In a next step, the application creates two bridges on the subset. Fig. 2 shows one if these bridges, which is actu-
ally a multicast bridge. The multicast bridge becomes active when the application denominates a sender. The call to
set_sender(T1)  results in an instantiation of a sender graph on terminal T1 and receiver graphs on T2 and T3 (not shown).
Once the graphs are created the CCCM will callstart()  first on all receiver graphs, and finally on the sender graph. At a later
stage, the application decides to assign the sender role to T2. The CCCM will then park the sender graph on T1 and create a
receiver graph on T1 and a sender graph on T2 and start them. The transfer of the sender role from T1 to T2 will take some time
because the respective graphs need to be created, but once these graphs exist it is assumed that the application can rapidly
switch back and forth between T1 and T2.

6. APMT Prototype

We have a first prototype running that implements most of the building blocks described in the previous two sections. The
CORBA implementation we are using is OrbixTM from Iona Technologies24. The prototype was developed on SunOS 4.1.3
and runs on Sun Sparc10 stations grouped around an ATM LAN switch in our laboratory. The Orbix 1.3 version for SunOs
4.1.3 we were using did not support multithreading, which turned out to be a serious limitation especially for the implementa-
tion of the CCCM. The speed of connection establishment via the CCCM can be increased dramatically if graphs are created,
started and parked in parallel. Since it was not possible to implement the CCCM as a multithreaded client it was decided to use
the deferred synchronous call mechanism of the CORBA dynamic invocation interface (DII) for this purpose. The problem here
is that marshalling and unmarshalling has to be coded by hand, which is very tedious for the complex IDL types used especially
in thecreate_graph()  call of the stream agent.

A demo application has been implemented that sheds light on all major features of the platform. The demo application sim-
ulates a videoconference among three terminals. It first loads Tcl/Tk graphical user interfaces into the script handlers. It then
creates a video multicast bridge on the three terminals and rotates the sender among them. The sender rotation appears in the
application code as the loop depicted in Fig. 4. Once rotation is terminated the application creates low quality video multicast
bridges to create all-to-all visibility. A momentary speaker is transmitting high quality video, i.e., big window size and high
frame rate, whereas the other terminals transmit low quality video. The graphical user interface allows a user to request the
speaker role, in which case the connection structure is completely rearranged.

The prototype demonstrates the feasibility of APMT, and its merits. The platform was implemented by two programmers
within five months. This would not have been possible without CORBA/Orbix providing a ready-made   object-oriented control
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middle-ware. The demo application could be implemented with a few lines of code although it already employs a rather com-
plex and dynamically changing connection structure. Lessons learned were mostly resource related. For instance, care has to be
taken in the mapping of interface implementations onto processes since this has a hidden effect on the number of TCP connec-
tions established by Orbix. A problem is also the big amount of C++ stub and skeleton code generated by the IDL compiler for
interface collections like the one of APMT, which leads to excessive compilation times and large executables.

Work on the prototype is continuing. It has meanwhile been ported to Solaris 2.5 and Orbix 2.0. The deferred synchronous
calls in the CCCM are being replaced by threads, and audio devices are being added to the terminal. Work has started to inte-
grate a video server into the platform, and it is further planned to develop a Java script handler based on OrbixWeb24.

7. DISCUSSION

A platform has been presented that supports development and deployment of networked multimedia applications. The appli-
cations that are installed in the application pool are made available as services to multimedia terminals in the periphery. A main
characteristic of the platform is that it is based on CORBA, a standard framework for distributed object computing. The princi-
pal issues addressed by the platform are: service diversity, terminal compatibility, application portability and platform extensi-
bility. The platform can be deployed today as an overlay service provision framework for IP networks that do not support the
notion of service beyond packet transfer services. A platform like APMT can add a communication service layer to the Internet
in a way similar to the MBone25, but with a much wider scope.

The multimedia middleware of APMT is tailored to the multimedia terminal abstraction which allows it to be much simpler
than IMA MSS4 and more powerful when it comes to multipoint applications. Other work in the area of multimedia middle-
ware leaves configuration and connection management (or stream binding in ODP terms) to the application. This becomes a
complex task when many devices and endpoints are involved, which is why we introduce the intermediate CCM which relieves
the application from most computational aspects of connection and configuration management. Finally we provide a complete
application framework into which dynamically downloadable multimedia applications can be embedded with reasonable effort.
This is similar in spirit to TINA, but again, simpler and certainly more realistic for the time being.

The platform lacks two important features that cannot be neglected: synchronization and resource management. Synchroni-
zation will be addressed in future work. Resource management is reflected in the APMT device and graph interfaces, but a real
resource management architecture for the multimedia terminal has not been defined. We point out that interesting research in
resource management for object-based multimedia middleware is going on at Lancaster University26. Equally, all platform
interfaces will be rewritten to make a maximum use of existing CORBA services of which a good number seems to be interest-
ing for APMT. The architecture of the platform will at this point diverge from the one of the prototype, because many of the
used services will not have been implemented yet by CORBA vendors.
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  /* rotate senders */
  for (i=0; i<ROUND_NUMBER; i++)
    for (int j=0; j<termnum; j++)
      {
        try {
          mcast_bridge->set_sender(terminal[j]);
        }
        catch (...) {
          cerr << "\ncould not change sender...\n";
        }
        sleep(10);
      }

Figure 4. Example code for sender rotation
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