
HardSnap: Leveraging Hardware Snapshotting for
Embedded Systems Security Testing

Nassim Corteggiani, Aurélien Francillon
EURECOM

nassim.corteggiani@eurecom.fr, aurelien.francillon@eurecom.fr

Abstract—Advanced dynamic analysis techniques
such as fuzzing and Dynamic Symbolic Execution
(DSE) are a cornerstone of software security testing and
are becoming popular with embedded systems testing.
Testing software in a virtual machine provides more
visibility and control. VM snapshots also save testing
time by facilitating crash reproduction, performing
root cause analysis and avoiding re-executing programs
from the start.
However, because embedded systems are very di-

verse virtual machines that perfectly emulate them are
often unavailable. Previous work therefore either at-
tempt to model hardware or perform partial emulation
(forwarding interaction to the real hardware), which
leads to inaccurate or slow emulation. However, such
limitations are unnecessary when the whole design is
available, e.g., to the device manufacturer or on open
hardware.
In this paper, we therefore propose a novel approach,

called HardSnap, for co-testing hardware and software
with a high level of introspection. HardSnap aims at
improving security testing of hardware/software co-
designed systems, where embedded systems designers
have access to the whole HW/SW stack. HardSnap is
a virtual-machine-based solution that extends visibility
and controllability to the hardware peripherals with a
negligible overhead. HardSnap introduces the concept
of a hardware snapshot that collects the hardware state
(together with software state). In our prototype, Ver-
ilog hardware blocks are either simulated in software
or synthesized to an FPGA. In both cases, HardSnap is
able to generate HW/SW snapshot on demand. Hard-
Snap is designed to support new peripherals automati-
cally, to have high performance, and full controllability
and visibility on software and hardware. We evaluated
HardSnap on open-source peripherals and synthetic
firmware to demonstrate improved ability to find and
diagnose security issues.

Index Terms—Embedded Systems, Hardware Snap-
shotting, Security Analysis, Symbolic Execution

I. Introduction

From automotive to house appliances, embedded sys-
tems are becoming ever more present in our modern life.
The semiconductor market is highly competitive with
a very short time-to-market, in particular for micro-
controllers addressing niche markets. Moreover, embedded
systems complexity is growing, making them more difficult
to verify. The security of embedded systems is a big
concern. First, fixing security problems is often difficult.
Silicon-based hardware cannot be patched. Some firmware

programs are often also stored on read only memory
(e.g., mask ROM) and is similarly impossible to modify.
Fixing such problems generally requires expensive redesign
and fabrication steps and therefore increases the time-
to-market. Second, embedded systems are hidden away
in more complex systems such as phones, computers,
payment terminals or system controllers, and therefore are
subject to storing personal data, drive physical systems
or part of complex industrial plants. Third, the growing
connectivity and attachment to online services, make them
more exposed to attacks. For all these reasons, there is an
important need for security tool to test embedded systems
before production.
Virtual machine introspection has formed the basis

of many dynamic analysis methods such as coverage-
guided fuzzing [16], [30], [31], symbolic execution [5],
[25], forensics analysis [13], [17], [21], and malware anal-
ysis [20], [26]. This approach offers a full visibility and
controllability over the system under test, thus enabling
sanity checks, tracing, concurrent testing, and coverage
measurement. Similarly, research on dynamic analysis of
embedded systems tends to use emulators to gain in
visibility and controllability of the execution. However,
research in this field generally face limited performance,
difficulty to automate peripherals interactions, and limited
introspection on hardware peripherals (i.e., visibility or
controllability).
Hardware Peripherals Interactions. When re-

hosting embedded systems in a virtual machine environ-
ment, one recurrent challenge is the difficulty to correctly
handle hardware interactions. In fact, embedded systems
are purpose-built computers, mixing specific hardware pe-
ripherals and firmware programs. There are typically many
interactions between firmware and peripherals which occur
frequently during firmware execution. As a consequence,
the analysis of firmware without proper peripherals inter-
action is often impossible.
Modeling Hardware Peripherals. Depending on the

context, hardware peripherals are modeled using different
approaches. When hardware design source code such as
peripherals’ Hardware Description Language (HDL) is
not available, the behavior of those peripherals needs to
be replicated. Previous efforts replaced peripherals with
hand-written [4] or automated [3], [8], [12] behavioral
models. However, these methods are error-prone, time-

consuming and difficult, especially for complex peripher-
als. To avoid peripherals modeling or partial emulation,
hardware-in-the-loop schemes forward Input/Output to
the real device [29], [15], [9], [24]. Despite the gain in
performance and automation, this method significantly
limits the visibility and controllability of peripherals that
cross the boundaries of the virtual machine. In particular,
this makes complete state snapshotting impossible: part of
the state of the system is in the hardware. The tester may
have access to the peripherals source code which provides
many advantages. This enables peripherals to be either
simulated or emulated on an FPGA. Simulation offers
a high visibility and control over the overall simulated
hardware blocks. However, HDL simulation suffers from a
significant performance slowdown. Another solution con-
sists in emulating the peripherals on an FPGA that may
run at a speed similar to that of the silicon chip. Contrary
to simulator, FPGA does not offer a high visibility/con-
trollability on the running design. All these solutions make
system snapshotting challenging, and therefore limits the
performance of existing firmware testing methods.
System Snapshotting. Snapshots are useful to repli-

cate events (e.g., corruption) for more detailed analysis.
They also improve analysis performance. This is typically
interesting for symbolic execution and fuzzing engines that
may use snapshotting techniques to reduce the overhead
of re-executing the program from zero when concurrently
testing multiple paths of a program. Tools combining
partial-emulation and symbolic execution generally break
the virtual machine boundaries, and therefore, introduce
significant consistency problems mainly due to the diffi-
culty to control peripheral state. One obvious solution to
this problem would be a record-and-replay approach, how-
ever, it is extremely slow and error-prone as the number
of interactions to replay may be considerable and time
sensitive. Talebi et al. [24] report 8800 I/O operations just
for the initialization of the camera driver in the Nexus 5X.
Replaying all the interactions would consume a significant
amount of time. Alternatively, when the HDL is available
a logic model [22], [6], [11] can be automatically generated.
The resulting model is accurate and offers a full-visibility
and control over the simulated design. Unfortunately,
simulators have an important performance penalty that
may slowdown the dynamic analysis.

In this paper, we introduce hardware state snapshot-
ting, a mechanism to save and restore hardware state,
which extend traditional software and VM snapshotting
to hardware in the loop snapshotting. We implement this
technique in HardSnap our framework based on a sym-
bolic virtual machine, based on Inception [9], to co-test
hardware and software. HardSnap was designed for perfor-
mance, automation, full-visibility, and full-controllability
over the whole design under test (firmware and hardware).
In particular, we combine symbolic software execution and
hardware emulation targets (i.e., FPGA and HDL simu-
lator). HardSnap, further enables analysts to easily drive

hardware components, express security properties using a
high level of abstraction, or test firmware programs. Using
its symbolic execution engine, HardSnap can be used to
generate software test vectors to test hardware. HardSnap
also makes possible to clone the hardware state between
different targets to get the best of each world (FPGA
performance vs. full traces in a simulator). HardSnap can
be either used for testing the whole design or only a sub-
system. We believe this would facilitate its integration in a
product development flow where components and firmware
are build concurrently.
Since our methodology aims at assisting hardware/-

software designers, we evaluate it on a complete system.
Unfortunately, despite the growing presence of open source
hardware, there are no complete SoC and firmware which
we could reuse for testing. We therefore demonstrate the
capability of our tool on a synthetic design composed of
open-source hardware peripherals and firmware. We argue
that this is a realistic scenario, as such components are
commonly used on commercial microcontrollers.
Contributions. In summary, in this paper we present

the following contributions:
1) A system-wide co-verification framework that sup-

ports hardware and firmware analysis. This frame-
work generates new test cases thanks to a symbolic
execution engine.

