
Lunar:
a Toolbox for More Efficient Universal and Updatable zkSNARKs

and Commit-and-Prove Extensions

Matteo Campanelli1

matteo.campanelli@imdea.org
Antonio Faonio2

antonio.faonio@eurecom.fr
Dario Fiore1

dario.fiore@imdea.org

Anaïs Querol1,3

anais.querol@imdea.org
Hadrián Rodríguez1

hadrian.rodriguez@imdea.org

1 IMDEA Software Institute, Madrid, Spain
2 EURECOM, Sophia Antipolis, France

3 Universidad Politécnica de Madrid, Spain

Abstract

We address the problem of constructing zkSNARKs whose SRS is universal—valid for all relations
within a size-bound—and updatable—a dynamic set of participants can add secret randomness to it
indefinitely thus increasing confidence in the setup. We investigate formal frameworks and techniques
to design efficient universal updatable zkSNARKs with linear-size SRS and their commit-and-prove
variants.

We achieve a collection of zkSNARKs with different tradeoffs. One of our constructions achieves
the smallest proof size and proving time compared to the state of art for proofs for arithmetic circuits.
The language supported by this scheme is a variant of R1CS, called R1CS-lite, introduced by this
work. Another of our constructions supports directly standard R1CS and improves on previous work
achieving the fastest proving time for this type of constraint systems.

We achieve this result via the combination of different contributions: (1) a new algebraically-
flavored variant of IOPs that we call Polynomial Holographic IOPs (PHPs), (2) a new compiler that
combines our PHPs with commit-and-prove zkSNARKs for committed polynomials, (3) pairing-
based realizations of these CP-SNARKs for polynomials, (4) constructions of PHPs for R1CS and
R1CS-lite, (5) a variant of the compiler that yields a commit-and-prove universal zkSNARK.

Contents

1 Introduction 3
1.1 Our Contribution . 4
1.2 Other Related Work . 8
1.3 Outline . 8

2 Basic Preliminaries 8

3 Polynomial Holographic IOPs 9
3.1 PHP Verifier Relation . 12
3.2 Compiling PHPs and AHPs into One Another . 12

4 Our PHP Constructions 13
4.1 Algebraic Preliminaries . 13
4.2 Rank-1 Constraint Systems . 16
4.3 Our PHPs for R1CS-lite . 16
4.4 Our PHP for R1CS . 27

1

5 Preliminaries on Commitments and zkSNARKs 34
5.1 Commitment Schemes . 34
5.2 Preprocessing zkSNARKs with Universal and Specializable SRS 35
5.3 Commit-and-Prove Universal SNARKs . 36

6 Our Compiler from PHPs to zkSNARKs with Universal SRS 38
6.1 Building Blocks . 38
6.2 Compiling to Universal Interactive Arguments . 40

7 CP-SNARKs for Pairing-Based Polynomial Commitments 42
7.1 Bilinear Groups and Assumptions . 43
7.2 The Commitment Schemes . 43
7.3 CP-SNARKs for Ropn . 44
7.4 CP-SNARK for evaluation of a single polynomial . 47
7.5 CP-SNARK for batch evaluation of many polynomials 47
7.6 CP-SNARK for Polynomial Equations . 48
7.7 A CP-SNARK for CS2 for quadratic polynomial equations 50
7.8 CP-SNARKs for degree of committed polynomials . 51
7.9 A general-purpose CP-SNARK for Rphp . 53

8 Our Compiler for Universal Commit-and-Prove zkSNARKs 53
8.1 Compiling to Commit-and-Prove Universal Interactive Arguments 53
8.2 Pairing-Based Instantiations of our Building Blocks . 55

9 Our Universal zkSNARKs 61
9.1 Available Options to Compile Our PHPs . 61
9.2 Instantiating the PHPs with the appropriate zero-knowledge bounds 62
9.3 Our zkSNARKs . 63
9.4 Our CP-SNARKs . 64

A Constraint Systems 69
A.1 Proof of Lemma 4.5 . 69
A.2 Proof of Lemma 4.8 . 70
A.3 Reduction to Arithmetic Circuit Satisfiability . 71
A.4 Comparing R1CS and R1CS-lite . 72

B Our Protocol for Lincheck 73
B.1 Preliminaries . 73
B.2 An Holographic Protocol for Points of Sparse Matrices 74
B.3 The linear check protocol . 75

C Additional Material for Section 6 76
C.1 Succinct Interactive Arguments in the SRS. 76
C.2 Proof of Theorem 6.1 . 76
C.3 Proof of Theorem 8.1 . 81

2

1 Introduction

A zero-knowledge proof system [GMR89] allows a prover to convince a verifier that a non-deterministic
computation accepts without revealing more information than its input. In the last decade, there has
been growing interest in succinct zero-knowledge proof systems [Kil92, Mic00, GW11, BCCT12], also
called zkSNARKs: zero-knowledge succinct non-interactive arguments of knowledge. These proofs are
succinct in that they are short and efficient to verify: proof size and verification time should be constant
or polylogarithmic in the length of the non-deterministic witness.

It may be surprising that we can achieve real succinctness at all. In fact the verifier’s running time
must at least read the statement to be proven which includes both the description of the computation
and its input (i.e., public input). In some models of computation this seems to rule out succinctness.
For example, if a verifier needs to read a whole circuit, its running time is the same as that of the actual
computation. To work around this problem, some works adopted the model of preprocessing zkSNARKs
[Gro10, Lip12, GGPR13, BCI+13], in which the verifier generates a structured reference string (SRS)
that depends on a certain circuit C once and for all ; this SRS can be used later to verify an unbounded
number of proofs for the computation of C. This yields succinctness because while the cost of SRS
generation does depend on the size of C, proof verification does not have to.

A succinct proof system needs a secure SRS, but generating one is hard. In order for a non-interactive
zero-knowledge proof system (or a zkSNARK) to be fully secure (both zero-knowledge and sound) it is
crucial that the SRS is generated by a trusted party. But often—e.g, cryptocurrencies and blockchains in
general—there is no such trusted party and we need to simulate one, for example using MPC protocols
[BCG+15]. As long as at least one of the participants is honest the SRS is secure. It is important that
the MPC procedure is scalable—the more the parties involved the higher the confidence in the SRS.
But in spite of improvements [BGG19, BGM17], protocols for SRS generation are still expensive: all
users must be carefully coordinated and each of them requires at least one round of communication;
executing a protocol involving a hundred users can take up to a few months. Finally, as mentioned,
SRS generation needs to be carried once for each single1 computation C, which makes the problem even
harder.

To address this problem, Groth et al. [GKM+18] introduced the model of universal and updatable
SRS. An SRS is universal if it can be used to generate and verify proofs for all circuits of some bounded
size, and is updatable in the sense that a user can update an existing SRS into a new one with the
property that an SRS is secure if it was obtained through a sequence of updates in which at least one
update was performed by a honest user. Groth et al. [GKM+18] proposed the first zkSNARK with a
universal and updatable SRS. Their scheme though required an SRS of size quadratic in the number
of multiplication gates of the supported arithmetic circuits (and similar quadratic update/verification
time).

Recent works [MBKM19, CFQ19, XZZ+19, GWC19, CHM+20, DRZ20] have improved this result
and proposed zkSNARKs where the universal and updatable SRS has size only linear in the largest circuit
to be supported. In particular, the current Marlin and PLONK proof systems achieve a proving time
concretely faster than that of Sonic while retaining constant-size proofs ([CFQ19, XZZ+19, DRZ20]
have instead (poly-)logarithmic-size proofs). We also mention the very recent works of Bunz, Fisch and
Szepieniec [BFS20], and Chiesa, Ojha and Spooner [COS20] that proposed zkSNARKs in the uniform
random string (URS) model, that is implicitly universal and updatable; their constructions have a short
URS and poly-logarithmic-size proofs. We highlight another construction of a universal zkSNARK
[KPPS20] that, despite its proofs of 4 group elements and comparable proving time, has an SRS which
is not updatable.

The current landscape of zkSNARKs with universal SRS. A known modular paradigm to build
efficient cryptographic arguments [Ish19] works in two distinct steps. First construct an information-
theoretic protocol in some abstract model, e.g., interactive proofs [GMR89], standard or linear PCPs
[BCI+13], IOPs [RRR16, BCS16]. Then apply a compiler that, taking an abstract protocol as input,
transforms it into an efficient computationally sound argument via a cryptographic primitive. This

1One could generate an SRS for a universal circuit for computations up to size T , but this adds a multiplicative
overhead of O(log T) which is often unacceptable.

3

approach has been successfully adopted to construct zkSNARKs with universal SRS in the recent works
[GWC19, CHM+20, BFS20], in which the information theoretic object is an algebraically-flavored variant
of Interactive Oracle Proofs (IOPs), while the cryptographic primitive are polynomial commitments
[KZG10]. Through polynomial commitments, a prover can compress a polynomial p (as a message much
shorter than the all its concatenated coefficients) and can later open the commitment at evaluations of
p, namely to convince a verifier that y = p(x) for public points x and y. In the IOP abstraction, called
algebraic holographic proofs (AHP) in [CHM+20] and polynomial IOPs2 in [BFS20], the prover and the
verifier interact with the latter sending random challenges (in the public coin version) and the prover
providing oracle access to a set of polynomials. At the end of the protocol the verifier asks for evaluations
of these polynomials and decides to accept or reject based on the results it receives. The idealized low-
degree protocols (ILDPs) abstraction of [GWC19] proceeds similarly except that in the end the verifier
asks to verify a set of polynomial identities over the oracles sent by the prover (which can be tested via
evaluation on random points). The basic idea to build a zkSNARK with universal SRS starting from
AHPs/ILDPs is that the prover commits to the polynomials obtained from the information-theoretic
prover, and then uses the opening feature of polynomial commitments to reply the evaluation queries
in a sound way. As we detail later, our contribution revisits the aforementioned blueprint to construct
universal zkSNARKs.

1.1 Our Contribution

In this work we propose Lunar, a family of new preprocessing zkSNARKs in the universal and updatable
SRS model that have constant-size proofs and that improve on previous work [MBKM19, GWC19,
CHM+20] in terms of proof size and running time of the prover. Precisely, through our results we
obtain a collection of zkSNARKs with different tradeoffs (see Table 4 for the full list).

In Table 1, we present a detailed efficiency comparison between prior work3 and the best of our
schemes, dubbed LunarLite, when using arithmetic circuit satisfiability as common benchmark. As one
can see, LunarLite has the smallest proof size and the lowest proving time compared to the state of art
of universal zkSNARKs with constant-size proofs for arithmetic circuits. As we explain later, LunarLite
uses a new arithmetization of arithmetic circuit satisfiability that we call R1CS-lite, quite similar to
R1CS.

In Table 2, we instead show a selection of our solutions that directly support the R1CS constraint
system and we give a comparison with Marlin [CHM+20]. Our scheme Lunar1cs (fast & short) (Π(2)

r1cs2 in
Table 4) offers the smallest SRS, the smallest proof and the fastest proving time. This comes at the price
of higher constants for the size of the (specialized) verification key and the verification time. Lunar1cs

(short vk) (Π(1)
r1cs3 in Table 4) offers a tradeoff: it has smaller verification key and faster proving time

than Lunar1cs (fast & short), but slightly larger proofs, 3× larger SRS, and 5m more exponentiations
in G1 for the prover, compared to Lunar1cs (fast & short). Even with this tradeoff, Lunar1cs (short vk)
outperforms Marlin in all these measures.

Our main contribution to achieve this result is to revisit the aforementioned blueprint to construct
universal zkSNARKs by proposing: (1) a new algebraically-flavored variant of IOPs that we call Polyno-
mial Holographic IOPs (PHPs), and (2) a new compiler that combines our PHPs with commit-and-prove
zkSNARKs for committed polynomials. Additional contributions include: (3) realizations of these CP-
SNARKs for polynomials based on pairings, (4) constructions of PHPs for R1CS and a simplified variant
of it that we propose, (5) a variant of the compiler that yields a commit-and-prove universal zkSNARK.

Below we explain our contributions in more detail.

Polynomial Holographic IOPs (PHPs). Our PHPs generalize AHPs4 as well as ILDPs. Much like
an ILDP of [GWC19], a PHP consists of an interaction between a verifier and a prover sending oracle
polynomials, followed by a decision phase in which the verifier outputs a set of polynomial identities

2AHPs and polynomial IOPs are virtually the same notion; in the rest of our paper we use AHP and polynomial IOPs
interchangeably when the minor differences between the two models are not important.

3We focus our comparison on solutions with constant-size proofs.
4More precisely, Polynomial Holographic Proofs generalize AHPs where the verifier is “algebraic” (see Section 3.2).

This encompasses all the AHP constructions in [CHM+20].

4

zkSNARK
size time

|srs| |ekR| |vkR| |π| KeyGen Derive Prove Verify

G1 4N 36n — 20 4N 36n 273n
7 pairingsSonic

G2 4N — 3 — 4N — —
[MBKM19]

F — — — 16 — O(m logm) O(m logm) O(`+logm)

G1 3M 3m 12 13 3M 12m 14n+8m
2 pairingsMarlin

G2 2 — 2 — — — —
[CHM+20]

F — — — 8 — O(m logm) O(m logm) O(`+logm)

PLONK
G1 3N∗ 3n+3a 8 7 3N∗ 8n+8a 11n+11a

2 pairings
(small proof) G2 1 — 1 — 1 — —
[GWC19] F — — — 7 — O((n+a) log(n+a)) O((n+a) log(n+a)) O(`+log(n+a))

PLONK
G1 N∗ n+a 8 9 N∗ 8n+8a 9n+9a

2 pairings
(fast prover) G2 1 — 1 — 1 — —
[GWC19] F — — — 7 — O((n+a) log(n+a)) O((n+a) log(n+a)) O(`+log(n+a))

G1 M m — 10 M — 8n+3m

LunarLite G2 M — 27 — M 24m —
7 pairings

(this work) F — — — 2 — O(m logm) O(m logm) O(`+logm)

Table 1: Efficiency comparison of universal zkSNARKs for arithmetic circuit satisfiability with constant-
size proofs. n: number of multiplication gates; a: number of addition gates; m ≥ n: number of nonzero
entries of the R1CS/R1CS-lite matrices encoding the arithmetic circuit; N,A and M are the largest
supported values for n, a and m respectively. In PLONK N∗ is the maximum for the total number of
gates in a circuit.

zkSNARK
size time

|srs| |ekR| |vkR| |π| KeyGen Derive Prove Verify

G1 3M 3m 12 13 3M 12m 14n+8m
2 pairingsMarlin

G2 2 — 2 — — — —
[CHM+20]

F — — — 8 — O(m logm) O(m logm) O(`+logm)

G1 M m — 11 M — 9n+3m

Lunar1cs G2 M — 60 — M 57m —
7 pairings

(fast & short) F — — — 2 — O(m logm) O(m logm) O(`+logm)

G1 3M 3m 12 12 3M 12m 9n+8m

Lunar1cs G2 1 — 1 — 1 — —
2 pairings

(short vk) F — — — 5 — O(m logm) O(m logm) O(`+logm)

Table 2: Efficiency comparison of universal zkSNARKs for R1CS with constant-size proofs. n (resp. m)
is the dimension (resp. the number of nonzero entries) of the R1CS matrices; N and M are the largest
supported values for n and m respectively.

5

to be checked on the prover’s polynomials (such as a(X)b(X) − z · c(X)
?
= 0, where a, b, c are oracle

polynomials and z is some scalar). To provide an intuition on the PHP notion, let us compare it with
that of ILDP; they differ in the following features. First, a PHP prover sends the verifier not only
oracle messages—polynomials—but also actual messages—field elements). Second, a PHP verifier can
also carry out another type of test: degree bounds of polynomials, e.g. deg(a(X)) < D (as done in
AHPs with a different syntax). Third, a PHP has a fine-grained notion of zero-knowledge. While
the other differences are minor, we see the last one as a substantial contribution because it allows
to achieve more efficient zkSNARKs after compilation. The basic zero-knowledge of a PHP notion
ensures that the prover’s messages—but not the oracles—reveal no information on the witness. This is
sufficient whenever one applies variants of well-known compilation approaches, such as that by Ben-Or et
al. [BGG+90] or that by Cramer and Damgaard [CD98], in which the prover first commits to the oracle
polynomials and then shows in zero-knowledge that the verifier would accept. This approach would
require (standard) hiding commitments. In this work we propose more efficient compilation strategies
(which we describe next) which exploit weaker commitments. In order to support weaker commitments
we propose a stronger notion of zero-knowledge that we call (b1, . . . , bn)-bounded zero-knowledge. The
latter guarantees that one learns no information about the witness from an interaction with a PHP
prover even if given access up to bi evaluations of the i-th oracle polynomial5.

From PHPs to zkSNARKs: polynomial commitments through a different lens. We describe
how to compile a (public-coin) PHP into a zkSNARK. As usual, we do this in two steps: first compile the
PHP into a succinct interactive argument, and then apply Fiat-Shamir to remove interaction. For AHPs
and ILDPs [GWC19, CHM+20], compilation works by letting the prover use polynomial commitments
to commit to the oracles and then open the commitments to the evaluations asked by the verifier. We
use a similar approach with a key difference: a different formalization of polynomial commitments with
a modular design.

Our notion of polynomial commitments is modular : rather than seeing them as a monolithic
primitive—a tuple of algorithms for both commitment and proofs—we split them into two parts, i.e., a
regular commitment scheme with polynomials as message space, and a collection of commit-and-prove
SNARKs (CP-SNARKs) for proving relations over committed polynomials. We find several advantages
in this approach.

As already argued in prior work on modular zkSNARKs through the commit-and-prove strategy
[CFQ19, BCFK19], one benefit of this approach is separation of concerns: commitments are required
to do one thing independently of the context (committing), whereas what we need to prove about
them may depend on where we are applying them. For example, we often want to prove evaluation
of committed polynomials: given a commitment c and points x, y, prove that y = p(x) and c opens
to p. But to compile a PHP we also need to be able to prove other properties about them, such as
checking degree bounds or testing equations over committed polynomials. Since these properties—and
the techniques to prove them—are somehow independent from each other, we argue they should not be
bundled under a bloated notion of polynomial commitment. Going one further step in this direction, we
formalize commitment extractability as a proof of knowledge of opening of a polynomial commitment.
This modular design allows us to describe an abstract compiler that assumes generic CP-SNARKs
for the three aforementioned relations—proof of knowledge of opening, degree bounds and polynomial
equations—and can yield zkSNARKs with different tradeoffs depending on how we instantiate them.

We also find additional benefits of this modular abstraction that are idiosyncratic to our context.
First, a CP-SNARK for testing equations over committed polynomials more faithfully captures the goal
of the PHP verifier (as well as the AHP verifier in virtually all known constructions). Second, we can
allow for realizations of CP-SNARKs for equations over polynomials other than the standard one, which
reduces the problem of (batched) polynomial evaluations via random point evaluation. For example,
we show a simple scheme for quadratic equations that can even have an empty proof (see below); our
efficient realizations exploit this fact.

5Ours is a more general notion than standard zero-knowledge; the latter corresponds to 0-bounded zero-knowledge.

6

From PHPs to zkSNARKs: fine-grained leakage requirements. Our second contribution on
the compiler is to minimize the requirements needed to achieve zero-knowledge. As we shall discuss
later, this allows us to obtain more efficient zkSNARKs. A straightforward compiler from PHP to
zkSNARKs would require hiding polynomial commitments and zero-knowledge CP-SNARKs; we weaken
both requirements.

Instead of “fully” hiding commitments, our compiler requires only somewhat hiding commitments.
This new property guarantees, for each committed polynomial, leakage of at most one evaluation on a
random point. Instead of compiling through “full” zero-knowledge CP-SNARKs, our compiler requires
only (b1, . . . , bn)-leaky-zero-knowledge CP-SNARKs. This new notion is weaker than zero-knowledge
and states that the verifier may learn up to bi evaluations of the i-th committed polynomial.

We show that by using a somewhat-hiding commitment scheme and a (b1, . . . , bn)-leaky-zero-
knowledge CP-SNARK that can prove the checks of the PHP verifier, one can compile a PHP that
is (b1 + 1, . . . , bn + 1)-bounded ZK into a fully-zero-knowledge succinct argument.

Although related ideas were used in constructions in previous works [GWC19], our contribution is
to systematically formalize (as well as expand) the properties needed on different fronts: the PHP, the
commitment scheme, the CP-SNARKs used as building blocks and the interaction among all these in
the compiler.

Pairing-based CP-SNARKs for committed polynomials. We consider the basic commitment
scheme for polynomials consisting of giving a “secret-point evaluation in the exponent” [Gro10, KZG10]
and then show CP-SNARKs for various relations over that same commitment scheme. In particular, by
using techniques from previous works [KZG10, GWC19, CHM+20] we show CP-SNARKs for: proof of
knowledge in the algebraic group model [FKL18] (which actually comes for free), polynomial evaluation,
degree bounds, and polynomial equations. In addition to these, we propose a new CP-SNARK for
proving opening of several commitments with a proof consisting of a single group element; this relies on
the PKE assumption [Gro10] in the random oracle model. Also, we show that for a class of quadratic
equations over committed polynomials (notably capturing some of the checks of our PHPs), we can
obtain an optimized CP-SNARK in which the proof is empty as the verifier can test the relation using
the pairing. This technique is reminiscent of the compiler from [BCI+13] that relies on linear encodings
with quadratic tests.

PHPs for constraint systems. We propose a variety of PHPs for the R1CS constraint system and
for a simplified variant of it that we call R1CS-lite. In brief, R1CS-lite is defined by two matrices L,R
and accepts a vector x if there is a w such that, for c = (1,x,w), L · c ◦ R · c = c. We show that
R1CS-lite can express arithmetic circuit satisfiability with essentially the same complexity of R1CS,
and its simpler form allows us to design slightly simpler PHPs. We believe this characterization of NP
problems to be of independent interest.

Part of our techniques stem from those in Marlin [CHM+20]: we adopt their encoding of sparse
matrices ; like in Marlin, one of our main building blocks is the sumcheck protocol from [BCR+19]. But
in our PHPs we explore a different protocol for proving properties of sparse matrices and we introduce
a refined efficient technique for zero-knowledge in a univariate sumcheck. In a nutshell, compared to
[BCR+19] we show how to choose the masking polynomial with a specific sparse distribution, which has
only a constant-time impact on the prover. The idea and analysis of this technique is possible thanks
to our fine-grained ZK formalism for PHPs. By combining this basic skeleton with different techniques
we obtain PHPs with different tradeoffs (see Table 3).

Commit-and-prove zkSNARKs from PHPs. We describe how to adapt our compiler in order to
turn a PHP into a CP-SNARK, namely a SNARK where the verifier’s input is one (or several) reusable
hiding commitment(s), i.e., to check that R(u1, . . . , u`) holds for a tuple of commitments (ĉj)j∈[`] such
that ĉi opens to ui. By reusable we mean that these commitments could be used in multiple proofs
and with different proof systems. We note that this requirement rules out the committing methods for
polynomials used in [GWC19, CHM+20] as these require to know a bound on the number of evaluations
to be produced (and thus on the number of usages), which may be unknown at commitment time. For

7

this reason we assume these given commitments to be full-fledged hiding rather than just somewhat-
hiding.

The main idea to obtain this commit-and-prove compiler is to prove a linking between the committed
witnesses (uj)j∈[`], that open hiding commitments (ĉj)j∈[`], and the PHP polynomials (pj)j∈[n], that open
somewhat-hiding commitments (cj)j∈[n].6 We delegate this linking task to a specific CP-SNARK, called
CPlink, and we design one that works for pairing-based commitments to polynomials and a class of
linking relations which cover our PHP constructions.

1.2 Other Related Work

In this work we focus on zkSNARKs with a universal setup and constant-size proofs. Here we briefly
survey other works that obtain universality through other approaches at the cost of a larger proof size.

Spartan [Set20] obtains preprocessing arguments with a URS; it trades a transparent setup for larger
arguments, Oλ(n1/c), and less efficient verification, Oλ(n1−1/c), for a chosen constant c ≥ 2.

Other works obtain universal SNARGS through a transparent setup and exploiting the structure
of the computation for succinctness. They mainly use two classes of techniques, hash-based vector
commitments applied to oracle interactive proofs [BBC+17, BBHR19, BCG+19] or multivariate poly-
nomial commitments and doubly-efficient7 interactive proofs [ZGK+17b, ZGK+17a, ZGK+18, WTs+18,
XZZ+19, ZXZS20].

Fractal [COS20] achieves transparent zkSNARKs with recursive composition—the ability of a SNARG
to prove computations involving prior SNARGs. Their work also uses an algebraically-flavored variant
of interactive oracle proofs that they call Reed–Solomon encoded holographic IOPs.

Another line of work obtains a more restricted notion of succinctness where, not preprocessing the
computation, proof size is sublinear, but verification time is not. Works in this line include [Gab19,
BBB+18, BCC+16, AHIV17, BCR+19]

1.3 Outline

We split our preliminaries in two different sections: basic preliminaries are in Section 2, while in Section 5
we provide background on commitment schemes, zkSNARK with universal SRS and commit-and-prove
zkSNARKs (CP-SNARKs). In Section 3 we introduce Polynomial Holographic IOPs (PHPs) and com-
pare them with AHPs. Our PHP schemes for R1CS-like constraint systems are in Section 4, which also
contains a description of the R1CS-lite as well as algebraic preliminaries necessary to constructions. In
Section 6 we describe our compiler from PHPs to universal zkSNARKs as well as the required building
blocks, including polynomial commitment schemes. Section 7 describes commitment schemes for poly-
nomials and compatible CP-SNARKs that we use to instantiate our compilers. Section 8 presents our
compiler from PHPs to universal commit-and-prove zkSNARKs, as well as additional building blocks
and their instantiations with pairing based commitments. In Section 9 we describe our concrete uni-
versal zkSNARKs and CP-SNARKs. We refer the reader to the appendix for additional preliminaries,
details on constraint systems, proofs, as well as our PHP for properties of sparse matrices.

2 Basic Preliminaries

We denote by λ ∈ N the security parameter, and by poly(λ) and negl(λ) the set of polynomial and
negligible functions respectively. A function ε(λ) is said negligible – denoted ε(λ) ∈ negl(λ) – if ε(λ)
vanishes faster than the inverse of any polynomial in λ. An adversary A is called efficient if A is a
family {Aλ}λ∈N of nonuniform circuits of size poly(λ).

For a positive integer n ∈ N we let [n] := {1, . . . , n}. For a set S, |S| denotes its cardinality, and
x←$S denotes the process of selecting x uniformly at random over S. We write vectors and matrices
in boldface font, e.g., v,V . So for a set S, v ∈ Sn is a short-hand for the tuple (v1, . . . , vn). Given two
vectors u and v we denote by u ◦ v their entry-wise (aka Hadamard) product.

6Note that such linking is implicit in any PHP prover strategy.
7i.e. with both an efficient prover and verifier [GKR08].

8

We denote by F a finite field, by F[X] the ring of univariate polynomials in variable X, and by
F<d[X] (resp. F≤d[X]) the set of polynomials in F[X] of degree less (resp. less or equal) than d.

Universal Relations. A universal relation R is a set of triples (R, x,w) where R is a relation, x ∈ Dx

is called the instance (or input), w ∈ Dw the witness, and Dx,Dw are domains that may depend on
R. Given R, the corresponding universal language L(R) is the set {(R, x) : ∃w : (R, x,w) ∈ R}. For a
size bound N ∈ N, RN denotes the subset of triples (R, x,w) in R such that R has size at most N, i.e.
|R| ≤ N. In our work, we also write R(R, x,w) = 1 (resp. R(x,w) = 1) to denote (R, x,w) ∈ R (resp.
(x,w) ∈ R).

When discussing schemes that prove statements on committed values we assume that Dw can be
split in two subdomains Du ×Dω. Finally, we sometimes use an even more fine-grained specification of
Du assuming we can split it over ` arbitrary domains (D1 × · · · × D`) for some arity `.

3 Polynomial Holographic IOPs

In this section we define our notion of Polynomial Holographic IOPs (PHP). In a nutshell, a PHP is an
interactive oracle proof (IOP) system that works for a family of universal relations R that is specialized
in two main ways. First, it is holographic, in the sense that the verifier has oracle access to the relation
encoding, a set of oracle polynomials created by a trusted party, the holographic relation encoder (or
simply, encoder) RE . Second, it is algebraic in the sense that the system works over a finite field F,
the prover can at each round send to the verifier field elements or oracle polynomials, and the verifier
queries are algebraic checks over these prover messages. For example the verifier can directly check
polynomial identities such as p1(X)p2(X)p3(X) + p4(X)

?
= 0.

Compared to the AHP notion of [CHM+20] and the polynomial IOP of [BFS20], PHPs have the
following differences: the prover can also send actual messages in addition to oracle polynomials, and
the verifier queries are more expressive than polynomial evaluations. This richer syntax—as we shall
see in Sections 6 and 9—gives us more flexibility when compiling into a cryptographic argument system.
Our model is closer to the idealized polynomial protocols of [GWC19] in terms of verifier’s checks, but
it adds to it the aforementioned general prover messages and a notion of zero-knowledge.

More formally, a Polynomial Holographic IOP is defined as follows.

Definition 3.1 (Polynomial Holographic IOP (PHP)). Let F be a family of finite fields and let R be a
universal relation. A Polynomial Holographic IOP over F forR is a tuple PHP = (r, n,m, d, ne,RE ,P,V)
where r, n,m, d, ne : {0, 1}∗ → N are polynomial-time computable functions, and RE ,P,V are three al-
gorithms for the encoder, prover and verifier respectively, that work as follows.

- Offline phase: The encoder RE(F,R) is executed on input a field F ∈ F and a relation description
R, and it returns n(0) polynomials {p0,j}j∈[n(0)] encoding the relation R.

- Online phase: The prover P(F,R, x,w) and the verifier VRE(F,R)(F, x) are executed for r(|R|) rounds;
the prover has a tuple (R, x,w) ∈ R and the verifier has an instance x and oracle access to the
polynomials encoding R.

In the i-th round, V sends a message ρi ∈ F to the prover, and P replies with m(i) messages {πi,j ∈
F}j∈[m(i)], and n(i) oracle polynomials {pi,j ∈ F[X]}j∈[n(i)], such that deg(pi,j) < d(|R|, i, j).

- Decision phase: After the r(|R|)-th round, the verifier outputs two sets of algebraic checks of the
following type.

– Degree checks: to check a bound on the degree of the polynomials sent by the prover. More in detail,
let np =

∑r(|R|)
k=1 n(k) and let (p1, . . . , pnp) be the polynomials sent by P. The verifier specifies a vector

of integers d ∈ Nnp , which is satisfied if and only if

∀k ∈ [np] : deg(pk) ≤ dk.

9

– Polynomial checks: to check that certain polynomials identities hold between the oracle polynomials
and the prover messages. More in detail, let n∗ =

∑r(|R|)
k=0 n(k) and m∗ =

∑r(|R|)
k=1 m(k), and denote by

(p1, . . . , pn∗) and (π1, . . . , πm∗) all the oracle polynomials (including the n(0) ones from the encoder)
and all the messages sent by the prover. The verifier can specify a list of ne tuples, each of the form
(G, v1, . . . , vn∗), where G ∈ F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗] and every vk ∈ F[X].
Then a tuple (G, v1, . . . , vn∗) is satisfied if and only if F (X) ≡ 0 where

F (X) := G(X, {pk(vk(X))}k∈[n∗], {πk}k∈[m∗])

The verifier accepts if and only if all the checks are satisfied.

Efficiency Measures. Given the functions r, d, n,m in the tuple PHP, one can derive some efficiency
measures of the protocol PHP such as the total number of oracles sent by the encoder, n(0), by the prover
np, by both in total, n∗; or the number of prover messages m∗. In addition to these, we define below the
following shorthands for two more measures of PHP, the degree D and the proof length l(|R|):

D := max
R∈R

i∈[0,r(|R|)]
j∈[n(i)]

(d(|R|, i, j)), l(|R|) :=
∑

i∈[r(|R|)]
j∈[n(i)]

m(i) + d(|R|, i, j).

PHP can satisfy completeness, (knowledge) soundness and zero-knowledge, defined as follows.

Completeness. A PHP is complete if for all F ∈ F and any satisfying triple (R, x,w) ∈ R, the
checks returned by VRE(F,R)(F, x) after interacting with the honest prover P(F,R, x,w), are satisfied with
probability 1.

Soundness. A PHP is ε-sound if for every field F ∈ F , relation-instance tuple (R, x) /∈ L(R) and
prover P∗ we have

Pr[〈P∗,VRE(F,R)(F, x)〉 = 1] ≤ ε

Knowledge Soundness. A PHP is ε-knowledge-sound if there exists a polynomial-time knowledge
extractor E such that for any prover P∗, field F ∈ F , relation R, instance x and auxiliary input z:

Pr
[
(R, x,w) ∈ R : w← EP∗(F,R, x, z)

]
≥ Pr[〈P∗(F,R, x, z),VRE(F,R)(F, x)〉 = 1]− ε

where E has oracle access to P∗, i.e., it can query the next message function of P∗ (and also rewind it)
and obtain all the messages and polynomials returned by it.

Zero-Knowledge. PHP is ε-zero-knowledge if there exists a PPT simulator S such that for every
field F, every triple (R, x,w) ∈ R, and every algorithm V∗ the following random variables are within ε
statistical distance:

View
(
P(F,R, x,w) ,V∗

)
≈ε View

(
SV∗(F,R, x)

)
where View

(
P(F,R, x,w) ,V∗

)
consists of V∗’s randomness, P’s messages π1, . . . , πm∗ (which do not

include the oracles) and V∗’s list of checks, while View
(
SV∗(F,R, x)

)
consists of V∗’s randomness followed

by S’s output, obtained after having straightline access to V∗, and V∗’s list of checks.

In our PHP notion the use of prover’s messages πi is not strictly necessary as they could be replaced
by (degree-0) polynomial oracles evaluated on 0 during the checks. However, having them explicitly is
useful for the zero-knowledge definition: while messages are supposed not to leak information on the
witness (i.e., they must be simulated), this does not hold for the oracles. Looking ahead to our compiler,
this implies that one does not need to hide these messages from the verifier.

10

On the class of polynomial checks. In the definition above, the class of polynomial checks of the
verifier is stated quite generally. For convenience, we note that this class includes low-degree polyno-
mials like G({pi(X)}i) (e.g., p1(X)p2(X)p3(X) + p4(X)), in which case each vi(X) = X, polynomial
evaluations pi(x), in which case vi(X) = x, tests over P messages, e.g., pi(x)− πj , and combinations of
all these.

Public coin and non-adaptive queries. A PHP is said public coin if each verifier message ρi, for
i = 1, . . . , r(|R|), is a random element over a prescribed set, and so is an additional value ρr(|R|)+1 possibly
used by the verifier to generate the final checks. A PHP is non-adaptive if all the verifier’s checks can be
fully determined from its inputs and randomness, and thus are independent of the prover’s messages.

Since the PHP verifier’s checks are also polynomials evaluated over the prover’s messages, one
may wonder if these are really independent. However, we note that, once having fixed the verifier’s
randomness (which is independent of the prover’s messages), these checks (i.e., the pairs of polynomials
(G,v) and degrees d) can be fully determined. More formally, this means that the verifier V(F, x) can
be written as the combination of two prover-independent algorithms: a probabilistic sampler SV(F)→
ρ := (ρ1, . . . , ρr(R)+1) and a deterministic algorithm DV(F, x;ρ)→ (d ∪ {(Gj ,vj)}j∈[ne]).

In our work, we only consider PHPs that are public coin and non-adaptive.

In the following we define two additional properties that can be satisfied by a PHP.

Bounded Zero-Knowledge. We define a zero-knowledge property for PHPs, which is useful for our
compiler of Section 6. Intuitively, this property requires that zero-knowledge holds even if the view
includes a bounded number of evaluations of certain oracle polynomials at given points. Since such
evaluations may leak information about the witness, this property ensures that this is not the case.

For simplicity, we define this property for our scenario of interest only: for PHPs that are public-coin
and with non-adaptive honest verifiers.

The notion below shall guarantee zero-knowledge against verifiers that follow the specification of
the protocol (thus, they are honest) but that can also arbitrarily query the polynomials sent by the
prover. However, as the polynomials evaluated in some specific points could leak bits of information of
the witness we define a notion of “admissible” evaluations.

We say that a list L = {(i1, y1), . . . } is (b,C)-bounded where b ∈ Nnp and C is a PT algorithm if
∀i ∈ [np] : |{(i, y) : (i, y) ∈ L}| ≤ bi and ∀(i, y) ∈ L : C(i, y) = 1.

