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Abstract—This work considers the cache-aided multiple-input
single-output broadcast channel (MISO BC) where an L-antenna
transmitter serves K receiving users, each assisted by one of
Λ < K caches with normalized capacity γ. For this setting
it was known that in the range of L ∈ [K/Λ,Kγ], one can
achieve a Degrees-of-Freedom (DoF) performance of L + Kγ.
This very restrictive constraint that L ≤ Kγ excluded shared-
cache settings with a large number of antennas from achieving
the maximum DoF; for the more realistic regime of L > Kγ,
all existing coded caching schemes suffer substantially reduced
caching or multiplexing gains.

Our work provides a novel coded caching scheme that achieves
the exact best known, near optimal, DoF L+Kγ, and does so even
if L > Kγ, thus covering an important hole in identifying the
optimal performance for the multi-antenna shared-cache prob-
lem. Therefore, our work reveals that shared-cache systems with
many transmit antennas can also enjoy both full multiplexing
gains (L) as well as full caching gains (Kγ) despite the sharing
of the caches. A side benefit of this scheme is its applicability
in multi-antenna settings with dedicated users caches, where it
can offer the advantage of reducing the subpacketization without
sacrificing the DoF performance.

I. INTRODUCTION

Coded Caching [1] was proposed as an alternative method
of exploiting receiver-side caches, with its main idea being
to use cacheable content as side information that alleviates
interference from the receiving users. At a time of cheap
storage units and abundant predictability of on-demand video
traffic, coded caching is perceived as a promising tool in the
effort to sustain the exponential increase of on-demand video
traffic in wireless networks.

The original work in [1] considered a shared-link setting
where a server hosting a library of N files, serves K receiving
users, each equipped with a dedicated cache that can host a
fraction γ ∈ [0, 1] of the library. Assuming a link capacity
of 1 file per unit of time, the work in [1] proposed an
algorithm which consisted of a cache placement phase, during
which the caches were filled with content, and a subsequent
delivery phase, during which the demands of the K users
were announced and satisfied. In this context, the work in [1]
showed that any set of K simultaneous file requests can
be served with worst-case (normalized) completion time of
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T = K(1−γ)
1+Kγ , implying the ability to serve Kγ + 1 users at a

time; a number known as the sum Degrees of Freedom (DoF)

d1 =
K(1− γ)

T
= 1 +Kγ, (1)

corresponding to a caching gain of Kγ additional served users
due to caching. Key to achieving this gain is the ability for
each user to have its own dedicated cache. This performance
was later proved to be exactly optimal under the assumption
of uncoded cache placement in [2], [3], and optimal within a
multiplicative factor of 2.01 in [4] for the general case.

a) Multi-antenna coded caching with dedicated caches:
Soon after, the work in [5] considered a similar setting, where
now the server employs multiple (L ≥ 1) transmit antennas.
This work nicely showed that by adding antennas, one can
achieve the DoF

dL = Kγ + L. (2)

This reveals that the aforementioned caching gain, experi-
enced in the single-antenna case, can be additively combined
with the multiplexing gain. The DoF performance of (2)
was later proved in [6] to be within a multiplicative factor
of 2 from the one-shot linear optimal sum-DoF. This work
sparked substantial interest in related multi-antenna coded
caching settings [7], [8], many of which are motivated by
the realization that coded caching stands a better chance in
affecting wireless systems if it manages to work well with
existing network resources, the most prominent of which being
multi-antenna arrays.

b) Coded caching with shared caches: Another line of
research has recently studied coded caching in the context of
shared caches, where the K receiving users, instead of having
their own dedicated cache, are instead served by Λ caches
(cf. Fig. 1), where each cache is shared by several users. This
setting is of particular interest not only because it represents
more realistic wireless scenarios, where receivers (physically)
share cache-aided helper nodes, but also because it reflects
the effect of subpacketization constraints [9] that may force
a reduced number of cache-states and thus may force cache-
aided receivers to have identically-filled caches. One of the
first coded caching works in the context of shared caches can
be found in [10], which then motivated related works such
as [11]–[13].



Fig. 1. The MISO BC, where each user communicates with a base station
and an access point node. Each access point is equipped with an individual
cache.

