
Scalable Multicast Security with Dynamic Recipient

Groups.

Re�k Molva and Alain Pannetrat

Institut Eurecom - Sophia Antipolis - France

fmolva|pannetrag@eurecom.fr

In this paper we propose a new framework for multicast security based on distributed computation

of security transforms by intermediate nodes. The involvement of intermediate nodes in the

security process causes a new type of dependency between group membership and the topology of

the multicast network. Thanks to this dependency, the containment of security exposures in large

multicast groups is assured. The framework also assures both the scalability for large dynamic

groups and the security of individualmembers. Two di�erent key distributionprotocols complying

with the framework are introduced. The �rst protocol is an extension of the ElGamal encryption

scheme whereas the second is based on a multi-exponent version of RSA.

Categories and Subject Descriptors: K [6]: 5|Security and Protection

General Terms: Multicast, Security

Additional Key Words and Phrases: Group communications, Con�dentiality, Key distribution,

Scalability, Di�e-Hellman, RSA

1. INTRODUCTION

Multi-party communications have recently become the focus of new developments

in the area of applications and networking from group applications like video-

conferencing to network layer multicast protocols. As part of the new issues in-

volved with multi-party communications, security in terms of privacy and integrity

has received particular attention due to the vulnerabilities inherent to multi-party

architectures.

While several projects addressed the problem of key distribution [Steiner et al.

1996][Burmester and Desmedt 1995][Fiat and Naor 1993][Just and Vaudenay 1996]

and digital signatures [Camenisch 1997][Chen and Pedersen 1995][Campbell and

Wiener 1993][Chaumand Heyst 1991][Camenisch and Stadler 1997] among the par-

ticipants of a group, the security issues related to multicast in large and dynamic

groups remained comparatively unexplored. Like any other multi-party scheme, the

inherent complexity of the underlying communication mechanisms exposes multi-

cast protocols to vulnerabilities that have no counterpart in the unicast case as

Permission to make digital or hard copies of part or all of this work for personal or classroomuse is

grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial

advantage and that copies show this notice on the �rst page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, to redistribute to lists, or to use any component of this work in other works, requires prior

speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � R. Molva and A. Pannetrat

depicted in [Ballardie and Crowcroft 1995][Mittra 1997]. Possible countermeasures

for those vulnerabilities are cryptographic security services ranging from authen-

tication of group members, data con�dentiality and integrity, non-repudiation of

origin to access control for group membership. Next to basic security services,

automatic key management is necessary for the secure provision of large recipient

groups with cryptographic keying material.

This paper is concerned with the security of large dynamic multicast groups,

involving a one-to-many communication pattern, with a dynamic set of recipients.

We present a framework for multicast security that focuses on two issues:

|scalability in large dynamic groups: the amount of processing of each individual

component of the multicast security mechanism should be independent of the

group size; changes to the group membership should only a�ect a small subset

of the group.

|containment of security exposures through partitioning: each recipient group

should be partitioned into sub-groups in order to assure that a security exposure

in a sub-group does not endanger the security of other sub-groups.

In the proposed framework, conicting security and scalability requirements are

addressed through a distributed scheme whereby intermediate components take

part in the security protocol. The intermediate components share the security

processing load with the source and assure the containment of security exposures

at various parts of the multicast tree. The framework de�nes basic properties of a

set of cryptographic functions that assure data con�dentiality. Depending on the

performance of the underlying algorithm, implementations of the framework may be

suitable either for the encryption of bulk data or only for the encryption of short

messages as required by key distribution. The framework is �rst validated with

respect to security and scalability requirements. Two di�erent implementations

of the framework are then discussed. Both solutions are based on asymmetric

techniques: an extension of the ElGamal algorithm [Elgamal 1984] and a variation

on RSA [Rivest et al. 1978]. These algorithms which o�er strong protection are

only suitable for key distribution since, due to their inherent complexity, bulk data

encryption with these solutions seems prohibitive.

This paper is organized as follows. In section 2, we discuss multicast security

in detail and use this analysis to motivate and establish a set of requirements for

multicast security in a large dynamic group. Next, in section 3 we introduce a

set of cryptographic sequences with special properties that are organized in a tree.

In section 4, we apply this formal graph to a multicast tree. We show how the

properties of our formal graph can be used to o�er a multicast security framework

that deals with con�dentiality and scalability issues. In section 5 we consider our

framework for key distribution and present two key distribution schemes based on

asymmetric cryptography in section 6 and 7. Finally, we conclude this paper by a

comparison with other key distribution schemes in section 8.

2. MULTICAST SECURITY

The goal of multicast security is to assure that the source of the multicast stream

and the group of multicast recipients communicate securely. This can be achieved

through the authentication of the message origin by the recipients and through

Scalable Multicast Security with Dynamic Recipient Groups � 3

con�dentiality and integrity preventing disclosure and modi�cation of the messages

by any party other than the members of the multicast group. These services typ-

ically require the establishment of a security association between the source and

the recipients of the multicast channel. The security association de�nes the set

of cryptographic keys and algorithms used for each service. While authentication,

con�dentiality and integrity of messages in the multicast stream can be assured

by classical network security mechanisms akin to unicast, the establishment of a

security association for a multicast channel is inherently more complex than with

unicast. In the unicast case, a security association is static in that the source, the

recipient and the the data ow do not vary during the association. In a dynamic

multicast group, a session is an ever evolving entity as recipients can be added

to or removed from the recipient group through join and leave operations, respec-

tively. Ideally, the keying material shared by the members of the multicast security

association should be updated in order to ful�ll the following conditions:

(1) When a user JOINS the group he should not have access to past keying material.

(2) When a user LEAVES the group he should not have access to future keying

material.

Hence, some keying material must change each time the set of users in a multicast

group changes. It should be noted that the above conditions apply for the highest

security requirements and they can be relaxed for multicast applications with less

critical security requirements.

Moreover, as a group gets larger, it is not acceptable to share the same keying

material between all users of the group. The security of a large group should not

depend on its weakest member(s). If the keying material of a user is intentionally

or unintentionally exposed, the security of the group should not be compromised in

that only a small fraction of the recipient group should be a�ected by the exposure.

2.1 Scalability

Naturally, while o�ering security services, the multicast spirit needs to be preserved:

the amount of multicast data sent by the source should be independent of the group

size. This also means that the cost in space and processing of the security services

at each receiver should be constant, and therefore not correlated to the group size.

Suivo Mittra has described [Mittra 1997] two main scalability pitfalls in multicast

security:

(1) The \one a�ects all" failure which occurs when the action of a member a�ects

the whole group.