Definition 3.2 ((b,C)-Zero-Knowledge). We say that PHP is (b,C)-Zero-Knowledge if for every triple
(R, x,w) ∈ R, and every (b,C)-bounded list L, the following random variables are within ε statistical
distance: (

View
(
P(F,R, x,w),V

)
, (pi(y))(i,y)∈L

)
≈ε S(F,R, x,V(F, x),L).

where p1, . . . , pnp are the polynomials returned by the prover P.
Moreover, we say that PHP is honest-verifier zero-knowledge with query bound b (b-HVZK for short)

if there exists a PT algorithm C such that PHP is (b,C)-ZK and for all i ∈ N we have Pr[C(i, y) = 0] ∈
negl(λ) where y is uniformly sampled over F.

Straight-line extractability. In our compiler to commit-and-prove zkSNARKs, we consider PHPs
where the extractor for the knowledge soundness satisfies a stronger property usually called in literature
as straight-line extractability. Informally, we consider an extractor that upon input the polynomials
returned by the prover during an interaction with the verifier outputs a valid witness. We formalize this
property below:

Definition 3.3 (Knowledge Soundness for PHPs with straight-line extractor.). A PHP is ε-knowledge-
sound with straight-line extractor if there exists an extractor WitExtract such that for any prover P∗,
every field F ∈ F , relation R, and instance x:

Pr
[
(R, x,WitExtract((pj)j∈[np])) ∈ R

]
≥ Pr[〈P∗,VRE(F,R)(F, x)〉 = 1]− ε

where (pj)j∈[np] are the polynomials output by P∗ in an execution of 〈P∗,VRE(F,R)(F, x)〉.

11

3.1 PHP Verifier Relation

We formalize the definition of an NP relation that models the PHP verifier’s decision phase. We shall
use it in our compilers in Sections 6 and 8.

Let PHP = (r, n,m, d, ne,RE ,P,V) be a PHP protocol over a finite field family F for a universal
relation R, where D is its maximal degree. We define Rphp as a family of polynomial-time relations that
expresses the checks of V over the oracle polynomials, which can be formally defined as follows.

Let np, n∗ ∈ N be two positive integers, and consider the two relations defined below:

Rdeg((dk)k∈[np], (pk)k∈[np]) :=
∧
k∈[np]

deg(pk)
?
≤ dk

Req((G,v), (pj)j∈[n∗]) := G(X, (pj(vj(X)))j∈[n∗])
?≡ 0

where G ∈ F[X,X1, . . . , Xn∗] and v = (v1, . . . , vn∗) ∈ F[X]n
∗ . For a PHP verifier that returns a

polynomial check (G′,v), Req expresses such check if one considers G as the partial evaluation of G′ at
(Y1 = π1, . . . , Ym∗ = πm∗). Rdeg instead expresses the degree checks of a PHP verifier.

Given two relations RA ⊂ Dx ×Dw and RB ⊂ D′x ×Dw with a common domain Dw for the witness,
consider the product operation RA × RB ⊂ Dx × D′x × Dw containing all the tuples (xA, xB,w) where
(xA,w) ∈ RA and (xB,w) ∈ RB. For an integer ne, let

Rn∗,np,ne := Rdeg ×
ne times︷ ︸︸ ︷

Req × · · · × Req

Then we can define the family Rphp as

Rphp :=
{
Rn∗(|R|),np(|R|),ne(|R|) : R ∈ R

}
where n∗(|R|) =

∑r(|R|)
j=0 n(j) and np(|R|) =

∑r(|R|)
j=1 n(j) are the number of total and prover oracle

polynomials respectively, in an execution of PHP with relation R ∈ R.

3.2 Compiling PHPs and AHPs into One Another

Here we discuss ways in which the formalisms of PHPs and AHPs are similar and how they can be
compiled into each other straightforwardly. Recall that the main difference in the semantics of the two
models is that a PHP supports more abstract queries that may not involve actual polynomial evaluations
but only polynomial equations. One more difference is in the expressivity of verifiers’ decision algorithms
(see below).

In the remainder of this section we consider only public-coin AHPs and PHPs with non-adaptive
queries. For AHPs, this implies that the last steps of verification can be expressed as a pair of algorithms:
one outputs a tuple of queries for the polynomial oracles; the other algorithm, that we denote by
VAHP decides whether to accept or reject and takes the oracle responses and the view of the verifier’s
randomness as input. We can structure the verifier in a public-coin PHP with non-adaptive queries in
an analogous manner.

There is one main difference between the verifiers in the two models: the decision algorithm of
a PHP, VPHP, is completely “algebraic”; VAHP is an arbitrary algorithm. While VPHP accepts if and
only if all the degree-bounds and polynomial checks hold, VAHP can (in principle) run any arbitrary
subroutine internally. We remark, however, that all the AHP constructions in [CHM+20] and several
of the polynomial IOPs8 described in [BFS20] actually present a very specific structure: they can all
be expressed as a set of randomized zero-tests of low-degree polynomials9. We finally assume that the
verifier accepts if and only if all tests pass and that all polynomials in a test are sampled on the same
unique point. When compiling AHPs into PHPs below, we shall assume this restriction on VAHP.

8Polynomial IOP Starks [BBHR19], Spartan [Set20] and Sonic Univariate [MBKM19].
9The final step in the constructions in Marlin [CHM+20] can be expressed as a conjunction of checks of the type

pi(qi, y1, . . . , yki) = 0, where qi is a point the verifier queried, yj-s are oracle responses for the query qi, pi is some
low-degree polynomial.

12

Some high-level observations about compilation follow. When compiling AHPs into PHPs, or vicev-
ersa, the offline stages and the public coins sent by the verifier are the same. In the compilers below
we need to slightly modify the provers in the two models (that we denote respectively by PAHP and
PPHP) as well as the last steps of the verifiers. We need to take into account that the verifier in an
AHP performs point-evaluation queries, whereas a PHP verifier does not. While all communication
from PPHP consists in providing oracle access to some polynomial, in a PHP the prover can also send
“messages”, scalars whose distribution we require to simulate for zero-knowledge.

Compiling PHP → AHP: The AHP prover PAHP sends the same oracle polynomials at the same
round as PPHP. It also sends all messages (scalars) from PPHP at their respective rounds as degree-
0 oracle polynomials. We let VPHP sample K random scalars

(
ri
)
i∈[K]

, where K is the number of
polynomial tests of VPHP. It then queries all the oracle polynomials in test i of VPHP on point ri. Finally,
for each of the polynomial checks i in the PHP it evaluates F (ri) with F as defined in “Polynomial checks”
in Definition 3.1 (at this point the verifier has all it needs to perform such a computation). It accepts
if and only if all the evaluations equal 0.

Compiling AHP → PHP: The PHP prover PPHP acts exactly as PAHP does by sending the same
oracle polynomials at their respective rounds (it sends no scalar messages). We let VPHP perform the
same test as VAHP and encode the queries of VAHP as constant polynomials vj-s (see “Polynomial checks”
in Definition 3.1) appropriately. More specifically, each of the polynomials vj-s in test i are such that
vj(X) = ri where ri is the polynomial we are sampling in test i. The polynomial G for each test is the
one derived from the VAHP in the natural way. We also let VPHP output an explicit degree check for
each of the oracle polynomials.

4 Our PHP Constructions

In this section we present a collection of PHP constructions for two types of constraint systems: the
by now standard rank-1 constraint systems [GGPR13] and an equally expressive variant we introduce
in Section 4.3 called R1CS-lite. The two differ in the number of matrices used to represent a relation.
While any relation for R1CS uses three matrices, instances of R1CS-lite use only two; the R1CS-lite
matrices have roughly the same size as the ones in R1CS.

All the PHPs in this section derive from the same (implicit) bare-bone protocols: one for R1CS and
another one for R1CS-lite. We then provide variants of these protocols differing in two dimensions: how
we encode non-zero entries in matrices—the ones corresponding to the relation—and how low is the
degree in the verifier’s checks. In PHPlite1 (resp. PHPr1cs1), we encode non-zero entries of the matrices
using one single mapping, while in PHPlite2 (resp. PHPr1cs2), each matrix carries its own mapping. In
turn, we describe for each of these four constructions PHP∗ a slight variant that uses fewer polynomials
to represent the relation, that we refer to as PHP∗x (intuition: “the fewer polynomials” ≈ “the higher
the degree of the verifer checks”). Finally we provide one more construction called PHPr1cs3 that shows
an interesting tradeoff between the complexity of the offline phase and the verifier workload.

4.1 Algebraic Preliminaries

Vanishing and Lagrange Basis Polynomials. For any subset S ⊆ F we denote by Z S(X) :=∏
s∈S(X − s) the vanishing polynomial of S, that is the unique monic polynomial of degree at most
|S| that is zero on every point of S. Also, for any S ⊆ F we denote by LSs (X) the s-th Lagrange basis
polynomial, which is the unique polynomial of degree at most |S| − 1 such that for any s′ ∈ S

LSs (s′) =

{
1 if s = s′,

0 otherwise.

Multiplicative subgroups. In this paper we work with subsets of F that are multiplicative subgroups.
These have nice efficiency properties crucial for our results. If H ⊆ F is a multiplicative subgroup of
order n, then its vanishing polynomial has a compact representation Z H(X) = (X |H| − 1). Similarly,
[IS90, TB04, WZC+18] show that for such specific H every Lagrange polynomial has the following

13

compact representation LHη (X) = η
|H| ·

X|H|−1
X−η . Both Z H(X) and LHη (X) can be evaluated in O(log n)

field operations. When H is clear from the context we just write Z (X) instead of Z H(X).
We assume that H comes with a bijection φH : H → [n] (e.g., using a canonical ordering of the

elements of H). For more compact notation, we use elements of H to index the entries of a matrix
M ∈ Fn×n (resp. vector v ∈ Fn, namely we useMη,η′ (resp. vη) to denoteMφH(η),φH(η′) (resp. vφH(η)).

For a multiplicative subgroup H ⊆ F of order n and any vector v ∈ Fn, we denote by v(X) its
interpolating polynomial in H, which is the unique polynomial of degree at most |H| − 1 such that, for
all η ∈ H, v(η) = vη. Note that v(X) can be computed from v in time O(n log n).

Lemma 4.1 (Polynomial Division). Given a multiplicative subgroup H ⊂ F and polynomial p ∈ F≤d[X]
where d ≥ n, there exist unique quotient and remainder polynomials q ∈ F≤d−|H|(X), r ∈ F≤|H|−2(X)
and constant c ∈ F such that p(X) = q(X) ·Z H(X)+X ·r(X)+c. We denote by DivPolyH the (efficient)
procedure that computes these polynomials in O(d log |H|) time using polynomial long division.

We use the following strategy from [BCR+19, CHM+20] as the main tool to define a sumcheck
protocol for univariate polyomials over multiplicative subgroups:

Lemma 4.2 (Univariate Sumcheck). Let p ∈ Fd[X] and multiplicative subgroup H ⊂ F of order |H| = n,

σ =
∑
η∈H

p(η) ⇐⇒ p(0) =
σ

n

Proof. The above claim σ =
∑

η∈H p(η) is equivalent to 0 =
∑

η∈H p
′(η) with p′(X) = p(X) − σ

n . Let
q(X), r(X), c be the output of DivPolyH(p′(X)) and p′(0) = c = 0, since Z H(η) = 0 for all η ∈ H,
the sumcheck above reduces to checking

∑
η∈H η · r(η) = 0. By the zero sum lemma from the Aurora

proof system [BCR+19][Remark 5.6], given any polynomial f ∈ F<n[X] and multiplicative subgroup
H of size n it holds that

∑
η∈H f(η) = 0 if and only if f(0) = 0. Then, the equation holds because

r′(X) = X · r(X) is a polynomial of degree less than n with constant term 0.

Definition 4.1 (Masking Polynomial). Given a subgroup H ⊂ F and an integer b ≥ 1, we denote by
MaskHb (·) a method which on input a polynomial p ∈ F<|H|[X] returns a random polynomial p′(X) ∈
F<|H|+b[X] that agrees with p(X) on the points of the subgroup H. This is essentially a shorthand for
MaskHb (p(X)) := p(X) + Z H(X)ρ(X) for a randomly sampled ρ(X)←$F<b[X].

Definition 4.2 (Bivariate Lagrange polynomial). Given a multiplicative subgroup H ⊆ F, we define the
bivariate Lagrange polynomial ΛH(X,Y) := Z H(X)·Y−X·Z H(Y)

n·(X−Y) .

This polynomial has two properties that are interesting for our work. First, for all η ∈ H it holds
that ΛH(X, η) = LHη (X). Second, its compact representation enables its evaluation in O(log n) time.

The first property is a direct corollary of the following lemma.

Lemma 4.3. Let F be a finite field and H ⊆ F a multiplicative subgroup. Then it holds ΛH(X,Y) =∑
η∈H LHη (X) · LHη (Y).

Proof. The claim is proven via the following transformations:∑
η∈H
LHη (X) · LHη (Y) =

∑
η∈H

η2

n2

Z H(X) · Z H(Y)

(X − η)(Y − η)
=

Z H(X) · Z H(Y)

X − Y
∑
η∈H

η2

n2

X − Y
(X − η)(Y − η)

=
Z H(X) · Z H(Y)

n · (X − Y)

∑
η∈H

η2

n

(
X − η

(X − η)(Y − η)
+
X − Y − (X − η)

(X − η)(Y − η)

)

=
Z H(X) · Z H(Y)

n · (X − Y)

∑
η∈H

η2

n

(
1

Y − η
− 1

X − η

)

=
1

n · (X − Y)

Z H(X)
∑
η∈H

η · LHη (Y)− Z H(Y)
∑
η∈H

η · LHη (X)

=

(Z H(X) · Y − Z H(Y) ·X)

n · (X − Y)

14

In the last step we used the property that any polynomial p(X) of degree < |H| can be written as∑
η∈H p(η) · LHη (X), which implies that X =

∑
η∈H η · LHη (X).

Sparse Matrix Encodings For a matrix M we denote by ||M || the number of its nonzero entries,
which we call its density. We will occasionally use encodings for sparse matrices inspired to that of
[CHM+20]. In brief, a sparse matrix M can be represented with three polynomials (valM, rowM, colM),
where rowM : K→ H (resp. colM : K→ H) is the function such that rowM(κ) (resp. colM(κ)) is the row
(resp. column) index of the κ-th nonzero entry of M , and valM : K → F is the function that encodes
the values of M in some arbitrary ordering.

Definition 4.3 (Sparse Matrix Encodings). Let H be a multiplicative subgroup of order n, M ∈ Fn×n
be a square matrix with elements in F, and let K be another multiplicative subgroup of F whose order is
at least10 the number of nonzero elements of M , namely ||M || ≤ |K|.

The sparse encoding of M is a triple (valM, rowM, colM) of polynomials in F<|K|[X] such that for all
κ ∈ K

valM(κ) = M rowM(κ),colM(κ)

We define the matrix-encoding polynomial of M as the bivariate polynomial

VM (X,Y) :=
∑
κ∈K

valM(κ) · LHrowM(κ)(X) · LHcolM(κ)(Y).

Note that the matrix-encoding polynomial of M is such that, for all η, η′ ∈ H, VM (η, η′) = Mη,η′ .
When the matrix is obvious from the context, we will not explicitly use the subscript M in these

polynomials.
In the following lemma we show how a sparse encoding polynomial of a matrix M can be used to

express linear transformations by M .

Lemma 4.4 (Sparse Linear Encoding). Let M ∈ Fn×n be a matrix with a sparse encoding polynomial
VM (X,Y) as per Definition 4.3. Let v,y ∈ Fn bet two vectors and v(X), y(X) be their interpolating
polynomials over H. Then y = M · v if and only if y(X) =

∑
η∈H v(η) · VM (X, η).

Proof. This can be seen via the following equality∑
η,η′∈H

Mη,η′ · v(η′) · LHη (X) =
∑
κ∈K

valM (κ) · v(col(κ)) · LHrow(κ)(X)

=
∑
κ∈K

valM (κ) ·
∑
η∈H

v(η) · LHcol(κ)(η) · LHrow(κ)(X)

=
∑
η∈H

v(η) · VM (X, η)

If y = M ·v then its interpolation y(X) =
∑

η∈H yη ·LHη (X) can be written y(X) =
∑

η,η′∈HMη,η′ ·v(η′)·
LHη (X), and thus the above equality shows the desired result. On other direction, if y(X) =

∑
η∈H v(η) ·

VM (X, η) then by the above equality we have that for all η ∈ H holds yη =
∑

η′∈HMη,η′ · v(η′), i.e.,
y = M · v.

Joint Sparse Encodings for Multiple Matrices. Finally, when working with multiple matrices, it
is sometimes convenient to use a sparse encoding that keeps track of entries that are nonzero in either
of the matrices. This has the advantage of having a pair of col, row polynomials that is common to all
matrices.

Here we show the case of two matrices L,R. This can be easily extended to more matrices. Let
S = {(η, η′) ∈ H×H : Lη,η′ 6= 0∨Rη,η′ 6= 0} be the set of indices where either L or R are nonzero. Let
K be the minimal-size multiplicative subgroup of F such that |K| ≥ |S|, where |S| is in the worst case

10In the best case, we will have |K| = ||M ||. But sometimes a subgroup of this size (being FFT-friendly as well) may
not exist and we need to pad with dummy zero entries.

15

||L||+||R||. Then we can encode matrices L,R similarly to definition 4.3 by using the same polynomials
{row, col} to keep track of the indices of their nonzero entries, and the polynomials {valL, valR} for their
values. Namely, for any κ ∈ K, the polynomials are defined such that valL(κ) = Lrow(κ),col(κ) and
valR(κ) = Rrow(κ),col(κ).

4.2 Rank-1 Constraint Systems

We recall the definition of the rank-1 constraint systems (R1CS) language.11

Definition 4.4 (R1CS). Let F be a finite field and n,m, ` ∈ N be positive integers. The universal
relation RR1CS is the set of triples

(R, x,w) :=
(
(F, n,m, `,L,R,O),x,w

)
where L,R,O ∈ Fn×n, max{||L||, ||R||, ||O||} ≤ m, x ∈ F`−1, w ∈ Fn−`, and for z := (1,x,w) it holds

(L · z) ◦ (R · z) = O · z

We now introduce a new language called R1CS-lite, which can be seen as a simplified version of
R1CS with only two matrices. In brief, an R1CS-lite relation is defined by two matrices L,R and is
satisfied if there exists a vector c such that (L ·c)◦ (R ·c) = c. We show that R1CS-lite is as expressive
as R1CS as it can be used to express the language of arithmetic circuit satisfiability with essentially the
same complexity as R1CS (see Appendix A.3). At the same time, though, the two-matrix form allows
us to obtain PHP constructions (and resulting zkSNARKs) that are simpler and more efficient.

More formally, R1CS-lite is defined as follows.

Definition 4.5 (R1CS-lite). Let F be a finite field and n,m ∈ N be positive integers. The universal
relation RR1CS-lite is the set of triples

(R, x,w) := ((F, n,m, `, {L,R}),x,w)

where L,R ∈ Fn×n, max{||L||, ||R||} ≤ m, the first ` rows of R are (−1, 0, . . . , 0) ∈ F1×n, x ∈ F`−1,
c ∈ Fn−`, and for c := (1,x,w), it holds

(Lc) ◦ (Rc) = c

Summary of our PHP constructions. In the following table, we provide a summary of our con-
structions for R1CS and R1CS-lite that are described in the next sections:

4.3 Our PHPs for R1CS-lite

In this section we describe a collection of PHPs for the R1CS-lite constraint system. Precisely, we give
one main protocol and a few variants of it that offer various efficiency tradeoffs.

In all our constructions we consider a variant of the R1CS-lite relation in which we slightly expand
the witness, and we express the witnesses and the check into polynomial form as follows.

Definition 4.6 (Polynomial R1CS-lite). Let F be a finite field and n,m ∈ N be positive integers. We
define the universal relation RpolyR1CS-lite as the set of triples(

(F, n,m, {L,R}, `),x, (a′(X), b′(X))
)

where L,R ∈ Fn×n, max{||L||, ||R||} ≤ m, x ∈ F`−1, a′(X), b′(X) ∈ F≤n−`−1[X], and such that, for
x′ = (1,x), a(X) :=

∑
η∈L x

′
φH(η) · LLη (X) + a′(X) · Z L(X) and b(X) := 1 + b′(X) · Z L(X), it holds

a(X) + Z · b(X) +
∑
η,η′∈H

(
Lη,η′ + Z ·Rη,η′

)
· a(η′) · b(η′) · LHη (X) = 0 ∈ F[X,Z] (1)

where L := {φ−1
H (1), . . . , φ−1

H (`)}.
The following lemma shows that the two relations are equivalent. For completeness, we give the

proof in Appendix A.1.

Lemma 4.5. L(RR1CS−lite) ≡ L(RpolyR1CS-lite).
11For simplicity of presentation, our definition uses square matrices.

16

PHP degree
oracles

msgs proof length
V checks

RE P deg degX,{Xi}(G1) degX,{Xi}(G2)

PHPlite1 4.3.1 2m 8 7 1 |π|+ 2m 2 2 2
PHPlite1x Rk.2 2m 5 7 1 |π|+ 2m 2 2 3
PHPlite2 4.3.2 m 24 7 1 |π| 2 2 2
PHPlite2x Rk.3 m 16 7 1 |π| 2 2 3
PHPr1cs1 4.4.1 3m 9 8 1 |π′|+ 4m 2 2 2
PHPr1cs1x Rk.5 3m 6 8 1 |π′|+ 4m 2 2 3
PHPr1cs2 4.4.2 m 57 8 1 |π′| 2 2 2
PHPr1cs2x Rk.6 m 42 8 1 |π′| 2 2 3
PHPr1cs3 4.4.3 3m 12 8 1 |π′| 2 2 5

Table 3: Comparison of our PHP constructions, all with relation encoder complexity O(m logm), prover
complexity O(m logm+ n log n) and verifier complexity O(`+ logm+ log n). Here, n is the dimension
of the square matrices. For simplicity of the table, we make the assumption that |K| = m > 2n, which is
true in many cases. We call |π| = 5n+2m−2`+2ba+2bb+2bs+6bq−4, and |π′| = |π|+n−`+bw+7bq.
For the verifier checks, we denote by “deg” the number of degree checks that require a tight bound; the
last two columns show the degree of the two polynomial checks where in the first one we have all
vj(X) = y and in the second one all vj(X) = X.

4.3.1 Our Main PHP for R1CS-lite

We start by describing the main ideas of this PHP protocol, which we denote PHPlite1. The prover’s
goal is to convince the verifier that the polynomials a(X), b(X) satisfy equation (1).

To this end, the relation encoder RE encodes the matrices L,R by using a joint sparse encoding,
as discussed in section 4.1. This encoding consists of four polynomials (valL, valR, col, row) in F<|K|[X].
In this case we use a multiplicative subgroup K ⊆ F of minimal cardinality such that |K| ≥ 2m ≥
||L||+ ||R||.

By applying the sparse linear encoding of Lemma 4.4 to the matrices L andR and using the property
of the bivariate Lagrange polynomial that ΛH(X, η) = LHη (X), equation (1) can be expressed as

0 = a(X) + Z · b(X) +
∑
η∈H

a(η) · b(η) · (VL(X, η) + Z · VR(X, η))

=
∑
η∈H

(a(η) + Z · b(η)) · ΛH(X, η) + a(η) · b(η) · VLR(X, η, Z) ∈ F[X,Z] (2)

where VLR(X,Y, Z) is the following polynomial, exploiting the use of col, row that are common to L,R:

VLR(X,Y, Z) = VL(X,Y) + Z · VR(X,Y) =
∑
κ∈K

(valL(κ) + Z · valR(κ)) · LHrow(κ)(X) · LHcol(κ)(Y)

In order to show that a(X), b(X) satisfy equation (2), the verifier draws random points x, α←$F
that are used to “compress” the equation from F[X,Z] to F. Then, the prover’s task becomes to show
that ∑

η∈H
(a(η) + α · b(η)) · ΛH(x, η) + a(η) · b(η) · VLR(x, η, α) = 0

This is done via a univariate sumcheck over p(X) := (a(X) + α · b(X)) · ΛH(x,X) + a(X) · b(X) ·
VLR(x,X, α). However, since p(X) depends on the witness, we make the sumcheck zero-knowledge by
doing it over p(X)+s(X) for a random polynomial s(X) sent by the prover in the first round. Although
this resembles the zero-knowledge sumcheck technique of [BCR+19], we propose an optimized way to
randomly sample a sparse s(X), which is sufficient for the bounded zero-knowlegde of our PHP. So, for

17

the sumcheck the prover sends two polynomials q(X), r(X) such that s(X)+p(X) = q(X) ·Z H(X)+X ·
r(X). The verifier checks this equation by evaluating all the polynomials on a random point y←$F\H.
To do this, the verifier can compute on its own (in O(log n) time) the polynomials ΛH(x, y), Z H(y), and
query all the others, except for VLR(x, y, α). For the latter the prover sends a candidate value σ and runs
a univariate sumcheck to convince the verifier that σ =

∑
κ∈K(valL(κ)+α·valR(κ))·LHrow(κ)(x)·LHcol(κ)(y).

In what follows we give a detailed description of the PHP protocol PHPlite1.

Offline phase RE(F, n,m, {L,R}, `). The holographic relation encoder takes as input a description
of the specific relation and outputs eight polynomials

{col(X), row(X), cr(X), col′(X), row′(X), cr′(X), vcrL(X), vcrR(X)} ∈ F≤|K|[X]

that are computed as follows. First, it finds the polynomials {col, row, valL, valR} described above such
that for all κ ∈ K valL(κ) = Lrow(κ),col(κ) and valR(κ) = Rrow(κ),col(κ). Second, it computes:

cr(X) :=
∑
κ∈K

col(κ) · row(κ) · LKκ (X)

vcrL(X) :=
∑
κ∈K

valL(κ) · cr(κ) · LKκ (X)

vcrR(X) :=
∑
κ∈K

valR(κ) · cr(κ) · LKκ (X)

col′(X) := X · col(X), row′(X) := X · row(X), cr′(X) := X · cr(X)

Essentially, the polynomials cr(X), vcrL(X) and vcrR(X) are low-degree extensions of the polynomi-
als col(X) · row(X), valL(X) · col(X) · row(X) and valR(X) · col(X) · row(X) respectively, while col′, row′

and cr′ are a shifted version of col, row and cr respectively. The intuition behind expanding the sparse
encoding of L and R in this way is to keep the polynomial checks G of the verifier of the lowest possible
degree. In particular we are interested in obtaining a PHP where degX,{Xi}(G) ≤ 2 as it allows inter-
esting instantiations of our compiler. As an example, by adding the polynomial cr(X) we can replace
terms involving col(X) · row(X) with cr(X). This shall become more clear when looking at the decision
phase.

Online phase 〈P ((F, n,m, {L,R}, `),x, (a′(X), b′(X))) ,V(F, n,m,x)〉.

Round 1.

P {â′(X), b̂′(X), s(X)} V
The prover samples two random polynomials

qs(X)←$Fbs+bq−1[X], rs(X)←$Fbr+bq−1[X],

and sets s(X) := qs(X) · Z H(X) + X · rs(X). Note that, whenever
br +bq ≤ n, the pair qs(X), rs(X) is a unique decomposition of s(X), and also s(X) ∈ F≤n+bs+bq−1[X].
P sends to V: s(X) and randomized versions of the witness polynomials â′(X)←$Mask

H\L
ba+bq

(a′(X)) ∈
F≤n−`+ba+bq−1[X] and b̂′(X)←$Mask

H\L
bb+bq

(b′(X)) ∈ F≤n−`+bb+bq−1[X].

Round 2.

P x, α V

P {q(X), r(X)} V

The verifier sends two random points x, α←$F.

The prover uses x, α to “compress” the check of equation (1) over
F[X,Z] into a sumcheck

∑
η∈H p(η) = 0 over F for the polynomial

p(X) := (â(X) + α · b̂(X)) · ΛH(x,X) + â(X) · b̂(X) · VLR(x,X, α)

18

where, for x′ = (1,x), we have

â(X) := â′(X) · Z L(X) +
∑
η∈L

x′
φH(η) · LLη (X) ∈ F≤n+ba+bq−1[X],

b̂(X) := b̂′(X) · Z L(X) + 1 ∈ F≤n+bb+bq−1[X],

and ΛH(x,X) ∈ Fn−1[X] is the minimal degree polynomial such that for all η ∈ H: ΛH(x, η) = LHη (x).
Next, P computes and sends polynomials q(X) ∈ F≤2n+ba+bb+2bq−3[X] and r(X) ∈ F≤n−2[X] such

that
s(X) + p(X) = q(X) · Z H(X) +X · r(X)

to prove the univariate sumcheck statement
∑

η∈H s(η) + p(η) = 0.
Note that by construction

∑
η∈H s(η) = 0, and its role here is to (sufficiently) randomize q(X), r(X)

in such a way that their evaluations do not leak information about the witness (see the proof of bounded
zero-knowledge in Theorem 4.7).

Round 3.

P y V

P σ, { q′(X), r′(X) } V

The verifier sends a random point y←$F \H.

The prover uses y to compute σ ← VLR(x, y, α) and then defines the
degree-(|K| − 1) polynomial

p′(X) :=
∑
κ∈K

(valL(κ) + α · valR(κ)) · LHrow(κ)(x) · LHcol(κ)(y) · LKκ (X)

The goal of the prover is to convince the verifier that∑
κ∈K

p′(κ) = σ

∀κ ∈ K : p′(κ) = (valL(κ) + α · valR(κ)) · LHrow(κ)(x) · LHcol(κ)(y)

These two statements can be combined in such a way that P does not need to send p′(X), which is
implicitly known by the verifier since it depends only on the polynomials provided by the encoder.

For the first statement, since p′(X) is a polynomial with degree smaller than the size of the subgroup
K, the univariate sumcheck lemma over (p′(X)− σ

|K|) reduces to proving that its constant coefficient is
zero. This can be done by computing r′(X) ∈ F≤|K|−2[X] such that p′(X) = X · r′(X) + σ

|K| .
For the second statement, note that by decomposition of the Lagrangians this is equivalent to:

∀ κ ∈ K : n2 · p′(κ) · (x− row(κ)) · (y − col(κ)) =
(
valL(κ) + α · valR(κ)

)
· row(κ) · col(κ) · Z H(x) · Z H(y)

that, by using the definition of p′(X), can be written as

∀ κ ∈ K :

(
κ · r′(κ) +

σ

|K|

)
· n2 · (xy + cr(κ)− x · col(κ)− y · row(κ))

−
(
vcrL(κ) + α · vcrR(κ)

)
· Z H(x) · Z H(y) = 0

Using the relation polynomials, P can define the auxiliary polynomial

t(X) :=
σ

|K|
·n2 ·(xy+cr(X)−x·col(X)−y·row(X))+r′(X)·n2 ·(xy·X+cr′(X)−x·col′(X)−y·row′(X))

−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y)

of degree ≤ 2|K| − 2, that equals 0 on any κ ∈ K. By the remainder theorem,

∀ κ ∈ K : t(X) ≡ t(κ) mod (X − κ) ⇐⇒ t(X) ≡ 0 mod Z K(X)

Thus P can compute the following polynomial:

q′(X) :=
t(X)

Z K(X)
∈ F≤|K|−2[X]

and sends {q′(X), r′(X)} to V.

19

Decision phase. The verifier outputs the following degree checks

deg(â′), deg(b̂′), deg(s), deg(q), deg(q′)
?
≤ Dsnd (3)

deg(r)
?
≤ n− 2 (4)

deg(r′)
?
≤ |K| − 2 (5)

and the following polynomial checks

s(y) +

 â′(y) · Z L(y) +
∑
η∈L

x′
φH(η) · LLη (y)

 · (ΛH(x, y) + (b̂′(y) · Z L(y) + 1) · σ
)

+ (b̂′(y) · Z L(y) + 1) · α · ΛH(x, y)− q(y) Z H(y)− y r(y)
?
= 0 (6)

σ

|K|
· n2 · (xy + cr(X) − x · col(X) − y · row(X))

+ r′(X) · n2 · (xy ·X + cr′(X) − x · col′(X) − y · row′(X))

−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y)− q′(X) · Z K(X)

?
= 0 (7)

where, we recall, ΛH(x, y) = Z H(x)·y−x·Z H(y)
n·(x−y) . Above, we highlight the oracle polynomials in gray , the

prover messages in blue, and the coefficients of the verifier’s polynomial checks in red. This is to help
seeing how the above checks fit the ones described in Definition 3.1.

In the first degree check, Dsnd is an integer that can be chosen by the verifier and governs the
soundness error as shown in Theorem 4.6. While for correctness we need Dsnd ≥ D− 1, where D is the
degree of the PHP (shown below), this bound does not need to be tight (i.e., Dsnd = D − 1) as it is
the case for the degree checks on r and r′. This observation has an impact in our compiler where, by
choosing Dsnd to be the maximal degree supported by the commitment scheme, one does not need to
create a proof for degree checks of the form “≤ Dsnd”.

4.3.1.1 Efficiency Analysis

We analyze the efficiency of the protocol PHPlite1.

Relation encoder It creates 8 polynomials, five of degree ≤ |K| − 1 and three of degree ≤ |K|; this is
doable in time O(|K| log |K|).
Degree By looking at the polynomials of the highest degree sent by relation encoder and prover, one
can see that D = max{2n + ba + bb + 2bq − 3, n + bs + bq − 1, |K|}, whose result depends on the
difference between |H| and |K| and the concrete values of ba, bb, bq, bs. For example, when all these
bounds are small constants (as in our use cases) and |K| ≥ 3|H|, then D = |K|.
Proof length. The prover sends one element of F and 7 oracle polynomials. By inspection, the proof
length is l(|R|) = 6n+ 2|K| − 2`+ 2ba + 2bb + bs + 5bq − 4. With a closer look at the shape of s(X),
we have that the number of its nonzero coefficients is actually at most bs + 2bq + max{bs, br}, which
gives us a proof length l(|R|) = 5n+ 2|K| − 2`+ 2ba + 2bb + 2bs + 6bq − 4.

Prover complexity. The total complexity is O(|K| log |K|+ |H| log |H|), which is justified as follows.

The polynomials sent in the first round can be computed in time O(|H| log |H|).
In the second round, the less trivial step is computing VLR(x,X, α) which we claim doable in time
O(|K| + |H| log |H|) as follows. First, one can precompute all LHrow(κ)(x) in time O(|H| log |H|) since
each of them can be computed in O(log |H|) time and there are at most |H| of these terms (recall that
row maps into H). Second, one can compute all the terms

{
VLR(x, η, α)

}
η∈H =

∑
κ∈K

col(κ)=η

(valL(κ) + α · valR(κ)) · LHrow(κ)(x)

η∈H

20

P ((F, n,m, {L,R}, `),x′, (a′(X), b′(X))) V vcrL,vcrR,row,col,cr,row
′,col′,cr′(F, n,m,x′)

Sample random qs, rs, set s(X)←qs(X)Z H(X) +Xrs(X)

Sample random â′, b̂′ that agree with a′, b′ on H \ L { â′, b̂′, s}

â(X)← â′(X)Z L(X) +
∑
η∈L

x′
φH(η)L

L
η(X)

b̂(X)← b̂′(X)Z L(X) + 1 x, α x, α←$F

. // Sumcheck for “
∑
η∈H s(η) + (â(η) + α · b̂(η)) · ΛH(x, η) + â(η) · b̂(η) · VLR(x, η, α) = 0”

Compute q(X), r(X) s.t.

s(X) + (â(X) + α · b̂(X)) · ΛH(x,X)

+ â(X) · b̂(X) · VLR(x,X, α) = q(X)Z H(X) +Xr(X) { q, r}

y y←$F \H

. // Structured sumcheck for “
∑
κ∈K(valL(κ) + α · valR(κ)) · LH

row(κ)
(x) · LH

col(κ)
(y) = VLR(x, y, α)”

σ ← VLR(x, y, α)

Compute q′(X), r′(X) s.t. q′(X) · Z K(X) =(
Xr′(X) +

σ

|K|

)
n2(xy + cr(X)− x col(X)− y row(X))

−
(
vcrL(X) + α vcrR(X)

)
· Z H(x) · Z H(y) σ, { q′, r′}

Verifier’s checks

• deg(â′), deg(b̂′), deg(s), deg(q), deg(q′)
?
≤ Dsnd ∧ deg(r)

?
≤ n− 2 ∧ deg(r′)

?
≤ |K| − 2

• s(y) +

 â′(y) · Z L(y) +
∑
η∈L

x′
φH(η) · L

L
η(y)

 · (ΛH(x, y) + (b̂′(y) · Z L(y) + 1) · σ
)

+(b̂′(y) · Z L(y) + 1) · α · ΛH(x, y)− q(y) Z H(y)− y r(y)
?
= 0

∧ σ

|K|
· n2 · (xy + cr(X) − x · col(X) − y · row(X))

+ r′(X) · n2 · (xy ·X + cr′(X) − x · col′(X) − y · row′(X))

−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y)− q′(X) · Z K(X)

?
= 0

Figure 1: Our PHP protocol PHPlite1 for R1CS-lite.

in time O(|K|) (with O(|H|) memory). This is possible by computing, for every κ ∈ K, the term
(valL(κ) + α · valR(κ)) · LHrow(κ)(x), which can be accumulated into the relevant variable VLR(x, η, α)

such that η = col(κ). Finally, VLR(x,X, α) is computed by interpolating {VLR(x, η, α)}η∈H in time

21

O(|H| log |H|).
Once having computed VLR(x,X, α), the polynomials q(X) and r(X) can be obtained using polynomial
long division in time O(|H| log |H|).
In round 3, one can compute p′(X) in time O(|K| log |K| + |H| log |H|) using ideas similar the ones
above, while q′(X), r′(X) can be computed in time O(|K| log |K|) using polynomial division.