A. Shared caches and multiple transmit antennas
A natural continuation of this line of work involves the

scenario where shared caches coexist with multi-antenna trans-
mitters. This joint setting is again motivated not only by the
expected high number of antennas in downlink antenna arrays,
but also by the powerful role (cf. [14]) of multiple antennas
in meeting stringent subpacketization constraints that – as
suggested before – may force users to have identical cache
states, i.e. which may effectively force a small Λ.

In identifying the fundamental limits of this multi-antenna
shared cache setting, where an L-antenna transmitter delivers
to K users with the help of Λ caches, one has to account for the
fact that — while traditional coded caching methods count on
each user having properly designed, and thus different, cache
content — now each user is constrained to having to share the
same cache content with K/Λ− 1 other users1.

A sub-optimal solution: A naive way to account for this
shared-cache constraint is to treat users with the same cache
in different time-slots. For example, using the algorithm of [5]
with this slotted approach, would yield a DoF of

d = Λγ + L. (3)

This approach is naturally always sub-optimal.
Optimal solutions for small number of antennas: The

breakthrough came initially with the work in [14] which —
in the context of subpacketization-constrained coded caching
— proposed a scheme which effectively2 employed a reduced
number of Λ shared caches, to achieve the elusive DoF of
dL = Kγ + L with dramatically reduced subpacketization.
However, due to the symmetric nature of the design, this
scheme required that the number of antennas be limited by
L ≤ Kγ. More precisely, this exact dL was achieved in [14],
under the constraints that

(i) Kγ = αL (ii) K = βL, (4)

1Here, we refer to the uniform setting where each cache serves K
Λ

users.
2In particular, the scheme involved splitting the users in Λ = K

L
groups

such that all users in the same group store the same content.

where α and β are integers. Removal – in [14] in the context
of shared caches – of these constraints, would result in
multiplicative DoF losses that could be as severe as removing
a significant portion of either the multiplexing or the caching
gain from the DoF. Given the conceivably modest value of
γ, which in turn means a modest value of Kγ, the exact
performance of dL = L + Kγ could only be achieved up
to a potentially modest number of transmit antennas, thus
excluding the applicability of this result from a large family
of multi-antenna wireless networks. This clearly conflicts with
current trends in communications that tend to employ large
antenna arrays at the transmitter.

Later on, the recent work in [12] studied the fundamental
limits of this same multi-antenna shared-cache setting3, pro-
viding a novel outer bound as well as a coded caching scheme
that achieved — in the current context where each cache serves
an equal number of K/Λ users — an optimal DoF of

d = L(Λγ + 1), (5)

operating under the assumptions that L ≤ K
Λ . In the scenario

where L > K
Λ , but under the aforementioned limiting con-

ditions in equation (4), this scheme could be modified, after
further consolidating the Λ caches4, to achieve the best known
DoF dL = Kγ + L. If again L > K

Λ , but now without the
restrictive conditions in (4), then a naive adaptation of the
scheme in [12], that effectively would involve shutting down
all but K

Λ antennas, would yield a much reduced DoF of

d = max{Kγ +
K

Λ
, L} (6)

resulting in the loss of a sizeable part of the multiplexing gain,
from L to K

Λ .
To the best of our knowledge, in the shared-cache context,

none of the existing schemes can achieve the exact DoF of
Kγ+L when L > Kγ. In this shared-caches setting, existing
schemes either incur a multiplicative DoF loss (cf. [14]), or
provide reduced caching gains (cf. (3)) or reduced multiplex-
ing gains (cf. (6)).

Current Work: In this work we characterize the optimal
DoF for the shared-cache multi-antenna setting where the
number of antennas L exceeds the number of users per cache
K
Λ for the case when L > Kγ. As a byproduct of the new
scheme, there is the opportunity to employ our scheme in
settings with dedicated caches, as a means to achieve the
optimal DoF with reduced subpacketization in scenarios where
L does not divide K and Kγ.

3This work considered the general case where the number of users associ-
ated to each cache is arbitrary (and not necessarily always equal to K/Λ as
we assume here). The optimality results in [12] come under the assumptions
of uncoded cache placement, and cache placement phase that is oblivious to
the number of users that will be connected to each cache during the delivery
phase.

4For example, for L = Λ = 4, γ = 1
2

and K = 8, with 2 users per cache,
one could group the 4 caches into K

L
= 2 groups of 2 caches each, where in

each group, the caches are filled with the same content.