(2) The \one does not equal n" failure which occurs when the group cannot be

treated as a whole but instead as a set of individuals with competing demands.

As noted in [Mittra 1997], JOIN and LEAVE procedures are candidates for exhibit-

ing such failures, if they are not carefully designed. In a straightforward multicast

security protocol where each memberMi of the group has an individual key Ki used

for the distribution of the group key K, at the departure of a member, the security

conditions introduced in section 2 would require a new key K0 to be distributed

to all remaining members. This simple scenario illustrates both scalability fail-

ures: the departure of one member a�ects the entire group through the key update

4 � R. Molva and A. Pannetrat

procedure and the remaining members of the group must be treated individually

during the key update, since the new group key K0 must be placed in a separate

envelope encrypted under the key distribution key (Ki) of each remaining member.

As highlighted in this example, multicast security requirements naturally call for

solutions that conict with scalability.

2.2 Containment

We can classify the main proposals for secure multicast in large dynamic groups in

3 categories:

(1) The IOLUS approach: [Mittra 1997].

(2) The KEYGRAPH approach: [Wong et al. 1998][Wallner et al. 1998][Canetti

et al. 1999][Caronni et al. 1998][McGrew and Sherman 1998][Chang et al. 1999].

(3) The MARKS approach: [Briscoe 1999].

In IOLUS, the recipients are partitioned in subgroups attached to a local server.

The set of servers is organized in a tree. The source sends data to the root of

the tree and the data is decrypted and re-encrypted each time it goes through a

server in the hierarchy until it �nally reaches a recipient. Because each server uses

a di�erent symmetric encryption key, this introduces a dependency between the

keying material used to access the multicast data and the location of the recipient

in the network. An indirect bene�t of this dependency is containment: if the

symmetric key used by a recipient is compromised then it can only be exploited

by an adversary in the same topological area in the network. The major drawback

of IOLUS is that the intermediate elements access the clear-text multicast data

because of the inherent requirement to decrypt and re-encrypt messages at the

servers.

In the KEYGRAPH approach, there is a unique global key shared among all

recipients in the group. A set of auxiliary keys is used to distinguish recipients.

These auxiliary keys are used to selectively and e�ciently send a new global key

to the recipients in the group. Here, no provisions are made for containment: once

this global key is compromised, it allows an adversary to access the multicast data

anywhere in the network. Moreover, since the global key is updated each time

a member leaves the group1 this system introduces a \one a�ects all" scalability

failure for leave operations. In the remainder of the paper, we will use the word

KEYGRAPH as a generic name for all related work referenced above.

In the MARKS approach, a small set of keys is used to access the group during

a limited amount of time. In other words, each set of keys represents a limited

number of rights to access the multicast group. There is no containment in the

MARKS approach and exposure of a set of keys allows anyone in the network to

access the multicast group during the corresponding subscription. Recovering from

a security exposure requires a complete re-initialization of the group.

Though we do not think that it's a good idea to let the intermediate elements

access the clear-text multicast data, as in IOLUS, we believe that containment is a

desirable property in large dynamic multicast groups.

1This requirement can be relaxed for join operations, see [Caronni et al. 1998].

Scalable Multicast Security with Dynamic Recipient Groups � 5

2.3 Conicting Requirements

Extending the security requirements of unicast with the ones due to scalability and

group dynamics, the requirements of a security protocol for data con�dentiality in

a dynamic multicast group can be summarized as follows:

(1) Data con�dentiality: the protocol should be immune to eavesdropping.

(2) JOIN and LEAVE security: a new (resp. old) member should not have access

to past (resp. future) data exchanged by the group members.

(3) Containment: the compromise of one member should not cause the compromise

of the entire group.

(4) Collusion resistance: a set of members which exchange their secrets cannot gain

additional privileges.

(5) Processing scalability: the processing load supported by an individual compo-

nent (be it the source, an intermediate forwarding component or a recipient)

should be independent of the group size.

(6) Membership scalability: the actions performed by a member should not a�ect

the group as a whole, as illustrated in the \one a�ects all" failure above.

(7) Groupwise scalability: the group should not require to be treated as a set of

distinct individuals, as illustrated in the \one does not equal n" failure above.

At �rst glance these points seem to o�er several contradictions. For example,

points 3 and 6 call for the clustering of group members into di�erent subgroups

with di�erent security parameters. However points 5 and 7 require the group to

be treated as a whole. More generally, it's easy to see that the source and the

recipients have opposite requirements. Scalability requires the source to consider

the entire group as a single entity whereas security requires each recipient to be

treated individually.

Many multicast or group security schemes have been proposed that all satisfy the

�rst requirement. However they di�er widely from one another on the remaining

requirements: [Ballardie 1996] does not make provisions for containment nor join

and leave security, [Steiner et al. 1996][Steiner et al. 1998][Burmester and Desmedt

1995] do not o�er scalability in large groups. Only IOLUS, KEYGRAPH and

MARKS approaches seem to address both security and scalability requirements in

large dynamic groups.

2.4 Motivation for the Proposed Multicast Security Framework

The main motivation of the solution proposed in this paper is to solve the basic

conict between scalability and security akin to multicast security in order to come

up with a solution that can scale up to large networks. We suggest that the conict

between scalability and security can be overcome by involving the intermediate

components of the multicast communication in the security process.

Intermediate components, be they network nodes, routers, or application prox-

ies, are inherent participants in the basic multicast transmission process. The key

scalability factor in the basic multicast transmission schemes is the spread of the

multicast routing and packet forwarding load over a network of intermediate nodes.

Placing security mechanisms on existing intermediate components seems to be a

natural extension of existing multicast protocols. Moreover, partitioning the cost of

6 � R. Molva and A. Pannetrat

security mechanisms over the intermediate components appears to be a good way

of assuring scalability. When the multicast group grows, new intermediate compo-

nents are added to support new group members and the cost of security mechanisms

can still be equally distributed by placing the additional security processing load

due to the new members on the new intermediate components.

The involvement of intermediate components in the security process is also a

premise for meeting multicast security requirements. If the security mechanisms

can be made dependent on the intermediate component in which they are im-

plemented, group members attached to di�erent intermediate components can be

treated independently or with di�erent keying material. In addition to its rela-

tionship with the group membership, the keying material can have a relationship

with the topology of the multicast network. The keying material associated with

each group member can thus be a function of the intermediate component to which

the member is attached. This topological dependency assures the containment of

security exposures: if some keying material belonging to a group member attached

to an intermediate node is compromised, this keying material cannot be exploited

by recipients attached to other intermediate nodes.