Verifier complexity. This amounts to O(` + log |H| + log |K|) field operations, which are needed to
construct the polynomial checks. In particular, notice that: computing evaluations of the vanishing
polynomials in H costs O(log |H|); log |K| stems from defining the integer |K|; and ` is the cost needed
to compute the “shifted polynomial” with the public input.

4.3.1.2 Security Analysis

Theorem 4.6 (Knowledge Soundness). The PHP protocol PHPlite1 described in section 4.3 is ε-sound
with ε = |H|

|F| + 2Dsnd+|H|
|F\H| , and 0-knowledge-sound. Furthermore, PHPlite1 is straightline extractable (Def-

inition 3.3).

Proof. We begin by proving the soundness of this PHP, and then show its proof of knowledge property.

Soundness. Assume that for the given polynomial R1CS-lite relation R = (F, n,m, {L,R}, `) and
input x there exists no witness a′(X), b′(X) that satisfies the equation (1) of Definition 4.6. Then by
correctness of the relation encoder’s polynomials, also there is no witness satisfying equation (2).

This means that for the polynomials â′(X), b̂′(X) sent by the prover in the first round it must be
the case that

f(X,Z) =
∑
η∈H

(â(η) + Z · b̂(η)) · ΛH(X, η) + â(η) · b̂(η) · VLR(X, η, Z) 6= 0 over F[X,Z].

where â(X) and b̂(X) are appropriately reconstructed as â′(X) · Z L(X) +
∑

η∈L x
′
φH(η) · LLη (X) and

b̂′(X) · Z L(X) + 1 respectively.
Let s(X), â′(X), b̂′(X), q(X), r(X), q′(X), r′(X) and σ be the polynomials and message sent by the

prover P∗, and x, α, y be the verifier’s messages. Let us recall that by the order of the messages in the
protocol we have: s(X), â′(X), b̂′(X) are independent of x, α, and that σ, q(X), r(X) are independent
of y.

By considering the polynomial check (7) and by the correctness of the relation encoder’s polynomials
we deduce that the polynomial p′(X) :=

(
X · r′(X) + σ

|K|

)
is such that

∀ κ ∈ K : p′(κ) =
(
vcrL(κ) + α · vcrR(κ)

)
· Z H(x) · Z H(y)

n2(xy + cr(κ)− x · col(κ)− y · row(κ))

that is ∀κ ∈ K : p′(κ) = (valL(κ) + α · valR(κ)) · LHrow(κ)(x) · LHcol(κ)(y)

Then, by considering the degree check (5) we have that r′(X) ∈ F≤|K|−2[X], and thus p′(X) is a
polynomial of degree ≤ |K|−1 with constant term σ/|K|. Hence by Lemma 4.2, it holds σ =

∑
κ∈K p

′(κ).
Putting this together with the definition of p′(κ) we obtain that σ = VLR(x, y, α).
Next, since the polynomials s(X), â(X), b̂(X), q(X), r(X), VLR(x,X, α) are independent of y, by

Schwartz-Zippel we obtain that the polynomial check (7) (combined with the first degree check (3) and
that σ = VLR(x, y, α)) implies that

s(X) + (â(X) + α · b̂(X)) · ΛH(x,X) + â(X) · b̂(X) · VLR(x,X, α) = q(X) · Z H(X) +X · r(X)

holds with probability ≥ 1− 2Dsnd+|H|
|F\H| over the choice of y.

The degree check (4) gives us that r(X) ∈ F≤n−2[X] and thus by Lemma 4.2 we have that∑
η∈H

s(η) + f(x, α) =
∑
η∈H

s(η) + (â(η) + α · b̂(η)) · ΛH(x, η) + â(η) · b̂(η) · VLR(x, η, α) = 0

22

Let s∗ =
∑

η∈H s(η). Since s∗ and f(X,Z) are independent of x, α, by the Schwartz-Zippel lemma,
we have that, over the random choice of x, α←$F, Pr[f(x, α) + s∗ = 0] ≤ |H||F| .

Knowledge-Soundness. We define the extractor E , which is simply the algorithm that runs the
prover P∗ for the first round, obtains â′(X), b̂′(X), and then reconstructs the non randomized witness
polynomials a′(X) =

∑
η∈H â

′(η)LHη (X) and b′(X) =
∑

η∈H b̂
′(η)LHη (X).

If the verifier accepts with probability greater than the soundness error ε given above, then the
polynomials returned by E must encode a valid witness.

Finally, it is straightforward to see the straightline extractability. The algorithm WitExtract is the
one that takes the polynomials â′(X), b̂′(X), and reconstructs the R1CS-lite witness by taking the
product of their evaluations on the points of H \ L (see Appendix A.1).

Theorem 4.7 (Zero-Knowledge). The PHP PHPlite1 described in section 4.3.1 is perfect zero-knowledge.
Furthermore, it is perfect honest-verifier zero-knowledge with query bound b = (ba, bb, bs, bq, br,∞,∞).

Proof. We begin by showing the perfect zero-knowledge. This turns out rather easily. In fact, in the
PHP model we do not need to worry about the oracle polynomials, the prover in Section 4.3 sends only
one (non-oracle) message, σ. This message, moreover, does not depend on the witness. More formally,
we describe a simulator S that on input the relation R = (F, n,m, {L,R}, `) and the input x, and given
oracle access to the verifier V∗, proceeds as follows. It runs V∗ to obtain its random messages x, y, α
and its checks. Next, it computes σ = VLR(x, y, α), and outputs σ followed by checks obtained from V∗.
It is easy to see that View

(
SV∗(F,R,x)

)
is identically distributed to View

(
P(F,R,x, a′(X), b′(X)) ,V∗

)
.

Next, we prove b-HVZK for bounds ba, bb, bs, bq, br on the polynomials â′(X), b̂′(X), s(X), q(X), r(X)
respectively, whereas for the polynomials q′(X), r′(X) we tolerate unbounded number of evaluations (this
is trivial as these polynomials depend on public information only).

Let C(i, γ) be the algorithm that on any pair (i, γ) outputs 1 if and only if i ∈ {1, . . . , 7} and γ /∈ H.
For a γ←$F, it holds Pr[C(i, γ) = 0] = |H|/|F|, which is negligible for the choices of F considered in
this paper.

The simulator samples a random tape ρ for the honest verifier and runs its query sampler (x, y, α)←
QV(ρ) and its decision algorithm {d, {(G,v)} ← DV(F,x;ρ) to obtain its checks. Then, it simulates
answers to polynomial evaluations as follows.

For every pair (i, γ) with i ∈ {6, 7} (i.e., for every query on q′, r′), the simulator computes ti,γ ← pi(γ)
honestly, which is trivial as these polynomials depend only on public information.

For every pair (i, γ) ∈ L such that i ∈ [5]\{4} (i.e., every query on â′, b̂′, s, r), the simulator samples
a random value ti,γ←$F and stores a tuple (i, γ, ti,γ) in a table T.

For every query (4, γ) it simulates the answer with the value t4,γ computed as follows:

ta,γ ← t1,γ · Z L(γ) +
∑
η∈L

x′
φH(η) · LLη (γ)

tb,γ ← t2,γ · Z L(γ) + 1

tp,γ ← (ta,γ + α · tb,γ) · ΛH(x, γ) + ta,γ · tb, · VLR(x, γ, α)

t4,γ ←
tp,γ + t3,γ − γ · t5,γ

Z H(γ)

While doing the computations above, for j = 1, 2, 3, 5, if an entry (j, γ, tj,γ) already exists in T, then
the corresponding value tj,γ is used; otherwise a random tj,γ←$F is sampled and a new entry (j, γ, tj,γ)
is added to T.
S returns

(
ρ, VLR(x, y, α), (d, {(G,v)}), {ti,γ}(i,γ)∈L

)
.

To conclude the proof, we argue that the distribution of S’s output is identical to that of(
View

(
P(F,R,x, a′, b′) ,V

)
, (pi(γ))(i,γ)∈L

)
.

By the (ba + bq)-wise (resp. (bb + bq)-wise) independence of the polynomial â′(X) (resp. b̂′(X))
sampled by the honest prover (and using the fact that they are evaluated on F\H), we have that the set
of simulated answers {t1,γ}(1,γ)∈L (resp. {t2,γ}(2,γ)∈L) are identically distributed (we recall that these
sets are of size ba and bb respectively) to those of the real prover.

23

For the remaining polynomials, let us recall that for the honest prover we have

p(X) = (â(X) + α · b̂(X)) · ΛH(x,X) + â(X) · b̂(X) · VLR(x,X, α)

s(X) = qs(X)Z H(X) +Xrs(X)

where x′ = (1,x), â(X) = â′(X) · Z L(X) +
∑

η∈L x
′
φH(η) · LLη (X), b̂(X) = b̂′(X) · Z L(X) + 1, and

qs(X)←$Fbs+bq [X] and rs(X)←$Fbr+bq [X]. Also, let us write p(X) = qp(X)Z H(X) +Xrp(X) for the
unique qp(X), rp(X) by polynomial division.

By the uniqueness of polynomials q(X) and r(X) ∈ F≤n−2[X] such that s(X) + p(X) = q(X) ·
Z H(X) +X · r(X), we have that q(X) = qp(X) + qs(X) and r(X) = rp(X) + rs(X).

By the (br + bq)-wise independence of rs(X) (and thus of r(X)) we obtain that the set of simulated
answers {t5,γ}(5,γ)∈L (whose cardinality is at most br) are identically distributed to those, {r(γ)}(5,γ)∈L,
of the real prover. Furthermore, by the (bs + bq)-wise independence of qs(X) we obtain that the set
of simulated answers {t3,γ}(3,γ)∈L (whose cardinality is at most bs) are identically distributed to those,
{s(γ)}(5,γ)∈L, of the real prover. In particular, for this we use that for γ ∈ F \H, s(X) is (bs + bq)-wise
independent even conditioned on rs(X).

To argue the correct distribution of the set of simulated answers {t4,γ}(4,γ)∈L, we observe that the
honest q(X) is determined by (p(X) + s(X) − Xr(X))/Z H(X), where p(X) is defined as above. In
particular, an evaluation of q(γ) on γ ∈ F \ H can be obtained as (p(γ) + s(γ) − γr(γ))/Z H(γ), thus
using evaluations of â′(γ), b̂′(γ), s(γ), r(γ), and evaluations of publicly available polynomials. This
explains the simulation strategy of t4,γ by S, and these values are identically distributed to q(γ) as the
polynomials â′(X), b̂′(X), s(X), and r(X), each allows bq more evaluations whose outputs are uniformly
distributed.

Remark 1 (On degree optimizations). From the proof of the above theorem it turns out that increasing
the degrees of polynomials â′, b̂′, s, r by bq may be a too conservative choice. Indeed, additional informa-
tion about these four polynomials is leaked only if an evaluation q(X) is revealed on a point γ on which
these polynomials were not already evaluated. More precisely, if the list L is such that the simulation of
t4,γ does not require sampling new values tj,γ, j ∈ {1, 2, 3, 5}, then it is sufficient to have â′ ∈ F≤n+ba,
b̂′ ∈ F≤n+bb, qs ∈ F≤bs, rs ∈ F≤br .

Remark 2 (PHPlite1x: a variant with fewer relation polynomials). We present a variant of PHPlite1,
that we call PHPlite1x, whose difference with the former is a reduced number of relation polynomials.
In particular, the offline phase of PHPlite1x outputs three less polynomials col′(X), row′(X) and cr′(X).
Here the second polynomial check has degree 3, with a publicly computable term X:

n2 ·
(
X · r′(X) +

σ

|K|

)
·
(
xy + cr(X) − x · col(X) − y · row(X)

)
−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y)− q′(X) · Z K(X)

?
= 0 (8)

4.3.2 A Variant with Separate Sparse Matrix Encodings

We propose a variant of the PHP for R1CS-lite PHPlite1 described in the previous section. We call
this protocol PHPlite2. In PHPlite2, the matrices {L,R} are encoded in sparse form separately, namely
without keeping track of common nonzero entries (see Definition 4.3). The main benefit of this choice
is that in this case we can work with a subgroup K ⊂ F of minimal size such that |K| ≥ m, which is
half the size of the one needed in PHPlite1.

Namely, L,R can be represented with the functions {valM , rowM , colM}M∈{L,R}. Here, for M =
{L,R} and any κ ∈ K, valM (κ) = M rowM (κ),colM (κ). We can use such sparse encoding of L and R to
change the VLR(X,Y, Z) polynomial in equation (2) into the following one

VLR(X,Y, Z) = VL(X,Y) + Y · VR(X,Y)

=
∑
κ∈K

(
valL(κ) · LHrowL(κ)(X) · LHcolL(κ)(Y) + Z · valR(κ) · LHrowR(κ)(X) · LHcolR(κ)(Y)

)

24

Then in this variant the prover’s goal is to show that the polynomials sent in the first round satisfy
the equation above. This variant proceeds almost identically to the one of section 4.3.1; the only
differences are in the relation polynomials and the third round.

Offline phase RE(F, n,m, {L,R}, `). The holographic relation encoder outputs 24 polynomials{
{vM,i,j(X)}M∈{L,R},{i,j}∈{0,1}, {cri,j(X), cr′i,j(X)}i,j∈{0,1,2}∧i 6=26=j

}
∈ F≤|K|[X]

that are computed as follows. First, it finds the polynomials {valL, colL, rowL, valR, colR, rowR} such
that for all κ ∈ K valL(κ) = LrowL(κ),colL(κ) and valR(κ) = RrowR(κ),colR(κ). Second, it computes:

vL,0,0(X) :=
∑
κ∈K

valL(κ) · colL(κ) · rowL(κ) · colR(κ) · rowR(κ) · LKκ (X)

vL,0,1(X) :=
∑
κ∈K

valL(κ) · colL(κ) · rowL(κ) · rowR(κ) · LKκ (X)

vL,1,0(X) :=
∑
κ∈K

valL(κ) · colL(κ) · rowL(κ) · colR(κ) · LKκ (X)

vL,1,1(X) :=
∑
κ∈K

valL(κ) · colL(κ) · rowL(κ) · LKκ (X)

and analogously {vR,0,0, vR,0,1, vR,1,0, vR,1,1}. Third, it computes

cr0,0(X) :=
∑
κ∈K

colL(κ) · rowL(κ) · colR(κ) · rowR(κ) · LKκ (X)

cr0,1(X) := −
∑
κ∈K

rowL(κ) · (colL(κ) · rowR(κ) + colR(κ) · rowR(κ)) · LKκ (X)

cr1,0(X) := −
∑
κ∈K

colL(κ) · (colR(κ) · rowR(κ) + colR(κ) · rowL(κ)) · LKκ (X)

cr1,1(X) :=
∑
κ∈K

(colL(κ) + colR(κ)) · (rowR(κ) + rowL(κ)) · LKκ (X)

cr2,0(X) :=
∑
κ∈K

colL(κ) · colR(κ) · LKκ (X)

cr0,2(X) :=
∑
κ∈K

rowL(κ) · rowR(κ) · LKκ (X)

cr1,2(X) := −
∑
κ∈K

(rowL(κ) + rowR(κ)) · LKκ (X)

cr2,1(X) := −
∑
κ∈K

(colL(κ) + colR(κ)) · LKκ (X)

as well as {cr′i,j(X) := X · cri,j(X)}

Online phase 〈P ((F, n,m, {L,R}, `),x, (a′(X), b′(X))) ,V(F, n,m, x)〉. Round 1 and 2 proceed iden-
tically to the PHP of section 4.3.1 except for the different definition of the polynomial VLR.

Round 3 The verifier sends a random point y←$F \ H. The prover uses y to compute σ ←
VLR(x, y, α) and then defines the degree-(|K| − 1) polynomial

p′(X) :=
∑
κ∈K

(
valL(κ) · LHrowL(κ)(x) · LHcolL(κ)(y) + α · valR(κ) · LHrowR(κ)(x) · LHcolR(κ)(y)

)
· LKκ (X)

The goal of the prover is to convince the verifier that∑
κ∈K

p′(κ) = σ

∀κ ∈ K : p′(κ) = valL(κ) · LHrowL(κ)(x) · LHcolL(κ)(y) + α · valR(κ) · LHrowR(κ)(x) · LHcolR(κ)(y)

25

and for this it computes

r′(X) :=
p′(X)− σ/|K|

X
∈ F≤|K|−2[X]

t(X) =
σ

|K|
· n2 ·

∑
i,j∈[0,2]

xiyj · cri,j(X) + r′(X) · n2 ·
∑

i,j∈[0,2]

xiyj · cr′i,j(X)

− Z H(x) · Z H(y) ·
∑

i,j∈[0,1]

xiyj (vcrL,i,j(X) + α · vcrR,i,j(X))

where cr2,2(X) := 1 and cr′2,2(X) := X, defines polynomial

q′(X) :=
t(X)

Z K(X)
∈ F≤|K|−2[X]

and sends {q′(X), r′(X)} to V.

Decision phase. The degree checks and first polynomial check stay the same, while the second
polynomial check is as follows

σ

|K|
· n2 ·

∑
i,j∈[0,2]

xiyj · cri,j(X) + r′(X) · n2 ·
∑

i,j∈[0,2]

xiyj · cr′i,j(X)

− Z H(x) · Z H(y) ·
∑

i,j∈[0,1]

xiyj
(
vcrL,i,j(X) + α · vcrR,i,j(X)

)
− q′(X) · Z K(X)

?
= 0 (9)

where cr2,2(X) := 1 and cr′2,2(X) := X.
By construction of the relation polynomials, observe that the check of equation (9) is equivalent to

checking(
X · r′(X) +

σ

|K|

)
· n2 ·

∏
M∈{L,R}

(x− rowM (X)) · (y − colM (X))

−Z H(x) · Z H(y) ·
(
valL(X)colL(X)rowL(X)(x− rowR(X))(y − colR(X))

+α · valR(X)colR(X)rowR(X)(x− rowL(X))(y − colL(R))
) ?

= 0 mod Z K(X)

Knowledge soundness and zero-knowledge of PHPlite2 are essentially identical to those of PHPlite1.
The only differences concern polynomials that are produced by the relation encoder and thus are correct
by definition.

Efficiency analysis. The relation encoder creates 24 polynomials of degree ≤ |K|, doable in time
O(|K| log |K|). If expressed as functions of |K|, the degree, proof length, prover complexity and verifier
complexity are the same as in section 4.3.1. The only notable difference is that in this construction, in
which we use separate sparse encodings for the matrices L,R, we have |K| ≥ m, unlike in the previous
construction where it was |K| ≥ 2m.

Remark 3 (PHPlite2x: a variant with fewer relation polynomials). We present a variant of PHPlite2,
that we call PHPlite2x, whose difference with the former is a reduced number of relation polynomials. In
particular, the offline phase of PHPlite2x outputs 8 less polynomials cr′i,j(X). Here the second polynomial
check has degree 3, with a publicly computable term X:

n2 ·
(
X · r′(X) +

σ

|K|

)
·
∑

i,j∈[0,2]

xiyj · cri,j(X)

− Z H(x) · Z H(y) ·
∑

i,j∈[0,1]

xiyj
(
vcrL,i,j(X) + α · vcrR,i,j(X)

)
− q′(X) · Z K(X)

?
= 0 (10)

26

4.4 Our PHP for R1CS

In this section we present our constructions of PHPs for R1CS. We give three constructions and two
more variants that achieve different tradeoffs.

Recall that in R1CS we have a claim of the form (L ·z) ◦ (R ·z) = O ·z. In all our constructions we
consider an equivalence of the R1CS relation in which we express all the checks merged into polynomial
format as follows.

Definition 4.7 (Polynomial R1CS). Let F be a finite field and n,m ∈ N be positive integers. We define
the universal relation RpolyR1CS as the set of triples(

(F, n,m, {L,R,O}, `),x, (a(X), b(X), w(X))
)

where L,R,O ∈ Fn×n, max{||L||, ||R||, ||O||} ≤ m, x ∈ F`−1, a(X), b(X) ∈ F≤n−1[X], and such that,
for x′ = (1,x), w(X) :=

∑
η∈H\LwφH(η) · L

H\L
η (X) and z(X) :=

∑
η∈L x

′
φH(η) · LLη (X) +w(X) · Z L(X)

it holds∑
η∈H

(
ZL · a(η) + ZR · b(η)− ZO · a(η)b(η)

)
· LHη (X) +

∑
η,η′∈H

M∈{L,R,O}

ZM ·Mη,η′ · z(η′) · LHη (X) = 0 (11)

where L := {φ−1
H (1), . . . , φ−1

H (`)} and the above is a polynomial over F[X,ZL, ZR, ZO].

The following simple lemma shows that the two relations are equivalent. For completeness, we give
the proof in Appendix A.2.

Lemma 4.8. L(RR1CS) ≡ L(RpolyR1CS).

4.4.1 Our Main PHP for R1CS

Here we present our first PHP for R1CS that we call PHPr1cs1 and that uses a joint sparse encoding
as stated in definition 4.4. The differences with PHPlite1 are very subtle, and for this reason we only
highlight the main keypoints and then show the full PHP in Figure 2.

Because RpolyR1CS requires one more matrix than RpolyR1CS-lite, we must modify the main equation
accordingly. In particular, we define a new matrix encoding polynomial VLRO. The holographic relation
encoder of this PHP requires more polynomials than in PHPlite1, for the same reason. The protocol
follows directly from these modifications, and the fact that the prover sends one more oracle, ŵ(X), in
the first round.

In this setting, we will need a multiplicative the subgroup be such that |K| ≥ ||M || ≤ 3m for any
M ∈ {L,R,O}. The prover’s goal is to convince the verifier that the polynomials a(X), b(X), z(X)
satisfy equation (11), which can be expressed as

0 =
∑
η∈H

(
ZL · a(η) + ZR · b(η)− ZO · a(η)b(η)

)
ΛH(X, η) + z(η) · VLRO(X, η, ZL, ZR, ZO) (12)

where VLRO ∈ F[X,Y, ZL, ZR, ZO] is the following polynomial,

VLRO(X,Y, ZL, ZR, ZO) = ZL · VL(X,Y) + ZR · VR(X,Y) + ZO · VO(X,Y)

=
∑
κ∈K

M∈{L,R,O}

ZM · valM(κ) · LHrow(κ)(X) · LHcol(κ)(Y)

Offline phase RE(F, n,m, {L,R,O}, `). The holographic relation encoder takes as input a description
of the specific relation and outputs 9 polynomials{

row(X), col(X), cr(X), row′(X), col′(X), cr′(X), {vcrM (X)}M∈{L,R,O}
}
∈ F≤|K|−1[X]

Online phase 〈P ((F, n,m, {L,R,O}, `),x, (a(X), b(X), w(X))) ,V(F, n,m,x)〉. The online phase of
PHPr1cs1 proceeds with the same round structure as in PHPlite1. We refer the reader to Figure 2 for the
full description of the protocol.

27

P
(
(F, n,m, {L,R,O}, `),x′, (a(X), b(X), w(X))

)
V row,col,cr,row′,col′,cr′,{vcrM}(F, n,m,x′)

Sample random qs←$Fbs+bq−1[X], rs←$Fbr+bq−1[X]

Set s(X)←qs(X)Z H(X) +Xrs(X) ∈ F≤n+bs+bq−1[X]

Sample random â, b̂, ŵ that agree with a, b, w on H { â, b̂, ŵ, s}

â(X)←$MaskHba+bq (a(X)) ∈ F≤n+ba+bq−1[X]

b̂(X)←$MaskHbb+bq (b(X)) ∈ F≤n+bb+bq−1[X]

ŵ(X)←$MaskHbw+bq (w(X)) ∈ F≤n−`+bw+bq−1[X]

ẑ(X) := x′(X) + ŵ(X) · Z L(X) ∈ F≤n+bw+bq−1[X] x, {αM}{L,R,O} x, {αM} ←$F

. // Sumcheck for “
∑
η∈H s(η) + p(η) = 0” where

// p(X) :=
(
αLâ(X) + αRb̂(X)− αO â(X)b̂(X)

)
ΛH(x,X) + ẑ(X) · VLRO(x,X, αL, αR, αO) ∈ F≤3n+ba+bb+2bq−3[X]

Compute q ∈ F≤2n+ba+bb+2bq−3[X], r ∈ F≤n−2[X] s.t. { q, r}

s(X) + p(X) = q(X) · Z H(X) +X · r(X) y y←$F \H

. // Structured sumcheck for “
∑
κ∈K

M∈{L,R,O}

αM · valM(κ) · LHrow(κ)(x) · LHcol(κ)(y) = VLRO(x, y, αL, αR, αO)”

Let σ ← VLRO(x, y, αL, αR, αO)

Compute q′(X), r′(X) ∈ F≤|K−2|[X] : q′(X)Z K(X) =

n2 ·
(
X · r′(X) +

σ

|K|

)
· (x− row(X)) · (y − col(X))

− Z H(x) · Z H(y) · row(x) · col(y) ·
∑

M∈{L,R,O}

αMvalM(X) σ, { q′, r′}

Verifier’s checks

• deg(â), deg(b̂), deg(ŵ), deg(s), deg(q), deg(q′)
?
≤ Dsnd ∧ deg(r)

?
≤ n− 2 ∧ deg(r′)

?
≤ |K| − 2

• s(y) +

(
αL â(y) + αR b̂(y) − αO â(y)b̂(y)

)
ΛH(x, y)

+σ
(∑
η∈L

x′
φH(η)L

L
η(y) + ŵ(y) Z L(y)

)
− q(y) Z H(y)− y r(y)

?
= 0

∧ n2 · σ
|K|
· (xy − x · col(X) − y · row(X) + cr(X))

+n2 · r′(X) · (xy ·X − x · col′(X) − y · row′(X) + cr′(X))

−Z H(x) · Z H(y) ·
∑

M∈{L,R,O}

αM · vcrM (X) − q′(X) · Z K(X)
?
= 0

Figure 2: Our PHP protocol PHPr1cs1 for R1CS.

28

4.4.1.1 Efficiency Analysis

We analyze the efficiency of our PHP protocol for R1CS with joint sparse encoding and |K| ≥ 3m.

Relation encoder It creates 9 polynomials, six of degree ≤ |K|−1 and the other three of degree ≤ |K|,
doable in time O(|K| log |K|).

Degree By looking at the polynomials of the highest degree sent by indexer and prover, one can see
that D = max{2n+ ba + bb + 2bq − 3, n+ bs + bq − 1, |K|}, which depends on the difference between
|H| and |K|, and the concrete values of ba, bb, bq, bs, which are small constants in our use cases. For
example, when m ≥ n (which holds for matrices that encode arithmetic circuits), then D = |K|.

Proof length. The prover sends one element of F and 8 oracle polynomials. By inspection, the proof
length is l(R) = 7n+ 2|K| − `+ 2ba + 2bb + bw + bs + 6bq − 4. By the structure of s(X), we have that
its number of nonzero coefficients is upperbounded by bs + 2bq + max{bs, br}, what gives us a proof
length l(|R|) = 6n+ 2|K| − `+ 2ba + 2bb + bw + 2bs + 7bq − 4.

Prover complexity. Using ideas similar to the ones for R1CS-lite, the total complexity isO(|K| log |K|+
|H| log |H|).

Verifier complexity. Similarly to the PHP for R1CS-lite, this this amounts to O(`+ log |H|+ log |K|)
field operations, which are needed to construct the polynomial checks.

4.4.1.2 Security Analysis

Theorem 4.9 (Knowledge Soundness). The PHP protocol PHPr1cs1 described in section 4.4 is ε-sound
with ε = 2Dsnd+|H|

|F\H| + |H|
F , and 0-knowledge sound.

Proof. First we prove the soundness of this PHP, and then show its proof of knowledge property.

Soundness. Given the polynomial R1CS relation R = (F, n,m, {L,R,O}, `) and input x, assume there
exists no witness a(X), b(X), w(X) that satisfies the equation (11) of Definition 4.7. Since the relation
encoder’s polynomials are generated honestly (and thus are correct), there is no witness satisfying the
equivalent equation (12) either. Then, for whatever polynomials â(X), b̂(X), ŵ(X) sent by the prover
P∗ in the first round, it must be the case that

f(X,ZL, ZR, ZO) :=
∑
η∈H

(
ZL ·â(η)+ZR ·b̂(η)−ZO ·â(η)b̂(η)

)
ΛH(X, η)+ẑ(η)·VLRO(X, η, ZL, ZR, ZO) 6= 0

for properly reconstructed ẑ(X) :=
∑

η∈L x
′
φH(η) · LLη (X) + ŵ(X) · Z L(X).

Let the protocol run as usual, then â(X), b̂(X), ŵ(X), s(X), q(X), r(X), q′(X), r′(X) and σ are the
polynomials and message sent by P∗, and x, αL, αR, αO, y are the messages from V. Due to the or-
der of the messages, we know that â(X), b̂(X), ŵ(X), s(X) are independent of answers x, {αM}, and
σ, q(X), r(X) are independent of y.

Conditioned on the verifier accepting the proof, meaning that all degree and both polynomial checks
are satisfied, we denote with bad1 and bad2 the events that the first and second polynomial checks hold
when there exists no satisfying witness for the R1CS relation.

Given that the verifier accepted and the second polynomial check is deterministic, Pr(bad2) = 0. This
means that for all κ ∈ K, the prover will find a polynomial p′(X) such that p′(κ) =

∑
M∈{L,R,O} αM ·

valM (κ) · LHrow(κ)(x) · LHcol(κ)(y), as it does not depend on the witness. Considering the degree check
on r′(X), we have that p′(X) := (X · r′(X) + σ

|K|) is a polynomial of degree ≤ |K| − 1 that sums
to σ on K. Putting all of this together and considering the definition of p′(X), we have that σ =
VLRO(x, y, αL, αR, αO).

Next, since the polynomials â(X), b̂(X), ŵ(X), s(X), q(X), r(X), VLRO(x,X, αL, αR, αO) are inde-
pendent of y, by the Schwartz-Zippel lemma we obtain that the first polynomial and degree checks
imply that q(X)Z H(X) +Xr(X) = s(X) + p(X) holds with probability ≥ 1− 2Dsnd+|H|

|F\H| over the choice
of y ∈ F \H.

29

By the assumption on the nonexistence of a satisfying witness, the above equality can only hold
when y happens to be a root

s(y)+
(
αLâ(y) + αRb̂(y)− αOâ(y)b̂(y)

)
ΛH(x, y)+ ẑ(y)VLRO(x, y, αL, αR, αO)−q(y)Z H(y)−yr(y) = 0,

which occurs with probability at most Pr(bad1) ≤ 2Dsnd+|H|
|F\H| .

The remaining degree check gives us that r(X) ∈ F≤n−2[X], and thus by Lemma 4.2, we have that∑
η∈H

s(η) + f(x, αL, αR, αO) = 0

Let ς =
∑

η∈H s(η), since ς and f(X,ZL, ZR, ZO) are independent of x, {αM}, by Schwartz-Zippel we
have that Pr[f(x, αL, αR, αO) + ς = 0] ≤ H

F over the choice of x, {αM}←$F.

Knowledge Soundness. We define the extractor algorithm E that runs the prover P∗ for the first
round, obtains â(X), b̂(X), ŵ(X), and reconstructs the nonrandomized witness polynomials by interpo-
lation as a(X) =

∑
η∈H â(η)LHη (X), b(X) =

∑
η∈H b̂(η)LHη (X), w(X) =

∑
η∈H ŵ(η)LHη (X).

If the verifier accepts with probability greater than the soundness error ε given above, then the
polynomials returned by E must encode a valid witness.

Finally, it is easy to see the straightline extractability. The algorithm WitExtract is the one that
takes the polynomial ŵ(X), and reconstructs the R1CS witness w by taking its evaluations on the
points of H \ L—recall w(X) :=

∑
η∈H\LwφH(η) · L

H\L
η (X).

Theorem 4.10 (Zero-Knowledge). The PHP PHPr1cs1 described in section 4.4.1 is perfect zero-knowledge.
Furthermore, it is perfect honest-verifier zero-knowledge with query bound b = (ba, bb, bw, bs, bq, br,∞,∞).

Proof. We begin by showing the perfect zero-knowledge. As this scheme lies on the PHP model, there
is no need to worry about oracle polynomials. Thus, we set our focus on the single non-oracle message
σ that the prover sends throughout the rounds, which by the way does not depend on the witness.
More formally, we describe a simulator S that on input the relation R = (F, n,m, {L,R}, `) and the
input x, and given oracle access to the verifier V∗, proceeds as follows. It runs V∗ to obtain its
random messages x, y, α and its checks. Next, it computes σ = VLR(x, y, αL, αR, αO), and outputs
σ followed by checks obtained from V∗. Note that View

(
SV∗(F,R,x)

)
is identically distributed to

View
(
P(F,R,x, a(X), b(X), w(X)) ,V∗

)
.

Next, we prove b-HVZK for bounds ba, bb, bw, bs, bq, br on the polynomials â(X), b̂(X), ŵ(X), s(X),
q(X), r(X) respectively, whereas for the polynomials q′(X), r′(X) we tolerate unbounded number of
evaluations (this is trivial as these polynomials depend on public information only).

Let C(i, γ) be the algorithm that on any pair (i, γ) outputs 1 if and only if i ∈ {1, . . . , 8} and γ /∈ H.
For a γ←$F, it holds Pr[C(i, γ) = 0] = |H|/|F|, which is negligible for the choices of F considered in
this paper.

The simulator samples a random tape ρ for the honest verifier and runs QV(ρ) to sample queries
(x, y, {αM}M∈{L,R,O}), and its decision algorithm {d, {(G,v)} ← DV(F,x;ρ) to obtain its checks. Then,
it simulates answers to polynomial evaluations as follows.

For every pair (i, γ) with i ∈ {7, 8} (i.e., for every query on q′, r′), the simulator computes ti,γ ← pi(γ)
honestly, which is trivial as these polynomials depend only on public information.

For every pair (i, γ) ∈ L such that i ∈ [6] \ {5} (i.e., every query on â, b̂, ŵ, s, r), the simulator
samples a random value ti,γ←$F and stores a tuple (i, γ, ti,γ) in a table T.

For every query (5, γ) it simulates the answer with the value t5,γ computed as follows:

tz,γ ← t3,γ · Z L(γ) +
∑
η∈L

x′
φH(η) · LLη (γ)

tp,γ ← (αL · t1,γ + αR · t2,γ − αO · t1,γ · t2,γ) · ΛH(x, γ) + tz,γ · V{L,R,O}(x, γ, αL, αR, αO)

t5,γ ←
tp,γ + t4,γ − γ · t6,γ

Z H(γ)

30

While doing the computations above, for j = 1, 2, 3, 4, 6, if an entry (j, γ, tj,γ) already exists in T,
then the corresponding value tj,γ is used; otherwise a random tj,γ←$F is sampled and a new entry
(j, γ, tj,γ) is added to T.
S returns

(
ρ, VLR(x, y, αL, αR, αO), (d, {(G,v)}), {ti,γ}(i,γ)∈L

)
.

To conclude the proof, we argue that the distribution of S’s output is identical to that of(
View

(
P(F,R,x, a, b, w) ,V

)
, (pi(γ))(i,γ)∈L

)
.

By the (ba + bq)-wise (resp. (bb + bq) and (bw + bq)-wise) independence of the polynomial â(X)

(resp. b̂(X) and ŵ(X)) sampled by the honest prover (and using the fact that they are evaluated on
F \H), we have that the set of simulated answers {ti,γ}i∈[3]:(i,γ)∈L are identically distributed (we recall
that these sets are of size ba, bb and bw respectively) to those of the real prover.