B. Notation

We use N,Z,C to represent the sets of natural, integer
and complex numbers, respectively. For Λ ∈ N, we use
[Λ]
4
= {1, 2, . . . ,Λ}. The expression α|β denotes that integer α

divides integer β. For a set A, |A| denotes its cardinality. The
binomial coefficient is denoted and defined by

(
n
k

)
, n!

(n−k)!k! .
We will assume that sets are ordered, and for set τ we will
refer to its j-th element as τ(j).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a caching network where a server communi-
cates with K users via a transmitter with L antennas and has
access to a library with N ≥ K unit-sized files {Wn}Nn=1.
The communication in the network is facilitated by Λ caches,
each serving at zero cost an arbitrary set of K

Λ users such that
each user is served by only one cache. The memory of each
cache is limited to M units of file, such that each individual
cache stores only a fraction γ = M

N of the library.
We assume that the system operates in 2 distinct phases.

1) Cache placement. During this phase, each cache λ ∈
[Λ] is filled with content Zλ from the library, without
knowledge of future demands, and without knowledge
of which user is associated to which cache.

2) Delivery. This phase consists of 2 steps. First, each user
k ∈ [K] requests a file W dk from the library and notifies
the server with the index dk of its demanded file. We
denote by

d = (d1, d2, . . . , dK) =
(
d1, · · · ,dλ, · · · ,dΛ

)
the vector of the requested file indices, where dλ

denotes the vector of the file indices requested by
users connected to cache λ. Subsequently, the server
communicates a broadcast message, which is used, along
with the cached content, by the users to recover their
requested files.

The delivery phase consists of a set of properly designed
vectors transmitted one after the other. For each transmitted
vector v ∈ CL×1, the received signals at user k, take the form

yk = hTk v + wk

where hk ∈ CL×1 denotes the channel gain of receiving user
k, where v satisfies a power constraint E(||v||2) ≤ P , and
where wk represents the AWGN noise with unit power at
receiver k. We will assume high signal-to-noise ratio SNR
(high P ), that the transmitter and all users have perfect channel
state information (CSI), that fading is statistically symmetric,
and that each link (one antenna to one receiver) has ergodic
capacity log(SNR) + o(log(SNR)).

The performance metric of our interest is the delivery time
T , defined as the time required so that all users successfully
decode their requested files. The focus of this paper is on
the worst-case delivery time, i.e. the maximum delivery time
required to serve any possible demand vector d.

III. MAIN RESULTS

Theorem 1. In the L-antenna MISO BC with Λ caches, each
of normalized capacity γ, K users populating the caches uni-
formly, then, as long as K

Λ |L, the order optimal performance

T =
K(1− γ)

Kγ + L
(7)

is achievable.

Proof. The achievable scheme is described in Sec. IV, where
the scheme works for all K

Λ |L, irrespective of whether L >
Kγ or not.

Example 1. Let us consider a setting with K = 105 users,
Λ = 21 caches of normalized size γ = 1

21 and L = 15
antennas. Using naively the algorithm of [5] would result in a
DoF performance dMS = Λγ + L = 16. Given that L ≥ Kγ,
employing the scheme in [14], by means of memory sharing,
would result in the DoF performance dr = 15.88. As we can
see, both approaches result in a loss of most of the caching
gain. In fact, the fact that L = 15 allows to trivially achieve
DoF 15 without the use of caching. On the other hand, our
scheme here achieves the DoF dL = Kγ + L = 20.

The benefits on subpacketization: Theorem 1 also applies
to settings with dedicated users caches (where each user can
have its own independent cache), in which case Λ serves as a
design parameter that regulates the subpacketization require-
ment of the scheme. For this setting with dedicated caches,
the recent work in [16] proposed a new algorithm for the case
L ≥ Kγ, which achieves the optimal DoF dL = Kγ + L
with a subpacketization requirement of K · (Kγ +L). In this
regime, the algorithm in [16] removes the memory-sharing
requirement in [14], thus improving the DoF at a cost of a
reasonable subpacketization increase, from approximately a
linear K/L in [14] to the quadratic K · (Kγ + L). For this
same regime where L ≥ Kγ, our new scheme here can also
achieve the same DoF dL = Kγ+L, provided that there exist
a Λ such that K

Λ |L and Λγ ∈ N. As we will describe later
on in this section, our scheme requires a subpacketization of
Snew =