We introduce our solution in two steps. First, we de�ne a general framework for

multicast data con�dentiality based on distributed mechanisms involving interme-

diate components and preserving the scalability and security properties. Then we

propose actual solutions based on cryptographic functions that comply with the

framework.

3. CRYPTOGRAPHIC FUNCTIONS

The building blocks we have chosen to use to design data con�dentiality protocols

over a multicast tree are called Cipher Sequences (CS). This section will give a

formal de�nition of these sequences and associate them in trees. The resulting trees

will then be used in further sections to describe our multicast security framework.

3.1 Cipher Sequences

De�nition 1. Let G = fgi : N 7! N ; i 2 Ag denote a set of permutations operat-

ing on a message space N and indexed in A. G will be called a Cipher Group if

it satis�es the following properties:

(i) (G; �) forms a group through the composition operation �. Speci�cally, if

g0; g00 2 G then g00 � g0 2 G (closure). Moreover, 8 g 2 G, 9 g�1 such that

g�1 � g = Id = g � g�1 (inverse).

(ii) (G; �) is indexable through composition: there exists a polynomial time al-

gorithm Comp : A2 7! A, which given an index pair (i; j) 2 A2, computes

k = Comp(i; j) 2 A such that g(k) = g(j) � g(i)

Moreover:

|G will be called a Symmetric Cipher Group if the knowledge of g 2 G allows

the computation of g�1 in polynomial time.

|G will be called anAsymmetric Cipher Group if the computation of g�1 from

g 2 G is computationally infeasible without the knowledge of a trapdoor.

Scalable Multicast Security with Dynamic Recipient Groups � 7

1 2

3
f f

4

f ’
43

f f

f ’

Fig. 1. Two CSG 's mapped over a tree.

S S

1 2

1
3
f f

4

f ’
43

S3

1 1

1

22

1
0

S3S2

S2

S
2

S
1
4

4

= =

=

1
S0 S1

22

f f

f ’

Fig. 2. Two instantiated CSG 's in a tree.

De�nition 2. Let F be a random sequence (f0<i�n) of n elements in a cipher

group G. By de�nition, there exists a function g 2 G such that g = (fn � fn�1 � � � � � f1)
�1
.

We will call this function the Reversing Function of F and denote it as hF or,

more simply h. The sequence F will be called a Cipher Sequence in G, or CSG .

Consequently, if G is a symmetric cipher group, we will say that F is a Symmetric

Cipher Sequence in G or SCSG . Similarly, if G is a asymmetric cipher group, we

will say that F is an Asymmetric Cipher Sequence in G or ACSG .

De�nition 3. Let F de�ne a Cipher sequence of n functions in the cipher group

G. From this sequence F we can derive a sequence (S0�i�n) of elements in N as

follows:

Si = fi(Si�1), for n � i > 0.

S0, the initial value of the sequence.

We will call (S0�i�n) an instance of F and we will denote it as F(S0).

3.2 CSG's over a General Tree

A tree can map a family of CSG 's which have terms that di�er only after a certain

rank, greater than 1. For example, if F1 (resp. F2) is a CSG de�ned as F1 =

ff1; f2; f3; f4g (resp. F2 = ff1; f2; f
0
3; f

0
4g), a simple tree that maps F1 and F2 can

be constructed as in �gure 1. This tree illustrates the fact that F1 and F2 di�er

after rank 2.

This property can be extended from 2 to n di�erent CSG 's, F0<i�n, with a tree

that branches each time at least two sequences di�er. If we instantiate each Fk

in the tree with the same value S0 we can label the edges of the tree with the

elements Sik of each Fi(S0) =
�
Si0<k�ni

�
. We give a small example in �gure 2.

Note that all the instantiations Fi(S0) share at least two elements, namely S0 and

S1. These two values are the input and the output, respectively, of the root node

of the instantiated tree.

Remark 1. We implicitly require that for all Fi and Fj where i 6= j, there exists

a function f such that f 2 Fi and f =2 Fj. In our trees, this translates to the fact

that the number of leaves is equal to the number of cipher sequences mapped over

the tree.

8 � R. Molva and A. Pannetrat

4. MULTICAST SECURITY FRAMEWORK

The proposed multicast security framework consists of a model that is an abstract

de�nition of the components involved in the security mechanisms and the relation-

ship between them which is an application of the functions we de�ned in section

3.

4.1 Model

In the abstract de�nition of the framework, the components of the multicast security

framework form a tree . The root of the tree is the multicast source and the

members of the multicast group form the leaves of the tree. The intermediate

nodes of the tree -referred to as inner nodes- correspond to the intermediate

components of the multicast communication. Like the multicast scheme itself, inner

nodes can be implemented at the application layer or at the network layer. In the

case of application layer multicast, inner nodes can be application proxies, such as

those in a hierarchical web caching structure. In the case of network layer multicast,

inner nodes can be intelligent routers capable of performing security operations in

addition to multicast packet forwarding functions.

In further abstraction, each leaf of the tree will represent the set of group members

attached to the same terminal inner node. In the application layer case, a leaf will

delimit a sub-group of members attached to a proxy. In the network layer case, a

leaf will delimit a sub-network of recipient stations attached to a router. Hence a

leaf will refer to a set of multicast group members with a common attachment node

in the tree.

If a set of users represented by a leaf becomes too large, the leaf can easily be

subdivided into several \sub-leaves" by adding new inner nodes. Hence the leaf size

in terms of the group members it represents is not a scalability issue for algorithms

that treat a leaf as a single entity.

4.2 CSG's over a Multicast Tree

Next, we turn to multicast by applying the previous concept of CSG from section 3

over a tree as a means of performing secret transforms in multicast communications.

Let S0 be an encoding of the information to be transmitted over the multicast

channel by the source under con�dentiality.

As part of the setup for a series of secure multicast transmissions, each inner

node Ni is assigned a secret function fi>0 2 G. We require that each inner node is

capable of performing this function fi>0 as de�ned in the previous section. During

secure multicast transmission, upon receipt of multicast data Sj from its parent

node Nj , node Ni computes fi(Sj), and forwards the resulting value Si as the

secure multicast data to the child inner nodes or the leaves.