For the remaining polynomials, let us recall that for the honest prover we have

p(X) =
(
αL · â(X) + αR · b̂(X)− αO · â(X) · b̂(X)

)
· ΛH(x,X) + ẑ(X) · VLRO(x,X, αL, αR, αO)

s(X) = qs(X)Z H(X) +Xrs(X)

where ẑ(X) = ŵ(X)·Z L(X)+
∑

η∈L x
′
φH(η) ·LLη (X), qs(X)←$Fbs+bq [X] and rs(X)←$Fbr+bq [X]. Also,

let us write p(X) = qp(X)Z H(X) +Xrp(X) for the unique qp(X), rp(X) by polynomial division.
By the uniqueness of polynomials q(X) and r(X) ∈ F≤n−2[X] such that s(X) + p(X) = q(X) ·

Z H(X) +X · r(X), we have that q(X) = qp(X) + qs(X) and r(X) = rp(X) + rs(X).
By the (br + bq)-wise independence of rs(X) (and thus of r(X)) we obtain that the set of simulated

answers {t6,γ}(6,γ)∈L (whose cardinality is at most br) are identically distributed to those, {r(γ)}(6,γ)∈L,
of the real prover. Furthermore, by the (bs + bq)-wise independence of qs(X) we obtain that the set
of simulated answers {t4,γ}(4,γ)∈L (whose cardinality is at most bs) are identically distributed to those,
{s(γ)}(4,γ)∈L, of the real prover. In particular, for this we use that for γ ∈ F \H, s(X) is (bs + bq)-wise
independent even conditioned on rs(X).

To argue the correct distribution of the set of simulated answers {t5,γ}(5,γ)∈L, we observe that the
honest q(X) is determined by (p(X) + s(X) − Xr(X))/Z H(X), where p(X) is defined as above. In
particular, an evaluation of q(γ) on γ ∈ F \ H can be obtained as (p(γ) + s(γ) − γr(γ))/Z H(γ), thus
using evaluations of â(γ), b̂(γ), ŵ(γ), s(γ), r(γ), and evaluations of publicly available polynomials. This
explains the simulation strategy of t5,γ by S, and these values are identically distributed to q(γ) as the
polynomials â(X), b̂(X), ŵ(X), s(X), and r(X), each allows bq more evaluations whose outputs are
uniformly distributed.

Remark 4 (On degree optimizations). From the proof of the above theorem it turns out that increasing
the degrees of polynomials â, b̂, ŵ, s, r by bq may be a too conservative choice. Indeed, additional
information about these four polynomials is leaked only if an evaluation q(X) is revealed on a point γ
on which these polynomials were not already evaluated. More precisely, if the list L is such that the
simulation of t5,γ does not require sampling new values tj,γ, j ∈ {1, 2, 3, 4, 6}, then it is sufficient to
have â ∈ F≤n+ba, b̂ ∈ F≤n+bb, ŵ ∈ F≤n+bw , qs ∈ F≤bs , rs ∈ F≤br .

Remark 5 (On the number of relation polynomials). We present a variant of PHPr1cs1, that we call
PHPr1cs1x, whose difference with the former is a reduced number of relation polynomials. In particular,
the offline phase of PHPr1cs1x outputs three less polynomials col′(X), row′(X) and cr′(X). Here the
second polynomial check has degree 3, with a publicly computable term X:

n2 ·
(
X · r′(X) +

σ

|K|

)
·
(
xy − x · col(X) − y · row(X) + cr(X)

)
−Z H(x) · Z H(y) ·

∑
M∈{L,R,O}

αM · vcrM (X) − q′(X) · Z K(X)
?
= 0 (13)

31

4.4.2 A Variant with Separate Sparse Matrix Encodings

Here we show a variant of our PHP for R1CS, in which the matrices {L,R,O} are encoded separately
as in definition 4.3. We call this scheme PHPr1cs2.

We can use such sparse encoding of L, R and O to change the VLRO(X,Y, ZL, ZR, ZO) polynomial
in equation (12) into the following one:

VLRO(X,Y, ZL, ZR, ZO) =
∑
κ∈K

M∈{L,R,O}

ZM · valM(κ) · LHrowM(κ)(X) · LHcolM(κ)(Y)

Then in this variant the prover’s goal is to show that the polynomials sent in the first round satisfy
the equation above. This variant proceeds almost identically to the one of section 4.4.1; the main
differences are in the relation polynomials and the third round.

Offline phase RE(F, n,m, {L,R,O}, `). The holographic relation encoder outputs 57 polynomials,{
{cri,j(X)}i,j∈[0,3]∧i 6=36=j , {vM,i,j(X)}M∈{L,R,O}∧i,j∈[0,2]

}
∈ F≤|K|−1[X]{

cr′i,j(X) := X · cri,j(X)
}
i,j∈[0,3]∧i 6=36=j ∈ F≤|K|[X]

where cri,j(X) and vM,i,j(X) are obtained by computing low-degree extensions of the polynomials that
represent the coefficients accompanying the xi · yj terms of the following polynomials, respectively:∏

M∈{L,R,O}

(x− rowM(X)) · (y − colM(X))

∑
M∈{L,R,O}

valM(X) · rowM(X) · colM(X) ·
∏

M ′ 6=M
(x− rowM′(X)) · (y − colM′(X))

Similarly to PHPlite2, the goal of all these polynomials is to obtain a verifier polynomial check that
has at most degree 2 in the oracle polynomials.

Online phase 〈P ((F, n,m, {L,R,O}, `),x, (a(X), b(X), w(X))) ,V(F, n,m, x)〉. Round 1 and 2 pro-
ceed identically to the PHP of section 4.4.1 except for the different definition of the polynomial VLRO.

Round 3 The verifier sends a random point y←$F \ H. The prover uses y to compute σ ←
VLRO(x, y, αL, αR, αO) and then defines the degree-(|K| − 1) polynomial

VLRO(X,Y, ZL, ZR, ZO) =
∑
κ∈K

M∈{L,R,O}

ZM · valM(κ) · LHrowM(κ)(X) · LHcolM(κ)(Y)

The goal of the prover is to convince the verifier that
∑

κ∈K p
′(κ) = σ and for all κ ∈ K

p′(κ) =
∑

M∈{L,R,O}

αMvalM(κ)LHrowM(κ)(x)LHcolM(κ)(y)

Note that by decomposition of the Lagrangians this is equivalent to

∀ κ ∈ K : n2p′(κ)
∏

M∈{L,R,O}

(x− rowM(κ))(y − colM(κ))−

Z H(x)Z H(y)
∑

M∈{L,R,O}

αMvalM(κ)rowM(κ)colM(κ)
∏

M ′ 6=M
(x− rowM′(κ))(y − colM′(κ)) = 0

that by using 42 of the relation polynomials and cr3,3(X) = 1 can be rewritten as

∀ κ ∈ K : n2p′(κ)
∑

i,j∈[0,3]

xi · yj · cri,j(κ)− Z H(x) · Z H(y)
∑

i,j∈[0,2]
M∈{L,R,O}

αM · xi · yj · vM,i,j(κ) = 0

Then, P computes r′(X) = (p′(X)− σ
|K|)/X ∈ F≤|K|−2[X] and q′(X) := t(X)

Z K(X) ∈ F≤|K|−2[X] with

t(X) = n2p′(X)
∑

i,j∈[0,3]

xiyjcri,j(X)− Z H(x)Z H(y)
∑

i,j∈[0,2]
M∈{L,R,O}

αMx
iyjvM,i,j(X) ∈ F≤2|K|−2[X]

and sends {q′(X), r′(X)} to V.

32

Decision phase. The degree checks and first polynomial check stay the same, while the second
polynomial check using the 57 relation polynomials becomes the following

n2 σ

|K|
∑

i,j∈[0,3]

xiyj cri,j(X) + n2 r′(X)
∑

i,j∈[0,3]

xiyj cr′i,j(X)

−Z H(x)Z H(y)
∑

i,j∈[0,2]
M∈{L,R,O}

αMx
iyj vM,i,j(X) − q′(X) Z K(X)

?
= 0 (14)

with cr3,3(X) = 1 and cr′3,3(X) = X.

Efficiency analysis. In this variant where nonzero entries are treated separately |K| ≥ m, unlike
in the previous construction where it was |K| ≥ 3m. The relation encoder creates 42 polynomials of
degree ≤ |K|− 1 and 15 of degree ≤ |K|, doable in time O(|K| log |K|). The degree, proof length, prover
complexity and verifier complexity are the the same as in section 4.4.1. To summarize, the degree is
D = max{2n+ba+bb+2bq−3, n+bs+bq−1, |K|}, proof length is l(R) ≤ 6n+2|K|−`+2ba+2bb+bw+
2bs + 7bq − 4, prover complexity is O(|K| log |K|+ |H| log |H|), while verifier’s is O(`+ log |H|+ log |K|).

Remark 6 (On the number of relation polynomials). We present a variant of PHPr1cs2, that we call
PHPr1cs2x, whose difference with the former is a reduced number of relation polynomials. In particular,
the offline phase of PHPr1cs2x outputs 15 less polynomials cr′i,j(X). Here the second polynomial check
has degree 3, with a publicly computable term X:

n2
(
X r′(X) +

σ

|K|
) ∑
i,j∈[0,3]

xiyj cri,j(X) − Z H(x)Z H(y)
∑

i,j∈[0,2]
M∈{L,R,O}

αMx
iyj vM,i,j(X) − q′(X) Z K(X)

?
= 0 (15)

4.4.3 A Variant with Better Tradeoffs

Here we show another variant of a PHP for R1CS that presents a tradeoff between the number of relation
polynomials and the degree of the second polynomial check. We call it PHPr1cs3, and it will follow the
separate sparse encoding of definition 4.3.

We will proceed as in PHPr1cs2, which also follows this encoding. The main differences we highlight
are in the relation polynomials and the final round.

Offline phase RE(F, n,m, {L,R,O}, `). The holographic relation encoder outputs 12 polynomials
describing the matrices of the R1CS,

{rowM, colM, crM, vcrM, }M∈{L,R,O} ∈ F≤|K|−1[X]

where crM(X) :=
∑

η∈H colM(η) · rowM(η) · LHη (X) and vcrM(X) :=
∑

η∈H valM(η) · colM(η) · rowM(η) ·
LHη (X).

Online phase 〈P ((F, n,m, {L,R,O}, `),x, (a(X), b(X), w(X))) ,V(F, n,m, x)〉. Round 1 and 2 pro-
ceed identically to the PHP of section 4.4.2, using the same definition of polynomial VLRO.

Round 3 Here, the only difference comes when redefining the polynomial t(X) which is now defined
over F≤7|K|−7[X]. This can be done using 9 relation polynomials as:

t(X) := n2 · p′(X)
∏

M∈{L,R,O}

(
x− rowM(X)

)(
y − colM(X)

)
− Z H(x)Z H(y)

∑
M∈{L,R,O}

αM · valM(X) colM(X) rowM(X)
∏

M ′ 6=M

(
x− rowM′(X)

)(
y − colM′(X)

)

33

Nonetheless, this option will lead to a polynomial degree check of degree 8, which is undesirable
for the verifier. Instead, we can make use of the other relation polynomials to obtain an equivalent
definition of t(X) with at most degree-5 checks:

t(X) := n2 · p′(X)
∏

M∈{L,R,O}

(
xy − yrowM(X)− xcolM(X) + crM(X)

)
− Z H(x)Z H(y)

∑
M∈{L,R,O}

αM · vcrM(X)
∏

M ′ 6=M

(
xy − yrowM′(X)− xcolM′(X) + crM′(X)

)
∈ F≤4|K|−4[X]

As usual, the prover will send {q′, r′} to the verifier, such that r′(X) = (p′(X)− σ
|K|)/X ∈ F≤|K|−2[X]

and q′(X) := t(X)
Z K(X) ∈ F≤3|K|−4[X].

Decision phase. The degree checks and first polynomial check stay the same, while the second one
becomes the following check using the 9 relation polynomials

− q′(X) Z K(X) + n2

(
X · r′(X) +

σ

|K|

) ∏
M∈{L,R,O}

(
xy − y rowM(X) − x colM(X) + crM(X)

)
−Z H(x)Z H(y)

∑
M∈{L,R,O}

αM vcrM(X)
∏

M ′ 6=M

(
xy − y rowM′(X) − x colM′(X) + crM′(X)

) ?
= 0 (16)

Efficiency analysis. In this variant where nonzero entries are treated separately, |K| ≥ m as well. The
relation encoder creates 12 polynomials of degree ≤ |K|−1, doable in time O(|K| log |K|). Note that the
quotient polynomial sent in the third round has much larger degree now, which becomes D = max(2n+
ba+bb+2bq−3, 3|K|−4). The proof length, prover complexity and verifier complexity are the the same
as in section 4.4.1. To summarize, the proof length is l(R) ≤ 6n+2|K|−`+2ba+2bb+bw+2bs+7bq−4,
prover complexity is O(|K| log |K|+ |H| log |H|), while verifier’s is O(`+ log |H|+ log |K|).

5 Preliminaries on Commitments and zkSNARKs

5.1 Commitment Schemes

In our work we use the notion of type-based commitments. Type-based commitments, introduced by
Escala and Groth [EG14], are a generalization of regular commitments that unify several committing
methods into the same scheme. This capability can be useful when committing to values from different
domains (e.g., elements from one of the bilinear groupsG1,G2, as in the original motivation of [EG14]), or
when creating commitments with different security properties (e.g., some that are hiding and some that
are not). As done in [BCFK19], in this work we will exploit the formalism of type-based commitments
to describe commit-and-prove zero-knowledge proofs that work with commitments of different types12.

More in detail, a type-based commitment scheme is a tuple of algorithms CS = (Setup,Commit,
VerCom) that works as a commitment scheme with the difference that the Commit and VerCom algo-
rithms take an extra input type that represent the type of c. All the possible types are included in the
type space T .

Definition 5.1 (Typed-Based Commitment Schemes). A typed-based commitment scheme for a set of
types T and with message spaceM is a tuple of algorithms CS = (Setup,Commit,VerCom) that work as
follows:

Setup(1λ)→ ck takes the security parameter and outputs a commitment key ck.

Commit(ck, type,m)→ (c, o) : takes the commitment key ck, a type type ∈ T and a message m ∈ M,
and outputs a commitment c and an opening o. We assume c contains information about its type,
which we denote by type(c).
12Our notion of type-based commitments is analogous to that in [BCFK19] with one exception: we allow the same

message space, e.g. the set of polynomials, to be associated with different types; we see a type as a device different sets
of properties from a commitment scheme in a fine-grained manner.

34

VerCom(ck, type, c,m, o)→ b : takes as input the commitment key ck, a type type ∈ T , a commitment
c, a message m∈M and an opening o, and it accepts (b=1) or rejects (b=0). By default it outputs 0
if type(c) 6= type. Additionally we define VerCom(ck, c, f, o) that runs VerCom(ck, type(c), c, f, o).

CS satisfies correctness, type-typed binding and type-typed trapdoor-hiding properties defined below:

Correctness. For any λ ∈ N, any commitment key ck ← Setup(1λ), type type ∈ T , message m ∈
M, and for any honestly generated commitment-opening (c, o) ← Commit(ck, type,m), we have that
VerCom(ck, type, c,m, o) = 1;

type-typed Binding. Let type ∈ T , CS is type-typed (computationally) binding if for every (non-
uniform) efficient adversary A we have Pr[GamebindA (λ) = 1] = negl(λ) where:

GamebindA (λ)

ck← Setup(1λ)

c,m, o,m′, o′ ← A(ck, type, auxZ)

return VerCom(ck, type, c,m, o)
?
= 1 ∧ VerCom(ck, type, c,m′, o′)

?
= 1 ∧m 6= m′

We simply say that CS is binding if it is type-typed binding for any type ∈ T .

type-typed Trapdoor-Hiding. There exist three algorithms (ck, td)← Sck(1λ), (c, st)← TdCom(td,
type) and o ← TdOpen(td, st, type, c,m) such that: the distribution of the commitment key returned by
Sck is perfectly/statistically close to the one of the key returned by Setup; for any m ∈M , (c, o) ≈ (c′, o′)
where (c, o)← Commit(ck,m), (c′, st)← TdCom(td, type) and o′ ← TdOpen(td, st, typec′,m).

Definition 5.2 (Succinct Commitments). A commitment scheme CS is said succinct if there is a fixed
polynomial that bounds the size of every commitment c returned by Commit; in particular |c| may be
independent of the size of the message.

5.2 Preprocessing zkSNARKs with Universal and Specializable SRS

In a recent work, Groth et al. [GKM+18] introduced the notion of (preprocessing) zkSNARKs with
specializable universal structured reference string (SRS). In a nutshell, this notion formalizes the idea
that key generation for R ∈ R can be seen as the sequential combination of two steps: a first probabilistic
algorithm that generates an SRS for the universal relation R and a second deterministic algorithm that
specializes this universal SRS into one for a specific R. We remark that by considering “universal
relations” R that contain a single R, and by having Derive as the identity function, one recovers the
usual zkSNARK notion.

We consider families of relations parametrized by the output of a probabilistic algorithm ParGen(1λ)
→ pp that takes as input the security parameter and outputs a set of relation parameters pp. The families
also depend on a size bound N; we denote them as a tuple

(
ParGen, {Rpp,N}pp∈{0,1}∗,N∈N

)
. Occasionally,

as in the definition of CP-SNARK, we will consider “simple” relation families R parametrized only by
a bound N ∈ N.

Definition 5.3 (Universal zkSNARK). A SNARK with specializable universal SRS for a family of rela-
tions

(
ParGen, {Rpp,N}pp∈{0,1}∗,N∈N

)
is a tuple of algorithms Π = (KeyGen,Derive,Prove,Verify) that

work as described below and that satisfy the notions of completeness, succinctness and knowledge-
soundness defined below. If Π also satisfies zero-knowledge we call it a universal zkSNARK.

• KeyGen(pp,N) → (srs, tdk) is a probabilistic algorithm that takes as input the public parameters for
the relation family and it outputs a srs := (ek, vk). We assume without loss of generality that srs
contains pp output of ParGen.

• Derive(srs,R)→(ekR, vkR) is a deterministic algorithm that takes as input an srs produced by KeyGen(pp,
N), and a relation R ∈ RN, and outputs specialized keys srsR := (ekR, vkR).

35

• Prove(ekR, x,w) → π takes a proving key ekR for a relation R, a statement x, and a witness w such
that R(x,w) holds, and returns a proof π.

• Verify(vkR, x, π)→ b takes a verification key for a relation R, a statement x, and either accepts (b = 1)
or rejects (b = 0) the proof π.

Completeness. For all pp ∈ Range(ParGen),N ∈ N, R ∈ Rpp,N and (x,w) such that R(x,w) = 1, it
holds:

Pr

(srs, tdk)← KeyGen(pp,N)

(ekR, vkR)← Derive(srs,R)

π ← Prove(ekR, x,w)

: Verify(vkR, x, π) = 1

 = 1

Succinctness. Π is said succinct if the running time of Verify is poly(λ+ |x|+ log |w|) and the proof
size is poly(λ+ log |w|).

Knowledge Soundness. Let N = poly(λ), we say Π has knowledge soundness for an auxiliary input
distribution Z, denoted KSND(Z) for brevity, if for every (non-uniform) efficient adversary A there
exists a (non-uniform) efficient extractor E such that Pr

[
GameKSNDZ,A,E(λ) = 1

]
= negl(λ). We say that Π

is knowledge-sound if there exists benign Z such that Π is KSND(Z).

GameKSNDRG,Z,A,E(λ)→ b

pp← ParGen(1λ)

(srs, tdk)← KeyGen(pp,N)

auxZ ← Z(srs)(
R, x, π

)
← A(srs, auxZ)

w← E(srs, auxZ)

vkR ← Derive(srs,R)

b = Verify(vkR, x, π) ∧ ¬R(x,w)

Zero-Knowledge in SRS Model. We say Π is zero-knowledge if there exists a simulator S such
that for all adversaries A, for all pp ∈ Range(ParGen),N ∈ N, for all R ∈ Rpp,N, and for all (x,w) such
that R(x,w) = 1,

Pr

pp← ParGen(1λ)

(srs, tdk)← KeyGen(pp,N)

srsR ← Derive(srs,R)

π ← Prove(srsR, x,w)

: A(srs, tdk,R, x,w, π) = 1

 ≈

Pr

 pp← ParGen(1λ)

(srs, tdk)← KeyGen(pp,N)

π ← S(tdk,R, x)

: A(srs, tdk,R, x,w, π) = 1

5.3 Commit-and-Prove Universal SNARKs

Here we adapt the notion of commit-and-prove SNARKs of [CFQ19] to universal relations.

Definition 5.4 (Universal CP-SNARKs). Let {RN}N∈N be a simple family of relations R over Dx ×
Du ×Dω such that Du splits over ` arbitrary domains (D1 × · · · × D`) for some arity parameter ` ≥ 1.
Let CS = (Setup,Commit,VerCom) be a commitment scheme (as per Definition 5.1) whose input space
D is such that Di ⊂ D for all i ∈ [`]. A universal commit and prove zkSNARK for CS and {RN}N∈N is
a zkSNARK for a family of relations

(
ParGen = CS.Setup, {RCom

ck,N}ck∈{0,1}∗,N∈N
)
such that:

• every RCom
ck,N ∈ RCom is represented by a pair (ck,R) where N = poly(λ), ck ∈ Setup(1λ) and R ∈ RN;

36

• RCom
ck,N is over pairs (x̂, ŵ) where the statement is x̂ := (x, (cj)j∈[`]) ∈ Dx × C`, the witness is ŵ :=

((uj)j∈[`], (oj)j∈[`], ω) ∈ D1 × · · · × D` ×O` ×Dω, and the relation RCom
ck,N holds if and only if∧

j∈[`]
VerCom(ck, cj , uj , oj) = 1 ∧ R(x, (uj)j∈[`], ω) = 1

We denote a Universal CP-SNARK as a tuple of algorithms CP = (KeyGen,Derive,Prove,Verify).
For ease of exposition, in our constructions we adopt the syntax for CP’s algorithms defined below.

• KeyGen(ck,N)→ srs := (ek, vk) generates the structured reference string.

• Derive(srs,R)→ vkR is a deterministic algorithm that takes as input a srs produced by KeyGen(1λ,N),
and a relation R ∈ RN.

• Prove(ek, x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], ω)→ π outputs the proof.

• Verify(vkR, x, (cj)j∈[`], π)→ b ∈ {0, 1} rejects or accepts the proof.

Type-restricted completeness. In the CP-SNARK notion presented above, the CP-SNARK is
required to work on commitments of any type. Here we define a weaker notion of completeness in which
the CP-SNARK works only when certain witnesses are committed with a specific type. This is useful if
we want to use a CP-SNARK that supports only a subset of the types of the commitment scheme. We
give a few examples. Suppose the commitment scheme has two different types, type1, type2, and there
exists a CP-SNARK that only works with commitments of type1. Alternatively, a CP-SNARK for a
relation with `1 + `2 committed witnesses could work only when the first `1 commitments are of type
type1 and the subsequent `2 commitments are of type type2. And clearly, more fine-grained combinations
are possible. The following definition formalizes this completeness notion of CP-SNARKs:

Definition 5.5. Let {RN}N∈N be a family of relations R over Dx × Du × Dω such that Du = D` for
` ∈ N. Let CS be a commitment scheme with types set T and message space D ⊆M and let T ∈ T `.

A CP-SNARK scheme CP is T -restricted complete if for every N ∈ N, R ∈ RN and ((x, (cj)j∈[`]), ŵ)

such that RCom
ck,N((x, (cj)j∈[`]), ŵ) = 1, and for all j ∈ [`] : type(cj) = Tj it holds:

Pr
[

(ek, vk)← KeyGen(ParGen(1λ),N) , π ← Prove(ek, x̂, ŵ) : Verify(Derive(srs,R), x̂, π) = 1
]

= 1

For T ′ ⊂ T ` we say that CP-SNARK scheme CP is T ′-restricted complete if for all T ∈ T ′ it is
T -restricted complete.

Commitment-only SRS. The following definition formalizes a property common to several schemes.

Definition 5.6 (Commitment-only SRS). We say that a Universal CP-SNARK has a commitment-only
SRS if the key generation algorithm is deterministic.

Notice that for Universal CP-SNARK with commitment-only SRS the notion of zero-knowledge
defined in Def. 5.3 is not sufficient. In fact, formally speaking, the commitment key ck is part of the
description of relation, thus the actual SRS of the CP-SNARK would be the empty string. However,
the classical result of [GO94] showed that NIZK in the plain model exists only for trivial languages.
Therefore we consider a weaker notion of zero-knowledge where the trapdoor necessary for simulation
comes from the commitment key of CS.

Definition 5.7. A universal CP-SNARK CP is trapdoor-commitment zero-knowledge in the SRS model
for a family of universal relations {RN}N∈N if there exists a simulator S such that for all adversaries
A, N ∈ N, R ∈ RN, (ck, td) ∈ Sck(1λ), and x̂, ŵ such that RCom

ck,N(x̂, ŵ) = 1:

Pr

(srs, tdk)← KeyGen(ck,N)

srsR ← Derive(srs,R)

π ← Prove(srsR, x,w)

: A(srs, tdk, td,R, x,w, π) = 1

 ≈
Pr

[
(srs, tdk)← KeyGen(ck,N)

π ← S(tdk, td,R, x)
: A(srs, tdk, td,R, x,w, π) = 1

]
where x̂ = (x, (cj)j∈[`]) and ŵ = ((uj)j∈[`], (oj)j∈[`], ω).

37

When the CP-SNARK CP is for a family of relations {RN}N∈N and |RN| = 1 for all N then we omit
the algorithm Derive and drop the adjective universal.

Knowledge Soundness with Partial Opening. Finally we can consider a more general notion of
knowledge-soundness for CP-SNARKs introduced in [BCFK19]. The intuition is to consider adversaries
that explicitly return a valid opening for a subset of the commitments that they return. This models
scenarios in which these commitments are not extractable and trusted by the verifier.

Definition 5.8 (Knowledge Soundness with Partial Opening). We say that Π has knowledge sound-
ness with partial opening for a commitment scheme CS and an auxiliary input distribution Z, denoted
poKSND(CS,Z) for brevity, if for every (non-uniform) efficient adversary A there exists a (non-uniform)
efficient extractor E such that Pr

[
GamepoKSNDZ,A,E (λ) = 1

]
= negl(λ), where the experiment is defined as

follows.

GamepoKSNDCS,Z,A,E → b

ck← CS.Setup(1λ); (srs, tdk)← KeyGen(ck,N); auxZ ← Z(srs)(
R, x, (cj)j∈[`], (uj)j∈[`′], (oj)j∈[`′], π

)
← A(srs, auxZ)(

(uj)j∈[`], (oj)j∈[`], ω
)
← E(srs, auxZ)

vkR ← Derive(srs,R)

b = Verify(vkR, x, π) ∧ ¬
(∧

j∈[`]
VerCom(ck, cj , uj , oj)

?
= ∧R(x, (uj)j∈[`], ω)

)
6 Our Compiler from PHPs to zkSNARKs with Universal SRS

In this section we show how to compile PHPs into zkSNARKs. At a high level, we follow the known
paradigm stemming from Kilian’s work in which the prover commits to the oracles, answers the verifier’s
queries and proves correctness of these answers [Kil92]. More specifically, our approach refines this
paradigm for our case of interest (see the introduction for a high-level description).

We first introduce some required building blocks in Section 6.1 and then describe our compiler in two
steps: in Section 6.2 we convert a PHP into a public coin interactive argument system in the structured
reference string model (SRS)13, and then remove interaction through the Fiat-Shamir transform. The
proofs of the theorems in this section can be found in Appendix C.

6.1 Building Blocks

In our compiler we shall make use of the following:

• a PHP protocol PHP over a finite field F;

• a commitment scheme CS for polynomials in F[X];

• a CP-SNARK CPopn proving knowledge of the committed polynomials;

• a CP-SNARK CPphp proving that the PHP verifier accepts, namely for the family of relations Rphp

defined in Section 3.1, which corresponds to the PHP verifier’s degree and polynomial checks.

We now describe some of the properties we require from our commitment scheme for polynomials
and from CP-SNARKs for them.

6.1.1 Commitments to Polynomials

Recall that a PHP verifier has access to two sets of oracle polynomials: those from the relation encoder
(which roughly describe the relation) and those from the prover (which should supposedly persuade the
verifier to accept a public input x). During compilation, we shall commit to polynomials in both sets;
we will require all these commitments to be binding, but not to fully hide any of these polynomials.

13A straightforward extension of interactive arguments; see Section C.1 for a definition.

38

The commitments for the relation encoding polynomials—whose type we denote by rel—do not
need to hide anything: they open to polynomials representing the relation, which is public information.
The polynomial commitments of type rel have weaker requirements for one more reason. Besides not
requiring them to be hiding, we will not require them to be extractable (i.e., we do not assume a
CP-SNARK that has knowledge soundness for them).

Above, we ignored leakage when committing to relation encoding polynomials; we cannot do the
same when committing to the polynomials from the PHP prover: they contain information about the
witness. If we do not prevent some leakage we will lose zero-knowledge. At the same time we will show
that we do not need full hiding for these polynomials either, just a relaxed property that may hold even
for a deterministic commitment algorithm. We call this property somewhat-hiding—defined below—
and denote its type by swh.

In the remainder of this section we will assume CS to be a polynomial commitment scheme; i.e.,
a commitment scheme (see Definition 5.1) in which the message space M is F≤d[X] for a finite field
F ∈ F and an integer d ∈ N. Without loss of generality we assume d to be an input parameter of Setup.

Definition 6.1 (Somewhat-Hiding Polynomial Commitments). Let CS = (Setup,Commit,VerCom) be
a type-based commitment scheme for a class of polynomials F≤d[X] and a class of types T , and that
works as in Definition 5.1, but where we allow Commit to be deterministic.

We say that CS is somewhat-hiding for type type if it satisfies the following property.

type-typed Somewhat Hiding. There exist three algorithms (ck, td = (td′, s))← Sck(s) where s ∈ F,
(c, st) ← TdCom(td, γ) and o ← TdOpen(td, st, c, f) such that: the distribution of the commitment
key returned by Sck with a uniformly random s←$F as input is perfectly/statistically close to the one
of the key returned by Setup; for any f ∈ F<d[X], (c, o) ≈ (c′, o′) where (c, o) ← Commit(ck, f),
(c′, st)← TdCom(td, f(s)) and o′ ← TdOpen(td, st, c′, f).

For our first compiler (Section 6.2) we assume CS to be a type-based commitment scheme with type
set T = {rel, swh} that is binding for all types and somewhat-hiding for type swh. We summarize this
requirement in the following definition.

Definition 6.2 (Compiling Commitment Scheme). Let CS = (Setup,Commit,VerCom) be a type-based
commitment scheme for a class of polynomials F<d[X] and a class of types T = {rel, swh}. We say CS
is a compiling commitment scheme if it is T -binding and swh-somewhat-hiding.

6.1.2 CP-SNARKs for CS

We assume that the commitment scheme CS is equipped with a CP-SNARK CPphp = (KeyGenphp,
Provephp,Verifyphp) for a relation family R′ ⊇ Rphp, and with a CP-SNARK CPopn = (KeyGenopn,
Proveopn,Verifyopn) for the (trivial) relation family Ropn = {ψ, (pj)j∈[`] : ` ∈ N} whose instance is the
empty string ψ and witnesses are tuples of polynomials. A CP-SNARK for Ropn is essentially a proof
of knowledge of the openings of ` commitments.

Additionally we define a weaker zero-knowledge notion that is sufficient to be satisfied by the CPphp

CP-SNARK in our compiler. This new property allows better efficiency and flexibility of the compiled
protocols.

Leaky Zero-Knowledge. Intuitively, a CP-SNARK for relations over committed polynomials is leaky
zero-knowledge if its proofs may leak information about a bounded number of evaluations of these
polynomials. This is formalized by letting the zero-knowledge simulator have access to a list {ui(y)}i
as a hint for the simulation of proofs. The formal definition follows.

Definition 6.3. A CP-SNARK CP is (b,C)-leaky zero-knowledge for a family of relations {RN}N∈N if
there exists a simulator S = (Sleak,Sprv) such that for all adversaries A, for all N ∈ N, for all R ∈ RN,
the following two properties hold.

39

Proof Indistinguishability. For all (ck, td) ∈ Sck(1λ), for all x̂, ŵ where x̂ = (x′, (cj)j∈[`]) and ŵ =

((uj)j∈[`], (oj)j∈[`], ω) and such that RCom
ck,N(x̂, ŵ) = 1, for any L ← Sleak(1λ, x) let Leak :={(j, uj(x))}(j,x)∈L:

Pr

(srs, tdk)← KeyGen(ck,N)

srsR ← Derive(srs,R)

π ← Prove(srsR, x̂, ŵ)

: A(srs, tdk, td,R, x,w, π) = 1

 ≈
Pr

[
(srs, tdk)← KeyGen(ck,N)

π ← S(tdk, td,R, x̂, Leak)
: A(srs, tdk, td,R, x,w, π) = 1

]

Bounded Leakage. For any x, and any L←$Sleak(1λ, x), the list L is (b,C)-bounded with overwhelm-
ing probability over the security parameter.

6.2 Compiling to Universal Interactive Arguments

We describe our compiled universal succinct interactive argument (UIA) system in the SRS model in
Figure 3. A high-level description of UIA follows.

• At key-generation time we run the setup of the commitment scheme CS and generate keys for the
auxiliary CP-SNARKs.

• When deriving a specialized SRS for a specific relation R we commit to all the polynomials returned
by the relation encoder RE(R).

• The prover acts the same at every round except for the last. If we are not at the last round then it
commits to the polynomials from the PHP prover P, proves it knows their openings and propagates
the rest of the messages from P. At the last round it proves that the PHP verifier V would accept.
In order to do that it first runs the decision stage of V, thus obtaining a vector of degree checks (dj)j
and descriptions of polynomial equations (Gj ,vj)j . It then partially evaluates the polynomials Gj-s
on the prover’s message and uses them—together with the other checks—to prove V would accept.

• At every round that is not the last, the verifier simply propagates the messages from V. At the last
round, it obtains the checks from the decision stage of the PHP verifier. It then checks the prover’s
final PHP proof as well as all the opening proofs received throughout the interaction.

Theorem 6.1. Let PHP = (r, n,m, d, ne,RE ,P,V) be a non-adaptive public-coin PHP over a finite field
family F and for a universal relation R. Let CS be a compiling commitment scheme (Definition 6.2)
equipped with CP-SNARKs CPopn for Ropn and CPphp for Rphp.

• The scheme UIA = (KeyGen,Derive,P,V) defined in Figure 3 is a universal succinct interactive argu-
ment in the SRS model for R.

• If CPopn is TP-ZK, and, for a checker C, PHP (resp. CPphp) is (b + 1,C)-bounded honest-verifier
zero-knowledge (resp. (b,C)-leaky zero-knowledge) then UIA is trapdoor-commitment honest-verifier
zero-knowledge.

Remark 7. Under the hypothesis of Theorem 6.1 above, it is sufficient for CPphp to be T -restricted
complete, with T =

(
(rel)n(0)‖(swh)np

)
∈ T n∗, in order to obtain the completeness of UIA.

Remark 8 (On updatable SRS). If the commitment key generated by Setup is updatable [GKM+18],
and CPopn and CPphp have commitment-only SRS (see Definition 5.6) then the SRS of UIA is updatable.

Remark 9 (Efficiency of the resulting UIA). From the construction one can see that in UIA:

• prover and verifier interact for r + 1 rounds;

• Derive outputs a specialized verification key that consists of n(0) commitments;

• the prover sends: m∗ field elements, np commitments, r proofs of CPopn, and one proof of CPphp;

• the verifier’s running time is that of the PHP verifier, plus the sum of running Verifyopn and Verifyphp.

Combining the above observations with the succinctness of the commitment scheme CS (Definition 5.2)
and of the CP-SNARKs CPopn and CPphp, we obtain the succinctness of UIA.