2) A novel methodology to save/restore embedded
system state including hardware peripherals and
firmware program. Our method automatically insert
introspection mechanisms in hardware peripherals.
This enables hardware state observation and control
at any time. We propose two methods based on a
simulator and an FPGA, to get the best of each world.

3) A novel multi-target support for hardware emulation
enabling state transfer at any time during the analysis
to get the best of each hardware targets.

A. Related Work

Research in dynamic analysis of embedded systems has
been an active topic over the previous decades. This has
lead to different approaches that we can group in four main
categories. They are presented in table I.
Full Emulation. This approach relies on full-system

emulation to mimic the behavior of the original machine.
A compelling example of such approach is S2E [7] that
is based on QEMU [4]. S2E enables symbolic execution
while emulating peripherals through behavioral models
written in C. It snapshots the entire emulator program to
offer full visibility, control and ensure consistency during
the symbolic execution that is able to concurrently and
exhaustively explore multiple execution paths. S2E en-
ables full-system analysis (i.e., peripherals and firmware),
however, it requires hand-written behavioral model for
peripherals that is not easy and error-prone.
Partial Emulation. To address the problem of sup-

porting hardware peripherals automatically, Avatar [29]

Over-Approximation Sub-Approximation Full Emulation Partial Emulation Simulation Hybrid

F
IE

P
2
IM

H
A

L
u

c
in

a
t

o
r

P
r

e
t

e
n

d
e
r

In
t

e
g

r
a
t

e
d

L
o

g
ic

A
n

a
ly

z
e
r

(F
P

G
A

)

F
P

G
A

S
2
E

A
v
a
t
a

r
1
/
2

In
c

e
p
t

io
n

S
u

r
r

o
g

a
t

e
s

V
e
r

il
a
t

o
r

Q
E
m
u+

Sy
st
em

-C

H
ar
dS

na
p

[10] [3] [8] [12] [28] [27] [7] [29] [18] [9] [15] [22] [6]
Abstraction Level Ba Ba Ba Ba P P B B/P P P L B/L B/L/P
Symbolic Execution 3 7 7 7 7 7 3 3 3 7 7 7 3

Full Visibility 7b 7b 7b 7b 7(Limited scope) 7 3 7 7 7 3 3 3

Full Controllability 7b 7b 7b 7b 7(Limited scope) 7 3 7 7 7 3 3 3
Ensure HW/SW Consistency n/a n/a n/a n/a n/a n/a 3 7 7 n/a n/a n/a 3

Automated Peripheral Modeling 3 3 3 3 n/a 3 7 7 n/a n/a 3 7 3
Fast Forwarding n/a n/a n/a n/a n/a n/a 3 7 3 3 n/a 3 3
Open-source 3 3 3 3 3 3 3 3 3 3 3 7 3

TABLE I: Comparison of HardSnap with the related work. L: Logical (RTL level) P: Physical B: Behavioral
a No Hardware Interactions.
b Using either a sub-approximation or an over-apprimatation.

redirects hardware interactions to the real device. This
method has later been followed by Surrogates [15] and
Inception [9]. The former and the later support advanced
analysis of embedded systems thanks to a dynamic sym-
bolic execution (DSE) engine. However, contrary to S2E

they do not ensure hardware/software state consistency
during the entire analysis because of the lack of control
and visibility on the real device. In fact, the real hardware
peripherals are accessed concurrently by many software
states (one by execution path), changing the internal state
of peripherals. The result may lead to inconsistent states
(unrealistic values) affecting the dataflow and control flow,
and therefore, leading to false positives or false negatives.
Automated Re-Hosting. Previous efforts replaced

peripherals with automated models. Peripherals are re-
placed by either an over-approximation [10] or a sub-
approximation [3], [8], [12]. These methods have limita-
tions. First, the approximation of the interactions with
the underlying hardware may lead to false positives (i.e.,
using not realistic values) or false negatives (i.e., all the
realistic values are not considered). Second, they limit
the visibility to the tested software only, and therefore
make bug analysis challenging when they are related to
hardware components. These methods address analysis of
firmware programs when the peripherals source code is not
available.
Simulation. Hardware simulators [22], [2] generally

transform the Hardware Description Language (HDL) into
a cycle-accurate behavioral model that is tested using RTL
or software-driven testbench. Contrary to the silicon chip,
cycle-accurate simulators offers full visibility and control
over the hardware, enabling DSE to generate snapshots
and ensure consistency during the analysis. However, hard-
ware simulation is slow. Moreover, peripherals (accelera-
tors) are often designed to accelerate complex and slow
computations, simulation of such peripherals is very slow.
To overcome this performance limitation, the HDL can be
synthesized to run on an FPGA. Nonetheless, FPGAs offer
a limited visibility over the design making snapshotting
difficult.
Hybrid. To get the best of both worlds, researchers

sought to mix different approaches. A tool combining
simulation and emulation has been developed by Chiang
et al. [6] to enable cycle-accurate and full emulation.
This method offers a full visibility and control over the
hardware, however it does not perform advanced dynamic
analysis.

II. Motivation

In the following, we give details about the motivation
behind this work.
How do peripherals affect firmware execution?

Embedded systems are purpose-built computers mixing
hardware peripherals and firmware programs. There are
different reasons for the presence of peripherals. They may
offer an interface to the external world (e.g., actuators
and sensors), a inter-device communication interface (e.g.,
UART and wireless communication), a hardware accel-
erator (e.g., cryptographic accelerators) or internal re-
sources (e.g., interrupt controller, Direct Memory Access,
Memory Protection Unit). Peripherals affect the firmware
data-flow and control-flow in different ways. Generally,
firmware programs read inputs from peripheral through
a Memory-Mapped IO or a Port-Mapped IO. Peripherals
can also modify the system memory (DMA). Moreover,
the firmware execution can be interrupted by the periph-
erals when a task complete. Those important interactions
between firmware and peripherals make firmware execu-
tion dependent on the hardware. Additionally, bugs may
originate from these interactions. For all these reasons, co-
testing hardware and firmware is important.
How does snapshotting reduce the overhead of

re-execution? Snapshots enables a program under test to
be revived at an earlier point. This is typically interesting
for symbolic execution and fuzzing engines that may use
snapshot techniques to reduce the overhead of re-executing
the program from zero when concurrently testing multiple
paths of a program. As observed by Muench et al. [19],
fuzzing embedded systems requires to restart the target
under test after each fuzzing input to reset a clean state
for further test inputs. Without HardSnap, restarting the
embedded systems requires a complete reboot of the device