Assuming Fi(S0) is an instance of a CSG mapped over a path from the root to

a leaf on the multicast tree, the leaf will eventually receive Sin, which is the �nal

term of Fi(S0). The leaves in the multicast tree bear a special role in that they are

able to recover the original message S0. Each leaf is assigned a reversing function

hi that allows it to compute Si0 = S0 from Sini since S0 = hi(Sini). The leaves don't

use any other function in G.
The distribution of the secret fi functions to the inner nodes and the reversing

functions to the leaves can be assured by a central server using classical unicast

Scalable Multicast Security with Dynamic Recipient Groups � 9

S
3
3

S
3
1

S
3
2 h3

h2

h1f f

ff

f
1 2

3 4

5 6

S
0

NodesRoot node

N1

N2

f

7
f

f
8

Leaf 3

Fig. 3. A simple 3 CSG tree.

security mechanisms. Because of the structure of the algorithm, the central server

will need to have a precise image of the tree structure. This doesn't mean, however,

that the functionality of this server cannot be distributed over several network

entities.

Working example . Figure 3 depicts a simple tree with three CSF 's. Looking at

the path from the root to leaf 3 on �gure 3, we have:

|The root computes f1(S0) and sends the result to its children inner nodes.

|N1 receives S
3
1 = f1(S0), computes and sends f7(S

3
1) to N2.

|N2 receives S
3
2 = f7(S

3
1) and sends f8(S

3
2) to leaf 3.

|Leaf 3 receives S33 = f8(S
3
2) and recovers the original multicast data by computing

S0 = h3
�
S33

�
.

4.2.1 The Join Procedure. When a user joins a group by contacting a node, two

situations can arise:

(1) a leaf (sub-group) attached to this node already exists.

(2) there is no leaf attached to this node prior to the current join operation.

In the former situation, a cascade sequence F = (f0�i�n) is already mapped be-

tween the source and the members in the existing leaf. The last inner node on the

path which holds function fn will be assigned a new value efn, updating the last

transformation in the sequence. Hence, the corresponding new reversing functioneh will be distributed to all the members in the leaf including the new member.

In the example of �gure 4 where C wishes to join the leaf including existing

members A and B, the join operation will perform as follows:

(1) ef8 will be substituted to f8 in the last inner node.

(2) eh3 will be sent to A;B;C.
If M is the upper bound on the number of members in a leaf, a join operation

requires the exchange of the following messages:

10 � R. Molva and A. Pannetrat

f

f f

ff

f

f f
1 2

3 4

7

5 6

8

0

C

A

B

S

Fig. 4. User C joins/leaves.

|1 message sent to update the value in the last inner node on the path,

|at most M � 1 messages sent to the current members in the leaf,

|1 message sent to the new member.

A join operation thus requires at most M + 1 message exchanges.

In fact, it's possible to reduce the number of messages to 3, by slightly changing

the order of operations in the join procedure. Instead of changing the value fn
in the node right away, it's possible to use the secure sequence to vehicle the neweh function to the current members in the leaf, thus reducing the update to one

message (versus an upper bound of M � 1 messages). Then the value fn in the

node can be changed and the new eh function transmitted to the joining member.

However this approach has a drawback: it creates a chain between the di�erent

values of eh which potentially weakens the security of the scheme. Unless the cost of

individually sending a message to each member in the leaf is more important than

the security of the group, such an option should be avoided.

In the second case, the authority which receives a join request has to �gure out

the path from the new member to the closest inner node in the active tree. The path

establishment method used in this case depends on the layer (application/network)

at which the multicast security scheme is implemented. A similar decision has

to be taken by IP multicast routing algorithms when a new router needs to be

included in a multicast routing tree. Once the path to the new member is selected,

the authority will assign values to the newly added inner nodes on the path, thus

extending the CSG mapping. Finally the new member will receive the h function

needed to recover the original multicast data in the newly created CSG . Hence,

he's the only member of the new leaf in the tree.

The number of messages exchanged here depends on the algorithm used to set the

path between the new member and the tree. Consequently, as stated in section 2.4,

this security framework would be a natural extension of multicast routing schemes.

The number of messages exchanged here to create a new leaf can be assumed to

be proportional to the number of messages exchanged by the multicast routing

protocols when adding a new element in the multicast tree.

In many cases, it will be possible to perform the node setup ahead of time,

leaving only the h function to be distributed when the member e�ectively joins.

Scalable Multicast Security with Dynamic Recipient Groups � 11

The authority that manages the group does not need to be the root itself and

its functionality can be distributed in a tree hierarchy, where each sub-authority

manages a multicast subtree.

4.2.2 The Leave Procedure. The leave procedure is similar to the join procedure.

When a user leaves a leaf in the tree, the function in the terminal inner node

is changed from fn to efn and the new reversing function eh is distributed to the

remaining inner nodes in the tree. In e�ect, the associated CSG has its last term

changed.

4.3 Evaluation of the Framework

The previous discussion has focused on the use of CSG to achieve data con�dential-

ity over a multicast tree. This section will show how the CSG construct meets the

requirements established in 2.3, assuming that the intermediate nodes are trusted

and secure. The implications of node compromise will be discussed in the next

section.

Data Con�dentiality. The security of the scheme depends on the strength of the

ciphers that are used to implement it. The functions in a cipher group should be

viewed as building blocks for con�dentiality services. A possible approach, which

is beyond the scope of this work, would be to consider these function as pseudo-

random permutations. (As a side e�ect, it would require the cipher groups to be

of large order: a small order would provide a method to build a polynomial time

distinguisher between cipher group elements and pseudo-random permutations).

JOIN and LEAVE Security. A new member joining a leaf gets a new reversing

function eh that cannot be used to recover the old reversing function h . As a

consequence, past data is not accessible to a new member. Similarly, a former

member using an old reversing function cannot access data that is transmitted

subsequently to its departure.

Containment. Because of the topological dependency introduced by the model,

the reversing function h used in a leaf of the tree will be useless outside that leaf.

An intruder will only bene�t from an attack if he is located in the same leaf as the

victim. This greatly reduces the impact of member compromise.

Collusion Resistance. Let (G; �) de�ne a group. For a random (a0; a1; :::; an) 2
Gn+1, de�ne bi = a0 � ai for all 1 � i � n. An adversary observing (b1; b2; :::; bn)

does not gain any knowledge about a0.

Proof. For all a0 2 G we can write each bi 2 G as bi = a0 � ai where ai =

(a�10 � bi). Thus, a0 can be any of jGj possible values.

This means that in a fully balanced tree of depth 1, members who collude and

exchange their reversing functions gain no knowledge of the intermediate functions.

This can be easily generalized to any tree, provided that no node is both an inner

node and a leaf, as already highlighted in remark 1 of section 3.