40

KeyGen(1λ,N)→ (ek, vk)

// Let D be the max degree of PHP (Definition 3.1)

ck← CS.Setup(1λ,D)

(ekopn, vkopn)← KeyGenopn(ck)

(ekphp, vkphp)← KeyGenphp(ck)

ek := (ck, ekphp, ekopn); vk := (vkphp, vkopn)

Derive(vk,R)→ (ekR, vkR)

p0 ← RE(F,R)

(c0,o0)←$Commit(ck, rel,p0)

vkR :=
(
vk, c0

)
ekR :=

(
ek,R,p0,o0

)

P(ekR, x,w, ρ̄1, . . . , ρ̄i)→ π̄i

Let r := r(|R|)
if i ≤ r(|R|) then

// Get polynomials and messages from PHP prover(
pi,πi

)
← P(F,R, x,w, ρ̄1, . . . , ρ̄i)

(ci,oi)← Commit(ck, swh,pi)

πopn,i ← Proveopn(ekopn, ci,oi)

π̄i := (ci, πi, πopn,i)

else

// Get checks from PHP verifier
((dj)j∈[np], (Gj ,vj)j∈[ne])← DV(F, x, ρ1, . . . , ρr+1)

x̂php :=
(
(dj)j∈[np], (G

′
j ,vj)j∈[ne]

)
,

where G′k partially evaluates Gk, i.e., for k ∈ [ne] :

G′k(X, (Xj)j∈[n∗]) := Gk(X, (Xj)j∈[n∗], (π1|| . . . ||πr))

ŵphp := ((p0|| . . . ||pr), (o0|| . . . ||or))
πphp ← Provephp(ekphp, x̂php, (c0|| . . . ||cr), ŵphp)

π̄r+1 := πphp

V(srs, vk, x̂, π̄1, . . . , π̄i)→ ρ̄i

if i ≤ r then

ρi ← V(F, x, π1, . . . , πi−1)

ρ̄i := ρi

else

x̂php :=
(
(dj)j∈[np], (G

′
j ,vj)j∈[ne]

)
,

where G′k partially evaluates Gk, i.e., for k ∈ [ne] :

G′k(X, (Xj)j∈[n∗]) := Gk(X, (Xj)j∈[n∗], (π1|| . . . ||πr))

b← Verifyphp(vkphp, x̂php, (c0|| . . . ||cr), πphp)

bi ← Verifyopn(vkopn, (ci,j)j∈n(i), πi) for i ∈ [r]

Accept iff
(
∧i∈[r]bi ∧ b

)
Above we use a shortcut notation for committing to whole vectors of polynomials in one go. That is, given a
commitment type t and a vector of polynomials p of size m, above we write (c,o) ← Commit(ck, t,p) to mean that
for each j ∈ [m] (cj , oj)← Commit(ck, t, pj), c = (c1, . . . , cm) and o = (o1, . . . , om).

Figure 3: Compiler from PHP to UIA.

41

Intuition on Security Proof We refer the reader to Appendix C for a formal proof of Theorem 6.1;
here we provide an intuition. By the knowledge-soundness property of PHPs we know we can extract a
valid witness from the interaction with a PHP prover. Let’s call this extractor EPHP and let us assume
the verifier accepts. The high-level idea is to simulate the interaction between EPHP and a PHP prover
as follows: whenever EPHP queries a polynomial we run the extractor for CPopn and respond with the
corresponding polynomial (we are ignoring messages in this proof intuition). Call w̃ the output of EPHP
at the end of the interaction. If this is not a valid witness with high probability then we broke the
assumption on knowledge-soundness of the PHP. To see why: consider the extractor for CPphp, if we
run it on πphp then we can obtain polynomials that make the PHP verifier accept (if given oracle access
to them). These polynomials must be identical to the ones we can extract through CPopn, otherwise we
could break binding. If w̃ were not a valid witness then we could construct a PHP prover that makes the
verifier accept but without being able to extract a valid witness from it breaking knowledge-soundness
of the PHP.

We now provide an intuition about zero-knowledge; for simplicity we shall describe it as if the
protocol involved a single committed polynomial. First, observe that we assume a PHP with b + 1-
bounded ZK—i.e., we can simulate interaction with an honest prover even after we have leaked b + 1
evaluations of the polynomial. Since we assume a commitment scheme that is only somewhat-hiding
(Definition 6.1), we are actually leaking one evaluation of the committed polynomial (in particular on a
random point). We now combine this fact with the ZK property we are assuming on the CP-SNARKs
in the compuler—b-leaky ZK— and this allows us to still simulate an interaction with an honest prover
that is indistinguishable after further b leaked evaluations14.

7 CP-SNARKs for Pairing-Based Polynomial Commitments

In this section we present constructions of (type-based) commitment schemes for polynomials that
work in bilinear groups, and a collection of CP-SNARKs for various relations over such committed
polynomials. The commitment of a polynomial p is essentially the “evaluation in the exponent” of p in
a secret point s, following the scheme of Groth [Gro10] and Kate et al. [KZG10].
This section includes two commitment schemes CS1 and CS2 (Section 7.2) as well as CP-SNARKs work-
ing over them; more details on the CP-SNARKs follow. Our CP-SNARKs work over both commitment
schemes unless explicitly stated otherwise.

• “I know p : c opens to p”: two CP-SNARKs CPopn for proof of knowledge of opening, secure respec-
tively in the algebraic group model and under the mPKE assumption (Section 7.3);

• “p(x) = y”: a CP-SNARK for polynomial evaluation, CPeval,1, secure under the d-SDH assumption
(Section 7.4). We then extend this CP-SNARK as CPeval to support batching—“

(
pi(xi) = yi

)
i∈[`]

”—
in Section 7.5;

• a very general construction for a CP-SNARK for polynomial equations15, CPeq, relying mainly on
CPopn and CPeval (Section 7.6);

• a CP-SNARK, CPqeq, for quadratic polynomial equations16 specific to commitment scheme CS2 (Sec-
tion 7.7); although less general than CPeq, CPqeq is more efficient since its proof may simply be empty,
while verification consists of some pairing checks over the commitments.

• “deg(p) ≤ d”: two CP-SNARKs for degree bounds, CP(?)
deg and CP

(2)
deg, both secure if CPopn and CPeq

are secure; while CP
(?)
deg works over both commitment schemes, CP(2)

deg works only over CS2;

• a CP-SNARK CPlink, a key ingredient in our compiler to universal CP-SNARKs, to link polynomial
commitments of different types; see “Additional building blocks” 8.1 for further motivation.
14We observe that, for polynomials that allow for unbounded ZK, we can even use leakier forms of commitments than

somewhat-hiding ones.
15An example of polynomial equations is a(X)b(X)− 2c(X)d(X)e(X) = 0).
16Here “quadratic” means it supports products of at most two polynomials.

42

7.1 Bilinear Groups and Assumptions

A bilinear group generator GenG(1λ) outputs bgp := (q,G1,G2,GT , e), where G1, G2, GT are additive
groups of prime order q, and e : G1 × G2 → GT is an efficiently computable, non-degenerate, bilinear
map. We focus Type-3 groups where it is assumed there is no efficiently computable isomorphism
between G1 and G2. We use the bracket notation of [EHK+13], i.e., for g ∈ {1, 2, T} and a ∈ Zq, we
write [a]g to denote a · Pg ∈ Gg, where Ps is a fixed generator of Gg. From an element [a]g ∈ Gg and a
scalar b it is possible to efficiently compute [ab] ∈ Gg. Also, given elements [a]1 ∈ G1 and [b]2 ∈ G2, one
can efficiently compute [a · b]T by using the pairing e([a]1, [b]2), that we compactly denote with [a]1 · [b]2.

In our constructions we make use of the following assumptions over a group generator GenG.

Assumption 1 (d-Power Discrete Logarithm [Lip12]). Given a degree bound d ∈ N, the d-Power
Discrete Logarithm (d-DLOG) assumption holds for a bilinear group generator GenG if for every efficient
non-uniform adversary A the following probability is negligible in λ:

Pr
[
s′ = s :

bgp←$GenG(1λ); s←$Zq;
s′ ← A(bgp, {[sj]1, [sj]2}j∈[0,d])

]
.

Assumption 2 (d-Strong Diffie-Hellman [BB04]). Given a degree bound d ∈ N, the d-Strong Diffie-
Hellman (d-SDH) assumption holds for a bilinear group generator GenG if for every efficient non-uniform
adversary A the following probability is negligible in λ:

Pr
[
C = [(s+ c)−1]1 :

bgp←$GenG(1λ); s←$Zq;
(c, C)← A(bgp, {[sj]1, [sj]2}j∈[0,d])

]
.

We consider a slight variant of the Power Knowledge of the Exponent (PKE) Assumption of
Groth [Gro10]. This variant, also used in [CHM+20], considers an adversary (resp. an extractor)
that outputs a vector of group elements (resp. of tuples of field elements), and is implied by the PKE
assumption.

Assumption 3 (mPKE). The (multi-instance) Power Knowledge of Exponent (mPKE) assumption
holds for a bilinear group generator GenG if for every efficient non-uniform adversary A and a degree
bound d ∈ N there exists an efficient extractor E such that for any benign distribution Z the following
probability is negligible in λ:

Pr

∃j :

dj = γ · cj ∧
cj 6=

∑
k a

(j)
k sj

:

bgp←$GenG(1λ);
auxZ ← Z(bgp);
s, γ←$Zq;

Σ =
(

[sj]1, [s
j]2, [γs

j]1, [γ]2
)
j∈[0,d]

;

(cj)j∈[`′], (dj)j∈[`′] ← A(bgp,Σ, auxZ);

(a(j))j∈[`′] ← E(bgp,Σ, auxZ)

.

7.2 The Commitment Schemes

We show two type-based commitment schemes, CS1 and CS2, with type set {rel, swh} and for degree-d
polynomials. We begin with an informal explanation of them.

In both schemes, ck contains encodings of powers of a secret point s, a commitment of type swh

to a polynomial p(X) is a group element [p(s)]1. The only difference between the two schemes are the
commitments of type rel, which in CS1 are [p(s)]1 whereas in CS2 are [p(s)]2. As we shall see in Section
7.7, the advantage of having some polynomials committed in G2 is that one immediately gets a way to
test quadratic equations over polynomials where each quadratic term involves exactly one polynomial of
type rel. Both types of commitments are computationally binding under the power-discrete logarithm
assumption [Lip12]. For commitments of type swh we show somewhat hiding.

43

Below we describe the commitment schemes in more detail. To keep the presentation compact, we
describe them as a single scheme CSg parametrized by the following function, for g ∈ {1, 2},

µg(type) =

{
g if type = rel

1 if type = swh

The function essentially dictates in which group is a type-rel commitment.
The algorithms (Setup,Commit,VerCom) of CSg are defined as follows:

CSg.Setup(1λ, d): run bgp←$GenG(1λ) to generate the bilinear groups description, set the message
space to be F≤d[X] where F := Zq. Next, sample s←$Zq uniformly at random, compute and output:

ck =

{(
([sj]1)j∈[0,d], [s]2

)
if g = 1,

([sj]1, [s
j]2)j∈[0,d] if g = 2.

CSg.Commit(ck, type, p)→ (c, o): Let ĝ ← µg(type), and output the commitment c := [p(s)]ĝ (the open-
ing o is empty).17

CSg.VerCom(ck, type, c, p, o): set ĝ ← µg(type), and check if c ?
= p([s]ĝ).

Remark 10. We note that in CS1, the elements [1, s]2 are not needed to commit and verify openings,
but they are useful to verify the correctness of ck (which is useful when generating ck in an updatable
way).

In the following theorem we state the security of the scheme.

Theorem 7.1. CSg is binding under the d-DLOG assumption for GenG, and perfectly somewhat-hiding.

Proof. Binding is essentially the same as in [Gro10]. Assume the adversary produces two polynomials
p and p′ that evaluate to the same value on the point s. Then by finding the 0’s of the polynomial
p(X)− p′(X) we can find s and break the d-DLOG assumption.

For somewhat-hiding, we notice that the polynomial commitment scheme does not need any trapdoor
opening information, thus the TdCom algorithm we define next sets st to be the empty string and
there is no need for the TdOpen algorithm. We define algorithms Sck and TdCom and shows that the
distributions produced by the algorithms are indistinguishable from the distributions produced by Setup
and Commit:

Sck(s)→ (ck, td): use s to compute ck as in Setup and output ck and td = s.

TdCom(ck, type, p(s))→ (c, st): let µg(type) = g and output [p(s)]g.

Clearly for an uniformly random s the distributions of the outputs of Sck and Setup are identical.

7.3 CP-SNARKs for Ropn

Here we present two CP-SNARKs for the commitment schemes CS1,CS2 and the relation Ropn (which
essentially provides a proof of knowledge of the committed polynomials). For our results, we are inter-
ested in proving this relation only over commitments of type swh.

A CP-SNARK in the algebraic group model. The first CP-SNARK, CPAGM
opn , is actually a trivial

scheme in which the proof is the empty string. Its knowledge-soundness, can be shown in the algebraic
group model [FKL18] where any adversary that returns a commitment is assumed to know coefficients
which explain it as a linear combination of the public parameters, the ck. This is an observation already
done in previous work, e.g., [GWC19, CHM+20]), and thus we omit the details of the analysis.

Theorem 7.2. CPAGM
opn is a CP-SNARK for Ropn over CS1 (resp. CS2) that is swh`-restricted complete,

perfectly zero-knowledge and knowledge-sound in the algebraic group model.
17For this reason, all the CP-SNARKs given for this commitment scheme will omit o from the prover’s inputs.

44

A CP-SNARK under the mPKE assumption. The second CP-SNARK, CPPKE
opn , is novel and

provides extractability based on the mPKE assumption and, when used on more than one commitment,
on the random oracle heuristic. In a nutshell, this scheme uses the classical technique of giving as a
proof a group element πopn such that πopn = γ · c for some secret γ ∈ F, and this πopn can be honestly
computed by using the same linear combination used to compute c. What is new in our scheme is a
way to batch this proof for ` commitments in such a way that we have only one extra group element as
a proof, instead of ` elements.

CPPKE
opn .KeyGen(ck): parse ck as (ck1, ck2) with ck1 ∈ Gd+1

1 , sample γ←$F, define ek := (ck, γ · ck1) and
vk := [1, γ]2, and return srs := (ek, vk).

CPPKE
opn .Prove(ek, (cj)j∈[`], (pj)j∈[`]): for j ∈ [`] compute πj ← [γ · pj(s)]1, next compute (ρ1, . . . , ρ`)←
H((cj)j∈[`]) and output πopn :=

∑
j ρjπj .

CPPKE
opn .Verify(vk, (cj)j∈[`], πopn): compute (ρ1, . . . , ρ`) ← H((cj)j∈[`]) and c :=

∑
j ρjcj . Output 1 if

and only if e(c, [γ]2) = e(πopn, [1]2).

Remark 11 (On Updatable SRS generation). Note that the SRS of this CP-SNARK can be generated by
having access to the commitment key (without need of knowing its trapdoor), and it is easy to see how it
can be generated in an updatable fashion, and the correctness of every element can be efficiently checked
using a pairing. Generating the SRS of CPopn after the commitment key ck would however require an
additional sequence of rounds in the SRS ceremony. Although this can be still useful when re-using an
existing commitment key, it is annoying if the goal is to generate ck and the CPopn SRS together. In the
latter case, however, it is easy to see that they can be generated together with a single sequence of rounds
in the ceremony, i.e., such that at every round the i-th participant outputs its version of (ck, γ · ck1).

Efficiency. Key generation requires d + 1 exponentiations in G1 to generate γ · ck1, and one in G2

to compute [γ]2. The prover can be implemented so as to require d∗ G1-exponentiations and O(` · d∗)
F-operations, where d∗maxj∈[`]{deg(pj)}. This is done by computing p∗(X) ←

∑
j ρjpj(X) and then

πopn ← [γ · p∗(s)]1. Verification requires: 2 pairings, ` G1-exponentiations, and one hash computation.

Security. In the following theorem we state the security of CPPKE
opn .

Theorem 7.3. CPPKE
opn is a CP-SNARK for Ropn over CS1 (resp. CS2) that is swh`-restricted complete,

perfectly zero-knowledge and knowledge-sound under the mPKE assumption in the random oracle model.

Proof. Completeness is obvious. Zero-knowledge is also rather easy to see: a simulator that knows γ
can perfectly simulate proofs without knowing the witness. Before proving knowledge soundness we
recall an useful form of the Chernoff-Hoeffding bound [DP09].

Lemma 7.4. Let X :=
∑

j∈[n]Xi where X1, . . . , Xn are independently distributed in [0, 1]. Then for all
t > 0:

Pr[X < E[X]− t] ≤ 2−2t2/n

Let A be an (non-uniform PT) adversary and Z be an auxiliary input distribution such that for any
E the probability that A outputs a statement (cj)j∈[`] and a valid proof π is ε in the game GameKSND

RG,Z,A,E
(whereRG is the dummy algorithm that outputsRopn). Moreover, letW be the event that the adversary
outputs a valid statement-proof tuple. (Obviously, Pr[W] = ε.)

Consider the following adversary B and auxiliary distribution Z ′ against the mPKE assumption.
The distribution Z ′(Σ) computes the structured reference string srs of CPopn from Σ, runs auxZ ←
Z(Ropn, srs) and outputs srs, auxZ .

Adversary Bi,h(Σ, (srs, auxZ); ρ):

1. Let K = 2`ε−1q(1 +λ), parse ρ = (h
(j)
k)i<k≤q,j∈[K] where h

(j)
k ∈ Z`q and q is the maximum

amount of random oracle queries made by an execution of A.

45

2. Compute ck from Σ, run A(Ropn, ck, srs, auxZ) and answer the first i − 1 queries of A to
the random oracle with the values h = h1, . . . , hi−1. Let st the state of A just before the
i-th queried is sent.

3. For j = 1 . . .K run the following:

(a) Run A feeding it with the value h(j)
k at the k-th query.

Let x̂j , πj be the output of A and let bj ← Verify(srs, x̂j , πj).
(b) Rewind A to the state st.

4. Assert
∑

j bj ≥ `, let H be a subset of of cardinality ` of the indexes j such that bj = 1,

we define the square matrix M which columns are the vectors h(j)
i ∈ Z`q and j ∈ H.

5. Assert that M is full rank.
6. Assert that for all j, j′ we have x̂j = x̂j′ . If so parse them as (cj)j∈[`].
7. Compute (dj)j∈[`] = (πj)j∈HM

−1 and output (cj)j∈[`], (dj)j∈[`].

The adversary B is parameterized by an index i and values h1, . . . , h1−1 where hj ∈ Z`q.
First we notice that if the adversary B does not abort then it outputs values (cj)j∈[`] and (dj)j∈[`]

such that for all j ∈ ` : γ · cj = dj . Indeed the verification in step 3a, for any j, we set bj to 1 if and
only if γ ·

∑
k hj,kck = πj where we parse h(j)

i = xj,1, . . . , ρj,`, thus (πj)j∈H = (cj)j∈[`] ·M .
We analyze the probability that B does not abort. Let Qj be the event that the adversary A queries

the random oracle with (cj)j∈[`] (the output instance) at the j-th random oracle query. Let i be the
index that maximizes the probability Pr[W ∧Qi]. It is easy to see that Pr[W ∧Qi] ≥ ε

q . Let h be the
assignment of the first i − 1 queries that maximize the probability Pr[W ∧ Qi], by average argument,
we notice that there must exist h such that, conditioned on the assignment Pr[W ∧Qi|h] ≥ ε

q .
Given an assignment auxZ , we call it good if Pr[W ∧Qi|h, auxZ] ≥ ε

2q . By a simple average argument
we have that with probability 1

2 an output auxZ of Z is good. Also we notice that if we fix h and auxZ
then the random variables b1, . . . , bK are independent and if auxZ is good then each of them has average
greater or equal to ε

2q , thus by the Chernoff-Hoeffding bound we have that:

Pr[
∑
j

bj ≥ `|h, auxZ] ≥ 1− negl(λ).

Thus the assertion in step 4 passes with overwhelming probability. We notice that the assertion in step
5 passes with overwhelming probability as the rows of M are random vectors in Z`q, also the assertion in
step 6 passes always cause fixing h and auxZ the i-th query of the adversary A is deterministic function
of srs. Putting all together the probability that B does not abort is greater than 1

2 − negl(λ).

We are ready to define the extractor for the knowledge soundness experiment. Roughly speaking the
extractor calls the extractor of B, however the reduction B is a probabilistic polynomial time algorithm.
Thanks to the non-uniformity we can fix the randomness of B to a string ρ that maximizes the probability
of B outputting valid tuples. Thus let B′ such non-uniform PT that runs B with randomness set to ρ.

Let E be the extractor of B′, assumed to exist thanks to the mKEA assumption. The extractor
outputs vectors a(j) for any j ∈ [`]. We let the extractor for A simply run E and output what it
does. By the mPKE assumption, we have cj =

∑
k a

(j)
k sk (as otherwise B would break the mPKE

assumption).

Remark 12. (Efficiently composing CPopn with other SNARKs) All of the CP-SNARKs in this section
apply CPopn to obtain extractability of the committed polynomials. More precisely, this is true only for
polynomials of type swh; we assume the adversary always opens commitments of type rel. The proofs of
the CP-SNARKs we present in this section are all of the form (πopn, π) where the first part, πopn, is a proof
of knowledge of a valid opening for the commitments in input. A straightforward composition of these CP-
SNARKs would incur in redundantly proving the knowledge of the openings of the same commitments;
therefore, we do not use black-box composition: given a CP-SNARK CP = (KeyGen,Prove,Verify) we
define the algorithms Prove and Verify respectively working just as Prove and Verify, except that they do
not compute/verify the proof πopn.

46

7.4 CP-SNARK for evaluation of a single polynomial

We define a CP-SNARK CPeval,1 for the relation Reval,1((a, b), p) := p(a)
?
= b, where p is committed

as [p(s)]1. Hence CPeval,1 is complete for CS1, and swh-restricted18 complete for CS2. This scheme is
essentially the evaluation proof technique of [KZG10] with an additional proof of knowledge.

KeyGeneval1(ck): execute (ekopn, vkopn) ← KeyGenopn(ck), parse ck as ([sj]1, [s
j]2)j∈[0,d] define ek :=

(ck, ekopn) and vk := ([1, s]2, vkopn), and return srs := (ek, vk).

Proveeval1(ek, (a, b), c, p): Compute a proof πopn ← Proveopn(ekopn, c, p), the polynomial w(X) such that
w(X) · (X − a) ≡ p(X)− b set π← [w(s)]1, and output (πopn, π).

Verifyeval1(vk, (a, b), c, π): Parse π = (πopn, [w]1), and output 1 iff:

1. Verifyopn(vkopn, c, πopn) = 1 and
2. e([w]1, [s− a]2) = e(c− [b]1, [1]2).

Efficiency. We give efficiency ignoring the costs of CPopn. Generating a proof requires deg(p) G1-
exponentiations to compute π andO(deg(p)) F-operations to compute the polynomial w(X). Verification
requires: 2 pairings.

Security. In the following theorem we state the security of CPeval,1.

Theorem 7.5. If CPopn is a swh-restricted CP-SNARK for Ropn and the d-SDH assumption holds
for GenG, then CPeval,1 is a complete (resp. swh-restricted complete), knowledge sound, and trapdoor-
commitment zero-knowledge CP-SNARK for Reval,1 for CS1 (resp. CS2). Moreover, if CPopn has
commitment-only SRS then CPeval,1 has commitment-only SRS.

Proof. The proof of completeness and knowledge soundness follow from previous works [KZG10, CHM+20]
and is therefore omitted. To see trapdoor-commitment zero-knowledge, notice that with the trapdoor
s ∈ Zq we can compute [w]1 := (c− [b]1)/(s− a), moreover, we can simulate πopn using the simulator of
CPopn.

7.5 CP-SNARK for batch evaluation of many polynomials

We define a CP-SNARK CPeval for the commitment schemes CS1, CS2 and the relation Reval which is
the Cartesian product of ` ∈ N instances of Reval,1. The CPeval we propose is complete for CS1 and swh`-
restricted complete for CS2. This scheme is essentially a CP-SNARK version of the batched polynomial
commitment evaluation technique in [GWC19, CHM+20].

The intuition for the construction is as follows. To prove that two polynomials p and p′ committed
to c and c′ evaluate to b and b′ on the point a, by linearity of the polynomials and classical batch
argument we can simply show that a random linear combination p∗ = ρp + ρ′p′ of p and p′ evaluate
to ρb + ρ′b′. Notice that by the homomorphic property of the commitment scheme we can compute
c∗ = ρc + ρ′c′ which is a valid commitment of p∗. Generalizing, of the ` points a1, . . . , a` on which we
want to evaluate the proofs, we gather the `∗ distinct ones. For each of these we compute an evaluation
proof by batching the polynomials together.

KeyGeneval(ck): this proceeds identically as the key generation of CPeval,1.

Proveeval(ek, (aj , bj)j∈[`], (cj)j∈[`], (pj)j∈[`]):

1. Let W := {j ∈ [`] : type(cj) = swh} be the set of indices of type-swh commitments. Compute
πopn ← Proveopn(ekopn, (cj)j∈W , (pj)j∈W);

2. For j ∈ [`] set ρj ← H(x̂‖j) and let {a∗1, . . . , a∗`∗} = {aj}j∈[`] (repeated values are not counted), let
P1, . . . , P`∗ be a partition of the set [`] such that Pk = {j : aj = a∗k};

18An extension to support evaluations on rel-typed ccommitments in CS2 is straightforward; it is omitted as it’s not
needed in our work.

47

3. For k ∈ [`∗] compute c∗k ←
∑

j∈Pk ρj · cj , p
∗
k =

∑
j∈Pk ρj · pj , and b

∗
k = p∗k(a

∗
k);

Compute πk ← Proveeval1(ek, (a
∗
k, b
∗
k), c

∗
k, p
∗
k).

4. Return π = (πopn, (πj)j∈[`∗]).

Verifyeval(vk, (aj , bj)j∈[`], (cj)j∈[`], π): Compute W as described in the step 1 of the prover, and compute
(ρj)j∈[`], (a

∗
j)j∈[`∗], (c

∗
j)j∈[`∗] and (Pj)j∈[`∗] as described in steps 2 and 3 of the prover. Parse π =

(πopn, (πj)j∈[`∗]), and return 1 iff :

1. Verifyopn(srs, (cj)j∈W , πopn) = 1 and,

2. for all k ∈ [`∗] we have Verifyeval1(vk, (a
∗
k, b
∗
k), c

∗
k, πk) = 1.

Efficiency. We give efficiency ignoring the costs of CPopn. Generating a proof requires deg(p∗k) G1-
exponentiations and O(deg(p∗k)) F-operations to compute each πk. Verification requires 2`∗ pairings,
which can be reduced to a total of 2 using standard batching techniques.

Security. In the following theorem we state the security of CPeval.

Theorem 7.6. If CPopn is a swh`-restricted CP-SNARK for Ropn and the d-SDH assumption holds
for GenG, then CPeval is a CP-SNARK for CS1 (resp. CS2) that is: complete (resp. swh`-restricted
complete), knowledge-sound (with partial opening of type-rel commitments) in the random oracle model,
and trapdoor-commitment zero-knowledge in the SRS model. Moreover, if CPopn has commitment-only
SRS then CPeval has commitment-only SRS.

Proof sketch. The proof of this theorem is an extension of the one of Theorem 7.5; we only provide
a sketch. The main difference is in the knowledge soundness. First, notice that by Theorem 7.5 we
have that each of the `∗ polynomial evaluations is correct. The correctness of all the ` evaluations then
follows from a classical batching argument using the randomizers ρ1, . . . , ρ`.

7.6 CP-SNARK for Polynomial Equations

We describe a CP-SNARK for polynomial equations that relies on the one for batched polynomial
evaluations given in the previous section. This CP-SNARK is based on the optimizations proposed by
[GWC19].

Although the formal general treatment of our scheme has several technical details, its intuition is
simple. At the high-level, we verify each polynomial equation by sampling a random point, exploiting
the Schwartz-Zippel Lemma and reducing the problem to proving polynomial evaluation. For example,
we pick random point u and then reduce proving a(X)b(X)c(X) + d(X) = 0 to a(u)b(u)c(u) + d(u) =
0. Then, for each monomial of degree d at least 2 in the polynomial equation, we recursively prove
evaluation for a monomial of degree d − 1. For example, assume monomial a(u)b(u)c(u) above equals
value y, then we could reduce to yab(u)c(u) = y by providing ya and relative proof to the verifier. We
could then do this again for b by providing a proof that b(u) = yb, yb and then reducing to yaybc(u) = y.
At this point we obtained a linear equation and we can use the approach of Proveeval. In the example
above we first started from a and then moved to b leaving c last, but clearly there are different recursion
strategies. Some of them will be more efficient than others. Below, we abstracted away this aspect
through minimal set S defined as in the pseudocode.

We define a class of CP-SNARKs for subsets of the relation Req (see Section 3.1). In particular, let
C be a checker, we implicitly parameterize the CP-SNARK with the checker C. Consider the following
relation:

Req,C =

{
(G(j),v(j))j∈[k], (pj)j∈[`] :

∀i ∈ [`], x ∈ Zq : C(i, vi(x)) = 1∧
Req((G,v), (pj)j∈[`]) = 1

}
We define a (1,C)-leaky zero-knowledge CP-SNARK CPeq for the commitment scheme CS and the
relation Req,C. Let H be a random oracle from {0, 1}∗ to Zq.

KeyGeneq(ck): execute (ekopn, vkopn)← KeyGenopn(ck) and (ekeval, vkeval)← KeyGeneval(ck) define ek :=
(ekopn, ekeval) and vk := (vkopn, vkeval), and return srs := (ek, vk).

48

Proveeq(ek, (G,v), (cj)j∈[`], (pj)j∈[`]): Execute the following steps.

1. Let W := {j ∈ [`] : type(cj) = swh} be the set of indices of type-swh commitments. Compute
πopn ← Proveopn(ekopn, (cj)j∈W , (pj)j∈W);

2. Let x̂ := ((G(j),v(j))j∈[k], (cj)j∈[`]) and set ρ← H(x̂‖πopn). For any l ∈ [k] if degX(G(l)(X, v
(l)
1 (X), . . . ,

v
(l)
` (X))) > 0, and, for j ∈ [`], let a(l)

j ← v
(l)
j (ρ), b(l)j = pj(a

(l)
j); otherwise, let a(l)

j ← v
(l)
j (0) and

b
(l)
j = pj(a

(l)
j).

3. For any l ∈ [k] let {a∗1,l, . . . , a∗`∗,l} = {a(l)
j }j∈[`] (repeated values are not counted), let P (l)

1 , . . . , P
(l)
`∗

be a partition of the set [`] such that P (l)
t = {j : a

(l)
j = a∗t,l};

4. Let S be the minimal subset of [`] such that (1) exists an index i∗ such that S̄ = [`] \ S ⊆ Pi∗ , (2)
the polynomial G(x,X1, . . . , X`) has degree zero or one in the variables {Xj}j∈S .

5. Let
∑

j∈S̄ ljXj + l0 be equivalent to the polynomial G with the variables (Xj)j∈S assigned to the
values (bj)j∈S and the variable X assigned to the value ρ.

6. Let a∗ = a∗i∗ , b
∗ = −l0, c∗ =

∑
j∈S̄ lj · cj , p∗ =

∑
j∈S̄ lj · pj .

Let x̂′ = ((aj , bj , cj)j∈S , (a
∗, b∗, c∗))), namely x̂′ is a vector of |S|+ 1 instances of Reval.

Compute πeval ← Proveeval(ekeval, x̂
′, ((pj)j∈S , p

∗, p`))

7. Output (πopn, {bj}j∈S , πeval).

Verifyeq(vk, x̂, π): Parse π = (πopn, {bj}j∈S , πeval). Execute the steps 2,3, 4 and 5 of the prover (but do
not compute the values (bj)j∈[`], bur rather take (bj)j∈[S] from the proof). Also compute W as in step
1. Compute the commitment c∗ as in step 6 of the prover, set a∗ = a∗i and b∗ = −l0. We observe
that l0 can be computed efficiently since it depends only on the linear terms of G involving the values
{bj}j∈S and the constant term of G(ρ, . . .).

Return 1 iff:

1. Verifyopn(vkopn, (cj)j∈[W], πopn) = 1,

2. Set x̂′ as in step 6 of the prover, Verifyeval(vkeval, x̂′, πeval) = 1 and,
3. ∀j ∈ [`] : C(j, vj(aj)) = 1.

Efficiency. We give efficiency ignoring the costs of CPopn. Generating a proof requires generating a
batched evaluation proof for |S|+ 1 committed polynomials (see previous section). Verification requires
O(|G|) F-operations for the partial evaluation of G and to recover the lj coefficients, plus the cost of
one batched evaluation verification (2 pairings).

Security. In the following theorem we state the security of CPeq.

Theorem 7.7. Let CPopn and CPeval be CP-SNARKs over commitment scheme CS for relations Ropn

and Reval respectively. Then CPeq is a CP-SNARK over CS that is knowledge-sound (with partial opening
of type-rel commitments), and swh-typed (1,C)-leaky zero-knowledge. Moreover, if CPopn and CPeval

have commitment-only SRSs then CPeval has a commitment-only SRS.

Before proving the theorem we make the following observation.

Remark 13 (On more fine-grained leakage). With a closer look, we observe that this scheme is actually
(b,C)-leaky zero-knowledge, for a b such that bi = 1 if i ∈ S and bi = 0 otherwise. This is because
evaluations of polynomials are revealed only if the index j is included in S.

Proof. Knowledge Soundness follows by the extractability of CPopn, the Schwartz-Zippel Lemma and the
knowledge soundness of CPeval. In particular, it is enough to extract only from type-swh commitments
as we only have to prove knowledge soundness with partial openings of type-rel commitments.

More in detail, for any benign relation sampler RGCom and auxiliary input sampler Z consider the
adversary A that outputs an instance x̂ = (G, (vj)j∈[`], (cj)j∈[`]) and a proof π, along with polynomials
pj such that type(cj) = rel. By the knowledge soundness of CPopn we can extract polynomials (pj)j∈[`].

49

Moreover, since ρ = H(x̂‖πopn) the value ρ is independent from the polynomials G,v and (pj)j∈[`]

and uniformly random over Zq. Thus applying the Schwartz-Zippel lemma, if the polynomial G′(X) :=
G(X, (pj(vj(X)))j∈[`]) evaluates to 0 on ρ then G′(X) ≡ 0. We conclude noticing that, by the knowledge
soundness of CPeval it holds that ∀j ∈ S : pj(aj) = bj and

∑
j∈S̄ ljpj(a

∗) = b∗ thus G′(ρ) = 0.

We show that CPeq is (1,C)-leaky zero-knowledge. Let x̂ a valid instance of RCom
eq,C . Consider the sim-

ulator Sleak(x̂) that computes aj ← vj(H(x̂‖πopn)) for j ∈ [`] and outputs the list L = {(j, aj)}j∈[`]. By
definition of x̂ and by inspection of L, the list L is (1,C)-bounded. The simulator Sprv(tdk, x̂, leak) sim-
ulates the proof πopn, then parses leak as (bj)j∈[`] where bj = pj(aj), letting Sprv′ be simulator of CPeval

and x̂′ = ((aj , bj , cj)j∈S , (a
∗, b∗, c∗))), computes π′ ← Sprv′(tdk, x̂′) and outputs (πopn, {bj}j∈S , πpoly).

The indistinguishability easily follows by the zero-knowledge of the proofs of CPeval and of CPopn.

7.7 A CP-SNARK for CS2 for quadratic polynomial equations

Let us consider the following relation in which G is an `-variate polynomial of degree 2:

Rqeq(G, (pj)j∈[`]) := G(p1(X), . . . , p`(X))
?≡ 0

Rqeq is a simplification of Req in which the degree of G is restricted to 2, each vj(X) = X, and we
removed the first variable X.

Here we show a simple CP-SNARK for the commitment scheme CS2 and the above relation Rqeq.
This scheme is novel and to the best of our knowledge it did not appear in previous work. The techniques
are inspired by the linear interactive proof compiler of [BCI+13].

The basic intuition is rather simple, when G satisfies the restriction above it is possible to homomor-
phically compute G over (p1(s), . . . , p`(s)) in the target group using pairings and the linear property
of the commitments. Like for the previous scheme, our approach is based on Schwartz-Zippel. Only,
this time we exploit the random point s hidden in the SRS of the commitment scheme for polynomial
evaluation. Thus all the verifier needs to do is verify a pairing product for each of the monomials of the
type a(X)b(X). For this to be possible, it needs to have each of the two polynomials a and b in two
distinct groups. This is the case if they are committed through different types, i.e., one as type rel and
the other as type swh. Otherwise, if they are both committed in the same group, we let the prover send
one of the two polynomials committed in the “symmetric” group. Like in CPeq we abstract the most
efficient approach to do this through a minimal set, in this case set J as defined in the pseudocode.

KeyGenqeq(ck): execute (ekopn, vkopn)← KeyGenopn(ck) and return srs := (ekopn, vkopn).

Proveqeq(ek, G, (cj)j∈[`], (pj)j∈[`]):
first, let W := {j ∈ [`] : type(cj) = swh} be the set of indices of type-swh commitments, and compute
πopn ← Proveopn(ekopn, (cj)j∈W , (pj)j∈W). Then proceed as follows:

• Consider the undirected graph where V = [`] and there is an edge {i, j} if type(ci) = type(cj) and
the term (Xi ·Xj) is non zero in G.
• Let J be the min-cut of such graph, namely the minimal set of nodes that cover all the edges of G.
• For any j ∈ J :

if type(cj) = swh, compute c′j = [pj(s)]2;
if type(cj) = rel, compute c′j = [pj(s)]1;

• Let C′ = {c′j}j∈J and output π := (πopn, C′).