which is extremely slow. For symbolic execution, snapshots
are heavily used. Each time the symbolic engine executes a
branch where the condition is symbolic, it forks the entire
program memory in two states (one snapshot for each part
of the condition). Then, the analysis explores all paths
concurrently according to the state exploration heuristics.
This approach requires intensive snapshot reload. While
traditional symbolic execution keeps all the tested system
within the virtual machine boundaries, symbolic execution
with hardware-in-the-loop breaks this assumption. This
may lead to inconsistency (e.g., peripherals and software
state mismatch) or extremely high overhead due to the
need to re-execute the program from zero.
Inconsistency due to incomplete snapshots. When

peripherals offer limited controllability and visibility, it
is almost impossible to generate a complete snapshot of
the embedded system. This limitation leads to different
scenarios for dynamic analysis of embedded systems. For
the sake of clarity, we illustrate these scenarios with a
simple use case that we present in Fig. 1. In this use case, a
firmware program consists of two different execution paths
that request a specific computation to a unique peripheral.
In return, this peripheral emits an interrupt signal to
notify that the computation is done. Then, the firmware
executes the corresponding interrupt request (IRQ) that
reads the result from the peripheral. We identify three
different approaches for co-testing hardware and firmware
programs. First, the naive-and-consistent approach tests
firmware execution path one after the other, and it ensures
a clean state by rebooting the entire system and restarting
the execution from the program start. This approach
is often adopted by fuzzer [19]. Unfortunately, it may
involve a significant number of time consuming reboots.
Furthermore, it re-executes code having the same effect
for different execution paths (e.g., the INIT sequence),
this is not efficient. Second, the naive-and-inconsistent
approach tests different execution paths concurrently. This
approach is the one adopted by hardware-in-the-loop-
based DSE [9], [29]. These tools evaluate concurrently
different execution path of the firmware under test while
forwarding I/O to the real device. The resulting analysis
improves performance over the previous method, however
it introduces inconsistencies. In fact, if the same hardware
is driven in parallel by different software execution path,
thus leading to erroneous output values and execution
flow. In our example, the routine ’REQ A’ and ’REQ
B’ are executed concurrently. In result, the peripheral
receives data emitted by the routine ’REQ B’, and it
aborts the computation of ’Task A’. The control flow gets
affected since only one of the two interrupts is emitted
by the hardware. This is in fact a simple example, but
in reality, the naive-and-inconsistent approach may lead
to complicated inconsistencies affecting complex control
flow and data flow of the embedded system. These in-
consistencies drastically affect the analysis correctness by
introducing false positives and false negatives. Finally, our

approach, called HardSnap, enables hardware/software
snapshotting. This snapshot avoids any time-consuming
reboot, and it enables consistent concurrent analysis of
firmware programs.

INIT

IRQ A

RX
Write

REQ A

WAIT

IDLE

TASK A

Read TX

INIT

IRQ B

RXREQ B

WAIT

IDLE

TASK B

TX

Reboot

Write

Read

INIT

RXWriteREQ A

IDLE

Naive and consistent
approach.

Naive and inconsistent
approach.

HardSnap approach.
(this paper)

WriteREQ B
RX

TASK B

Read
TX

IRQ B

WAIT

WAIT

INIT

IRQ A

RXREQ A

WAIT

IDLE

TASK A

TX

IRQ B

RXWriteREQ B

WAIT TASK B

TX

Reload
Snapshot

Read

Snapshot
HW/SW

TX

Hardware
Execution Path

Software
Execution Path

Hardware
Execution Path

Software
Execution Path

Hardware
Execution Path

Software
Execution Path

Write

Read

Fig. 1: Description of different Hardware/Software co-
testing execution. From left to right: naive and consis-
tent but slow approach; naive and fast but inconsistent
approach, HardSnap approach.

III. Design Overview

In this section, we provide an overview of HardSnap,
an advanced framework designed for security testing of
hardware/software co-designed systems. In particular, it
offers an efficient and consistent solution for source-based
selective symbolic analysis of embedded systems. Gener-
ally, symbolic analysis leans on snapshotting mechanisms
in order to finely manipulate the system under test. This is
particularly relevant for testing multiple execution paths
of a system at the same time, or to reduce the time spent
in rebooting the system. However, this mechanism requires
a full-visibility and full-controllability over the tested sys-
tem. This is generally difficult to achieve with silicon-based
hardware peripherals, which expose a very limited memory
interface to traditional software and remote debugger.

HardSnap overcomes this problem, and it offers a
selective symbolic execution engine with a high intro-
spection level on hardware peripherals. In particular,
HardSnap is built around three main components. First,
a Peripheral Snapshotting Mechanism that takes
as input a model of the hardware peripheral written
in Verilog, and inserts an introspection mechanism to
observe and control the internals of the peripheral. The
resulting peripheral model supports snapshotting, and it
can run on a simulator or an FPGA device following the
design complexity and user-defined configuration. Then,
a Selective Symbolic Virtual Machine executes the
firmware programs while redirecting hardware interactions
to hardware peripherals. This virtual machine is based on
Inception [9], a framework for firmware program analysis
based on the Klee [5] symbolic execution engine. We
emphasize that our approach is not specific to Inception,
and can be extended to any hardware-in-the-loop dynamic

FPGAHost Computer

USB3
DAP

Selective
Symbolic

VM

Peripheral
IP A

Peripheral
IP B

Scan Input

Peripheral
IP C

Save/Restore
Snapshot

Scan
IP

SRAM
Controller SRAM

AXI Bus

Simulator
Process

Checkpoint/Restore

CRIU
Daemon

Save/Restore

Read/Write

Interrupt Forwarding

File System

Snapshot
Scan Output

Read/Write

Interrupt Forwarding

Fig. 2: Overview of HardSnap.

firmware analysis tool, such as, fuzzers, or other symbolic
execution engines which requires hardware interaction.
HardSnap inherits from Klee the runtime detection
mechanism for memory corruptions, and it offers an inter-
face to write assertions that are especially relevant for the
detection of peripherals misuse. Furthermore, it enables
security analysts to write a software-based testbench, and
it generates test cases thanks to the symbolic execution
engine. HardSnap enables pre-production co-testing of
hardware and firmware, where both are generally designed
and implemented simultaneously. For example, an embed-
ded software developer can test hardware drivers even
if the full design is not available. Finally, a Snapshot-

ting Controller enables the virtual machine to generate
complete snapshots of the system under test, including
hardware peripherals and firmware memory. Snapshots
can reduce the time to fix bugs by offering a complete
view of the peripheral state. To guide the reader during
our explanation, we provide a description of HardSnap

in Fig. 2.
A. Peripheral Snapshotting Mechanism

This component is the core element of HardSnap. It
instruments peripherals with an introspection mechanism.
The latter refers to two important notions: controllability
and observability. Controllability refers to the ability of
controlling the state of (all memory elements) of a pe-
ripheral at any time. Visibility refers to the ability of in-
specting peripheral’s state at any time. By combining both
visibility and controllability, our snapshotting mechanism
can inspect the internals of peripherals to save/restore pe-
ripherals’ state. Generally, peripherals are modeled using
a Hardware Description Language (HDL) that offers an
Intermediate Representation (IR), abstracting the under-
lying layers (i.e., transistor or gate level). Among existing
HDLs, Verilog is certainly one of the most adopted in
the industry. This language adopts the register-transfer
level (RTL) abstraction that describes synchronous digital
circuit in term of hardware registers linked with each
other through digital signals (data flow) mixed with logical
operations. These hardware registers are memory elements