Processing Scalability. The amount of processing per component is independent

of the group size. First, in our framework, the size of messages transmitted by

a node (be it the source or an intermediate component) does not depend on the

12 � R. Molva and A. Pannetrat

number of group members but it depends only on the size of the original secret

message. Second, the number of messages transmitted by a node does not depend

on the number of group members but it depends only on the number of child nodes

attached to this node.

Membership Scalability. There are three basic actions a group member can per-

form, namely join, leave and receive data. The model is designed so that none of

these actions a�ects the whole group. In fact these actions have an impact that

is limited to the leaf containing the member performing these actions as shown in

section 4.2.1. The \one a�ect all" type failure never appears.

Groupwise Scalability. The \1 does not equal n" type of failure never appears

over the group as a whole, instead, it is con�ned to the leaves in which join or leave

operations occur. Since the leaves have a maximum size, this is not a scalability

issue. All other operations, including re-key, address the group as a whole.

4.4 Node Compromise.

The previous section assumed that the inner nodes of the tree were completely

secure. This has to be true for the root node of the tree but it might not be possible

to make such an assumption about the intermediate nodes in the network. Hence

the following section will focus on the impact of intermediate node compromise.

Two type of attacks that derive from node compromise are highlighted in this

section: unauthorized membership extension and node compromise by external

users. Unauthorized membership extension happens when a former member of

the secure group is able to maintain access to the data even though he has not

received the new reversing function. Node compromise by external users more

generally describes unauthorized access to the group by users that never became

group members.

4.4.1 Unauthorized Membership Extension. If a member Eve in a leaf controls

the last inner node on the path from the source to the leaf i, she can intercept

changes in the last element of the CSG .

Let N be the last inner node on the path from the root to leaf i of the tree and

f the secret function held by N . N receives Sij�1 from its parent node and sends

Sij = f(Sij�1) to the leaf elements which will use a hi reversing function to recover

S0. If the group membership manager decides that Eve must leave the group,

the function f in N will be changed to a new function ef and the corresponding

reversing function ehi will be send to all leaf members except Eve.

Despite its formal exclusion from the group, Eve can ignore the change in the

router and compute S0 from Sij�1 using f and the old reversing function h
i obtained

through the compromise of node N , simulating the older sequence, where S0 =

hi
�
f(Sij�1)

�
.

This attack succeeds whatever the nature of the sequence, APSf or SPSf , but

requires several conditions to be met:

(1) Eve should be a former member of the group.

(2) Eve should be able to access the secret functions f and ef held by node N .

(3) Eve should have access to the data transmitted to node N by its parent node

Scalable Multicast Security with Dynamic Recipient Groups � 13

(i.e. Sj�1).

Moreover, updates of fi functions in inner nodes at a higher level will limit the

scope of this attack because the resulting reversing functions cannot be retrieved

based on the information gathered in a leaf or from the compromise of the last

inner node.

A SCSG speci�c attack. Condition 3 described in the previous paragraph is not

required if the sequence is an instance of a SCSG . To work around condition 3, the

intruder �rst computes: ef�1 from ef
thanks to the fact that the sequence is symmetric.

Now, using ef�1 and the new sequence value eSij received in the leaf, the former

member computes:

Sij�1 =
ef�1(eSij)

Next, the intruder uses the value f obtained through the compromise of N to

compute:

Sij = f(Sij�1)

Finally, using the old reversing function hi and applying it to Sij , we have:

S0 = hi(Sij)

where S0 is the original multicast data.

This attack doesn't apply in an APSf tree because by de�nition ehi cannot be
derived from ef .

4.4.2 Node Compromise by External Users. If the intruder Eve is not even a

former member of the group, an attack is still possible if the sequence is symmetric

provided that:

(1) Eve has access to the value of the reversing function used by a legitimate

member .

(2) Eve controls all the inner nodes on the path between her2and the legitimate

member except the �rst common ancestor they have in the tree.

If these conditions are met, Eve will be able to forge a reversing function he can

use to access the group.

Instead of a lengthy formal discussion, we chose to illustrate the attack with

the example scenario depicted on �gure 5, where the malicious user Eve gets mul-

ticast data S23 from node N5. If Eve knows h3 from a compromised user and

ff2; f5; f7; f8g, she can compute:

S22 = f�15 (S23)

because f�15 can be derived from f5. Similarly,

S31 = S21 = f�12 (S22)

because f�12 can be computed from f2. Then

S32 = fa7 (S
3
1)

2Eve does not have to be in a real leaf, she can simply intercept tra�c somewhere in the tree.

14 � R. Molva and A. Pannetrat

h(0,3)
3

5

a a

aa

a
1 2

3 4

5 6

S

Eve

a

a

7

8

N
a

0

S3
1

S3
2

S2
1

S2
2

S3
3

S2
3

Fig. 5. Multiple node compromise attack.

and

S33 = fa8 (S
3
1)

yielding

S0 = h3(S33)

Again, this attack doesn't apply to an ACSG based tree because reversing func-

tions associated with an ACSG cannot be derived from the parameters used in the

intermediate nodes.

4.4.3 Node Compromise Summary. The distinction between an ACSG and a

SCSG is germane to node compromise scenarios. Unlike IOLUS, when usingACSG's

our framework is immune to node compromise by external users. The framework

does not however dictate the choice of an ACSG over SCSG as one could expect

because SCSG are likely to be easier to design than ACSG .

It should be noted that the security containment property is also e�ective in case

of node compromise. Hence, previously described node compromise scenarios don't

allow the intruder to provide unauthorized access to just any other recipient in the

network but only to those attached to the same leaf.

This section concludes the formal presentation of our secure multicast framework.

The next sections present two implementations of this framework based on exten-

sions of public key cryptographic schemes. The �rst scheme is an SCSG and will

therefore lend itself to further description of a concrete node compromise scenario.

5. KEY DISTRIBUTION

Depending on the performance of functions in G our framework can be used either

for bulk data con�dentiality or only for key distribution. Current symmetric cryp-

tographic systems provide su�cient encryption speed but they don't exhibit the

mathematical properties[Kaliski et al. 1985][Campbell and Wiener 1993] required

to create a CSG . On the other hand asymmetric cryptography o�ers suitable prop-

erties to build a solution compliant with the framework but it doesn't o�er yet

the necessary performance for bulk data con�dentiality. Consequently, the next

Scalable Multicast Security with Dynamic Recipient Groups � 15

two sections will describe the framework based on asymmetric cryptography for

multicast key distribution. The �rst scheme, derived from the ElGamal encryption

algorithm, allows the creation of a SCSG key distribution tree, whereas the second

scheme, based on RSA, e�ectively creates an ACSG key distribution tree.