Output π := (πopn, C′).
Verifyqeq(vk, x̂, π): parse C′ = {c′j}j . Reconstruct the set J as in the prover algorithm, and return 1 if
and only if all the following checks pass:

1. Verifyopn(vkopn, (cj)j∈[W], πopn) = 1, for W computed as in step 1 of the prover;
2. for all j ∈ J , check e(cj , [1]2) = e([1]1, c

′
j) (if type(cj) = swh) or e(c′j , [1]2) = e([1]1, cj) (if type(cj) =

rel);

3. [Ĝ((c′j)j∈[`], (c
′
j)j∈J)]T

?
= [1]T , where Ĝ is a modified version of G where the computation of a

quadratic term involving only cj is performed as e(cj , c′j) (or e(c′j , cj)).

50

Efficiency. Generating a proof requires |J | operations of G1 or G2 to compute each c′j . Verification
requires 2|J | pairings in step 2 and t + 1 pairings in step 3, where t is the number of quadratic terms
in G. Here we ignored the cost of CPopn as well as that to compute the min-cut J ; in our applications
this is trivial and can be given as a parameter.

Security. In the following theorem we state the security of CPqeq.

Theorem 7.8. If CPopn is a CP-SNARK for Ropn over CS2 then CPqeq is a complete, knowledge-sound
(with partial opening of type-rel commitments) zero-knowledge CP-SNARK for Rqeq over CS2 under
the d-DLOG assumption for GenG. Moreover, if CPopn has a commitment-only SRS then CPqeq has a
commitment-only SRS.

Proof Sketch. We define the extractor of CPqeq to be the same as the CPopn extractor. By the knowledge
soundness of CPopn, such extractor returns a tuple of polynomials (pj)j∈[`] such that for every j ∈ [`] it
holds cj = [pj(s)]gj for the appropriate group gj .

We want to bound the probability that for the extracted polynomials it holds G(p1(X), . . . , p`(X)) 6≡
0 (while the proof accepts). Let us define p∗(X) = G(p1(X), . . . , p`(X)). Since the proof accepts we
have p∗(s) = G(p1(s), . . . , p`(s)) = 0. Then we can factor p∗(X) to recover the root s, and thus break
d-DLOG assumption.

7.8 CP-SNARKs for degree of committed polynomials

In this section we show two CP-SNARKs, CP
(?)
deg and CP

(2)
deg, for proving a bound on the degree of

committed polynomials, namely they work for the universal relation Rdeg in which every Rdeg ∈ Rdeg

consists of a vector (dj)j∈[`] of degrees, such that every dj ∈ [d], and the relation is satisfied if and only
if ∀j : deg(pj) ≤ dj .

The basic idea of the schemes is the following. To prove that deg(p) ≤ d∗ one commits to the shifted
polynomial p∗(X) = Xd−d∗p(X) and then proves that the polynomial equation Xd−d∗ ·p(X)−p∗(X) = 0
using a CP-SNARK for polynomial equations. This idea is extended in order to batch together these
proofs for several polynomials.

The two schemes CP
(?)
deg and CP

(2)
deg follow this approach with the only difference that CP

(2)
deg makes

use of the optimized scheme CPqeq for quadratic equations. Indeed, Xd−d∗ · p(X) − p∗(X) = 0 can be
seen as a quadratic equation in which the polynomial Xd−d∗ can be committed in G2 by the Derive
algorithm.

Therefore we have that CP(?)
deg can work with both commitment schemes CS1 and CS2, while CP

(2)
deg

works with CS2 only. Both CP-SNARKs are swh`-restricted complete.
Finally, we remark that in the CP-SNARKs below we assume that the degree bounds are always

strictly less than the maximal degree d supported by the commitment key ck. In fact, for such d a proof
for deg(p) ≤ d is for free.

7.8.1 Scheme CP
(?)
deg

We define the CP-SNARK CP
(?)
deg = (KeyGendeg,Provedeg,Verifydeg) as follows.

KeyGendeg(ck): execute (ekopn, vkopn) ← KeyGenopn(ck), execute (ekeq, vkeq) ← KeyGeneq(ck), define
ek := (ck, ekopn, ekeq) and vk := (vkopn, vkeq), and return srs := (ek, vk).

Provedeg(ek, (dj)j∈[`], (cj)j∈[`], (pj)j∈[`]):

1. Compute πopn ← Proveopn(srs, (cj)j∈[`], (pj)j∈[`]);
2. Let ρ1, . . . , ρ` ← H((dj)j∈[`], (cj)j∈[`], πopn), let {d∗1, . . . , d∗`∗} = {dj}j∈[`] (repeated values are not

counted), and let P1, . . . , P`∗ be a partition of the set [`] such that Pk = {j : dj = d∗k};
3. For all i ∈ [`∗] let c′i ← [p′(s)]1 := [

∑
j∈Pi ρj · pj(s)]1 and c∗i ← [p∗i (s)]1 := [sd−d

∗
i ·
∑

j∈Pi ρj · pj(s)]1;
4. Compute π∗opn ← Proveopn(srs, (c∗j)j∈[`∗], (p

∗
j)j∈[`∗]).

51

5. For all i ∈ [`∗], define Gi(X,X ′i, X
∗
i) = Xd−d∗i · X ′i − X∗i , v

(i)
1 (X) = v

(i)
2 (X) = X, and compute

πeq ← Proveeq(ekeq, (Gi,v
(i))i∈[`∗], (c

′
i, c
∗
i)i∈[`∗], (p

′
i, p
∗
i)i∈[`∗])

6. Return (πopn, c
∗
1, . . . , c

∗
`∗ , π

∗
opn, πeq).

Verifydeg(vk, (dj)j∈[`], (cj)j∈[`], π): Parse π = (πopn, c
∗
1, . . . , c

∗
`∗ , π

∗
opn, πeq), and compute ρ1, . . . , ρ` and

Gi,v
(i) as the prover does. Return 1 iff :

1. Verifyopn(vkopn, (cj)j∈[`], πopn) = 1 and,
2. Verifyopn(vkopn, (c

∗
j)j∈[`∗], π

∗
opn) = 1 and,

3. Verifyeq(vkeq, (Gi,v
(i))i∈[`∗], (c

′
i, c
∗
i)i∈[`∗], πeq) = 1.

Efficiency. Generating a proof requires `∗ · d∗ G1-exponentiations and O(` · d∗) F-operations, where
d∗ = maxj∈[`]{deg(pj)}, the cost of generating two CPopn proofs and one CPeq proof. Verification
requires verifying two CPopn proofs and one CPeq proof.

Remark 14 (Optimization). When CP
(?)
deg is used in a larger protocol that uses other invocations of

CPeq, we observe that these proofs can batched together (which in turn implies for example the use of
the same random point, and of the same CPeval proof).

Security. In the following theorem we state the security of CP(?)
deg.

Theorem 7.9. If CPopn is a CP-SNARK for Ropn and CS1 (resp. CS2), and CPeq is a CP-SNARK for
Req, then CP

(?)
deg is a knowledge-sound and zero-knowledge CP-SNARK for CS1 (resp. CS2).

Proof. Let (pj)j∈[`] and (p∗j)j∈[`∗] be the polynomials extracted from πopn and π∗opn by the knowledge
soundness of CPopn. We notice that ρ1, . . . , ρ` are uniformly random and independent of (pj)j∈[`], since
we can extract the polynomials before answering the random oracle query ((cj)j∈[`], πopn).

Thus with overwhelming probability, for every i the polynomial p′i(X) =
∑

j∈Pi ρjpj(X) has degree
equal to maxj∈Pi deg(pj). Suppose exists i such that p∗i has degree bigger than d∗i . Then for the same
index i we have that Xd−d∗i p′i(X)−p∗i (X) 6= 0. However, if this is the case, then we can build a reduction
against the soundness of CPeq.

Zero-knowledge is straightforward: the commitments c∗1, . . . , c∗`∗ are deterministic functions of the
random oracle H, the values (cj)j∈[`] and the trapdoor s, while the remaining proofs π∗opn and πeq can
be generated by using the simulators of CPopn and CPeq respectively.

7.8.2 Scheme CP
(2)
deg.

We define the CP-SNARK CP
(2)
deg = (KeyGendeg,Derivedeg,Provedeg,Verifydeg) as follows.

KeyGendeg(ck): execute (ekopn, vkopn) ← KeyGenopn(ck), execute (ekqeq, vkqeq) ← KeyGenqeq(ck), parse
ck as ([sj]1, [s

j]2)j∈[0,d] define ek := (ck, ekopn, ekqeq) and vk := (([sj]2)j∈[0,d], vkopn, vkqeq), and return
srs := (ek, vk).

Derivedeg((dj)j∈[`]) generates a verification key for the vector of degrees (dj)j∈[`] as follows. Let {dj}j∈[`]

:= {d∗1, . . . , d∗`∗} (repeated values are not counted), and set vkd := ([sd−d
∗
j]2)i∈[`∗].

Provedeg(ek, (cj)j∈[`], (pj)j∈[`]):

1. Compute πopn ← Proveopn(srs, (cj)j∈[`], (pj)j∈[`]);
2. Let ρ1, . . . , ρ` ← H((dj)j∈[`], (cj)j∈[`], πopn), let {d∗1, . . . , d∗`∗} = {dj}j∈[`] (repeated values are not

counted), and let P1, . . . , P`∗ be a partition of the set [`] such that Pk = {j : aj = a∗k};
3. For all i ∈ [`∗] let c′i ← [p′(s)]1 := [

∑
j∈Pi ρj · pj(s)]1 and c∗i ← [p∗(s)]1 := [sd−d

∗
i ·
∑

j∈Pi ρj · pj(s)]1;
4. Compute π∗opn ← Proveopn(srs, (c∗j)j∈[`∗], (p

∗
j)j∈[`∗]).

5. For all i ∈ [`∗], define Gi(X̂i, X
′
i, X

∗
i) = X̂i ·X ′i −X∗i , and compute

πqeq ← Proveqeq(ekeq, (Gi,v
(i))i∈[`∗], ([s

d−d∗i]2, c
′
i, c
∗
i)i∈[`∗], (X

d−d∗i , p′i, p
∗
i)i∈[`∗])

52

6. Return (πopn, c
∗
1, . . . , c

∗
`∗ , π

∗
opn, πqeq).

Verifydeg(vkd, (cj)j∈[`], π): Parse π = (πopn, c
∗
1, . . . , c

∗
`∗ , π

∗
opn, πeq), and compute ρ1, . . . , ρ` and Gi,v(i) as

the prover does. Return 1 iff :

1. Verifyopn(vkopn, (cj)j∈[`], πopn) = 1 and,
2. Verifyopn(vkopn, (c

∗
j)j∈[`∗], π

∗
opn) = 1 and,

3. Verifyqeq(vkeq, (Gi)i∈[`∗], ([s
d−d∗i]2, c

′
i, c
∗
i)i∈[`∗], πeq) = 1.

The security proof of CP(2)
deg works essentially the same as that of CP(?)

deg and is therefore omitted.

Theorem 7.10. If CPopn is a CP-SNARK for Ropn over CS2, and CPeq is a CP-SNARK for Req over
CS2, then CP

(2)
deg is a knowledge-sound and zero-knowledge CP-SNARK for Rdeg over CS2.

Efficiency. From the shape of all the quadratic polynomials Gi and the construction of CPqeq in
Section 7.7, we observe that the proof πqeq is empty and it can be verified by checking, for every i ∈ [`∗],
e(
∑

j∈Pi ρjcj , [s
d−d∗i]2) = e(πi, [1]2). The cost of generating the rest of the proof requires generating

two CPopn proofs, `∗ · d∗ G1-exponentiations and O(` · d∗) F-operations, where d∗ = maxj∈[`]{deg(pj)}.
Verification additionally requires verification of two CPopn proofs.

7.9 A general-purpose CP-SNARK for Rphp

Given the CP-SNARKs presented in the previous section, it is possible to construct CP-SNARKs for
the commitment schemes CS1, CS2 and for any PHP verifier checks, i.e., for the relation Rphp discussed
in Section 3.1. Such a CP-SNARK CPphp can be obtained with three main building block CP-SNARKs:
one for Ropn (see Section 7.3), one for proving a bound on the degree of committed polynomials, and
one for polynomial equations.

8 Our Compiler for Universal Commit-and-Prove zkSNARKs

In this section we show how to compile PHPs into CP-SNARKs. We present the compiler in Section 8.1.
It can be instantiated with the same building blocks presented in the previous section, plus additional
ones that we present in Section 8.2,

8.1 Compiling to Commit-and-Prove Universal Interactive Arguments

We show how to adapt the compiler of Section 6.2 to produce a commit-and-prove succinct interactive
argument in the SRS model.

Let PHP be a PHP protocol for a universal relation R such that for any triple (R, x,w) ∈ R, the
witness splits into an `+ 1-tuple w := ((uj)j∈[`], ω) ∈ D1 × · · · × D` ×Dω.

We show how to compile PHP to a commit-and-prove UIA for R in which prover and verifier take
as inputs commitments c1, . . . , c` to u1, . . . , u` respectively. More in detail, UIA is a universal commit-
and-prove argument for R and a type-based commitment scheme CS∗ such that the commitments taken
as input are of type lnk and satisfy full-fledged hiding. The reason to require these commitments to
be hiding (instead of our weaker somewhat-hiding notion) is that these are supposed to be “regular”
commitments that may be generated independently of this proof system and that, for a general applica-
tion scenario, should hide messages even if they are re-used an unbounded number of times for different
proofs.19 We summarize the requirements on CS∗ in the following definition.

Definition 8.1 (CP-Compiling Commitment Scheme). Let R be a universal relation such that for
any (R, x,w) ∈ R, w := ((uj)j∈[`], ω) ∈ D1 × . . .D` × Dω. We say CS∗ = (Setup,Commit,VerCom)
is a CP-compiling commitment scheme if it is a type-based commitment scheme for a class of types
T = {rel, swh, lnk}, such that:

19Note that this for example rules out the use of polynomial commitments with “bounded-use randomizers” such as the
one in [KZG10].

53

• commitments of type rel and swh are for messages that are polynomials F<d[X] for a given bound
d ∈ N;

• commitments of type lnk are for messages in D such that for all i ∈ [`], Di ⊆ D;

• it is T -binding;

• it is swh-somewhat-hiding and lnk-hiding.

Additional building blocks. Besides the requirements of Section 6.2, we additionally require from
the CS∗ and from PHP the following properties:

1. The PHP has a straight-line extractor (see Definition 3.3). Specifically, there exists an efficient ex-
tractor WitExtract such that WitExtract((pj)j∈[n∗]) = w.

2. CS∗ is equipped with a zero-knowledge CP-SNARK CPlink = (KeyGenlink,Provelink,VerProof link) that
can “link” a tuple of lnk-typed commitments (opening to (uj)j∈[`]) with a tuple of n∗ swh-typed com-
mitments. The linking relation should also enforce that the latter commitments open to polynomials
that somehow contain a witness for a universal relation. Specifically, CPlink is a ({lnk}` × (swh)n

∗
)-

restricted complete ZK CP-SNARK for the universal relation Rlink parametrized by the algorithm
WitExtract and by a PT decoding algorithm Decode:

Rlink((uj)j∈[`], (pj)j∈[n∗], ω) := WitExtract((pj)j∈[n∗])
?
= (Decode((uj)j∈[`]), ω)

We additionally require the Decode algorithm for a rather technical reason. Namely, the commitment
scheme CS could encode the witness blocks ui in different way, the decoding algorithm casts back to
strings the encoding used by the commitment scheme CS.

The commit-and-prove compiler. Let UIA = (KeyGen,Derive,P,V) be the interactive protocol for
R from the last section. We show how we can make it commit-and-prove with some simple modifications.

In what follows, to distinguish the commitments (and the associated openings) taken as input by
the protocol, from the commitments generated during the interaction, we denote the former ones with
a hat.

Consider the interactive protocol that is the same as UIA but with the following modifications:

• The KeyGen algorithm does not sample a commitment key from CS.Setup but instead takes a com-
mitment key ck of the CS∗ commitment scheme.

• The prover on input ek, x̂ = (x, (ĉj)j∈[`]) and ŵ = ((uj)j∈[`], (ôj)j∈[`], ω), executes the same as
P(vk, x, ((uj)j∈[`], ω)). Let (cj)j∈[k], (pj)j∈[k], (oj)j∈[k] be the k-tuples of commitments, polynomials
and openings corresponding to the indices of the witness-carrying polynomials.

• At the last round the prover computes

πlink ← Provelink(eklink, ((ĉj)j∈[`], (cj)j∈[k]), ((uj)j∈[`], (pj)j∈[k]), ((ôj)j∈[`], (oj)j∈[k]), ω)

• At the last round the verifier additionally checks blink ← Verifylink(vklink, ((ĉj)j∈[`], (cj)j∈[n∗]), πlink), and
output 1 if all the CP-SNARK proofs verify.

Theorem 8.1. Let PHP = (r, n,m, d, ne,RE ,P,V) be a non-adaptive public-coin PHP over F and R,
let CS∗ be a compiling commitment scheme as in Definition 8.1 equipped with CP-SNARKs CPopn for
Ropn, CPphp for a relation Rphp, and CPlink for Rlink. Then we have:

• If PHP has witness-carrying polynomials, then the scheme UIA defined above is a universal commit
and prove interactive argument in the SRS model for R′ such that:

(R, x, (uj)j∈[`], ω) ∈ R′ ⇐⇒ (R, x,Decode((uj)j∈[`]), ω) ∈ R.

• If, for a checker C, PHP (resp. CPphp) is (b + 1,C)-bounded honest-verifier zero knowledge (resp.
trapdoor-commit (b,C)-leaky zero-knowledge), and both CPopn and CPlink are trapdoor-commitment
zero-knowledge, then UIA is trapdoor-commitment honest-verifier zero-knowledge.

54

Note that the analogous of Remark 7 holds for this theorem as well.
While a proof of Theorem 8.1 is in Appendix C, we provide an intuition for the case ` = 1. To prove
knowledge soundness we should be able to extract (ô, u, ω)—valid CP-witnesses for the CP-version of R—
from ĉ, x. Let us assume that the verifier accepts. We can run the CPlink extractor and obtain u, ô, ω as
well vas ector of polynomials p with respective openings for the cj-s. By knowledge soundness of CPlink,
u, ω as defined above extracted from the polynomials in p. In turn, we can claim these polynomials
encode valid witnesses for relation R because, if they didn’t, we could obtain “valid” polynomials p′

by running the extractor of CPphp. These would also be valid openings to commitments c. If the
polynomials in p′ were distinct from the polynomials in p then we would be able to break binding;
therefore, polynomials in p and p′ must be identical and encode witnesses for R. In order to prove zero-
knowledge we extend the simulator from Theorem 6.1 by appending to its output that of the simulator
of CPlink. a zero-knowledge CP-SNARK. We run the latter by feeding it the appropriate commitments
cj-s corresponding to the k witness-carrying polynomials.

8.2 Pairing-Based Instantiations of our Building Blocks

8.2.1 Commitment Scheme

We describe the polynomial commitment scheme CS∗ which supports types lnk, swh, rel. The scheme
is an extension of CSg for g ∈ {1, 2}. The algorithms (Setup,Commit,VerCom) of CS∗g are defined as
follows:

Setup(1λ, d): run ck′ ← Setupg(1
λ, d), sample random α←$F and output ck = ck′, [α, αs, αs2]1.

Commit(ck, type, p)→ (c, o): if type 6= lnk output the same as Commitg, else sample o←$F and output
[p(s) + α · o]1.

VerCom(ck, type, c, p, o): if type 6= lnk output the same as VerComg, else check if c ?
= p([s]1) + o[α]1.

Remark 15. Notice that the values [αs, αs2]1 are not needed for hiding, however they are useful for the
CP-SNARK for polynomial evaluation that we present next.

8.2.2 Basic suite of CP-SNARKs for CS∗

CP-SNARK for Ropn. As described in Section 7.3 we can obtain trivially a CP-SNARK in the AGM.
A trivial extension of the construction CPPKE

opn of Section 7.3 is also suitable for CS∗. The only difference
is that for the security analysis we need to rely on the following assumption:

Assumption 4 (mmPKE). The (multi-instance, multi-base) Power Knowledge of Exponent (mmPKE)
assumption holds for a bilinear group generator GenG if for every efficient non-uniform adversary A
and a degree bounds d1, d2 ∈ N there exists an efficient extractor E such that for any benign distribution
Z the following probability is negligible in λ:

Pr

∃j :

dj = γ · cj ∧
cj 6=

∑d1
k=0 a

(j)
k sj + α

∑d2
k=0 b

(j)
k sj

:

bgp←$GenG(1λ);
auxZ ← Z(bgp);
s, α, γ←$Zq;

Σ =

(
([sj]1, [s

j]2, [γs
j]1, [γ]2)j∈[d1]

([αsj]1, [αs
j]2, [αγs

j]1, [αγs
j]2)j∈[d2]

)
;

(cj)j∈[`′], (dj)j∈[`′] ← A(bgp,Σ, auxZ);

(a(j), b(j))j∈[`′] ← E(bgp,Σ, auxZ)

.

CP-SNARK for Reval,1. We define a zero-knowledge CP-SNARK CPeval,1 for CS∗g and the relation

Reval,1((a, b), p) := p(a)
?
= b, where p is committed as [p(s) + α · o]1.

Kate et al. [KZG10] describe a method to do evaluation proofs for hiding polynomial commitments.
In a nutshell, in their case a commitment to p is an element [p(s) + α · o(s)]1 where o is a random
polynomial of degree deg(p) (or degree b, if one aims to support at most b evaluation proofs) and the

55

evaluation proof for a point a reveals o(a). This technique, however, cannot be seen as a full-fledged
commit-and-prove zero-knowledge proof as one should know a priori how many evaluation proofs are
generated for a given commitment. More technically, in the commit-and-prove framework, a simulator
would only take as input a commitment and must simulate a proof which must be indistinguishable
from a real one, independently of how many other proofs have been already (or will be) generated.
It is also interesting to note that for a polynomial p of degree d giving more than d evaluations of p
on distinct points reveal the polynomial; thus one may think that zero-knowledge would no longer be
needed. However, there are some applications in which one can use a commitment in more than d
evaluation proofs without necessarily revealing d evaluations of the committed polynomial. This is for
example the case if one shows evaluations of linear combinations of various committed polynomials to
known constant, e.g., proving that ρ1p1(a) + ρ2p2(a) = 0. In this case, the technique from [KZG10]
would leak information on the random polynomials o1, o2 and would be usable a limited number of
times.

Motivated by this problem, we propose a different technique for proving an unbounded number of
evaluations of committed polynomials in zero-knowledge.

Let us provide a brief intuition of our technique. In our CP-SNARK the prover additionally computes
a flh-typed commitment c̃ to the 0 polynomial using fresh randomness, and then proves that (1) c̃ indeed
commits to the 0 polynomial, and (2) that the polynomial p committed in c + c̃ evaluates to b on the
point a. The idea is that in the step (2) the prover masks the opening material of c using the fresh
opening material of c̃. In particular, the prover picks a degree-2 polynomial for the opening of c̃ because
we want to assure that the mask in (2) is uniformly random even given the value c̃ and the leakage (one
evaluation point) in step (1).

KeyGeneval1(ck): execute (ekopn, vkopn) ← KeyGenopn(ck), parse ck as ([sj]1, [s
j]2)j∈[0,d] define ek :=

(ck, ekopn) and vk := ([1, s]2, vkopn), and return srs := (ek, vk).

Proveeval1(ek, (a, b), c, p): Sample random degree-2 polynomial õ(X) and set c̃ = [αõ(s)]1, compute a
proof πopn ← Proveopn(ekopn, (c, c̃), (p, 0), (o, õ)), and set (x)← H(x̂‖πopn‖c̃) :

1. Let y1 ← õ(x) and let w′1(X) such that w′1(X) · (X − x) ≡ õ(X)− y1;
2. Let y2 ← o(a)+ õ(a) and let w(X), w′2(X) such that w(X) ·(X−a) ≡ p(X)−b and w′2(X) ·(X−a) ≡
o(X) + õ(X)− y.

set π← ([w′1(s), w(s) + αw′2(s)]1, y1, y2) and output (πopn, π).

Verifyeval1(vk, (a, b), c, π): Parse π = (πopn, ([w
′, w)]1, y1, y2)), and output 1 iff:

1. Verifyopn(vkopn, c, πopn) = 1,
2. e([w′]1, [s− x]2) = e(c̃, [1]2)− [αy1]T , and
3. e([w]1, [s− a]2) = e(c+ c̃, [1]2)− [b]T − [αy2]T .

Theorem 8.2. If CPopn is a flh-restricted CP-SNARK for Ropn and the d-SDH assumption holds
for GenG, then CPeval,1 is a complete, knowledge sound, and trapdoor-commitment zero-knowledge CP-
SNARK for Reval,1 for CS∗ Moreover, if CPopn has commitment-only SRS then CPeval,1 has commitment-
only SRS.

Proof. The proof of knowledge soundness follow similar to [KZG10, CHM+20]. In particular, we notice
that the second verification equation shows that c̃ is indeed a polynomial commitment to 0, thus, by
the homomorphic property of the commitment scheme we have that c+ c̃ is a commitment to p. Then
the third equation shows that p(a) = b.

For zero-knowledge notice that õ is random degree-2 polynomial thus even given the evaluation
points õ(x1) and õ(s) the evaluation õ(a) is still uniformly random over F and it can be used to mask
the value o(a). We can simulate by sampling c̃←$G1 and y1, y2←$Z2

q , then set [w′]1 = (c̃−[α]y1)/(s−x)
and [w]1 = (c+ c̃− [b]1 − [α]1y2)/(s− a).

56

CP-SNARK for Reval and Req. Similar to Section 7.5 and Section 7.6, we can define the CP-
SNARKs CPeval and CPeq for CS∗, indeed such constructions use CPeval,1 as a black-box thus we could
easily instantiate lnk-restricted complete version of them using the CPeval,1 presented in the previous
paragraph.

Efficiency. We give efficiency ignoring the costs of CPopn. For CPeval,1 generating a proof requires
deg(p) + 6 G1-exponentiations to compute π and O(deg(p)) F-operations to compute the polynomials
w(X), w′1(X), w′2(X), verification requires 4 pairings. For CPeval generating a proof requires `∗·(deg(p∗k)+
1) G1-exponentiations and O(`∗deg(p∗k)) F-operations, verification requires 4`∗ pairings, where we recall
that `∗ is computed as the cardinality of the set of all the evaluation points (in particular `∗ ≤ `). For
the counting for CPeq we refer to Section 7.6.

8.2.3 CP-SNARK for Linking Commitments

Finally, we propose instantiations for the CPlink CP-SNARK that support our lnk-typed commitments
and the WitExtract straight-line extractors of our PHPs.

Let us first consider the WitExtract algorithm of our PHPs for R1CS of Section 4.4; this simply
uses one polynomial, ŵ(X), and returns its evaluations on H′ := H \ L, i.e., w := (w(φ−1

H (|x| +
1)), . . . , w(φ−1

H (n))). Our goal is to support use cases in which one has commitments ĉj to vectors uj
and wants to prove that w = ((uj)j∈[`], ω).

We consider the following albraic setting. Let η be the generator of H so that H = (η, η2, . . . , ηn)
and H \ L can be partitioned in ordered form as H′ = (W1, . . . ,W`+1), where the sets W1, . . . ,W` have
the same cardinality. We define V as a “prefix” of H, i.,e., V = {η, . . . , η|V |}. Although lnk-typed
commitments in CS∗ are defined for polynomials, we assume a canonical encoding of a vector u into a
polynomial û(X) via interpolation in V . This means that the Decode algorithm corresponding to the
linking relation is the one that outputs û1(V), . . . , û`(V).20

Once fixed this setting, proving the linking between commitments (ĉj)j∈[`] to (ûj)j∈[`] and a com-
mitment c to ŵ requires to prove that there is a vector ω such that

(û1(V), . . . , û`(V), ω) = (ŵ(W1), . . . , ŵ(W`), ŵ(W`+1))

We create a CP-SNARK for this language in two steps. First we show a scheme CP
(1)
link that proves

(û′1(W1), . . . , û′`(W`), ω) = (ŵ(W1), . . . , ŵ(W`), ŵ(W`+1))

for some freshly committed (û′j)j∈[`], and then a scheme CP(2)
link which runs CP(1)

link and additionally proves
that for all j ∈ [`], it holds û′j(Wj) = ûj(V).

Finally, at the end of the section, we discuss how to extend these results to support the WitExtract
algorithm of our PHPs for R1CS-lite, in which the extractor uses two polynomials â′(X), b̂′(X) (instead
of one) and computes the witness as w := (â′(φ−1

H (`+ 1)) · b̂(φ−1
H (`+ 1)), . . . , â′(φ−1

H (n) · b̂(φ−1
H (`+ 1))).

Scheme CP
(1)
link. We first show a scheme for tuple Decode,WitExtract where Wi = Vi for all i ∈ [`] and

the sets are disjoint. In particular, we can consider universal CP-SNARK for Rlink where each relation
Rlink in the family is defined by a list of sets (Wj)j∈[`].

We let Z i(X) be the vanishing polynomial on Wi, let Ẑ i(X) :=
∏

1<j<i Z j(X) (we set Ẑ 1(X) ≡ 1).
The intuition is to let the prover compute an (affine) decomposition of the polynomial pi∗(X) using
the bases Z 1(X), . . . ,Z `(X), and similarly compute an (affine) decomposition of the polynomial p̂j(X)
using the base Z j(X). If the statement holds then, for any i, the Z i(X)-coefficient of the decomposition
of p and of the decomposition of p̂i are the same polynomials.

KeyGenlink(ck): execute and output (ekopn, vkopn)← KeyGenopn(ck).

Derivelink(srs,R): Parse R as (Wj)j∈[`] and output vkR = ([Z i(s)]2, [Ẑ i(s)]2)j∈[`].

20We parse the evaluation of a polynomial p(W) on an ordered set W as a vector in F|W |.

57

Provelink(ek, ((ĉj)j∈[`], (cj)j∈[n∗]), ((uj)j∈[`], (pj)j∈[n∗]), ((ôj)j∈[`], (oj)j∈[n∗])):

1. For i ∈ [`] compute qi(X), u′i(X) such that ui(X) ≡ qi(X)Z i(X) + u′i(X).
Sample γi←$F, set o′i = Z i(X)γi + oi and

c′i = [u′i(s) + αo′i(s)]1, [di] = [qi(s)− αγi].

2. Let p := pi∗ and compute the polynomial q(X) such that p(X)−
∑

i∈[`] Ẑ i(X) · u′i(X) ≡ ˆZ `+1(X) ·
q(X);

3. Sample β(X) = β0 +Xβ1 random polynomial of degree 1 and set

[d]1 ← [q(s) + αβ(s))]1.

4. Compute

πopn ← Proveopn

(
ekopn,

x̂ = ((ĉj)j∈[`], ci∗ , (c
′
j)j∈[`], ([dj]1)j∈[`], [d]1),

ŵ = ((uj)j∈[`], p, (u
′
j)j∈[`], (qj)j∈[`], q), ((ôj)j∈[`], 0, (βj)j∈[`], (γj)j∈[`], β)

)
(Namely, a proof for the opening for all the commitments to polynomials computed up to here and
the all the commitments of the instance.)

5. Prove that indeed p(X)−
∑

i∈[`] Ẑ i(X) · u′i(X) ≡ ˆZ `+1(X) · q(X) using random point evaluation.

Specifically, let τ =
(

(ĉj)j∈[`]‖(cj)j∈[n∗]‖(c′j)j∈[`]‖([di]1)i∈[`]‖[d]1‖πopn

)
. Let x ← H(τ) and let

õ(X) := −β(X) ˆZ `+1(X) −
∑

j o
′
jẐ j(X), compute z = õ(x), let w(X) be the polynomial such

that w(X) · (X − x) ≡ õ(X)− z.
6. Output (πopn, (c

′
j)j∈[`], [(dj)j∈[`], d, αw(s)]1, z).

Verify(ck, c, (ĉj)j∈[`], π): Parse π = (πopn, (c
′
j)j∈[`], [(dj)j∈[`], d, w]1, z and output 1 if and only if

1. For j ∈ [`] check e(ĉj , [1]2) = e([dj]1, [Z i(s)]2) + e(c′j , [1]2).
2. Verifyopn(vkopn, ((ĉj)j∈[`], ci∗ , (c

′
j)j∈[`], ([dj]1)j∈[`], [d]1), πopn) = 1,

3. e([w]1, [s− x]) = e(c, [1]2)− e([d]1, [ˆZ `+1(s)]2)−
∑

i∈[`] e(c
′
i, [Ẑ i(s)]2)− [αz]T .

Theorem 8.3. If CPopn is a CP-SNARK for Ropn, and CPdeg is a CP-SNARK for Rdeg, then CP
(1)
link

is {swh, lnk}` × (swh)n
∗-restricted complete, knowledge-sound, and zero-knowledge. Moreover, if CPopn

and CPdeg have commitment-only SRS then CPeval,1 has a commitment-only SRS.

Proof. We start with completeness. The check in step 1 holds in fact:

e([dj]1, [Z i(s)]2) + e(c′j , [1]2) =

= [(qi(s) + αβi)Z i(s) + u′(s)− α(Z i(s)βi + oi)]T =

= [qi(s)Z i(s) + u′(s) + αoi]T = e([ĉi]1, [1]2)

The check in step 2 of the verifier holds by the completeness of CPopn. For the last check, notice the
relation Rlink can be expressed as ∀i ∈ [`] : pi∗(Wi) = ui(Wi). By the definition of the u′i(X) we have
ui(Wi) = u′i(Wi) for i ∈ [`]. Moreover:

e(ci∗ , [1]2)− e([d]1, [ˆZ `+1(s)]2)−
∑
i∈[`]

e(c′i, [Ẑ i(s)]2)− [αz]T

=[pi∗(s)− q(s) ˆZ `+1(s)−
∑
i∈[`]

Ẑ i(s)·u′i(s)︸ ︷︷ ︸
=0

+α(o− β(s) ˆZ `+1(s)−
∑
j

ojẐ j(s)− õ(x))]T

=[α(õ(s)− õ(z))]T = [αw(s) · (s− x)]T = e([w]1, [s− x]2)

Now we move to knowledge soundness.

58

Let d(X), od(X), p(X), op(X), (uj)j∈[`], (ôj)j∈[`], (dj , uj , u
′
j , odj , ouj , ou′j)j∈[`] be the output of the extrac-

tor of CPopn. First we show that for any j and η ∈ Wi it musts be u′(η) = u(η). In fact, suppose not,
if ouj (s)− ou′j (s)− oqj (X)vj(s) = 0 then it musts be that Pj(X) := uj(X)− u′j(X)− qj(X)Z j(X) 6≡ 0,
since the third equation of the verifier holds then s is a zero of the polynomial Pj . Thus we can break
the d-DLOG assumption. The other case is when ouj (s) − ou′j (s) − oqj (s)vj(s) 6= 0, in this we could
sample s and on challenge the value [α]1, since the third equation of the verifier holds, we can compute
the value α as (uj(s)− u′j(s)− qj(s)Z j(s))/(ouj (s)− ou′j (s)− oqj (s)Z j(s)).

Suppose ∃i, η : pi∗(η) 6= ui(η) = u′i(η) and η ∈Wi. We let:

P (X) := p(X)− ˆZ `+1(X)d(X)−
∑
j

Ẑ j(X)p̂j(X)

Notice that the Eq. 3 of the verification algorithm implies that P (x) = 0 and x is uniformly random
and independent of P (X) because x is sampled after the proof πopn is computed (and therefore the
polynomial can be extracted before x is sampled). By the Swartz-Zippel lemma we have that P (X) ≡ 0.
The proof that P (x) = 0 follows the same line of the proof of knowledge soundness of CPeval,1, therefore
omitted. By our hypothesis, the polynomial P (X) on point η evaluates to p(η)− p̂i(η) 6= 0, which leads
to contradiction.

We now prove zero-knowledge. We can simulate πopn using the simulator of CPopn, moreover, given
the trapdoor s for any j ∈ [`] we can sample a random value rj and set c′j = [rj]1 and set [qj] =
(ĉj − c′j)/Z i(s) and we can sample d, z←$Zq and define [w]1 = [αõ(s)− õ(x)]1/(s− x).

We show this is indistinguishable from the real distribution with an hybrid argument. In the first
hybrid we are additionally given the witness p, (p̂j)j∈[`], o, (ôj)j∈[`]. We compute the proofs πdeg, πopn as
the real prover would do and we compute the value q(s), which is deterministically defined given the
witness, we sample d, z as in the simulator and then compute β0, β1 such that:{

q(s) + α(β + sβ1) = d

o− (β0 + xβ1)−
∑

j Ẑ j(s)oj = z

The group element [w]1 is computed as the simulator does. Notice the marginal distribution of β0, β1

is the uniform distribution over Z2
q .