(
Λ

Λγ

)
·
(Λ−Λγ−1

LΛ
K −1

)
, which can be smaller – for some set-

ting parameters – than the subpacketization S = K ·(Kγ+L)
required by [16].
Example 2. Consider a setting with K = 80 users, L = 30
antennas and a per-user normalized cache size γ = 1

8 . Both
the scheme in [16] and our proposed algorithm achieve the
DoF of 40; however while the first requires to split each file
into S = 3200 subfiles, our scheme necessitates a subpack-
etization of only Snew = 120 (by setting Λ = 8), which is
approximately 27 times smaller. For completeness, we note
that the scheme in [14] with memory-sharing would result in
a mere subpacketization of S = 8, but with a much reduced
DoF of 34.3.
Remark 1. Although the results require that L is a multiple
of K

Λ , the optimal DoF of Kγ + L can in fact be achieved
in the general case of L ≥ K

Λ by modifying the scheme
described in Section IV. The difference is that, while in our



current scheme each transmitted vector contains subfiles for
all users associated to a chosen subset of caches, in the
modified scheme each transmission serves fully all users of
some caches and only a subset of users of some other caches.
The description of this modified version of the scheme will
appear in a future extended version of this current work.

IV. SCHEME DESCRIPTION

In this section we will describe the algorithm that achieves
the result of Theorem 1. We begin with describing the algo-
rithm through the use of an example and continue with the
general algorithm.

A. Example

Consider a scenario where a base station equipped with
L = 4 antennas has access to a library with N = 8 files
W 1,W 2, . . . ,W 8, and is connected to K = 8 users. We
assume that the number of caches is Λ = 4 and that users
are distributed uniformly among the caches, such that each
cache serves K

Λ = 2 users. Furthermore, we also assume that
the per-cache capacity is M = 2 (i.e., γ = 1

4 ).
In the cache placement phase, each file Wn, n ∈ [8]

is split into
(

Λ
Λγ

)
= 4 equally-sized subfiles denoted by

Wn
1 ,W

n
2 ,W

n
3 ,W

n
4 . Employing the cache placement algorithm

of [1], we have that each cache λ ∈ [4] stores Wn
λ ,∀n ∈ [8]. In

the delivery phase, we further split each subfile Wn
τ , τ ∈ [4]

into 2 equally-sized and disjoint minifiles Wn
τ,1,W

n
τ,2. For

simplicity, we will also use the notation A ≡ W 1, B ≡ W 2,
C ≡W 3, and so on.

Without loss of generality, we assume that users {1, 5} are
connected to the first cache and request files {A,E}, users
{2, 6} are connected to the second cache and request {B,F},
and so on.

For simplicity, in this example we will use the one-shot (see
Section IV-E) variation of the proposed scheme in Section
IV-C. The delivery algorithm consists of 4 rounds, each
serving users from Λγ + LΛ

K = 3 different caches.
In the first round, the server transmits to users in caches

1, 2, 3 the vector

v1,2,3 = H−1
1,5,3,7


A2,1

E2,1

C2,1

G2,1

+H−1
1,5,2,6


A3,1

E3,1

B3,1

F3,1

+H−1
2,6,3,7


B1,1

F1,1

C1,1

G1,1


in a time slot of normalized duration 2

8 . H−1
i,j,p,q is the

zero-forcing (ZF) precoder that inverts the channel matrix
Hi,j,p,q

4
= [hTi h

T
j h

T
p h

T
q ]. To describe the decoding, we focus

on user 1 who receives the signal

y1 = A2,1 +A3,1 + hT1 ·H−1
2,6,3,7


B1,1

F1,1

C1,1

G1,1


︸ ︷︷ ︸

interference

+w1. (8)

We observe that user 1 is connected to cache 1 and that it
has perfect knowledge of the channel state, thus user 1 can

reconstruct the interference term in (8) and subtract it from y1

to obtain (neglecting the noise) ȳ1 = A2,1 + A3,1. Recalling
that |A2,1| = |A3,1| = 1

8 , which is half of the transmission
duration for vector v1,2,3, user 1 can successfully decode the
2 desired minifiles A2,1, A3,1. The same decoding procedure
is applied to the other users served in the first round.