that synchronize the circuit operations at each edges of
the clock signal. They directly reflect the internal state
of the hardware peripheral, and they enable inferring
combinatorial logic values. Our hardware snapshotting
mechanism focuses on inspecting and controlling the value
of these hardware registers. To support efficiently small or
complex hardware design alike, we designed two different
approaches to get full controllability and visibility on
hardware registers.
Simulator Target. Hardware simulators are software

programs able to compile and evaluate expressions written
in HDL. They are a good candidate for hardware snapshot-
ting as simulated peripherals state is represented by mem-
ory variables that are easily accessible on a host computer.
Furthermore, they often expose an interface to access oper-
ating system’s capabilities. This is particularly interesting
for attaching a remote interface (i.e., our selective symbolic
virtual machine). However, simulators are extremely slow
at testing complex design such as a complete System-
on-Chip. To cope with design complexity, HardSnap

falls back on system partitioning. In particular, it simu-
lates peripherals only, whereas it executes firmware in a
symbolic virtual machine. For this purpose, HardSnap

abstracts the peripherals environment (i.e., memory bus
interface) that is exposed through a remote interface to
our symbolic virtual machine. In particular, HardSnap

takes as input a set of Verilog-based peripherals’ models
and automatically generates a self-contained simulator
with a remote interface. This toolchain leverages Verila-
tor, an open-source simulator, which translates Verilog-
based HDL into a cycle-accurate C++-based model. The
generated C++ code is then compiled and linked with
HardSnap static library, which implements the remote
interface and a memory bus abstraction layer that enables
the remote interface to communicate with peripherals.
HardSnap aims at flexibility, and it offers a modular
approach where the remote interface and the memory bus
abstraction can be easily replaced. We provide support for
the AXI4-Lite bus interface.
Field Programmable Gate Arrays (FPGA) Tar-

get. We designed a second hardware target that focuses
on performance at the cost of full execution tracing. We
present this target on the right side of Fig. 2. FPGAs
are post-production re-programmable integrated circuits
enabling digital design emulation at a speed similar to that
of the silicon chip. However, they generally offer a very
limited introspection and debug capability. Some FPGA
manufacturers provide logical analyzers that monitor in-
ternal signals but they are very limited in the number of
signals. Furthermore, these solutions are specific to the
manufacturer. FPGAs generally lack advanced debugging
capability like a debugger for software program. Some
manufacturers offer logic readback capability to dump the
FPGA fabric configuration and memory values. However,
this feature is only present on a few high-end FPGAs. To
avoid this limitation, HardSnap instruments the HDL
of peripherals directly, so that the resulting code stays
independent from the hardware target. In particular, our
instrumentation toolchain takes as input Verilog-based
peripheral model, and it automatically inserts a scan chain
that is basically an alternative path in which all the
hardware registers form a shift register. This scan chain is
activated by a scan_enable signal and receives/emits input
or output from a scan_input/scan_output signal. For
completeness HardSnap also supports the readback feature
of high end FPGAs and we compare the performance of
readback to that of our scan chain in Section V.

B. Selective Symbolic Virtual Machine

In this context, HardSnap has been implemented on
top of Inception [9], but with significant modifications
and improvements as we will explain. In particular, we use
directly from Inception its existing memory forwarding
and interrupt mechanism, which enables rehosted analysis
while keeping real hardware communication. Our major
changes include extending the software state represen-
tation to a combined hardware/software state, a user-
customizable multi-target support that routes memory
accesses to the user-selected hardware targets (i.e., FPGA
or simulator), a hardware state forwarding that enables
switching between hardware targets, a concretization pol-
icy that generates concrete value when a symbolic value
reaches the boundary of the virtual machine domain.
In addition, we enhanced Inception with engineering
improvements to support recent version of Klee and to
simplify future updates of Klee components.
Selective Symbolic Execution. The term selec-

tive symbolic execution has been first introduced by
S2E [7]. It refers to the ability to execute symbolically
the code of interest while executing concretely external
resources. HardSnap symbolically executes firmware pro-
grams while executing concretely peripherals. For this
purpose, it offers a concretization policy that we describe
latter in this section.
Multi-target orchestration. An important improve-

ment we made to Inception is the multi-target ap-

proach that enables user to precisely control and observe
running analysis. This feature is built on top of the
Inception memory forwarding mechanism. The former
originally supports I/O forwarding to a unique target
through a JTAG debugger. We extended this mechanism
to our simulator and FPGA target. We developed custom
driver for both targets. The simulator target is remotely
accessible through a shared memory. The FPGA target
emulates the Inception USB 3.0 low latency debugger
that we modified to receive USB 3.0 commands, and to
generate AXI transactions so that it can directly access
peripherals without any JTAG interface. Additionally, we
created the target orchestration system. In particular, it
supports state transfer from one target to another one at
any time during the analysis. We believe this feature is
interesting for different reasons. First, it enables to cope
with targets limitations that generally offer either speed or
full traces. For example, the Verilator-based target enables
full visibility along the execution (i.e., traces), however, it
is significantly slower than the FPGA-based target that
does not offer full traces. The target orchestration enables
to start the analysis on the FPGA target and once a
particular point is reached the FPGA state is transferred
to the Verilator target.
Concretization policy. When the symbolic domain

(i.e., symbolic values) requests access to the concrete do-
main (i.e., hardware peripherals), our system needs to con-
cretize the symbolic expression to a set of possible concrete
values. This step is automatically done by HardSnap

during symbolic execution, and it is user-customizable to
choose between completeness (i.e., all possible values are
tested) or performance (i.e., only one possible value is
tested).

C. Snapshotting Controller

In Fig.2, we present a general description of Hard-

Snap and its snapshotting controller. This controller is
in charge of saving/restoring snapshots that are identified
by a unique identifier. Our system supports two different
hardware targets. Each target has a specific snapshotting
method. The core of the snapshotting controller is part
of the virtual machine and it communicates with target-
specific snapshot controllers.
For the simulator target, we use CRIU a Linux

userspace framework which is able to checkpoint and
restore a process. Before any save/restore of the simu-
lator process, the snapshot controller flushes all pending
read/write operations, and then it freezes the simulator
process. In fact, the simulator has a remote interface to
send read/write commands that is an operating system
capability outside the scope of the simulator. Once the
simulator process has been frozen, a checkpoint is stored
on a persistent storage (i.e., the file system).
On the FPGA-based hardware platform, an internal

hardware block (“IP”) manages hardware snapshots. This
IP is driven through memory mapped registers that are

directly accessible on the system memory bus, or through
the USB 3.0 debugger. This IP saves and restores the
peripherals state, by driving the scan chain previously
inserted. It takes as input the snapshot source address
and a destination address for the scan chain output. Once
started, it suspends the hardware execution and it saves
all its content at the specified memory address. At the
same time, it loads the specified snapshot to overwrite the
hardware registers. For performance reasons, the scanning
IP saves peripherals snapshots in an SRAM memory.
This optimization significantly reduces the time taken for
saving or restoring hardware peripheral state.

