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Abstract—We consider coordinated beamforming (BF) for the Multi-
Input Single-Output (MISO) Interfering Broadcast Channel (IBC) under
imperfect channel state information at the transmitter(s) (CSIT). We
start from a BF design which optimizes a Massive MISO limit upper
bound of the ergodic capacity, termed Expected Signal and Interference
Power Weighted Sum Rate (ESIP-WSR). We extend a recently introduced
large system analysis (LSA) for beamformers with partial CSIT, by a
stochastic geometry inspired randomization of the channel covariance
eigen spaces, leading to much simpler analytical results. These depend
only on some essential channel characteristics such as the numbers of
antennas and users, channel rank and eigenvalue profile, and (channel
estimate) signal to noise ratio (SNR). We analyze the spectral efficiency
behavior at extreme SNR regions which provide insights (through the
SNR offset) into the characteristics of the various channel estimates and
suboptimal BFs compared to ESIP-WSR BF with Linear Minimum Mean
Squared Error (LMMSE) channel estimates. Furthermore, simulations
validate the superior performance of ESIP-WSR BF compared to the sub-
optimal BFs with different channel estimates and also the accuracy of
the large system approximations derived herein. Our analysis is focused
on constant channel estimation regime which is indicative of the finite
rate feedback channels and pilot contamination regime.

I. INTRODUCTION
In this paper, Tx may denote trans-

mit/transmitter/transmission, Rx may denote receive/
receiver/reception, BF may denote beamforming/beamformer.
In a Massive Multi-Input Multi-Output MIMO (MaMIMO) system
[1], the overhead associated with the acquisition of channel state
information at the Tx (CSIT) is quite high. Indeed, in Massive
Multiple-Input Single-Output (MaMISO) systems, the received
interference and possibly signal powers converge to their expected
value (channel hardening effect) due to the law of large numbers.
The large system analysis (LSA) becomes an important topic to
consider since Monte-Carlo simulations involving large numbers
of antennas and user equipments (UEs) become cumbersome in a
MaMIMO system. Also, simulations do not allow to see immediately
how performance depend on various system parameters. A major
breakthrough in the LSA of MIMO systems came in [2], where
Wagner et al. develop results in random matrix theory to obtain
deterministic equivalents for the signal-to-interference-plus-noise
ratio (SINR) and thus the rate expression for regularized zero
forcing (R-ZF) precoding under partial channel knowledge. The
very recent work [3] extends the LSA results in [2] to a Rician
fading channel with perfect CSIT. However, to simplify the analysis,
the authors therein consider identical correlation matrix for all the
users in the system which is impractical in MaMIMO or mmWave
system. Also, worth mentioning is that, a very recent work [4] deals
with the deterministic equivalents of the upper and lower bounds
to the ergodic capacity and not on the asymptotic tightness of the
approximations.

In [5] we have extended the LSA of [2] to a scenario with users
having different channel covariance matrices and BF techniques with
partial CSIT. However, due to the abundance of different covariance
matrices, the resulting deterministic analysis does not allow for much
insight. The multi-antenna stochastic geometry aspect introduced here
reduces such LSA analysis back to the simplicity of the case of
multiple of identity covariance matrices. Under stochastic geometry
regime, the random positions of users and scatterers lead to antenna
array responses at random angles. As a result of this randomness
of angles and antenna array responses, and due to limited angular
support, the multipath channels live in subspaces that are of limited

dimension and uniformly randomly oriented in array response space.

A. Contributions of this paper
• The analysis presented in the paper provides accurate spectral

efficiency (SE) expressions under realistic channel estimation
quality which are useful at any operating SNR. Compared to our
previous work [6], [7], we derive simplified sum rate expressions
at low and high SNR for the various BFs (ESIP-WSR, naive and
expected weighted sum mean squared error (EWSMSE) ) for the
various channel estimates, which clearly shows the SNR offset
for the sub-optimal BFs compared to the proposed ESIP-WSR
BF. Moreover, our analysis differs from the previous work since
we focus on a constant channel estimation error (CCEE) regime.