Similarly, in the other 3 rounds the transmitted vectors are

v1,2,4 = H−1
1,5,4,8


A2,2

E2,2

D2,1

H2,1

+H−1
1,5,2,6


A4,1

E4,1

B4,1

F4,1

+H−1
2,6,4,8


B1,2

F1,2

D1,1

H1,1

 ,

v1,3,4 = H−1
1,5,4,8


A3,2

E3,2

D3,1

H3,1

+H−1
1,5,3,7


A4,2

E4,2

C4,1

G4,1

+H−1
4,8,3,7


D1,2

H1,2

C1,2

G1,2

 ,

v2,3,4 = H−1
2,6,4,8


B3,2

F3,2

D3,2

H3,2

+H−1
2,6,3,7


B4,2

F4,2

C4,2

G4,2

+H−1
3,7,4,8


C2,2

G2,2

D2,2

H2,2

 .
The overall optimal delivery time required to serve all users’
demands is T = 2

8 ·4 = 1, which corresponds to a sum degrees
of freedom of DoF = 8(1−1/4)

T = 6 = Kγ + L.
We proceed with the description of the general scheme.

B. Cache Placement Scheme

The cache placement phase is the same as the one in [1],
for a setting with Λ users, each with its own dedicated cache.
Therefore, each file Wn, n ∈ [N ] is split into

(
Λ

Λγ

)
disjoint

subfiles Wn
τ , for each τ ⊂ [Λ], |τ | = Λγ. Then, each cache

λ stores a fraction γ of the library according to the following
policy

Zλ = {Wn
τ : τ 3 λ, ∀n ∈ [N ]}. (9)

C. Delivery Scheme

Upon receiving the users’ requests, the server further splits
the demanded subfiles W dk

τ in
(Λ−Λγ−1

LΛ
K −1

)
minifiles as follows

Wn
τ =

{
Wn
τ,r : r ∈

{
1, 2, . . . ,

(
Λ− Λγ − 1
LΛ
K − 1

)}}
. (10)

For each set of caches Φ ⊆ [Λ], each of cardinality |Φ| =

Λγ+ LΛ
K , the server transmits

(Λγ+LΛ
K −1

Λγ

)
vectors of the form

v
(i)
Φ =

∑
φ⊂Φ:|φ|=Λγ

c
(i)
Φ\φ
·H−1

Φ\φ
·


Wd

Φ\φ(1)

φ,r1

Wd
Φ\φ(2)

φ,r2
...

Wd
Φ\φ(LΛ

K )
φ,rLΛ

K

 (11)

for i ∈
{

1, 2, . . . ,
(Λγ+LΛ

K −1
Λγ

)}
. In the above, c(i)Φ\φ

∈ C
denotes an arbitrary coefficient, Φ\φ (l) , l ∈

[
LΛ
K

]
denotes

the l-th element of the ordered set of caches Φ\φ, where
φ ⊂ Φ : |φ| = Λγ, and Wd

Φ\φ(l)

φ,rl
denotes a K

Λ×1 vector



of minifiles requested by all users connected to cache Φ\φ (l),
i.e.

Wd
Φ\φ(l)

φ,rl

4
=


W

d
Φ\φ(l)

(1)
φ,rl

W
d

Φ\φ(l)
(2)

φ,rl
...

W
d

Φ\φ(l)(KΛ )
φ,rl

 .

The choice of indices r1, r2, . . . , rLΛ
K

is sequential, guaran-
teeing that no minifile is transmitted twice.

a) Decoding: Directly from (11) and for a fixed Φ and
i, the received signal at the q−th user, denoted by u, of cache
λ ∈ Φ is

y
(i)
u,Φ =

∑
φ⊂Φ\{λ}:|φ|=Λγ

c
(i)
Φ\φ

W du
φ,r︸ ︷︷ ︸

L(i)
Φ,u

+ι(i)u

where L(i)
Φ,u is the part of the received signal useful for user

u, while ι(i)u is an interference term that takes the form

hTu ·
∑

φ⊂Φ:φ3λ,|φ|=Λγ

c
(i)
Φ\φ
·H−1

Φ\φ
·


Wd

Φ\φ(1)

φ,r1

Wd
Φ\φ(2)

φ,r2
...

Wd
Φ\φ(LΛ

K )
φ,rLΛ

K

+ wu.