In the next hybrid we sample d, z at random, compute β(X) := β0+Xβ1 as described before, compute
d′ = q(s) + αβ(s) and z′ = õ(x) Compute [w]1 as in the simulator and output (πopn, πdeg, [d

′, w]1, z
′).

This hybrid is equivalent to the previous one in fact d′ = d and z′ = z.
The next hybrid we compute the proof [w]1 in the same way the prover does. Notice that once fixed

the witness and d′, z′ the value w is deterministically defined, thus the two hybrids are equivalent.

We give efficiency ignoring the costs of CPopn. Generating a proof requires approximately `+3 multi-
exponentiations with bases of size max |Wi|. and O(`max |Wi|) F-operations. Verification requires 3`+3
pairings.

Scheme CP
(2)
link. We show a scheme for tuple Decode,WitExtract where there exists a subset V of a

subgroup H = 〈η〉 of F, and let the values for j ∈ [`] θj = ηj|V |+|x| (recall that in our PHPs for R1CS of
Section 4.4, both the instance and the witness are commit in the witness-carrying polynomial) and set
Wj = θj · V . (We can assume that H is big enough so that Wj 6= Wj′ for all j, j′ where j 6= j′.)

The intuition is to first “shift” the polynomials uj computing polynomials u′j such that uj(V) =

u′j(θj ·V) and secondly to apply the CP-SNARK CP
(1)
link. To prove the soundness of the shifted polynomials

we make black-box use of CPeq from the previous section, however the scheme is only leaky zero-
knowledge, thus to obtain zero-knowledge we additionally need to randomize the polynomials u′j .

KeyGenlink(ck): execute (ekeval, vkeval) ← KeyGeneq(ck) execute (ek
(1)
link, vk

(1)
link) ← KeyGen

(1)
link(ck) and re-

turn srs := ((ekeq, ek
(1)
link), (vkeq, vk

(1)
link)).

59

Derivelink(srs,R): Parse R as V, (Wj)j∈[`], compute vk
(1)
R ← CP

(1)
link.Derive(srs,R), and output vkR =

vk
(1)
R , ([Z i(s)]1)j∈[`].

Provelink(ek, x̂ = ((ĉj)j∈[`], (cj)j∈[n∗]), ((uj)j∈[`], (pj)j∈[n∗]), ((ôj)j∈[`], (oj)j∈[n∗])):

1. For any j ∈ [`] let:
u′j(X) = uj(X/θj) + Z V (X/θj)βj(X/θj),

where βj(X) is a uniformly random degree-2 polynomial in F[X]. Set c′j = [u′j(s)]1 for j ∈ [`].
2. Prove that for j ∈ [`], uj(X) and u′j(θj · X) agree on V , namely, prove that uj(X) − u′j(θjX) ≡ 0

mod Z V (X) using CPeq.
Specifically, compute hj(X) such that hj(X)Z V (X) ≡ uj(X) − u′j(Xθj) and set hj = [hj(s)]1 for
j ∈ [`]; Let

Gj(X, (Xj)j∈[3`+1]) = Xi −X2i −X3i ·X3`+1 j ∈ [`],

vj(X) =

{
X j ∈ [`] ∪ [2`+ 1, 3`]
θjX j ∈ [`+ 1, 2`]

and set v = (vj)j∈[3`]. Compute πeq as the output of

Proveeq
(
(Gi,v)i∈[`], (ĉj)j∈[`], (c

′
j)j∈[`], (hj)j∈[`], [Z V (s)]1, ((uj)j∈[`], (u

′
j)j∈[`], (hj)j∈[`]), ((oj)j∈[`],0)

)
3. Compute π← CP

(1)
link.Prove(ek

(1)
link, (([u

′
j(s)]1)j∈[`], (cj)j∈[n∗]), ((u

′
j)j∈[`], (oj)j∈[n∗]), 0).

4. Output π = ((c′j)j∈[`], (hj)j∈[`], πlink)

Verify(vklink, c, (ĉj)j∈[`], π): Parse π = ((c′j)j∈[`], (hj)j∈[`], πeq, πlink) output 1 iff:

1. Verifyeq(vkeq, (Gi,v)i∈[`], (ĉj)j∈[`], (c
′
j)j∈[`], (hj)j∈[`], [Z V (s)]1, πeq) = 1.

2. CP
(1)
link.Verify(vk

(1)
link, ((c

′
j)j∈[`], (cj)j∈[n∗]), πlink) = 1.

We will use the leaky-zero knowledge of CPeq. Before stating the theorem we describe the checker C
that upon input an index and a value c ∈ F outputs 1 if and only if x 6∈ H. Moreover, we require from
CPeq to be leaky zero-knowledge only for the input commitments (c′j)j∈[`]. As noted in Remark 13 this
is the case for our CPeq.

Theorem 8.4. If CPeq is a CP-SNARK for Req, and CP
(1)
link is CP − SNARK for Rlink then CP

(2)
link is

(lnk)` × (swh)n
∗-restricted complete, knowledge-sound. Moreover if CPeq is ((0`, 1`, 0`),C)-leaky zero-

knowledge then CP
(2)
link is zero-knowledge. Moreover, if CP(1)

link and CPeq have commitment-only SRSs then
CP

(2)
link has commitment-only SRS.

Proof. We start with completeness. Notice that by definition of u′j(X) for j ∈ [`], we have that uj(V) =
u′j(θj · V). Thus, by definition of hj(X) and by the completeness of CPeq the first check of the verifier
holds. By definition of WitExtract, for any j ∈ [`] the value u′j(θj · V) and p∗(θj · V) agree thus by the

completeness of CP(1)
link the third check of the verifier holds.

We prove knowledge soundness. From the extractor of CPeq we can extract the polynomials (ûj)j∈[`]

with the opening material (ôj)j∈[`] such that ûj(V) = u′j(θjV). By the knowledge soundness of CP(1)
link

we have for all j ∈ [`], uj(V) = u′j(θjV) = p∗(θjV).
Finally, we prove zero-knowledge. Let Seq = (Sleak,S) be the simulator of CPeq. The simulator, for

any j ∈ [`], sample c′j , hj uniformly at random from G1. Then, let x̂eq = (Gj ,v)j∈[3`], ((ĉj)j∈[`], (c
′
j)j∈[`],

(hj)j∈[`]), it runs Sleak(1λ, x̂eq) of CSeq and obtains {(j, xj)}j∈[`+1,2`]. It samples uniformly random value
Leak = (yj)j∈[`+1,2`] and runs S(td, x̂eq, Leak) obtaining πeq. Then it simulates the proof π

(1)
link using the

simulator of CP(1)
link.

60

Through an hybrid argument we can show that the proof is statistically close to a proof where for
any j ∈ [`] the value c′j , hj are computed as in the real proof and the value yj is computed as u′(xj).
Indeed, for any fixed polynomial uj(X), the following system of equations hold:

u′j(s) = uj(s/θj) + Z V (s/θj) · βj(s/θj)
hj(s) = (u(s)− u′(θjs))/Z V (s) = βj(s)
yj = uj(xj/θj) + Z V (xj/θj) · βj(xj/θj)

Recall that βj(X) is an uniformly random degree-2 polynomial thus the tuple βj(s/θj), βj(s), βj(xj/θj)
is uniformly random over F3 with overwhelming probability (it is not when xj/θj ∈ {s, s/θj} or when
s ∈ V). Therefore they are uniformly distributed as sampled by the simulator.

We can conclude the proof of zero-knowledge through another hybrid step where we switch the
simulated proofs π

(1)
link and πeq with real proof.

Efficiency. We give efficiency ignoring the costs of CPopn. For CP
(1)
link generating a proof requires

approximately `+ 3 multi-exponentiations with bases of size |V | and O(`|V |) F-operations, verification
requires 3`+3 pairings. For CP(2)

link generating a proof requires the computation of CP(1)
link and additionally

2` multi-exponentiations with bases of size |V | and a proof for CPeq that costs approximately 2 multi-
exponentiations with bases of size |V |.

Extension for the WitExtract of our PHPs for R1CS-lite. We discuss how to support the
WitExtract algorithm of our PHPs for R1CS-lite. Let us recall that this algorithm uses the two poly-
nomials â′(X), b̂′(X) and computes the witness as w := (â′(φ−1

H (` + 1)) · b̂(φ−1
H (` + 1)), . . . , â′(φ−1

H (n) ·
b̂(φ−1

H (`+ 1))).
Given the scheme CP

(2)
link described above, which supports the WitExtract algorithm for a single

polynomial, we can obtain a scheme that supports the WitExtract of our PHPs for R1CS-lite with
the following simple extension. The prover computes a commitment to a polynomial ĉ′(X) such that
∀η ∈ H : ĉ′(η) = â′(η) · b̂′(η), proves that this is the case, and then runs the proving algorithm of CP(2)

link

for the single polynomial ĉ′(X).
The proof for ∀η ∈ H : ĉ′(η) = â′(η) · b̂′(η) can be done by committing to the polynomial h(X) :=

(â′(X) · b̂′(X)− ĉ′(X))/Z H(X) and then showing that h(X) · Z H(X)− â′(X) · b̂′(X) + ĉ′(X) = 0. The
latter equation check can be added to the set of equations already proven in CP

(2)
link using CPeq. The

CP
(2)
link CP-SNARK with this extension requires: 2n more exponentiations in G1 to commit to ĉ′(X) and

h(X), two more commitments, and finally the cost of the evaluation proof used in CPeq gets increased:
instead of 2 multi-exponentiations with bases of size |V |, it is one multi-exponentiation with bases of
size |V | and another multi-exponentiation with bases of size n.

9 Our Universal zkSNARKs

We describe different options to obtain universal zkSNARKs in the SRS model by applying our compiler
from Section 6 to our PHP constructions of Sections 4.3–4.4 and our CP-SNARKs for pairing-based
polynomial commitments of Section 7. The results are a collection of zkSNARKs that offer different
tradeoffs in terms of (mainly) SRS size, proof size, and verification time.

9.1 Available Options to Compile Our PHPs

We discuss how to combine some of our CP-SNARKs in section 7 to obtain CP-SNARKs for the CPphp

relation. All our PHPs have a similar structure in which the verifier checks consist of one vector d of
degree checks, and two polynomial checks ((G1,v1), (G2,v2)). Hence, for each PHP the corresponding
relation Rphp can be obtained via the product of

Rdeg((dj)j∈[np], (pj)j∈[n(0)+1,n∗]) ∧ Req((G′1,v1), (pj)j∈[n∗]) ∧ Req((G′2,v2), (pj)j∈[n∗])

where G′i is the partial evaluation of Gi on the prover message σ.

61

In all the PHPs, in the first polynomial check the v1,j(X) are constant polynomials (in particular,
they all encode the same point, i.e., ∀j : v1,j(X) = y), while in the second check they are the identity,
i.e., ∀j : v2,j(X) = X. Furthermore, in those PHPs where degX,{Xi}(G2) = 2, the second Req relation
can be replaced by the specialization Rqeq(G′2, (pj)j∈[n∗]) introduced in Section 7.7.

Given the above considerations, we consider two main options for applying our compiler to our
PHPs:

Commitment scheme CS1: this is applied to PHPlite1x, PHPlite2x, PHPr1cs1x, and PHPr1cs2x.

• For CPopn we can use either CPAGM
opn , secure in the algebraic group model, or CPPKE

opn that relies on
the mPKE assumption (see Section 7.3).
• To prove the first and second polynomial checks we use (twice) CPeq of Section 7.6.

• To prove Rdeg, we use CP
(?)
deg of Section 7.8, with the optimization of Remark 14.

Commitment scheme CS2: this is applied to PHPlite1, PHPlite2, PHPr1cs1, and PHPr1cs2.

• For CPopn we can use either CPAGM
opn , secure in the algebraic group model, or CPPKE

opn that relies on
the mPKE assumption (see Section 7.3).

• To prove Rdeg, we use CP
(2)
deg of Section 7.8.2

• To prove the first polynomial check we use CPeq of Section 7.6.
• To prove the second polynomial check we use CPqeq of Section 7.7.

9.2 Instantiating the PHPs with the appropriate zero-knowledge bounds

Our compiler accounts for using a CP-SNARK CPphp that can be (b,C)-leaky-ZK, which in turn requires
the PHP protocol to be (1 + b)-bounded ZK (see Theorem 6.1).21

Among the CP-SNARKs we propose to realize CPphp, the only one that is leaky-ZK is the CPeq

scheme of Section 7.6. Its leaky-ZK is due to the fact that the proof includes evaluations of those
polynomials that end up in the set S used to optimize the proof size.

Note that this concern arises only when using it to prove the first polynomial check. Indeed, in
all our schemes the second polynomial check involves only oracle polynomials that are not related to the
witness, and thus for those polynomials the amount of leakage does not matter.

We discuss what is b for the b-leaky-ZK of CPeq when it is used to prove the first polynomials checks
in all our PHPs, and how such b impacts the instantiation of these PHPs.

PHPs for R1CS-lite. The first polynomial check is the same in both constructions, and for the sake
of the relation Req the polynomial G′1 can be written as

G′1(Xa, Xb, Xs, Xq, Xr) := Xa ·Xb · ga,b +Xa · ga +Xb · gb +Xq · gq +Xr · gr +Xs + g0

and the goal is to prove that on a given y, G′1((pj(y))j∈[5]) = 0, i.e.,

â′(y)b̂′(y) · ga,b + â′(y) · ga + b̂′(y) · gb + s(y) + q(y) · gq + r(y) · gr + g0
?
= 0

To this end, CPeq chooses a set S of size 1; for instance it reveals b̂′(y) and nothing more. Thus,
CPeq for this polynomial check is b-leaky-ZK with b = (ba, bb, bs, bq, br) = (0, 1, 0, 0, 0) (cf. Remark 13).

From Theorem 6.1, PHPlite1 and PHPlite2 need to be (1, 2, 1, 1, 1)-bounded ZK. Moreover, note that
all the “+1” evaluations due to the commitment are all in the same point (the secret exponent s). This
is relevant because, by Remark 1, we can optimize the degrees and instantiate PHPlite1 and PHPlite2

with â′ ∈ F≤n+1[X], b̂′ ∈ F≤n+2[X], qs ∈ F≤1[X], rs ∈ F≤1[X].
21The +1 essentially comes from the fact that the commitment reveals one evaluation of each oracle polynomial.

62

PHPs for R1CS. All constructions share the same first polynomial check, which can be written as

G′1(Xa, Xb, Xw, Xs, Xq, Xr) := Xa ·Xb · ga,b +Xa · ga +Xb · gb +Xs +Xq · gq +Xr · gr + g0

and whose goal is to prove that on a given y, G′1((pj(y))j∈[6]) = 0, i.e.,

â(y)b̂(y) · ga,b + â(y) · ga + b̂(y) · gb + ŵ(y) · gw + s(y) + q(y) · gq + r(y) · gr + g0
?
= 0

Similarly to the above, CPeq chooses a set S of size 1, revealing only the evaluation of b̂(y). Thus,
CPeq for G1 is b−leaky-ZK with b = (ba, bb, bw, bs, bq, br) = (0, 1, 0, 0, 0, 0). Due to Theorem 6.1,
these constructions need to be (1, 2, 1, 1, 1, 1)-bounded ZK, where the +1 evaluations correspond to the
evaluation of the secret exponent of the commitments. Similarly to the previous case, the optimizations
of Remark 4 apply to these PHPs as well.

9.3 Our zkSNARKs

In Table 4 we summarize the efficiency of the zkSNARKs schemes obtained through the different options
to instantiate the compiler on all our PHPs (the table only shows the instantiation in the AGM model,
see later for the differences when CPopn = CPPKE

opn). We comment how these measures are computed.
The final numbers are obtained after considering the efficiency of the single CP-SNARKs from Section
7.

• The universal SRS srs is the commitment key instantiated using the maximal degree D of the given
PHP, and the KeyGen cost is the cost of generating this commitment key. This follows from the fact
that all the CP-SNARKs used in this instantiation are commitment-only.

• The verification key vkR of the specialized SRS srsR for an R1CS-lite (resp. R1CS) relation involving
matrices of dimension n and density at most m includes rel-type commitments to the relation poly-
nomials and the specialized SRSs for the CP-SNARKs. In our case, the latter only includes [s]2 used
to verify a proof in CPeval, and [s, sD−n+2, sD−m+2]2 used in the verification of CP(2)

deg when using CS2.
The Derive complexity is the cost of generating these rel-type commitments.

• The proof includes one commitment per polynomial sent by the PHP prover, one CPopn proof per
PHP round, two CPdeg proofs, one CPeq proof for the first polynomial check, and a proof for the
second polynomial check, which is done using CPeq for CS1 or using CPqeq for CS2. The cost of the
prover is the sum of: the committing cost which corresponds to the PHP proof length (translated into
G1 exponentiations), the cost of generating the CP-SNARK proofs, and the PHP prover complexity
(which are F operations). Note that in the CS2 instantiation, the CPqeq proof is empty since for every
quadratic term of G′2 we have exactly one commitment in G1 and another in G2.

• Verification involves running the PHP verifier, DV , and to run verification of the CP-SNARK proofs
for CPopn, CPdeg, CPeq for the first polynomial check, and CPeq (resp. CPqeq) for the second check in
the CS1 (resp. CS2) instantiation. In our summary we only count the number of pairings, as this is
the most expensive cost. Each proof of CPopn, CPdeg and CPeq requires 2 pairings while a CPqeq proof
(for the G polynomial used in our case) needs 3 pairings. Several of these pairings have a common
G2 argument, and thus can be batched using standard techniques; the numbers in the table are the
ones after batching.

In Table 1 we present a comparison between a selection of our schemes and previous work.

Instantiations under mPKE. For the versions of our zkSNARKs based on the mPKE assumption,
i.e., instantiated with CPopn = CPPKE

opn , the efficiency decreases as follows: SRS22 size is increased by D
elements of G1 and 1 element of G2, proof size is increased by 4 elements of G1, the verifier needs 1
more pairing (after batching), and the prover needs l more exponentiations in G1, where l = 3n + 2m

for Π
(1)
lite2x,Π

(2)
lite2,Π

(1)
r1cs2x,Π

(2)
r1cs2, l = 3n+ 4m for Π

(1)
lite1x,Π

(2)
lite1,Π

(1)
r1cs3, and l = 3n+ 6m for Π

(1)
r1cs1x,Π

(2)
r1cs1.

22Note that by remark 11, the SRS is still updatable.

63

It is worth noting that all our instantiations under the mPKE assumption are significantly more
efficient than the instantiation of Marlin [CHM+20] with the polynomial commitments based on
mPKE. The latter would require 11 more elements of G1 in the proof (1 per commitment), while the
proving time requires 11n+ 5m more exponentiations in G1.

PHP CS Π
size time

|srs| |vkR| |π| KeyGen Derive Prove Verify

R
1C

S-
lit
e

P
H
P
li
te
1
x

CS1 Π
(1)
lite1x

G1 2M 5 11 2M 10m 8n+8m−2`
2 pairings

G2 1 1 — 1 — —
F — — 3 — O(m logm) O(m logm) O(`+logm)

P
H
P
li
te
1

CS2 Π
(2)
lite1

G1 2M — 10 2M — 8n+6m−2`
7 pairings

G2 2M 11 — 2M 16m —
F — — 2 — O(m logm) O(m logm) O(`+logm)

P
H
P
li
te
2
x

CS1 Π
(1)
lite2x

G1 M 16 11 M 16m 8n+4m−2`
2 pairings

G2 1 1 — 1 — —
F — — 3 — O(m logm) O(`+logm)

P
H
P
li
te
2

CS2
Π

(2)
lite2

G1 M — 10 M — 8n+3m−2`
7 pairings

G2 M 27 — M 24m —
(aka LunarLite) F — — 2 — O(m logm) O(m logm) O(`+logm)

R
1C

S

P
H
P
r1
cs
1
x

CS1 Π
(1)
r1cs1x

G1 3M 6 12 3M 18m 9n+12m−`
2 pairings

G2 1 1 — 1 — —
F — — 3 — O(m logm) O(m logm) O(`+logm)

P
H
P
r1
cs
1

CS2 Π
(2)
r1cs1

G1 3M — 11 3M — 9n+9m−`
7 pairings

G2 3M 12 — 3M 27m —
F — — 2 — O(m logm) O(m logm) O(`+logm)

P
H
P
r1
cs
2
x

CS1 Π
(1)
r1cs2x

G1 M 42 12 M 42m 9n+4m−`
2 pairings

G2 1 1 — 1 — —
F — — 3 — O(m logm) O(`+logm)

P
H
P
r1
cs
2

CS2

Π
(2)
r1cs2 G1 M — 11 M — 9n+3m−`

7 pairings
(aka Lunar1cs G2 M 60 — M 57m —
fast & short) F — — 2 — O(m logm) O(m logm) O(`+logm)

P
H
P
r1
cs
3

CS1

Π
(1)
r1cs3 G1 3M 12 12 3M 12m 9n+8m−`

2 pairings
(aka Lunar1cs G2 1 1 — 1 — —

short vk) F — — 5 — O(m logm) O(m logm) O(`+logm)

Table 4: Efficiency summary of our zkSNARKs with universal and updatable SRS in the AGM model
(i.e., using CPopn = CPAGM

opn) for R1CS-lite and R1CS relations with n×n matrices, each of density ≤ m,
and inputs of length `. For field operations, we simplified using that m = O(n). M is the largest value
of m supported by the PHPs.

9.4 Our CP-SNARKs

By using the commit-and-prove variant of our compiler described in Section 8.1, we obtain commit-and-
prove variants of our zkSNARKs in Table 4. Below we discuss their efficiency.

Let us consider proving R1CS or R1CS-lite relations in which a portion of the witness vector w
is committed. Assume there are l commitments, (ĉj)j∈[l], such that each ĉi commits to a vector of
dimension v encoded in a low-degree extension ui(X) of degree v − 1. Also, we recall that according to
our compiler, each CP-SNARK variant works the same as the corresponding zkSNARK except that it
additionally runs the CP

(2)
link proof system.

In the case of the PHPs for R1CS, adding the CP
(2)
link proof requires in addition: n + v(3l + 2) + l

exponentiations in G1 for the prover, (4l + 2) elements of G1 and one element of F in the proof, and

64

l + 3 pairings to the verifier.
In the case of the PHPs for R1CS-lite, adding the CP

(2)
link proof (with the modification to deal with

the two polynomials) requires in addition: 4n+v(3l+1)+ l exponentiations in G1 for the prover, (4l+4)
elements of G1 and two elements of F in the proof, and l + 3 pairings to the verifier.

Acknowledgements

Research leading to these results has been partially supported by the Spanish Government under projects
SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and SECURITAS (ref.
RED2018-102321-T), by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-
4339), and by a research gift from Protocol Labs. The second author was partially supported by the
before mentioned projects when he was a postdoctoral fellow at IMDEA Software Institute where he
performed part of the research leading to this paper. Additionally, the project that gave rise to these
results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship
code is LCF/BQ/ES18/11670018.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
2087–2104. ACM Press, October / November 2017.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
56–73. Springer, Heidelberg, May 2004.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334. IEEE Computer Society Press, May
2018.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars
Virza. Computational integrity with a public random string from quasi-linear PCPs. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 551–579. Springer, Heidelberg, April / May 2017.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg,
August 2019.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Effi-
cient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 327–357. Springer, Heidelberg, May 2016.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi
Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

[BCFK19] Daniel Benarroch, Matteo Campanelli, Dario Fiore, and Dimitris Kolonelos. Zero-
knowledge proofs for set membership: Efficient, succinct, modular. Cryptology ePrint
Archive, Report 2019/1255, 2019. https://eprint.iacr.org/2019/1255.

65

https://eprint.iacr.org/2019/1255

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Se-
cure sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE
Symposium on Security and Privacy, pages 287–304. IEEE Computer Society Press, May
2015.

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas
Spooner. Linear-size constant-query IOPs for delegating computation. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 494–521.
Springer, Heidelberg, December 2019.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
103–128. Springer, Heidelberg, May 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 31–60. Springer, Heidelberg, October / November 2016.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK com-
pilers. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

[BGG+90] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hastad, Joe Kilian, Silvio Mi-
cali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In Shafi
Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 37–56. Springer, Heidelberg,
August 1990.

[BGG19] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing
the public parameters of the pinocchio zk-SNARK. In Aviv Zohar, Ittay Eyal, Vanessa
Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors,
FC 2018 Workshops, volume 10958 of LNCS, pages 64–77. Springer, Heidelberg, March
2019.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050,
2017. http://eprint.iacr.org/2017/1050.

[CD98] Ronald Cramer and Ivan Damgard. Zero-knowledge proofs for finite field arithmetic; or:
Can zero-knowledge be for free? In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 424–441. Springer, Heidelberg, August 1998.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular design and
composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM
Press, November 2019.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transpar-
ent recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidelberg, May
2020.

66

http://eprint.iacr.org/2017/1050

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

[DRZ20] Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product argument
with logarithmic verifier and applications. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
527–557. Springer, Heidelberg, May 2020.

[EG14] Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 630–649. Springer, Heidelberg, March 2014.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its appli-
cations. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[Gab19] Ariel Gabizon. AuroraLight: Improved prover efficiency and SRS size in a sonic-like system.
Cryptology ePrint Archive, Report 2019/601, 2019. https://eprint.iacr.org/2019/601.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg,
May 2013.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updat-
able and universal common reference strings with applications to zk-SNARKs. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 698–728. Springer, Heidelberg, August 2018.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 113–122. ACM Press, May 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidel-
berg, December 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[IS90] K. G. Ivanov and E. B. Saff. Behavior of the Lagrange Interpolants in the Roots of Unity,
pages 81–87. Springer Berlin Heidelberg, Berlin, Heidelberg, 1990.

67

https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953

[Ish19] Yuval Ishai. Efficient zero-knowledge proofs: A modular approach. https:
//simons.berkeley.edu/talks/tbd-79. Also see https://zkproof.org/2020/08/12/
information-theoretic-proof-systems/, 2019.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In 24th ACM STOC, pages 723–732. ACM Press, May 1992.

[KPPS20] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn Song.
MIRAGE: Succinct arguments for randomized algorithms with applications to universal
zk-SNARKs. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020,
pages 2129–2146. USENIX Association, August 2020.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
169–189. Springer, Heidelberg, March 2012.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 2111–2128. ACM Press, November 2019.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 49–62. ACM Press, June 2016.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 704–737. Springer, Heidelberg, August 2020.

[TB04] Lloyd Trefethen and Jean-Paul Berrut. Barycentric lagrange interpolation. SIAM Review,
46(3):501–517, 2004.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and
Privacy, pages 926–943. IEEE Computer Society Press, May 2018.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. DIZK:
A distributed zero knowledge proof system. In William Enck and Adrienne Porter Felt,
editors, USENIX Security 2018, pages 675–692. USENIX Association, August 2018.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 733–764. Springer, Heidelberg, August 2019.

[ZGK+17a] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vSQL: Verifying arbitrary SQL queries over dynamic outsourced databases.
In 2017 IEEE Symposium on Security and Privacy, pages 863–880. IEEE Computer Society
Press, May 2017.

[ZGK+17b] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. A Zero-Knowledge Version of vSQL. Cryptology ePrint Archive, Report
2017/1146, 2017. https://eprint.iacr.org/2017/1146.

68

https://simons.berkeley.edu/talks/tbd-79
https://simons.berkeley.edu/talks/tbd-79
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://eprint.iacr.org/2017/1146

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vRAM: Faster verifiable RAM with program-independent preprocessing. In
2018 IEEE Symposium on Security and Privacy, pages 908–925. IEEE Computer Society
Press, May 2018.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. In 2020 IEEE Symposium on
Security and Privacy, pages 859–876. IEEE Computer Society Press, May 2020.

A Constraint Systems

Below we define a less compact version of R1CS-lite (Definition 4.5) in which satisfiability is expressed
via three vectors and three checks. This form is sometimes more convenient work with.

Definition A.1 (LongR1CS-lite). Let F be a finite field and n,m ∈ N be positive integers. The universal
relation RLongR1CS-lite is the set of triples

(R, x,w) :=
(
(F, n,m, {L,R}, `),x, (a′, b′, c′)

)
where L,R ∈ Fn×n, max{||L||, ||R||} ≤ m, x ∈ F`−1, a′, b′, c′ ∈ Fn−`, and for a := (1,x,a′),
b := (1, b′), c := (1,x, c′) it holds

a ◦ b− c = 0 ∧ a+L · c = 0 ∧ b+R · c = 0

Lemma A.1. Let R (resp. R̂) be a LongR1CS-lite (resp. R1CS-lite) relation with matrices {L,R}.
Then for any x ∈ F`−1, it holds x ∈ L(R) if and only if x ∈ L(R̂).

Proof. Case I: x ∈ L(R) ⇒ x ∈ L(R̂). Let (a′, b′, c′) be a witness for x ∈ L(R). Then ĉ′ :=
a′ ◦ b′ is a witness for x ∈ L(R̂). To see this, note that by LongR1CS-lite definition, we have that
L · (a ◦ b) ◦R · (a ◦ b) = a ◦ b, for a := (1,x,a′) and b := (1, b′). Finally, noticing that (1,x, ĉ′) = a ◦ b
concludes this part of the proof.

Case II: x ∈ L(R) ⇐ x ∈ L(R̂). Let ĉ′ be a witness for x ∈ L(R̂), namely for ĉ := (1,x, ĉ′) it holds
ĉ = L · ĉ ◦R · ĉ.

Let ã := −L · ĉ, b̃ := −R · ĉ, and c′ := ĉ′, and let a′, b′ be the last n−` rows of ã and b̃ respectively.
By the satisfiability of R1CS-lite we have that 1

x
c′

 = ĉ = L · ĉ ◦R · ĉ = ã ◦ b̃ =

(
a′′

a′

)
◦
(
b′′

b′

)

which implies that c′ = a′ ◦ b′, and thus for a := (1,x,a′), b := (1, b′), and c := (1,x, c′), the
Hadamard constraint of R1CS-lite must hold.

Finally, note that from the definition of the first ` rows of R it holds b̃ = (1, b′), and thus ã =
(1,x,a′). Therefore, for a, b as above the linear constraints of R1CS-lite are also satisfied.

This concludes the proof that (a′, b′, c′) is a satisfying witness for x ∈ L(R).

A.1 Proof of Lemma 4.5

Proof. We do the proof by showing equivalence with the LongR1CS-lite relation of definition A.1; by
lemma A.1 one can then obtain the proof.

First, we claim that equation (1) is equivalent to

∀η ∈ H : a(η) +
∑
η′∈H

Lη,η′ · a(η′) · b(η′) = 0 (17)

∀η ∈ H : b(η) +
∑
η′∈H

Rη,η′ · a(η′) · b(η′) = 0 (18)

69

To see this, we observe that we can group the checks inside equations (17) (resp. (18)) by doing a
linear combination with linearly independent polynomials {LHη (X)}η∈H; then, these two equations can
be merged into a single one by introducing a new random variable Z.∑

η∈H
a(η) · LHη (X) +

∑
η,η′∈H

Lη,η′ · a(η′) · b(η′) · LHη (X) = 0 ∈ F[X]

∑
η∈H

b(η) · LHη (X) +
∑
η,η′∈H

Rη,η′ · a(η′) · b(η′) · LHη (X) = 0 ∈ F[X]

m

a(X) + Z · b(X) +
∑
η,η′∈H

Lη,η′ · a(η′) · b(η′) · LHη (X) + Z
∑
η,η′∈H

Rη,η′ · a(η′) · b(η′) · LHη (X) = 0 ∈ F[X,Z]

In one direction, given a satisfying witness (a′, b′, c′) for R1CS-lite, we can build polynomials
a′(X), b′(X) that satisfy equations (17)–(18) by defining: a := (1,x,a′), a(X) =

∑
η∈H aφH(η) ·LHη (X) ∈

F≤n−1[X] (and similarly for b(X) from b = (1, b′)), a′(X) := (a(X) −
∑

η∈L xφH(η) · LLη (X))/Z L(X),
and b′(X) := (b(X)− 1)/Z L(X).

In the other direction, let a′(X), b′(X) be polynomials such that their extensions with the public
input satisfy equations (17)–(18). Then, we build a witness (a′, b′, c′) for R1CS-lite by defining: b′ :=
(b(φ−1

H (`+ 1)), . . . , b(φ−1
H (n)), a′ := (a′(φ−1

H (`+ 1)), . . . , a′(φ−1
H (n)), and c′ := (a′(φ−1

H (`+ 1)) · b(φ−1
H (`+

1)), . . . , a′(φ−1
H (n) · b(φ−1

H (`+ 1))).

A.2 Proof of Lemma 4.8

Proof. Similarly to the proof above, we claim that equation (11) is equivalent to

∀η ∈ H : a(η) +
∑
η′∈H

Lη,η′ · z(η′) = 0 (19)

∀η ∈ H : b(η) +
∑
η′∈H

Rη,η′ · z(η′) = 0 (20)

∀η ∈ H : −a(η) · b(η) +
∑
η′∈H

Oη,η′ · z(η′) = 0 (21)

To see this, we observe that we can group the checks inside equations (19)–(21) by doing a linear
combination with linearly independent polynomials {LHη (X)}η∈H; then, these three equations can be
merged into a single one by introducing new random variables ZL, ZR, ZO.∑

η∈H
a(η) · LHη (X) +

∑
η,η′∈H

Lη,η′ · z(η′) · LHη (X) = 0 ∈ F[X]

∑
η∈H

b(η) · LHη (X) +
∑
η,η′∈H

Rη,η′ · z(η′) · LHη (X) = 0 ∈ F[X]

−
∑
η∈H

a(η) · b(η) · LHη (X) +
∑
η,η′∈H

Oη,η′ · z(η′) · LHη (X) = 0 ∈ F[X]

m∑
η∈H

(
ZLa(η) + ZRb(η)− ZOa(η)b(η)

)
LHη (X) +

∑
η,η′∈H

M∈{L,R,O}

ZMMη,η′z(η
′)LHη (X) = 0 ∈ F[X,ZL, ZR, ZO]

In one direction, given a satisfying witness w for R1CS, we can build polynomials a(X), b(X), w(X)
that satisfy equations (19)–(21): first, let a = −L · z and b = −R · z with z = (1,x,w), second,
define by interpolation a(X) =

∑
η∈H aφH(η) · LHη (X) ∈ F≤n−1[X] and similarly b(X), and finally define

z(X) :=
∑

η∈L x
′
φH(η) · LLη (X) +

∑
η∈H\LwφH(η) · L

H\L
η (X) · Z L(X).

In the other direction, let a(X), b(X), w(X) be such that they satisfy equations (19)–(21), for
z(X) :=

∑
η∈L x

′
φH(η) · LLη (X) + w(X) · Z L(X). Then, we build a witness w for R1CS by defining

w := (z(φ−1
H (`+ 1)), . . . , z(φ−1

H (n))).

70

A.3 Reduction to Arithmetic Circuit Satisfiability

Let us recall the arithmetic circuit satisfiability problem.

Definition A.2 (Arithmetic Circuit Satisfiability). Let F be a finite field. The universal arithmetic
circuit satisfiability relation RC is the set of triples (C, (x,y),w), where C : F`in × F`wit → F`out
is an arithmetic circuit with `in public inputs, `wit private inputs, and `out public outputs, such that
C(x,w) = y.

Gennaro et al. [GGPR13] proved how to encode arithmetic circuit satisfiability with a quadratic
arithmetic program (which is the polynomial version of R1CS). We summarize below their result.

Theorem A.2 ([GGPR13]). Let C : F`in ×F`wit → F`out be an arithmetic circuit with N multiplication
gates. Then there exists an R1CS L,R,O ∈ F(N+`out)×n with n = `in + `out +N + 1 such that for any
x, ∃w : C(x,w) = y if and only if ∃c′ that makes (1,x,y) accepted by (L,R,O).

In the following theorem we show a similar method to encode arithmetic circuit satisfiability with
R1CS-lite.

Theorem A.3. Let C : F`in × F`wit → F`out be an arithmetic circuit with N multiplication gates. Then
there exists an R1CS-lite {L,R} ∈ Fn×n with ` = `in + `out + 1, n = ` + N , such that for any x,
∃w : C(x,w) = y if and only if ∃w′ that makes (1,x,y) accepted by {L,R}.

Proof. We do the proof by building matrices for the LongR1CS-lite relation. By the equivalence of
R1CS-lite LongR1CS-lite shown in lemma A.1, this shows a reduction to R1CS-lite.