IV. Architecture and Implementation

In the following, we describe the details of our system
architecture and implementation. We first describe hard-
ware snapshotting and then our symbolic virtual machine.

FPGA Toolchain

Logic
Synthesis

Map

Place &
Route

Layout
Scan
Chain

Insertion

Verilator-
based

Compilation

B.1 B.2

A.1Hardware
Description
Languages

Peripheral
Bus

Interface
(C++)

Self-
Contained
Simulator

Binary
G++

HDL
+ Scan
Chain

A.2

FPGA
Bitfile

Fig. 3: HardSnap’s instrumentation toolchain.

A. Hardware Snapshotting Instrumentation

To support small and complex hardware designs alike,
we use two approaches (Fig. 3): purely software simulation
or FPGA backed simulation.

Simpler hardware components can be simulated purely
by software. For this, we extend Verilator [22], an open-
source Verilog simulator designed with performance in
mind. Verilator transforms a hardware component written
in the Verilog Hardware Description Language into a self-
contained multithreaded C++-based simulator A.1 . Hard-
Snap automatically extends this simulator with a remote
interface to connect the simulated hardware to an external
client. This interconnects a simulated memory bus (i.e.,
AXI, Wishbone) to a remote communication interface
(i.e., socket, shared memory). With such an interface an
external application, such as our symbolic virtual machine,
can reach the peripherals (i.e., memory mapped registers).
The resulting C++ code is then compiled using g++ to
generate a self-contained simulator program A.2 . This
solution is suitable for testing relatively simple hardware
designs, but is too slow for complex peripherals.

To test more complex designs, HardSnap emulates the
hardware block on an FPGA. This approach scales well
for complex designs, as long as the component fits in the
FPGA, but it does not offer any visibility on the internals.
For this reason, we built a tool which instruments HDL
files to insert a scan chain, which provides access to all
memory elements of the design (memories, registers, etc).
Knowing the value of hardware registers, enables us to
infer the value of combinatorial elements. This instrumen-
tation is done directly at the RTL level (i.e., Verilog)
B.1 , the instrumentation is therefore independent from
the FPGA toolchain. User-defined parameters allow to
limit the instrumentation to a sub-component of the entire
design. Finally, the normal FPGA toolchain is used to
generate a bitfile describing the configuration of the FPGA
fabric B.2 .
B. Selective Symbolic Virtual Machine

We extended Inception’s symbolic virtual machine
state representation from software only to also consider
hardware state. We first define the notion of software state
and hardware state:

• Software State: A software state, under Klee, is
a 3-tuple Ssw {PC,F,G} of a program P at a time
t, where PC is the program counter, F is a set of
Stack Frames (i.e., local variables) and G is the global
memory (global variables and heap).

• Hardware State A hardware state, under Hard-

Snap, is a set Shw of all the hardware registers values
of the hardware peripherals under test at a time t.
We refer to this as a snapshot when it is an offline
representation and refer to target when designing the
hardware platform.

Update of the state representation in Inception (from
Klee) is straightforward. Each software state Ssw is asso-
ciated to a unique hardware snapshot identifier. There-
after, we refer to S which includes Ssw and Shw. Fig-
ure 1 describes the main execution loop algorithm of our
modified version of Inception. A set AS contains the
active states and is initialized with the initial state (PC
at program entry point and stack empty, no corresponding
hardware snapshot). A variable Sprevious keep reference of
the previous state that is being processed and is initial-
ized as empty. Then, the main process iterates until AS

becomes empty, i.e., there is no more state to test. This
process is as follows.
First, a call to SelectNextState returns the next state

to evaluate, with respect to the user-defined state selection
heuristic. This is the original behavior of Klee, that has
been extended by Inception to avoid selecting a different
state if the previous one is processing an interrupt. This
mechanism makes interrupt atomic to reduce timing vio-
lations. Then, we added a mechanism to detect modifica-
tions on S by comparing its ID with Sprevious ID’s. When
the comparison fails, it indicates that current hardware
state does not belong to current software execution.

We build two mechanisms to manipulate hardware
state on demand. First the function UpdateState: sus-
pends hardware target, generates a new snapshot and
finally resumes the target execution. The new snapshot
overrides the snapshot associated with Sprevious. Then,
RestoreState overrides the current hardware state with
the snapshot associated with S. Doing so, we ensure
that further interactions will only affect the corresponding
state. This hardware context switch is a crucial mechanism
to guarantee that testing software state interacts with the
correct hardware state. The same mechanism is applied
when the symbolic machine forks software state (e.g., sym-
bolic condition on a branch). In this case, resulting state
flows with a unique and non-shared hardware snapshot.

Algorithm 1: Pseudocode of HardSnap’s main
execution loop.

1 AS = {Sinit};
2 Sprevious = ∅;
3 while AS 6= ∅ do
4 S = SelectNextState(AS,R,Sprevious);
5 if Sprevious 6= ∅ and S 6= Sprevious then
6 UpdateState(Sprevious);
7 RestoreState(S);
8 Sprevious = S;
9 end

10 Sprevious = S;
11 ServePendingInterrupt(S);
12 StepInstruction(S);
13 Snew = ExecuteInstruction(S);
14 AS ⇐ AS ∪ Snew;
15 end

V. Evaluation

In the previous part, we have described how we im-
plemented hardware shapshotting on top of Inception.
In this section, we undertake experiments on a corpus of
4 synthetic real world and open-source peripherals. We
selected these peripherals because they are common on
embedded systems and have different design complexities.
We made three experiments on these peripherals. With
these experiments, we seek to answer three questions.
How long does it take to save/restore a hardware

state? In order to answer this question, we measured the
saving/restoring process duration for our corpus of periph-
erals on each proposed hardware snapshotting methods
(i.e., simulator, FPGA with scan chain, and the readback
feature that is manufacturer dependant). For each of them,
we compared the hardware design size with the duration
to determine how it may impact performance. In addition,
we complete the performance evaluation by measuring the
I/O forwarding latency and execution speed between the
FPGA and the simulator target.
How beneficial is hardware snapshotting for

firmware analysis? For this purpose, we measured the
execution speed and the analysis consistency that are two
crucial factors for dynamic firmware analysis. We run these

experiments on HardSnap and Inception. First, the
execution speed increases the number of test cases the
system can evaluate per unit of time. This increases the
probability of discovering bugs. Second, we demonstrate
how corrupted hardware states affect the analysis accu-
racy. This may increase the number of false negatives
or false positives. For example, a firmware executing an
interrupt handler while the peripheral is not active. Using
this experiment, we show how hardware interactions may
affect the accuracy of the firmware analysis and at the
same time we evaluate the correctness of our approach.
Case study: testing the PIC peripheral. We

present a case study to demonstrate the versatility of
HardSnap which can be used for hardware and software
co-testing.

All experiments were run on Ubuntu 18.04 (Linux kernel
4.15.0-42-generic) with an Intel core I5 4500U 3.00GHz
and 12GB RAM. All the presented experiments are based
on a corpus of 4 hardware peripherals presented below.