We can see that user u can reconstruct and remove (neglecting
the noise) the interference term ι

(i)
u , because it can obtain the

minifiles contained in ι
(i)
u through its cache. After collecting

the signals

ȳ
(i)
u,Φ = y

(i)
u,Φ − ι

(i)
u , ∀i ∈

[(
Λγ + LΛ

K − 1

Λγ

)]
,

user u will possess
(Λγ+LΛ

K −1
Λγ

)
linear combinations

L(i)
Φ,u of the same set of desired minifiles Ψ ={
Wu
φ,rl
|φ ∈ Φ \ {g}, |φ| = Λγ

}
.

Directly from (11), we observe that v(i)
Φ is constructed as the

sum of
(Λγ+LΛ

K
Λγ

)
vectors, each containing minifiles for users

connected to the caches in the set Φ \φ, where φ ⊂ Φ : |φ| =
Λγ. Taking this into account, the number of times that a cache
λ ∈ Φ appears in all the sets Φ \ φ appearing in v

(i)
Φ can be

computed to be
(Λγ+LΛ

K −1
Λγ

)
. This means that the vector v

(i)
Φ

contains |Ψ| =
(Λγ+LΛ

K −1
Λγ

)
minifiles for each user in cache λ.

As a result, user u can successfully decode all the desired
files in Ψ from the

(Λγ+LΛ
K −1

Λγ

)
linear combinations L(i)

Φ,u.

D. Performance of the scheme

We observe that the scheme splits each file into S =(
Λ

Λγ

)(Λ−Λγ−1
LΛ
K −1

)
minifiles, where the first term follows from the

subpacketization required by the cache placement in equation
(9) and the second term is due to the further subpacketization
needed by the delivery phase (cf. (10)).

Direcly from the scheme, the total number of transmissions
can be easily computed as N =

(
Λ

Λγ+LΛ
K

)(Λγ+LΛ
K −1

Λγ

)
. Finally,

we notice that all transmissions have the same duration of 1
S ,

yielding a total delivery time of

T =

(
Λ

Λγ+LΛ
K

)(Λγ+LΛ
K −1

Λγ

)(
Λ

Λγ

)(Λ−Λγ−1
LΛ
K −1

) =
K(1− γ)

Kγ + L
.

E. A one-shot linear variation of the delivery scheme

In this subsection, we present a variation of the delivery
phase presented in Section IV-C. Unlike the previous algo-
rithm, this scheme has the one-shot property, where each
part of the requested messages is transmitted only once. This
property allows us to apply the optimality result in [6].

In the new scheme, each transmission associated to Φ occurs

in a time slot of duration Ts =
(Λγ+LΛ

K
−1

Λγ )
S , where the server

transmits the message

vΦ =
∑

φ⊂Φ:|φ|=Λγ

H−1
Φ\φ
·


Wd

Φ\φ(1)

φ,r1

Wd
Φ\φ(2)

φ,r2
...

Wd
Φ\φ(LΛ

K )
φ,rLΛ

K

 (12)

of duration |vΦ| = 1
S . After receiving the signal hTuvΦ,

user u removes the interference term as described in Section
IV-C. This step presents user u with a multiple access channel
(MAC) with |Ψ| =

(Λγ+LΛ
K −1

Λγ

)
messages to resolve. Having

the slot duration Ts be
(Λγ+LΛ

K −1
Λγ

)
times larger than the

message duration |vΦ|, guarantees that we are within the
achievable rate region of the MAC. The rest of the calculations
follow as before.

V. CONCLUSIONS

We presented a new coded caching scheme for the multi-
antenna shared-caches setting that achieves the exact best
known, near optimal DoF L+Kγ, without the limiting condi-
tion that the number of antennas be bounded by L < Kγ. This
now tells us that systems with many transmit antennas, can
also enjoy both full multiplexing gains as well as full caching
gains associated to having dedicated (non-shared) caches. In
addition to the existing result that for L ≤ K/Λ the optimal
DoF (under the assumption of uncoded cache placement) is
L(1 + Λγ), we now know that for L ≥ K/Λ, the DoF of
L+Kγ is achievable (and optimal within a factor of 2, under
the assumption of one-shot linear schemes [6]). For increased
numbers of antennas and users, the new scheme allows for
substantially increased caching or multiplexing gains, and –
for some parameters – allows for subpacketization reductions
over the state of art.
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