Using a CSG tree, the source can distribute a secret key k by instantiating the

tree with S0 = k (or otherwise a function of k). The data con�dentiality mechanism

of the secure multicast framework will allow to securely transmit k to the members

of the group. Unlike the reversing function that is di�erent in each leaf, k is shared

among all members of the group so the exposure of k a�ects the group as a whole.

However, unlike the reversing function that enables each member to access the

multicast group, the shared key k is a short term value that can be frequently

updated by the source using the secure multicast framework. Using a secure key

generation technique, it can be assured that subsequent values of k are independent.

6. KEY DISTRIBUTION USING ELGAMAL.

The ElGamal cryptosystem can be extended to create a SCSG .

Proposition 1. Let p be a large random prime. De�ne N as the set of all

primitive elements of Z�p. The set G =
n
fa(x) = xamod p; a 2Z�

(p�1)

o
forms a

symmetric cipher group for the message space N .

Properties (i) and (ii) in de�nition 1 are easily veri�ed. Given an index i 2Z�
(p�1)

,

we can compute f(i)(x) = ximod p as well as f�1
(i)

(x) = x1=imod p. Given (i; j) 2

Z
�
(p�1), we can compute k 2Z�(p�1) such that f(k)(x) = f(i)�f(j)(x) = f(j)�f(i)(x) =

xi:jmod p = xkmod p.

By de�nition, all the elements in N are of order p � 1. Reasonable assumptions

about the security of these functions are:

(1) For random primitive elements xi 2 N and a random f 2 G, an adversary has

a negligible chance to recover any xi without knowing f .

(2) For random primitive elements xi 2 N and a random f 2 G, an adversary has

a negligible chance to recover f by observing pairs of the form (xi; f(xi)).

6.1 Setup

The source chooses a generator g of the cyclic groupZ�p and a secret random value

r in Z�(p�1). The inner nodes and the root are assigned fai values in G to form a

SCSG tree. The tree is instantiated with S0 = gr mod p.

Let fSik>0g denote the instantiated sequence elements. The reversing function

distributed to the leaves is de�ned as:

hk(x) = x
(ai1 :ai2 :ai3 :::aink

)�1
mod p

6.2 Key Distribution

The source wishing to distribute a key K sends the following initial data to its

children in the tree:

S1 = (S0)
a1 mod p

T = K � S0

16 � R. Molva and A. Pannetrat

a
7

a
8

S 1 8
a a a

0
7

a a

aa

a a
1 2

3 4

5 6

0

h
3

S S

S

0

a
1

0

a a
1 7

Leaf 3

S =2
3

S =3
3S =3

1

N1

N2

Fig. 6. A discrete log tree.

Remark 2. Issues such as a proper padding of K, have been omitted here for

the sake of simplicity. Depending on the particular security requirements, we can

substitute T with a better encoding of K as suggested, for example in [Abdalla

et al. 1998].

The intermediate elements in the tree perform faik on their input Sik�1 and send

the resulting Sik value to their children, along with T, where:

Sik = faik (S(ik�1)) =
�
S(ik�1)

�aik mod p

An example of this scheme is illustrated on the path from the root to the leaf 3

of the tree as depicted in �gure 6:

|The source sends S31 = (S0)
a1 mod p and T = K � S0 to its children.

|N1 receives (S
3
1 ; T) and sends S

3
2 = (S0)

a1a7modp and T = K�S0 to its children.

|N2 receives (S
3
2 ; T) and sends S33 = (S0)

a1a7a8 mod p and T = K � S0 to leaf 3.

6.2.1 Decryption. The decryption process is straightforward, the reverse function
h is simply applied to the received value, and the result is used to extract K from

T :

h(Sik) = S0 mod p

K = T � S0

Recalling the previous example, where h3(x) = x
1

a1a7a8 mod p , the value of K is

computed simply:

K = T � S0

where

S0 = h3
�
S33

�
= ((S0)

a1a7a8)
1

a1a7a8 mod p

Scalable Multicast Security with Dynamic Recipient Groups � 17

a
7

a
8

S 1 7
a a a

0
8

a a

aa

a a
1 2

3 4

5 6

0

S S

S

0

a
1

0

a a
1 7

S =2
3

S =3
3S =3

1

N1

N2
Leaf 3h 3

A B

C E

Fig. 7. Node Compromise.

6.2.2 The Next Key. Sending the next key eK only requires S0 = gr mod p to be

updated as eS0 = ger mod p where er is a random element inZ�(p�1).

6.3 Node Compromise and Member Collusion

Many of the requirements established in section 2.3 are naturally ful�lled by imple-

menting the framework as described above. However member collusion and node

compromise need to be considered on a per-algorithm basis.

6.3.1 Node Compromise. The previously described sequence is clearly a SCSG
because the reversing functions can be computed with the knowledge of the secret

parameters in the inner nodes. Hence, compromise of the inner nodes o�ers some

potential for unauthorized membership extension as described in 4.4.

Figure 7 illustrates the node compromise scenario. The hypothesis here will be

that a malicious member E of leaf 3 wishes to maintain membership in the group

using the information of the terminal inner node N2 he has compromised.

In a normal scenario where node compromise is not taken into account, in a

leaf consisting of members fA;B;C;Eg, when E leaves, the following actions take

place:

|In N2, fa8 is changed to efa8 .
|The newly computed reverse function eh3 is sent to fA;B;Cg but not E.
Once the leave procedure is complete, E cannot access further keys distributed to

fA;B;Cg.
However, in the case of inner node compromise, if E controls the last inner node,

he can monitor the change from fa8 to
efa8 . E can then derive eh3 from h3, because

if h3(x) = x(a0a1a7a8)
�1

mod p then:

eh3(x) = x
1

a0a1a7a8
�
a8

ea8 mod p

In summary, even if E doesn't receive the new reversing function, he will be

able to compute it and thus access the keys distributed subsequently to the leave

operation.

18 � R. Molva and A. Pannetrat

This attack can be extended to allow a malicious user to derive a reversing

function from another one even if the reverse function comes from another leaf. It

requires the attacker to compromise nearly all the inner nodes on the graph between

him and the compromised member.