• SHA256 peripheral [23] is a Verilog-based implemen-
tation of a standard cryptographic hash function
with a wrapper to interface it with a memory bus
(i.e., AXI-Lite Slave). The peripheral is part of the
Cryptech open HSM platform [1] that is deployed on
commercial HSM.

• AES Counter Mode [14]. This IP enables encryp-
tion/decryption using the AES in CTR mode. It is
commonly used in wireless communication protocol
such as WPA2 for WiFi.

• Programmable Interrupt Controller (PIC) is a
software programmable interrupt controller. Since
firmware programs are generally interrupt-driven, this
peripheral is extremely important for firmware anal-
ysis.

• TIMER peripheral is a simple Verilog-based timer
with status and control registers. Firmware can con-
figure the interrupt timer frequency, turn it on/off.

We used two FPGA development boards for our exper-
iments: A ZedBoard with a Zynq-7000 ARM/FPGA SoC
and an Ultra96 Zynq UltraScale+ ZU3EG development
board. The ZedBoard is used for all experiments except
for measuring the performance of the readback command
which is only supported by the UltraScale+ board.

A. Experiment I: Hardware Snapshotting Performance

For our first experiment, we measure hardware snap-
shots performance for each proposed hardware snapshot-
ting methods.

a) Experiments Details: Each experiment consists of
the following: first, the hardware target is started (i.e.,
FPGA, Verilator-based simulator), and a control program
is started (CRIU service runs as a Linux daemon in back-
ground). This program is a C++ based application which
drives the save/restore process and measure time per
operation. It is able to save and restore the hardware state

for any supported platforms. It commands CRIU services
through a socket to deal with the simulator platform and
it communicates with the USB3-based Inception-debugger
to save and restore an FPGA snapshot. The program
measures the time to save the current peripheral state
and time to restore previously saved state. We repeat this
step 106 times for each peripheral and report the average
time and standard derivation in Figure 4. Additionally to
this experiment, we provide in table Table II information
regarding the size of the design under test that we measure
in terms of the number of Flip Flops (i.e., the scan
chain length), simulator binary size, and bitfile size. The
latter is relevant to the evaluation of the readback feature
that dumps all the FPGA configuration and its memory
values. This operation generates a bitfile that contains
the whole FPGA configuration, including for the unused
FPGA logic. Therefore, the bitfile size depends the FPGA
model and not directly on the complexity of the tested
design.

Design Number of
Flip Flops

Simulator Size Bitfile Size

ALL1 10817 7986 kB 5568 kB
AES CTR 9712 1541 kB 5568 kB
SHA 256 999 1209 kB 5568 kB
PIC 41 1189 kB 5568 kB
TIMER 65 1185 kB 5568 kB

TABLE II: Size of the test design corpus.

b) Observations and results: By saving/restoring the
hardware state, we observe that the hardware is still
responding between each test, indicating that this process
works correctly, even during stress tests.

We can first observe on Figure 4 the readback method
does not perform well. In fact, it collects more information
than needed as all the FPGA fabric configuration and
memory values have to be accessed. According to the
FPGA documentation, the number of hardware registers
(Data Flip Flop) is 1.41 × 105. Extrapolating the results,
we find that our scan chain method would remain 5 times
faster than the FPGA readback.

We also see that, for our corpus, the scan chain method
is the fastest on average. It is faster or has comparable
performance than the CRIU simulator snapshotting. At
first glance this is surprising because data transfers us-
ing the scan chain (5MB/s) is much slower than CRIU

snapshot (7.5GB/s). However, the scan chain snapshots
strictly the necessary information (design state) while
CRIU snapshots the whole simulator process. This makes
the software-based snapshot 738 times larger than the scan
chain based snapshot (for the larger example ALL). This
also explains why snapshot time for with CRIU seems to
be independent of design size.

1Synthetic digital design composed of all the peripheral corpus.

Our scan chain can also store snapshots in the FPGA’s
internal SRAM, without involving any software. Another
optimisation we implemented is to simultaneously save
and restore the hardware state, scanning in the state to
restore while the state to save is scanned out. With those
optimisations, in our experiments, the FPGA-based scan
chain is faster than snapshotting the simulator process
when the number of hardware registers (i.e., D Flip Flop)
does not exceed 9, 712 (i.e., AES size). In fact, the sim-
ulated design also has a scan chain that is used when
forwarding state to/from the FPGA target. This could
significantly reduce the duration time for restoring/sav-
ing the simulated peripherals, even if current results are
perfectly acceptable.
Additionally to this experiment, we measure IO for-

warding latency and the execution speed of our hard-
ware targets. For the forwarding latency, we measure the
average duration time to read/write mapped registers
and repeat this operation 106 times. Using the USB 3.0
DAP, the reads take 80.36 ms while writes take 40.07
ms. Respectively, the simulator target takes 0.19 and
0.17 ms. The duration time to perform 106 reads/write
requests for the simulator platform is 2 order of magnitude
shorter than the duration time for the same action on the
FPGA device. This experiment highlights the time penalty
when communicating with external device. Obviously, the
operating speed of the FPGA device is significantly faster
than running a design in a simulator. For this reason,
we complete our experiment by measuring the execution
speed on both hardware targets (e.g., FPGA and Verila-
tor). We measured the duration time to compute 1 × 106

sha256 hash. The fpga target returned in 1.088µs while
the simulator targets ruturned in 30 ms. Our multi-target
approach enables user to balance between performance
following the design complexity.
To conclude, HardSnap supports different snapshot-

ting methods where performance range from 1.5MB/s to
7.5GB/s and where the duration time to restore/save any
peripheral of our corpus does not exceed 240 µs. This
experiment highlights the improvments that HardSnap

offers for hardware-in-the-loop analysis.

B. Experiment II: Gain for Firmware Analysis Tools

In our second experiment, we seek to evaluate the ben-
efit of using hardware snapshotting on firmware analysis.
In particular, we focus on measuring the execution speed
and the analysis consistency.

a) Experimental Details: For the purpose of this
evaluation, we created a program generator that given
a program complexity ’N’ generates a code composed of
N level of nested branches where each branch condition
depends on a program input value. This value is the op-
erating mode that indicates which hardware components
is used (i.e., AES or SHA256). In addition, we generate
random operations at each branch to prevent compiler
optimizations, and to randomly change the value of the

Save Process Restore Process

Scan Chain CRIU Readback Scan Chain CRIU Readback
101

104

107

2.
59

9

22
5.

86
0

3.
17

5
·1

06

2.
59

9

23
0.

13
0

3.
60

4
·1

06

3.
41

2 17
9.

30
0

3.
61

1
·1

06

3.
41

2 19
9.

99
0

3.
17

5
·1

06

24
.0

46 17
7.

81
0

3.
61

6
·1

06

24
.0

46 19
8.

14
0

3.
17

5
·1

06

21
7.

27
5

18
1.

30
0

3.
61
·1

06

21
7.

27
5

20
0.

29
0

3.
17

4
·1

06

24
1.

63
5

15
8.

92
0

3.
50

8
·1

06

24
1.

63
5

20
8.