Our goal is to define a, b, c and matrices L,R such that the satisfiability of C can be expressed as
follows:

a+L · c = 0

b+R · c = 0

a ◦ b = c

(22)

with a = (1,x,y,a′), b = (1, b′) and c = (1,x,y, c′).
Let us partition [n] into Iin = {2, . . . , `in + 1}, Iout = {`in + 2, . . . , `}, Imid = {`+ 1, . . . , n}.
Let us label all the multiplication gates of C with integers in Imid, and for every such multiplication

gate j let us denote by aj , bj and cj its left input, right input and output respectively. Also recall that
c contains the public input and output (including the constant 1) as a prefix. Then the consistency of
every multiplication gate can be checked as:

∀j ∈ Imid :

aj +Lj · c = 0

bj +Rj · c = 0

aj · bj − cj = 0

for appropriate row vectors Lj ,Rj which express the linear subcircuits for the left and input wires.
Next, we add constraints for the public outputs:

∀j ∈ Iout :

aj +Lj · c = 0

bj − c1 = 0

aj · bj − cj = 0

The first constraint checks correctness of outputs that are obtained from possible linear subcircuits on
multiplication gates outputs. The second and third constraints impose a dummy value, 1, on bj , and
thus ensure that cj = aj .

Finally, recalling that a = (1,x,y,a′), b = (1, b′) and c = (1,x,y, c′), we can add the following
(dummy) constraints for the public inputs:

∀j ∈ {1} ∪ Iin :

aj − cj = 0

bj − c1 = 0

aj · bj − cj = 0

71

We conclude by showing how to define matrices L and R such that all the constraints above are
compactly represented by the equations (22).

L =

−I`in+1 | 0
L`in+2

...
Ln

In order to define R, we define auxiliary matrix E as the `×n matrix where each row is the unit vector
e1 ∈ Fn.

E =

1 . . . 0 . . . 0
...

1 . . . 0 . . . 0

 , R =

−E
R`+1
...
Rn

A.4 Comparing R1CS and R1CS-lite

We compare the efficiency of the R1CS and R1CS-lite constraint systems that result from applying the
results of theorems A.2 and A.3 to the same circuit C. Let L̂, R̂, Ô and L,R be the resulting R1CS
and R1CS-lite matrices respectively.

From the theorems statements it s clear that R1CS matrices have `in + 1 less rows than R1CS-lite
ones.

Next, we analyze their densities. For ease of comparison, we show how the R1CS matrices are
obtained. This works very similarly to the proof of our theorem A.3 with a few differences at the end.
For c = (1,x,y, c′), the satisfiability can be expressed as the following constraints

{
(L′ · c) ◦ (R′ · c) = [0N×` | I] · c
Lout · c = 0

with L′ =

L`+1
...
Ln

 , R′ =

R`+1
...
Rn

where the i-th row of Lout checks that the i-th output yi is correctly obtained from a linear subcircuit
with inputs from (1,x, c′).

Then one can set

L̂ =

(
L′

Lout

)
, R̂ =

R′

(1, 0, . . . 0)
...

(1, 0, . . . 0)

 , Ô =

(
0 | I

0`out×n

)

Let us now analyze their densities. For R1CS we have:

||L̂|| = ||L′||+ ||Lout||, ||R̂|| = ||R′||+ `out, ||Ô|| = N

whereas for R1CS-lite we have:

||L|| = ||L′||+ ||Lout||+ |Iin|+ 1, ||R|| = ||R′||+ `,

Basically, the two R1CS-lite matrices have each `in + 1 more entries than their R1CS counterparts. If
we consider the total size of the constraint system, we also have that

||L||+ ||R|| < ||L̂||+ ||R̂||+ ||Ô||

holds as long as N > 2(`in + 1), which is likely to be the case.

72

B Our Protocol for Lincheck

In this section we describe a PHP for the following relation

f = Mg

where f, g ∈ Fn and M ∈ Fn×n is a sparse matrix. This PHP is used as a building block for the
constructions in Section 4.

B.1 Preliminaries

The equation f = Mg can be rewritten as

∀η ∈ H f(η)−
∑
η′

Mη,η′ · g(η′) = 0 (23)

We can rewrite it equivalently as a linear combination through Lagrange polynomials:∑
η

LHη (Y)
(
f(η)−

∑
η′

Mη,η′ · g(η′)
)

= 0 (24)

that is
F (Y) =

∑
η,η′

LHη (Y)Mη,η′g(η′) (25)

From here (we mark substitutions in blue):

F (Y) =
∑
η,η′

Mη,η′ 6=0

LHη (Y)Mη,η′g(η′) (26)

=
∑
κ∈K

val(κ)g(col(κ))LHrow(κ)(Y) (27)

=
∑
κ∈K

val(κ)
(∑

η′

g(η′)LHcol(κ)(η
′)
)
LHrow(κ)(Y) (28)

=
∑
η′

g(η′)
(∑
κ∈K

val(κ)LHcol(κ)(η
′)LHrow(κ)(Y)

)
(29)

=
∑
η′

g(η′)V (η′, Y) (30)

=
∑
η′

D(η′, Y) (31)

Thus we are defining:

F (Y) :=
∑
η

LHη (Y)f(η) (32)

D(X,Y) := g(X)V (X,Y) (33)

V (X,Y) :=
∑
κ∈K

val(κ)LHcol(κ)(X)LHrow(κ)(Y) (34)

A high-level view of the lincheck protocol:

1. Sumcheck. After sampling a random y0, we carry out a sumcheck protocol on σ := F (y0). Specifi-
cally we check the claim σ =

∑
η′ D

′(η′) where D′(X) := g(X)V (X, y0).

2. Check product of polynomials. As a step in the sumcheck protocol from the step before, we need to
recursively check the structure of D′. We want to check that D′ is of the form D′(X) = g(X)V (X, y0).
In order to do this, we sample a random point x and recursively check a claim on g(x) (to which the
verifier has oracle access) and on V (x, y) (for which we use the following step).

3. Check sparse matrix polynomial. The polynomial V encodes a sparse matrix. We use a special-
ized protocol for this type of claim, described later on in the following subsection.

73

B.2 An Holographic Protocol for Points of Sparse Matrices

The new protocol we describe here is, together with sumcheck, the main ingredient for our lincheck.
The protocol allows to verify that a polynomial Ṽ in input correctly “encodes” the point with indices
(x∗, y∗) for a matrix encoded as described in Definition 4.3. We point out that the indices (x∗, y∗) do
not necessarily have to be valid row/column position of the matrix (they are arbitrary field elements).

Remark 16. The approach below can be generalized to a different number of polynomial and different
rational functions.

See Section 4.1 for background on this section. Consider a sparse matrix M and let (row, col, val)
be its encoding (as by Definition 4.3) to which we assume the verifier has oracle access. Let x∗, y∗ be
any two points in the field F. Let us define the polynomial Ṽ as

Ṽ :=
∑
κ∈K

val(κ)LHcol(κ)(x
∗)LHrow(κ)(y

∗) (35)

We now define a protocol that, fixed a matrix and fixed x∗, y∗ allows a verifier to check that Ṽ is
correctly defined as in (35). Its analysis (efficiency and soundness) are analogous to those in Section 4.

Intuition

By definition of Ṽ , we know that

Ṽ (κ) = val(κ)LHcol(κ)(x
∗)LHrow(κ)(y

∗) for every κ ∈ K

For every κ ∈ K we can write this as:

Ṽ (κ) = val(κ)
col(κ)

n
· Z H(x∗)

x∗ − col(κ)
· row(κ)

n
· Z H(y∗)

y∗ − row(κ)

where n := |H|. The latter is equivalent to

n2Ṽ (κ)(x∗ − col(κ))(y∗ − row(κ)) = val(κ)col(κ)row(κ)Z H(x∗)Z H(y∗)

Let us define polynomial B as

B(X ′) := n2Ṽ (X ′)(x∗ − col(X ′))(y∗ − row(X ′))− val(X ′)col(X ′)row(X ′)Z H(x∗)Z H(y∗)

and we observe that the above is equivalent to:

B(X ′) ≡ 0 (mod Z K(X ′))

In order to check this relation in the protocol, the prover can send π(X ′) := B(X′)
Z K(X′) and the verifier can

check
π(y)Z K(y) = B(y)

for a random point y.

74

B.3 The linear check protocol

P(F,M, F,G) VF,G,row,col,val(F))

y0←$F

D′ :=
∑
η∈H

G(η)V (η, y0)

(q′, r′)← DivPolyH(D′, F (y0))

q′, r′

x←$F

yG ← G(x)

σV ← V (x, y0)

Ṽ :=
∑
κ∈K

val(κ)ΛH(x, col(κ))ΛH(y0, row(κ))

Let r̃ s.t. Ṽ (X) = σV /n+Xr̃(X)

π(Y) :=

n2

Z K(Y)
Ṽ (Y)(x− col(Y))(y0 − row(Y))−

val(Y)col(Y)row(Y)Z H(x)Z H(y0)

σV , r̃, π

Figure 4: Online phase of our lincheck PHP.

Let p̃(X) :=
σV
n

+Xr̃(X).

1) n2p̃(X)(x− col(X))(y0 − row(X))−

Z H(x)Z H(y0)val(X)col(X)row(X)− π(X)Z K(X)
?
= 0

2) G(X)σV − F (y0)/n− q′(x)Z H(x)− xr′(x)
?
= 0

Figure 5: Decision phase of our Lincheck PHP

75

C Additional Material for Section 6

C.1 Succinct Interactive Arguments in the SRS.

Definition C.1 (Universal Commit and Prove Interactive Argument in the SRS model). A Universal
Commit and Prove Interactive Argument in the SRS model (Universal CP-UIA) is a tuple UIA =
(KeyGen,Derive, P̄, V̄) of PT algorithms where all the algorithms work as in Def. 5.4 (universal CP-
SNARKs) but where P̄ and V̄ form an interactive protocol. In particular:

• P̄(ek, x̂ = (ck, x, (ĉj)j∈[`]), ŵ = ((uj)j∈[`], (oj)j∈[`], ω)), ρ̄1, . . . , ρ̄i): the next-message function of P̄
takes as input the evaluation key ek, the instance x̂, the witness ŵ and the first i-th messages ρ̄1, . . . , ρ̄i
from V̄.

• V̄(srs, vk, x̂, π1, . . . , πi): the next-message function of V̄ takes as input the verification key vk, the
instance x̂ and the first i-th messages π1, . . . , πi from the prover P̄.
At the last round of interaction the verifier outputs a decision bit b.

When ` = 0 we simply call it a Universal Interactive Argument in the SRS model (Universal UIA).
Furthermore, we define the properties of knowledge-soundness as in Def. 5.4 and of trapdoor-commitment
honest-verifier zero-knowledge similar to Def. 5.7. Specifically:

Knowledge Soundness. Let RG be a relation generator and Z an auxiliary input distribution, and let
RGCom as in Def. 5.4, UIA has knowledge soundness for RG and Z, denoted KSND(RG,Z) for brevity, if
for every (non-uniform) efficient adversary A = (A0,A1) there exists a (non-uniform) efficient extractor
E such that Pr

[
GameKSNDRG,Z,A,E(λ) = 1

]
= negl. We say that Π is knowledge sound if there exist benign

RG and Z such that Π is KSND(RG,Z).

GameKSND
RG,Z,A,E(λ)→ b

((ck,R), auxR)← RGCom(1λ) ; srs := (ek, vk)← KeyGen(ck,R) ; auxZ ← Z(R, auxR, srs)(
R, x̂ = (x, (cj)j∈[`]), st

)
← A0(R, ck, srs, auxR, auxZ) ; (τ, b′)← 〈A1(st), V̄(Derive(vk,R), x, (cj)j∈[`])〉

ŵ = ((uj)j∈[`], (oj)j∈[`], ω)← E(R, srs, auxR, auxZ) ; return b = b′ ∧ ¬RCom
ck,N(x̂, ŵ)

Trapdoor-commitment honest-verifier zero-knowledge. A CP-UIA scheme UIA is trapdoor-
commit honest-verifer zero-knowledge in the SRS model for a family of universal relations {RN}N∈N
if there exists a simulator S such that for all adversaries A, for all N ∈ N, for all R ∈ RN, for all
(ck, td) ∈ Sck(1λ), and for all (x,w) such that R(x,w) = 1:

Pr

 (srs, tdk)← KeyGen(ck,N)

srsR ← Derive(srs,R)

(τ, b)← 〈P(ek, x̂, ŵ),V(vk, x̂)〉
: A(srs, tdk, td,R, x,w, τ) = 1

 ≈
Pr

[
(srs, tdk)← KeyGen(ck,N)

τ ← S(tdk, td,R, x)
: A(srs, tdk, td,R, x,w, τ) = 1

]

where recall that x̂ = (x, (cj)j∈[`]) and ŵ = ((uj)j∈[`], (oj)j∈[`], ω).

Succinctness. We say that a public-coin CP-UIA scheme UIA is succinct if, for any input x ∈ {0, 1}n,
both its total communication complexity (the sum of the length of all prover’s messages) and the runtime
of V̄ are at most poly-logarithmic in n.

C.2 Proof of Theorem 6.1

Knowledge Soundness. Let Z be a benign auxiliary input distribution and let A = (A0,A1) be a
non-uniform PT adversary for the knowledge soundness game described in Def. C.1. In Figure 6 we
describe a sequence of hybrid experiments, the experiments are parameterized by an algorithm E∗ that
they run internally.

76

H0(1λ, E∗)

pp← ParGen(1λ) ; srs := (ek, vk)← KeyGen(pp,N) ; auxZ ← Z(srs) ;(
R, x, st

)
← A0(srs, auxZ) ; (τ, b)← 〈A1(st),V(Derive(vk,R), x〉 ;

w← E∗(srs, auxZ) ;
bE ← R(x, ω) ; bW ← b

H1(1λ, E∗)

pp← ParGen(1λ) ; srs := (ek, vk)← KeyGen(pp,N) ; auxZ ← Z(srs) ;(
R, x, st

)
← A0(srs, auxZ) ; (τ, b)← 〈A1(st),V(Derive(vk,R), x〉 ;

(p′j , o
′
j)j∈[n∗] ← Ephp(Rphp, ck, vkphp, aux

PHP
Z) ;

bV ←
∧
k∈ne

(
Gk(X, {p′j(vk,j(X))}j∈[n∗], {πj}j∈[m∗]) ≡ 0

)
∧
∧
j∈[n∗]

(
deg(p′j) ≤ dj

)
∧
∧
j∈[n∗]

VerCom(ck, cj , p
′
j , o
′
j) ;

w← E∗(srs, auxZ) ;

bE ← R(x, ω) ; bW ← b ∧ bV ;

H2(1λ, E∗)

pp← ParGen(1λ) ; srs := (ek, vk)← KeyGen(pp,N) ; auxZ ← Z(srs) ;(
R, x, st

)
← A0(srs, auxZ) ; (τ, b)← 〈A1(st),V(Derive(vk,R), x〉 ;

(p′j , o
′
j)j∈[n∗] ← Ephp(Rphp, ck, vkphp, aux

PHP
Z) ;

bV ←
∧
k∈ne

(
Gk(X, {p′j(vk,j(X))}j∈[n∗], {πj}j∈[m∗]) ≡ 0

)
∧
∧
j∈[n∗]

(
deg(p′j) ≤ dj

)
∧
∧
j∈[n∗]

VerCom(ck, cj , p
′
j , o
′
j) ;

for i ∈ [r] : (pi,j , oi,j)j∈[n(i)] ← E ′j(ekopn, auxZ) ; biV ←
∧

j∈[n(i)]

VerCom(ck, ci,j , pi,j , oi,j)

w← E∗(srs, auxZ) ;

bE ← R(x, ω) ; bW ← b ∧ bV ∧ (∧ibiV) ;

H3(1λ, E∗)

pp← ParGen(1λ) ; srs := (ek, vk)← KeyGen(pp,N) ; auxZ ← Z(srs) ;(
R, x, st

)
← A0(srs, auxZ) ; (τ, b)← 〈A1(st),V(Derive(vk,R), x〉 ;

(p′j , o
′
j)j∈[n∗] ← Ephp(Rphp, ck, vkphp, aux

PHP
Z) ;

bV ←
∧
k∈ne

(
Gk(X, {p′j(vk,j(X))}j∈[n∗], {πj}j∈[m∗]) ≡ 0

)
∧
∧
j∈[n∗]

(
deg(p′j) ≤ dj

)
∧
∧
j∈[n∗]

VerCom(ck, cj , p
′
j , o
′
j) ;

for i ∈ [r] : (pi,j , oi,j)j∈[n(i)] ← E ′j(ck, auxR, auxZ) ; biV ←
∧

j∈[n(i)]

VerCom(ck, ci,j , pi,j , oi,j)

let (pj)j∈[n∗] := (pi,j)i∈[r],j∈[n(i)] ; bCS ← ∀j : p′j = pj ;

w← E∗(R, srs, auxR, auxZ) ;

bE ← R(x, ω) ; bW ← b ∧ bV ∧ (∧ibiV) ∧ bCS ;

Figure 6: Hybrid Experiments for Proof of Theorem 6.1

77

Consider the hybrid H0(1λ, E∗). Let bjW (resp. bjE) be the event of the flag bW (resp. bE) being true
in the hybrid experimentHj . Formally the events should be parameterized by the extractor E∗ that the
hybrid is running. However, it is clear that the variable bjW does not depend on the specific of E∗, thus
for a cleaner presentation we omit it. On the other hand bjE depends on E∗, thus when needed we will
refer to bjE [E∗] to specify that the event is parameterized by the extractor E∗. By a simple derivation:

Pr
[
GameKSND

Z,A,E∗
]
≤ Pr

[
b0W
]
− Pr

[
b0E [E∗]

]
.

Let H1(1λ, E∗) be the same as H0 but where the variable bW is computed differently. Specifically,
let Ephp be the extractor for the CP-SNARK CPphp and the adversary Aphp that runs the same as
the adversary A but that simply outputs the proof πphp, the openings (pj)j∈[n(0)], (oj)j∈[n(0)] for the
rel-typed commitments and the relative statement. Formally, the adversary Aphp receives in input
Rphp, ck, vkphp and auxPHPZ := auxZ , vkopn.

Let εphp be the knowledge soundness error (with partial opening) of the CP-SNARK CPphp

Lemma C.1. Pr[b0W] ≤ Pr[b1W] + εPHP

Proof. Notice that Pr[b0W] − Pr[b1W] = Pr[bV = 0]. In particular, as described in the definition of the
hybrid, the adversary Aphp on input the state st runs an execution of the universal argument between
A1 and the honest verifier and then outputs

(
(ij , dj)j∈[np], (Gj ,vj)j∈[ne]), (cj)j∈[n∗]

)
and the proof πphp.

Since b = 1 then it means that the proof πphp is valid, but bV = 0, i.e., the extractor does not output a
valid witness.

Let H2(1λ, E∗) be the same as H1 but where the variable bW is computed differently. Specifically,
let E ′i be the extractor for the adversary Ai that runs the same as the adversary A but that simply
outputs the (ci,j)j∈[n(i)], πopn,i.

Let εopn be the knowledge soundness error of the CP-SNARK CPopn.

Lemma C.2. Pr[b1W] ≤ Pr[b2W] + r · εopn

Proof. Similarly to the previous lemma, Pr[b1W]−Pr[b2W] = Pr[b1W ∧∃i : biV = 0] ≤ r ·maxi Pr[b1W ∧ biV =
0] ≤ r · εopn. Since b = 1 then it means that Verifyopn(vkopn, (ci,j)j∈n(i), πopn,i) = 1, but biV = 0 thus the
extractor does not extract valid openings the commitments.

Let H3(1λ, E∗) be the same as H2 but where the variable bW is computed differently. Specifically,
we check that the extractions of the CP-SNARKs agree. Let εCS be the advantage against the binding
of CS.

Lemma C.3. Pr[b2W] ≤ Pr[b3W] + εCS

Proof. Notice that Pr[b2W] ≤ Pr[b3W] + Pr[bCS = 0]. We reduce to the binding of CS. In particular
consider the adversary that runs H3 and if bC = 0 it outputs the values (pj , oj , p

′
j , o
′
j) for the index j

that make bCS = 0. Thus Pr[bCS = 0] ≤ εCS.

Consider the following PPT sampler algorithm:

Sampler D(1λ):

pp← ParGen(1λ) ; srs := (ek, vk)← KeyGen(pp,N) ; auxZ ← Z(srs) ;(
R, x, st

)
← A0(srs, auxZ) ; aux′Z := (srs, auxZ) ; return (R, x, aux′Z)

Lemma C.4. There exists a prover P∗ for the protocol PHP such that

Pr[〈P∗(F,R, x, z),VRE(F,R)(F, x)〉 = 1 : (R, x, aux′Z)←$D(1λ)] = Pr[b3W] (36)

78

Proof. We define the prover P∗. For any i, j, let ind(i, j) :=
∑

i′<i n
∗(i′) + j and let ind−1 its inverse

in the domain [n∗]. Namely, the function ind re-indexes the j-th polynomial sent at the i-th round as
the ind(i, j)-th polynomial sent by the prover.

Prover P∗(R, x, aux′Z , ρ1, . . . , ρi)):

(R, x, st)← A0(aux′Z) ;
if i = r + 1 then :

(ci,j)j∈[n(i)], {πi,j}j∈[r(i)], πphp ← A1(st, ρ1, . . . , ρr) ;

x̂PHP :=
(
(ij , dj)j∈[np], (G

′
j ,vj)j∈[ne], (cj)j∈[n∗]

)
;

if Verifyphp(vkphp, x̂PHP, π) = 0 then return ⊥ ;

(p′k, o
′
k)k∈[n∗] ← Ephp(Rphp, ck, srs, auxZ) ;

for k ∈ [n∗] let pi,j := p′ind−1(k) ;

if ∃i, j : p′i,j 6= pi,j then return ⊥ ;

else :

(ci,j)j∈[n(i)], {πi,j}j∈[r(i)], πj ← A1(st, ρ1, . . . , ρi)) ;
if Verifyopn(vkphp, , πj) = 0 then return ⊥ ;

(pi,j , oi,j)j∈[n(i)] ← E ′j(ekopn, auxZ)

if ∃j : VerCom(ck, ci,j , pi,j , oi,j) = 0 then return ⊥ ;
return (pi,j)j∈[n(i)], {πi,j}j∈[r(i)] ;

By inspection, if P∗ does not output ⊥ then the output of P∗ is computed exactly the same as A does.
Moreover, the prover P∗ outputs ⊥ only when either the verification of the CPopn fails (if round i ≤ r)
or the verification of the CPphp fails (if last round) or exists index j s.t. VerCom(ck, ci,j , pi,j , oi,j) = 0
or the binding property of CS is violated. Notice that if b3W holds then none of the previous events can
happen.

Notice that we can rewrite the Eq. (36) as:

E(R,x,aux′Z)←$D(1λ)

[
Pr[〈P∗(F,R, x, z),VRE(F,R)(F, x)〉 = 1]

]
= Pr[b3W]

Thus by applying the knowledge soundness of PHP there exists an extractor E :

E(R,x,aux′Z)←$D(1λ)

[
Pr[EP∗(R, x, aux′Z)] + εPHP

]
≥ Pr[b3W]

Equivalently we can rewrite the equation above:

Pr[EP∗(R, x, aux′Z) : (R, x, aux′Z)←$D(1λ)] + εPHP ≥ Pr[b3W].

Finally, we define the extractor Ext∗ := ExtP
∗
. It is easy to see that:

Pr[ExtP
∗
(R, x, aux′Z) : (R, x, aux′Z)←$D(1λ)] = Pr

[
b0E [E∗]

]
The equation above holds by definition of D and E∗. Thus we can conclude:

Pr
[
GameKSNDZ,A,E∗

]
≤ Pr[b0W]− Pr[b0E] ≤ Pr[b3W]− Pr[b0E] +N · εsnark + (n∗ + 1)εCS

≤ εPHP +N · εsnark + (n∗ + 1)εCS.

Zero Knowledge. We now prove that under the condition of the statement of the theorem the UIA
is trapdoor commitment honest-verifier zero-knowledge.

Let C and SPHP be the checker and the simulator for the claimed (C, bPHP)-bounded zero-knowledge
of PHP. Let S = (S ′leak,Sprv

′) be the simulator of CPphp. Let S ′′ be the simulator of CPopn. Consider
the simulator SUIA = (Skg,Sprv):

79

Simulator Skg(ck, tdck,N):

1. Sample ekopn, vkopn, td
opn
k ←$Skg′′(ck, tdck) and output ekphp, vkphp, td

php
k and output vk =

ck, ekopn, ekphp and vk = ck, vkopn, vkphp and tdk := tdopnk , tdphpk , tdck.

Simulator Sprv(tdk,R, x):

1. Init Phase. Let r := r(|R|). Run the honest verifier on input vkR and x, obtain a
sequence of messages ρ1, . . . , ρr+1 and the constraints ((Gj ,vj))j∈[ne], (ij , dj)j∈[np]. Set
ρ̄ := (ρj)j∈[r+1].

Parse the trapdoor tdk as (tdopnk , tdphpk , td, s) where s ∈ F.
2. Define Leakage. Let L′ ← S ′leak(x̂PHP), Let L := L′∪{(i, s) : i ∈ [n∗]}.Assert that C(i, x)

for all (i, x) ∈ L;
3. Create Transcript. Compute the following:

(a) Run the simulator SPHP(F,R, x,L) and obtain a simulated transcript τ̃ = (π1, ρ1, . . . ,πr, ρr),
and a set of simulated evaluated points {p̃i(y) : (i, y) ∈ L};

(b) For j ∈ [n∗] compute the simulated commitment: set c̃j , stj ← TdCom(tdk, p̃j(s));

(c) Let leak′ := (p̃i(y))(i,y)∈L and let x̂PHP :=
(

(ij , dj)j∈[np], (G
′
j ,vj)j∈[ne], (cj)j∈[n∗]

)
, com-

pute the simulated proof π̃php ← Sprv′(tdphpk , x̂PHP, leak
′);

(d) For i ∈ [r] compute the simulated proof π̃opn,i ← S ′′(tdopnk , (ci,j)j∈r(i));

Output the full transcript re-ordered according to the specification of the protocol.

We consider a sequence of hybrid experiments. The first hybrid H0 receives in input the trapdoor
tdk, the specific relation R, the input x and the witness w, runs the same steps of simulator Sprv defined
above, and outputs the full view including the evaluation points.

The next hybrid H1 runs the same as H0 but instead of running SPHP at step 3, it runs the real
protocol between P and V and computes the evaluation points using the polynomial oracles output by
P.

Lemma C.5. For all ck,R, x,w and for any adversary A:

|Pr[A(srs,H0(tdk,R, x,w)) = 1]− |Pr[A(srs,H1(tdk,R, x,w)) = 1]| ∈ negl(λ)

Proof. Notice that if the assertion in step 2 does not hold the two hybrids are equivalent. Thus we can
assume the assertion holds, in this case the list L is (C, b + µ(t))-bounded. The proof of the lemma
follows straightforwardly from the (C, b + µ(t))-bounded zero-knowledge of PHP.

The next hybrid H2 is the same as H1 but the assertion in step 2 is not executed.

Lemma C.6. For all ck,R, x,w and for any adversary A:

|Pr[A(srs,H1(tdk,R, x,w)) = 1]− |Pr[A(srs,H2(tdk,R, x,w)) = 1]| ∈ negl(λ)

Proof. The two hybrids diverge if there is tuple (i, x) ∈ L such that C(i, x) = 0. Notice that, by our
assumption on C (Definition 3.2), a tuple (i, s) does not pass the checker with negligible probability (since
the trapdoor element s is chosen uniformly at random). Moreover, by the bounded leakage property of
the (b,C)-leaky zero knowledge of CPphp, a tuple in L does not pass the check with negligible probability.
We can conclude applying union bound.

The next hybrid H3 is the same as H2 but the commitments are computed as in the real protocol,
specifically for any i, j where i > 1 we compute ci,j , oi,j ← Commit(ck, swh, pi,j).

80

Lemma C.7. For all ck,R, x,w and for any adversary A:

|Pr[A(srs,H2(tdk,R, x,w)) = 1]− |Pr[A(srs,H3(tdk,R, x,w)) = 1]| ∈ negl(λ)

The lemma easily follows by the swh-typed somewhat-hiding property of CS.
The next hybird H4 is the same as H3 but at step (c), the proof is computed with the algorithm Provephp
and the polynomial oracles p1, . . . , pn∗ .

Lemma C.8. For all ck, tdk,R, x,w and for any adversary A:

|Pr[A(srs,H3(tdk,R, x,w)) = 1]− |Pr[A(srs,H4(tdk,R, x,w)) = 1]| ∈ negl(λ)

The lemma easily follows by the leaky zero-knowledge of the CP-SNARK CPphp.
The next hybird H5 is the same as H4 but at step (d), for any round i ∈ [r], the proofs are computed

with the algorithm Proveopn and the polynomial oracles pi,j .

Lemma C.9. For all ck, tdk,R, x,w and for any adversary A:

|Pr[A(srs,H4(tdk,R, x,w)) = 1]− |Pr[A(srs,H5(tdk,R, x,w)) = 1]| ∈ negl(λ)

The lemma easily follows by the zero-knowledge of the CP-SNARK CPopn.

C.3 Proof of Theorem 8.1

The proof of zero-knowledge is almost the same as in the proof of Thm. 6.1, for knowledge soundness
there are some differences that we highlight next.

Consider the hybrid H3 as in the proof of Thm. 6.1 and the event bW . For clarity we rewrite the
hybrid below. The only difference with the hybrid from Thm. 6.1 is that they hybrid below does not
run the extractor E∗ since we are interested only in the event bW .

H3(1λ)

pp← ParGen(1λ) ; ck← CS∗.Setup(pp) ; srs := (ek, vk)← KeyGen(pp, ck,N) ; auxZ ← Z(srs) ;(
R, x̂ = (x, (cj)j∈[`]), st

)
← A0(srs, auxZ) ; (τ, b)← 〈A1(st),V(Derive(vk,R), x, (cj)j∈[`])〉 ;

(p′j , o
′
j)j∈[n∗] ← E(Rphp, srs, auxZ) ;

bV ←
∧
k

(
Gk(X, {p′j(vk,j(X))}j∈[n∗], {πj}j∈[m∗]) ≡ 0

)
∧
∧
k

(
deg(p′ik) ≤ dk

)
∧
∧
k

VerCom(ck, ck, p
′
k, o
′
k) ;

for j ∈ [r] : (pi,j , oi,j)j∈[n(i)] ← E ′j(vkopn, auxZ) ; bjV ←
∧

j∈[n(i)]

VerCom(ck, ci,j , pi,j , oi,j)

let (pj)j∈[n∗] := (pi,j)i∈[r],j∈[n(i)] ; bCS ← ∀j : p′j = pj ;

bW ← b ∧ bV ∧ (∧jbjV) ∧ bCS ;

Consider the hybrid H4 which is the same of H3 but additionally check that the linking relation holds.
Recall that for a PHP has a straight-line extractor WitExtract.

Let Elink be the extractor for the CP-SNARK for the adversary Alink that runs the same as the
adversary A but that simply outputs the proof πlink and the statement ((ĉj)j∈[`], (cj)j∈[n∗]). Formally,
the adversary Alink receives in input Rlink, ck, srslink and auxlinkZ where auxlinkZ contains all the other values,
namely the elements of srs different than srslink, and ne and R. In particular:

81

H4(1λ)

pp← ParGen(1λ) ; ck← Setup(pp) ; srs := (ek, vk)← KeyGen(pp, ck,N) ; auxZ ← Z(srs) ;(
R, x̂ = (x, (cj)j∈[`]), st

)
← A0(srs, auxZ) ; (τ, b)← 〈A1(st),V(Derive(vk,R), x, (cj)j∈[`])〉 ;

((uj)j∈[`], (ôj)j∈[`], (p′′j)j∈[n∗], (o
′′
j)j∈[n∗])← Elink(Rlink, ck, srslink, aux

link
Z) ;

w = ū, ω ←WitExtract((p′′j)j∈[n∗]) ;

blinkV ← ∧j∈[`](VerCom(ck, ĉj , ôj , uj) = 1) ∧l∈[κ] (VerCom(ck, cil,jl , ol, pl) = 1) ∧ Decode((uj)j∈[`]) = ū ;

(p′j , o
′
j)j∈[n∗] ← E(Rphp, ck, srs, auxZ) ;

bV ←
∧
k

(
Gk(X, {p′j(vk,j(X))}j∈[n∗], {πj}j∈[m∗]) ≡ 0

)
∧
∧
k

(
deg(p′ik) ≤ dk

)
∧
∧
k

VerCom(ck, ck, p
′
k, o
′
k) ;

for j ∈ [r] : (pi,j , oi,j)j∈[n(i)] ← E ′j(vkopn, ck, auxZ) ; bjV ←
∧

j∈[n(i)]

VerCom(ck, ci,j , pi,j , oi,j)

let (pj)j∈[n∗] := (pi,j)i∈[r],j∈[n(i)] ; bCS ← ∀j : p′j = pj = p′′j ;

bW ← b ∧ bV ∧ (∧jbjV) ∧ bCS ∧blinkV ;

Let εlinksnark be the knowledge soundness error of CPlink.

Lemma C.10. Pr[b4W] ≤ Pr[b3W] + εlinksnark + εCS.

The proof follows almost identically to Lemma C.1 and Lemma C.3, specifically we can reduce to
the knowledge soundness of CPlink or the binding property of CS, the proof of the lemma is therefore
omitted. Consider the following PPT sampler algorithm:

Sampler D(1λ):

pp← ParGen(1λ) ; ck← Setup(pp) ; srs := (ek, vk)← KeyGen(pp, ck,N) ; auxZ ← Z(srs) ;(
R, x, st

)
← A0(R, ck, srs, auxR, auxZ) ; aux′Z := (R, ck, srs, auxR, auxZ) ; return (R, x, aux′Z)

Similarly to the proof of Thm. 6.1.

Lemma C.11. There exists a prover P∗ such that

Pr[〈P∗(F,R, x, z),VRE(F,R)(F, x)〉 = 1 : (R, x, aux′Z)←$D(1λ)] = Pr[b4W] (37)

We define P∗ to be the prover that emulates H4 almost identically as done in Thm. 6.1, the proof
follows similarly thus is omitted. By the knowledge soundness of the PHP with straight-line extractor
we have that

Pr[(R, x,WitExtract((pj)j∈[n∗])) ∈ R : (R, x, aux′Z)←$D(1λ)] + εPHP ≥ Pr[b4W].

We are ready to define the extractor E∗. Let E∗(R, srs, auxR, auxZ) be the algorithm that:

1. computes ((p̂j)j∈[`], (ôj)j∈[`], (pj)j∈[n∗], (oj)j∈[n∗])← Elink(Rlink, ck, srslink, auxR, aux
link
Z);

2. outputs ((p̂j)j∈[`], (ôj)j∈[`],WitExtract((pj)j∈[n∗])).

Assuming that b4W is true then we have (pj)j∈[n∗] = (p′′j)j∈[n∗] in H4 (thus by definition of the extractor
the polynomial extracted by Elink are the same as the one sent by P∗) and that for any j the open-
ing ôj is a valid opening for the polynomial p̂j , moreover by straight-line extractability we have that
WitExtract((pj)j∈[n∗]) is a valid witness.

82

	Introduction
	Our Contribution
	Other Related Work
	Outline

	Basic Preliminaries
	Polynomial Holographic IOPs
	PHP Verifier Relation
	Compiling PHPs and AHPs into One Another

	Our PHP Constructions
	Algebraic Preliminaries
	Rank-1 Constraint Systems
	Our PHPs for R1CS-lite
	Our PHP for R1CS

	Preliminaries on Commitments and zkSNARKs
	Commitment Schemes
	Preprocessing zkSNARKs with Universal and Specializable SRS
	Commit-and-Prove Universal SNARKs

	Our Compiler from PHPs to zkSNARKs with Universal SRS
	Building Blocks
	Compiling to Universal Interactive Arguments

	CP-SNARKs for Pairing-Based Polynomial Commitments
	Bilinear Groups and Assumptions
	The Commitment Schemes
	CP-SNARKs for Ropn
	CP-SNARK for evaluation of a single polynomial
	CP-SNARK for batch evaluation of many polynomials
	CP-SNARK for Polynomial Equations
	A CP-SNARK for CS2 for quadratic polynomial equations
	CP-SNARKs for degree of committed polynomials
	A general-purpose CP-SNARK for Rphp

	Our Compiler for Universal Commit-and-Prove zkSNARKs
	Compiling to Commit-and-Prove Universal Interactive Arguments
	Pairing-Based Instantiations of our Building Blocks

	Our Universal zkSNARKs
	Available Options to Compile Our PHPs
	Instantiating the PHPs with the appropriate zero-knowledge bounds
	Our zkSNARKs
	Our CP-SNARKs

	Constraint Systems
	Proof of Lemma 4.5
	Proof of Lemma 4.8
	Reduction to Arithmetic Circuit Satisfiability
	Comparing R1CS and R1CS-lite

	Our Protocol for Lincheck
	Preliminaries
	An Holographic Protocol for Points of Sparse Matrices
	The linear check protocol

	Additional Material for Section 6
	Succinct Interactive Arguments in the SRS.
	Proof of Theorem 6.1
	Proof of Theorem 8.1