Figure 5 will serve as an example where user Eve -not a member of the group-

listens to tra�c coming out of N5. The malicious user is assumed to know the fol-

lowing node functions ffa2 ; fa5 ; fa7 ; fa8g as well as h
3 from a compromised member

in leaf 3. With these conditions together, Eve can compute a new local reverse

function h2 from h3 thus violating the con�nement property of the model:

h33(x) = x
1

a1a7a8 mod p

which allows to compute:

h2(x) = x
1

a1a2a5 mod p =
�
h33(x)

� a7a8
a2a5 mod p

This second attack assumes that the inner nodes are easy to compromise, and the

�rst one makes strong assumptions about the compromise power of the attacker.

While these attacks on SCSG 's might be considered hard to carry out in most cases,

the very possibility of such attacks motivated further analysis to study a second

and stronger construction based on ACSG 's, as described in section 7.

7. KEY DISTRIBUTION USING RSA.

Extending RSA to use multiple keys as in [Harn and Kiesler 1989] allows the cre-

ation of an ACSG scheme.

Proposition 2. Let n = pq be the product of two carefully chosen large primes,
as in the RSA cryptosystem. De�ne A = Z�'(n) and N = Zn. The set G =

ffa(x) = xamodn; a 2 Ag is a cipher group for messages in N .

This construction is quite similar to the one from the previous section, except that

we are working with a composite modulus and a di�erent message space.

7.1 Setup

The setup is even simpler here than in the ElGamal case. Each inner node in the tree

is assigned a value ai>1 and the root uses a1 where gcd(ai�0; '(n)) = 1. This assures

that the product A of any subset of these ai values also veri�es gcd(A;'(n)) = 1.

The multiplicative inverse B of A de�ned as AB � 1 (mod '(n)) can be computed

using the extended Euclidean algorithm.

Let faki>0g denote the set of parameters used in the inner nodes between the

source and leaf k, plus ak1 = a1 in the root. The reversing function distributed to

the leaves is de�ned as:

hk(x) = xDk mod n

where,

(ak1 :ak2:::akm):Dk � 1 (mod '(n))

Like the basic RSA algorithm, the asymmetric property of this scheme relies on

the di�culty of computing Dk from the reversing function without the knowledge

of '(n) (which currently seems to be only derivable from the factors of n = pq).

Scalable Multicast Security with Dynamic Recipient Groups � 19

7.2 Key Distribution

The source wishing to distribute a key K, sends the following value to its children

in the tree:

S1 = Ka1 = (S0)
a1 (mod n)

Remark 3. Here we have S0 = K, and for simplicity we have omitted issues such

as padding or semantic security. A proper (and probabilistic) encoding of K is

suggested in [RSA Security Inc. 1999] or better in [Bellare and Rogaway 1995].

Each inner node Ni in the secure multicast tree processes the Si�1 value received

from its parent node and sends Si to its children inner nodes where:

Si = fai (Si�1) = (Si�1)
ai (mod n)

Recalling �gure 7 while assuming an RSA like ACSG sets the following scenario

on the path from the root to leaf 3 of the tree:

|The root send S31 = (S0)
a1 mod n to its children.

|N1 receives S
3
1 and sends S32 = (S0)

a1a7 mod n to its children.

|N2 receives S
3
2 and sends S33 = (S0)

a1a7a8 mod n to leaf 3.

7.2.1 Decryption. The decryption process is also simpler than in the ElGamal

case. The decryption function h is applied to the received value in the leaf to

recover K. For example, on �gure 5:

K = S0 = h3(S33) = ((S0)
a1a7a8)

D3 mod n

assuming

a1a7a8:D3 � 1 (mod '(n))

7.2.2 The Next Key.. Sending a new key eK only requires S0 to be changed in

the preceding description. Nothing else needs to be done.

7.3 Node Compromise

The node compromise attack previously described in section 6 regarding the dis-

crete log case does not apply here essentially because the RSA-based sequences

are asymmetric: to compute the inverse of any function in ffa1 ; fa2 :::; fakg, the
knowledge of the intermediate parameters fa1; a2:::; akg wouldn't be su�cient as

the knowledge of '(n) is also required. However the node compromise attack based

on membership extension as depicted in section 4.4 is still possible with the RSA-

based scheme.

8. RELATED WORK

Other papers have presented schemes that address some of the requirements high-

lighted in section 2.3. However, only the IOLUS, the KEYGRAPH and the MARKS

approaches seem to address both scalability and security. Hence we will focus our

comparison on those three approaches, which di�er from ours in mainly three ar-

eas: scalability, containment and trust. Moreover we will look at the particular

implication of using our scheme for key distribution.

20 � R. Molva and A. Pannetrat

Scalability. We believe that MARKS is the most scalable scheme since the leave

operation introduces no side e�ects. The tradeo� to this en�ciency is the di�-

culty of revoking a member's rights. Containment oriented schemes such as IOLUS

and ours, come next since the side e�ects are limited to a small subgroup. KEY-

GRAPHS require a global update each time a member leaves the group. Current

research about KEYGRAPHS aims at reducing the cost of this operation through

various optimizations.

Trust. Although our solution uses intermediate components, it has a major di�er-

ence with IOLUS: our framework puts limited trust in the intermediate components,

whereas in IOLUS each intermediate component has access to the multicast data.

This problem does not appear in KEYGRAPHS or MARKS since no intermediate

elements are involved.

Containment. In terms of containment, our scheme is equivalent to IOLUS, where

each subgroup uses a di�erent key to access the multicast data. On the other hand

KEYGRAPS and MARKS do not address containment issues even though they use

a computational tree structure. In those schemes, the keys held by any user can be

used to access the multicast group regardless of the access location in the network

and all users are equivalently trusted with the security parameters of the group.

Key distribution. Even though we o�er higher security in terms of trust and

containment, this comes with a cost. Indeed, IOLUS, KEYGRAPHS and MARKS

have a clear advantage over our scheme in terms of performance. This has lead us

to consider our scheme for key distribution and not bulk data encryption. In that

respect the framework is used to distribute a short term data encryption key k. As

this short term key is common to all recipients, it may look as our scheme looses

its containment advantage over KEYGRAPHS or MARKS. However, the short

term key can be frequently updated and its disclosure does not provide a means

of long term group access to intruders. This is because in our scheme the group

membership is represented by the long term reversing functions that are di�erent

in each leaf of the multicast tree as opposed to the shared secret group membership

key(s) of KEYGRAPHS and MARKS.

Conclusion

This paper has presented a framework designed to support data con�dentiality in a

large dynamic multicast group. The framework meets a set of requirements wider

than the previous work. While covering scalability, the new concept of containment

was introduced as we believe the latter is a key requirement in very large groups.