43
0

3.
17

4
·1

06

Av
er
ag
e
tim

e
(µ

se
co
nd

s)

1 TIMER 2 PIC 3 SHA256 4 AES 5 ALL

Fig. 4: Average duration, in microseconds, for 106 snapshot saves or restores for the FPGA and the simulator. Note
the y-axis is plotted on a logarithmic scale.

3 4 5 6 7 8 9 10
0

1,000

2,000

3,000

#
o

f
in

c
o

n
si

st
e
n

c
ie

s Min-Dist-to-Uncovered

3 4 5 6 7 8 9 10
0

1,000

2,000

3,000

Number of iterations

Depth-First Search

3 4 5 6 7 8 9 10
0

1,000

2,000

3,000 Random Path

Inception HardSnap

Fig. 5: The cumulative number of inconsistencies found in a synthetic firmware with different state selection heuristics
by the number of iterations.

operating mode. Those operations are randomnly selected
between AES and SHA256 computations. Both operations
rely on the corresponding hardware accelerator, and there-
fore accesses are redirected to the hardware target.

In order to detect inconsistencies during analysis, we
added assertions in the code. In particular, we detect
incorrect IRQs and incorrect hardware outputs. Incorrect
IRQs are detected using a token mechanism that counts
the number of AES/SHA operations that we compare with
the number of executed interrupt handlers. The difference
is the number of interruptions that have been (incorrectly)
not executed. In addition, we add assertions to verify that
each interrupt request belongs to the correct execution
path and hardware peripheral. Incorrect hardware out-
puts are detected by comparing outputs with expected
values. We run experiments with ’N’ ranging from 0 to
10 for Inception (no hardware snapshot) and Hard-

Snap with three different Klee state selection heuristics:
Min-Distance-to-Uncovered (MD2U), Depth-First Search
(DFS), Random Path (RP). We present the cumulative
results in Figure 5.
Then, we run the same experiment but this time we

increase the number of interactions to 106. This value
is inspired by the number of interactions reported by

Talebi et al. [24]. For this part of the experiment, we
modify Inception to use a record-and-replay approach
for restoring hardware states when switching branches.
In fact, in Inception, no synchronization mechanisms
are used to avoid inconsistent state during testing [9].
Instead of restarting the execution from zero (which is
extremely slow), we choose to implement the record-and-
replay mechanism from Avatar [29]. We report the results
in Figure 6.

b) Observations and results: First, we present the
results for the consistency analysis. Our results show in-
consistencies only when our hardware snapshotting mech-
anism is not enabled (Inception). This demonstrates the
correctness of HardSnap. Contrarily, Inception obtains
an important and increasing number of inconsistencies for
all the tested search heuristics. The number of inconsis-
tencies in the worst case are 2038 for Random-Path, 682
for DFS and 2017 for MD2U. It is notable that the Depth-
First Search (DFS) presents less inconsistencies than the
two others search heuristics. This is consistent with the
fact that DFS only change execution path when the
current one returns. Thus limiting the number of context
switches, and therefore the number of inconsistencies.

Those inconsistencies are important as they can lead to
false positives or false negatives. Futhermore, they would
require significant work for an analyst to understand and
filter them.

Second, we present results for the execution speed
measurements. Our results show an average performance
enhancement of 3.34 for HardSnap over the record-and-
replay approach. Moreover, when N=9 (i.e., 512 explored
states), HardSnap is 8.9 times faster, and when N=10
Inception does not complete after running for 24 hours
while HardSnap finishes in roughly 2 hours.

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

1
·105

Number of iteration ’N’.

D
ur

at
io

n
ti

m
e

[s
] Inception HardSnap

Fig. 6: The duration time by the number of iterations
’N’ (Number of explored states=2N). Note the y-axis is
plotted on a logarithmic scale.

C. Experiment III: Case Study

While so far we looked at how HardSnap improves
firmware testing, this case study demonstrates how Hard-

Snap can be used to test the hardware. For this purpose,
we inject a synthetic bug in the previously described PIC.
This synthetic bug corrupts the current interrupt ID. The
PIC has two operating modes: priority and polling mode.
In this example, we aim at verifying the correctness of
the priority mode, which selects the active interrupt based
on configurable interrupts priorities. For this purpose, we
wrote a small testing code (Figure 7). This is a good ex-
ample of a difficult bug to discover as it requires exploring
several logical states to be triggered.

Using this test with HardSnap generates 343 test cases
and in 67.61 seconds (5 test cases per second; 21432 in-
structions in total). In total 127 assertions failed, for each
the state is transferred to the simulator. The simulator
can produce a waveform, which gives a good view of the
internal hardware state.

This simple case study shows two important features
of HardSnap. First, the symbolic execution provides a
large coverage with just one test case (i.e., the combina-
tions of interrupt priorities). This significantly reduces the
workload when compared to manually writing each test.
Second, when a violation is found on the high performance
FPGA, the multi-target approach allows to transfer a
state from hardware to the simulator, with much better
visibility. This makes debugging easier.

// the PIC supports 7 interrupt sources [1:7]
uint8_t i1, i2, i3 = klee_int();
klee_assume(i1>=1&i1<8&i2>=1&i2<8&i3>=1&i3<8);

// set the interrupt priority table
// right to left : highest to lowest priority
pic [1] = (i3<<6) | (i2<<3) | i1; pic[0] = 2;

// trig interrupt i1 , i2 , and i3
pic[2] = (1 << i1) | (1 << i2) | (1 << i3); pic[2] = 0;

// wait interrupt signal or timeout
while((pic[0] & 0xFF) == 0);

// check if i1 is the active interrupt
if (i1 != (pic[0]&0x7)) {
klee_report_error(__FILE__, __LINE__, "bug", "hardsnap");
transfer_state_to_target("simulator");

}

Fig. 7: Use case written in C to verify the correctness of
the PIC peripheral.

VI. Limitations

Limitations of FPGA-based Emulation. FPGA-
based emulation has limitations. First, this technique fo-
cuses on emulating digital functions rather than analog
functions. This makes the emulation of some components
difficult. Second, the scan chain may impose strong con-
straints for the synthesizer, and it may require a slowdown
of the nominal frequency. While ASIC-based design gen-
erally relies on specific scan Flip-Flop to form the scan
chain, such blocks are not common on FPGA, making it
less efficient.
Asynchronous Logic. The design under test may

interact with a circuitry that cannot be instrumented.
For instance, our USB 3.0 interface is asynchronous, and
cannot be fully controlled by HardSnap. This may lead to
inconsistent state (i.e., interrupt mismatch). To overcome
this issue, we made two modifications. First, we added
a hardware register in the scan chain to store the ID of
the current executions state. Then, we forward this ID in
addition to the interrupt request.

VII. Conclusion

In this paper, we introduced the concept of hard-

ware snapshot to improve hardware/software co-testing.
We demonstrated how HardSnap improves system-wide
analysis with a high visibility over the overall system,
enabling hardware introspection at any time during the
analysis. The results of our experiments show that Hard-

Snap improves both hardware and firmware analysis. It
significantly reduces the bottle neck or inaccuracy with
hardware-in-the-loop approaches. We also demonstrate
that inconsistencies may affect the analysis when naively
testing firmware programs. These inconsistencies may af-
fect the analysis correctness, and they may lead to false
positives or false negatives. With HardSnap frequent
reboots and replay are not needed anymore. HardSnap is
open-sourced to make our results easily reproducible, and
is available at https://github.com/hardsnap/.

https://github.com/hardsnap/

References

[1] Making the internet a little bit safer. Cryptech.
[2] Modelsim. URL: https://www.intel.com/ .
[3] P2im: Scalable and hardware-independent firmware testing via

automatic peripheral interface modeling. In 29th USENIX
Security Symposium (USENIX Security 20) (Boston, MA, Aug.
2020), USENIX Association.

[4] Bellard, F. QEMU, a fast and portable dynamic translator.
In Proceedings of the Annual Conference on USENIX Annual
Technical Conference (Berkeley, CA, USA, 2005), ATEC ’05,
USENIX Association, pp. 41–41.

[5] Cadar, C., Dunbar, D., Engler, D. R., et al. KLEE:
Unassisted and automatic generation of high-coverage tests for
complex systems programs. In OSDI (2008), vol. 8, pp. 209–
224.

[6] Chiang, M., Yeh, T., and Tseng, G. A QEMU and systemc-
based cycle-accurate ISS for performance estimation on SoC
development. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 30, 4 (April 2011), 593–606.

[7] Chipounov, V., Kuznetsov, V., and Candea, G. The S2E
Platform. ACM Transactions on Computer Systems (2012).

[8] Clements, A. A., Gustafson, E., Scharnowski, T., Grosen,
P., Fritz, D., Kruegel, C., Vigna, G., Bagchi, S., and
Payer, M. Halucinator: Firmware re-hosting through abstrac-
tion layer emulation.

[9] Corteggiani, N., Camurati, G., and Francillon, A. Incep-
tion: System-wide security testing of real-world embedded sys-
tems software. In 27th USENIX Security Symposium (USENIX
Security 18) (Baltimore, MD, 2018), USENIX Association,
pp. 309–326.

[10] Davidson, D., Moench, B., Ristenpart, T., and Jha, S. FIE
on firmware: Finding vulnerabilities in embedded systems using
symbolic execution. In USENIX Security Symposium (2013),
pp. 463–478.

[11] Ghenassia, F., et al. Transaction-level modeling with Sys-
temC, vol. 2. Springer, 2005.

[12] Gustafson, E., Muench, M., Spensky, C., Redini, N.,
Machiry, A., Fratantonio, Y., Balzarotti, D., Francil-
lon, A., Choe, Y. R., Kruegel, C., and Vigna, G. Toward the
analysis of embedded firmware through automated re-hosting.
In 22nd International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID 2019) (Chaoyang District, Beijing,
Sept. 2019), USENIX Association, pp. 135–150.

[13] Hay, B., and Nance, K. Forensics examination of volatile
system data using virtual introspection. SIGOPS Oper. Syst.
Rev. 42, 3 (Apr. 2008), 74–82.

[14] Hsing, H. Advanced encryption standar FPGA implementation.
[15] Koscher, K., Kohno, T., and Molnar, D. SURROGATES:

Enabling near-real-time dynamic analyses of embedded systems.
In WOOT (2015).

[16] Maier, D., Radtke, B., and Harren, B. Unicorefuzz: On the
viability of emulation for kernelspace fuzzing. In 13th USENIX
Workshop on Offensive Technologies (WOOT 19) (Santa Clara,
CA, Aug. 2019), USENIX Association.

[17] Mrdovic, S., Huseinovic, A., and Zajko, E. Combining static
and live digital forensic analysis in virtual environment. In 2009
XXII International Symposium on Information, Communica-
tion and Automation Technologies (2009), IEEE, pp. 1–6.

[18] Muench, M., Nisi, D., Francillon, A., and Balzarotti,
D. Avatar2: A multi-target orchestration platform. In Proc.
Workshop Binary Anal. Res.(Colocated NDSS Symp.) (2018),
vol. 18, pp. 1–11.

[19] Muench, M., Stijohann, J., Kargl, F., Francillon, A., and
Balzarotti, D. What you corrupt is not what you crash:
Challenges in fuzzing embedded devices. In NDSS (2018).

[20] Oktavianto, D., and Muhardianto, I. Cuckoo malware
analysis. Packt Publishing Ltd, 2013.

[21] Shaw, A. L., Bordbar, B., Saxon, J., Harrison, K., and
Dalton, C. I. Forensic virtual machines: dynamic defence in the
cloud via introspection. In 2014 IEEE International Conference
on Cloud Engineering (2014), IEEE, pp. 303–310.

[22] Snyder, W. Verilator: the fast free verilog simulator. URL:
http://www.veripool.org (2012).

[23] StrÃűmbergson, J. Hardware implementation of the SHA-256
cryptographic hash functions. Github.

[24] Talebi, S. M. S., Tavakoli, H., Zhang, H., Zhang, Z., Sani,
A. A., and Qian, Z. Charm: Facilitating dynamic analysis of
device drivers of mobile systems. In 27th USENIX Security
Symposium (USENIX Security 18) (Baltimore, MD, Aug. 2018),
USENIX Association, pp. 291–307.

[25] Wang, F., and Shoshitaishvili, Y. Angr-the next generation
of binary analysis. In 2017 IEEE Cybersecurity Development
(SecDev) (2017), IEEE, pp. 8–9.

[26] Willems, C., Holz, T., and Freiling, F. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security &
Privacy 5, 2 (2007), 32–39.

[27] Xilinx. Chipscope pro. https://www.xilinx.com/products/
design-tools/chipscopepro.html.

[28] Xilinx. Virtual input/output (VIO). https://www.xilinx.com/
products/intellectual-property/vio.html.

[29] Zaddach, J., Bruno, L., Francillon, A., and Balzarotti,
D. Avatar: A Framework to Support Dynamic Security Analysis
of Embedded Systems’ Firmwares. Proceedings of the 2014
Network and Distributed System Security Symposium (2014).

[30] Zhang, G., Zhou, X., Luo, Y., Wu, X., and Min, E. Ptfuzz:
Guided fuzzing with processor trace feedback. IEEE Access 6
(2018), 37302–37313.

[31] Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., and
Sun, L. FIRM-AFL: high-throughput greybox fuzzing of iot
firmware via augmented process emulation. In 28th USENIX
Security Symposium (USENIX Security 19) (2019), pp. 1099–
1114.

https://www.xilinx.com/products/design-tools/chipscopepro.html
https://www.xilinx.com/products/design-tools/chipscopepro.html
https://www.xilinx.com/products/intellectual-property/vio.html
https://www.xilinx.com/products/intellectual-property/vio.html

	Introduction
	Related Work

	Motivation
	Design Overview
	Peripheral Snapshotting Mechanism
	Selective Symbolic Virtual Machine
	Snapshotting Controller

	Architecture and Implementation
	Hardware Snapshotting Instrumentation
	Selective Symbolic Virtual Machine

	Evaluation
	Experiment I: Hardware Snapshotting Performance
	Experiment II: Gain for Firmware Analysis Tools
	Experiment III: Case Study

	Limitations
	Conclusion
	References