The introduction of Cipher Sequences, or CSG , provides a formal but yet prac-

tical description of the framework elements, with a voluntary distinction between

symmetric and asymmetric behaviors. The mapping of these sequences over a mul-

ticast tree is the core mechanism that allows this framework to meet the previously

described requirements.

Two key distribution schemes have been presented as implementations of the

framework. Further detailed studies of the those two schemes, that would each

deserve a complete article, will be necessary before a concrete implementation.

Nevertheless these two schemes have served as a proof of concept for the framework

Scalable Multicast Security with Dynamic Recipient Groups � 21

and they have allowed us to discuss the implication of various node compromise

scenarios, as the possibility of node compromise cannot be neglected in a large

multicast network.

The next major step would be the design of e�cient functions that could be

used to build CSG 's that operate on bulk data, in order to fully capitalize on this

framework. Beyond just multicast, such functions will have applications in many

group security problems.

REFERENCES

Abdalla, M., Bellare, M., and Rogaway, P. 1998. DHAES: An encryption scheme based

on the di�e-hellman problem. Submited to IEEE P1363a.

Ballardie, T. 1996. Scalable multicast key distribution. RFC 1949, may 1996.

Ballardie, T. and Crowcroft, J. 1995. Multicast-speci�c security threats and counter-

measures. In The Internet Soc. Symposium on Network and Distributed System Security,

(February 16-17, 1995, San Diego, California) (1995).

Bellare, M. and Rogaway, P. 1995. Optimal asymmetric encryption. In A. D. Santis

Ed., Advances in Cryptology - EuroCrypt '94 (Berlin, 1995), pp. 92{111. Springer-Verlag.

Lecture Notes in Computer Science Volume 950.

Briscoe, B. 1999. MARKS: Zero side-e�ect multicast key management using arbitrarily

revealed key sequences. In First International Workshop on Networked Group Communi-

cation (Nov. 1999).

Burmester, M. V. D. and Desmedt, Y. 1995. A secure and e�cient conference key dis-

tribution system. In A. D. Santis Ed., Advances in Cryptology - EuroCrypt '94 (Berlin,

1995), pp. 275{286. Springer-Verlag. Lecture Notes in Computer Science Volume 950.

Camenisch, J. and Stadler, M. 1997. E�cient group signature schemes for large groups.

In Advances in Cryptology - CRYPTO'97, 1997 (1997).

Camenisch, J. L. 1997. E�cient and generalized group signatures. In W. Fumy Ed., Ad-

vances in Cryptology - EuroCrypt '97 (Berlin, 1997), pp. 465{479. Springer-Verlag. Lecture

Notes in Computer Science Volume 1233.

Campbell, K. and Wiener, M. 1993. DES is not a group. In In Advances in Cryptology -

Crypto '92 (1993), pp. 512{520. Springer-Verlag.

Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., and Pinkas, B. 1999.

Multicast security: A taxonomy and some e�cient constructions. In Proceedings of IEEE

Infocom'99 (1999).

Caronni, G., Valdvogel, M., Sun, D., and Plattner, B. 1998. E�cient security for

large and dynamic multicast groups. In Proceedings of IEEE WETICE'98 (1998).

Chang, I., Engel, R., Kandlur, D., Pendarakis, D., and Saha, D. 1999. Key man-

agement for secure internet multicast using boolean function minimization techniques. In

Proceedings IEEE Infocomm'99 , Volume 2 (March 1999), pp. 689{698.

Chaum, D. and Heyst, E. v. 1991. Group signatures. In D. W. Davies Ed., Advances in

Cryptology - EuroCrypt '91 (Berlin, 1991), pp. 257{265. Springer-Verlag. Lecture Notes in

Computer Science Volume 547.

Chen, L. and Pedersen, T. P. 1995. New group signature schemes. In A. D. Santis

Ed., Advances in Cryptology - EuroCrypt '94 (Berlin, 1995), pp. 171{181. Springer-Verlag.

Lecture Notes in Computer Science Volume 950.

Elgamal, T. 1984. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Advances in Crytology - CRYPTO'84, Santa Barbara, California, USA

(1984).

Fiat, A. and Naor, M. 1993. Broadcast encryption. In D. R. Stinson Ed., Advances in

Cryptology - Crypto '93 (Berlin, 1993), pp. 480{491. Springer-Verlag. Lecture Notes in

Computer Science Volume 773.

Harn, L. and Kiesler, T. 1989. Authenticated group key distribution scheme for a large

distributed network. In Symposium on Security and Privacy (1989).

22 � R. Molva and A. Pannetrat

Just, M. and Vaudenay, S. 1996. Authenticated multi-party key agreement. In In Ad-

vances in Cryptology - Asiacrypt'96 (1996), pp. 36{49. Springer-Verlag.

Kaliski, B. S., Rivest, R. L., and Sherman, A. T. 1985. Is the Data Encryption Standard

a group? In Advances in Crytology - CRYPTO'85, Santa Barbara, California, USA (1985).

McGrew, D. A. and Sherman, A. T. 1998. Key establishment in large dynamic groups

using one-way function trees. Technical report, TIS Labs at Network Associates, Inc., Glen-

wood, MD.

Mittra, S. 1997. Iolus: A framework for scalable secure multicasting. In Proceedings of the

ACM SIGCOMM'97 (September 14-18, 1997, Cannes, France) (1997).

Rivest, R. L., Shamir, A., and Adleman, L. M. 1978. A method for obtaining digital sig-

natures and public-key cryptosystems.Communications of the ACM, 21(2):120-126 21(2),

120{126.

RSA Security Inc. 1999. PKCS-1 v2.1: RSA cryptography standard. Technical report,

RSA Security Inc.

Steiner, M., Tsudik, G., and Waidner, M. 1996. Di�e-Hellman key distribution ex-

tended to group communication. In Proceedings of the 3rd ACM Conference on Commu-

nications Security (March 14-16, 1996, New Delhi, India) (1996).

Steiner, M., Tsudik, G., and Waidner, M. 1998. CLIQUES: A new approach to group key

agreement. In Proceedings of the 18th International Conference on Distributed Computing

Systems (ICDCS'98) (Amsterdam, May 1998), pp. 380{387. IEEECSP.

Wallner, D. M., Harder, E. J., and Agee, R. C. 1998. Key management for multicast:

Issues and architectures. Internet draft, Network working group, september 1998.

Wong, C. K., Gouda, M., and Lam, S. S. 1998. Secure group communications using key

graphs. In ACM SIGCOMM 1998 (1998), pp. 68{79.