• We furthermore provide certain illustrative examples which are
special cases of the ESIP-WSR BF such as perfect channel CSIT
case and covariance only CSIT (CoCSIT) scenario where only
the channel covariance information is known at the base stations
(BSs). We show that we can obtain analytical expressions for
the implicit equations which need to be solved as part of the
LSA, which in fact provide analytical insights into the system
behavior. We also provide simplified sum rate expressions at
high SNR for the CoCSIT case and obtain the rate offset with
respect to the perfect CSIT case under CCEE.

• With CCEE, it is observed that the EWSMSE and naive BFs
with Linear Minimum Mean Squared Error (LMMSE) saturate
at high SNR, explained by the derived SNR offset. The SNR
offset for the EWSMSE or naive BFs shows that at high SNR,
the interference power also increases along with the SNR, since
no ZF to the interfering channels happens. However, the ESIP-
WSR design does not exhibit a saturation.

II. MISO IBC SIGNAL MODEL
1We consider here an Interfering Broadcast Channel (IBC) with C

cells. We shall consider a system-wide numbering of the users, so K
is total number of users in the system. User k is served by BS bk.
hk,bi is the Mbi × 1 channel from BS bi to user k. For notational
convenience, we use an abbreviated notation for the direct channels
(channel from BS bk to the serving user k), i.e., hk,bk will be denoted
as hk. Note that similar rule applies to other variables associated with
the direct channel. The received signal at user k in cell bk is

yk = hHk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k
bi=bk

hHk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

hHk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk (1)

where xk is the intended (white, unit variance) scalar signal stream,
The Rx signal (and hence the channel) is assumed to be scaled so that
we get for the noise vk ∼ CN (0, 1). BS c serves Kc =

∑
i:bi=c

1

1Notation: In the following, boldface lower-case and upper-case characters denote
vectors and matrices respectively. The operators E(·), tr(·) , (·)∗, (·)H , (·)T represent
expectation, trace , conjugate, conjugate transpose and transpose, respectively. diag(·)
represents the diagonal matrix formed by the elements (·). A circularly complex Gaussian
random vector with mean µ and covariance matrix Θ is distributed as x ∼ CN (µ,Θ).
Vmax(A,B) or Vmax(A) represents (normalized) dominant generalized eigenvector
of A and B or (normalized) dominant eigenvector of A respectively and λmax(A)
being the max eigenvalue. IN represents an identity matrix of size N . ei is ith column
of the identity matrix. We define the function, (x)+ = max{0, x}.



users. The Mbk × 1 spatial Tx filter or beamformer (BF) is gk. The
Tx power constraint at BS c is,

∑
i:bi=c

‖gi‖2 ≤ Pc.

A. Channel and CSIT Model
For simplicity, we omit all the user indices k. Each non-zero mean

MISO channel is modeled according to Karhunen-Loeve representa-
tion [8] as

h = CD1/2c , Rhh = CDCH , (2)
where Rhh is the covariance matrix and c ∼ CN (0, IL) are
the Rayleigh fading multipath gains in the eigen domain. Here
C is the M × L eigenvector matrix of the reduced rank channel
covariance Rhh with diagonal eigenvalue matrix D. This reduced
rank covariance matrix of user channels typically occurs in realistic
MaMISO channels due to the limited angular spread of the multipath
components [9]. The rank corresponds to an equivalent number of
linearly independent multipath components. The total sum rank across
all user channels from BS c,

∑K
k=1 Lk,c is assumed to be less than

Mc, where Lk,c is the channel rank between user k and BS c.
Since the focus of this paper is to study the effect of CCEE, we

assume that we are given a deterministic Least-Squares (LS) channel
estimate (which results after correlation with the uplink (UL) pilot
sequences)

ĥLS = h + h̃, (3)
where h is the true MISO channel, and the error is modeled as
circularly symmetric white Gaussian noise h̃ ∼ CN (0, σ̃2I). The
variance of the error σ̃2 is given a priori. Now, assuming the channel
covariance subspace is known, the LMMSE channel estimate can be
obtained as

ĥ = C
(
σ̃2D−1 + I

)−1
CH ĥLS = CD̂1/2ĉ, (4)

where D̂ = (σ̃2D−1 + I)−1D and ĉ = D−1/2(σ2D−1 +
I)−1/2CH ĥLS with Rĉĉ =I. The estimation error covariance

Rh̃h̃ = CD̃CH = C[D− (σ̃2D−1 + I)−1D]CH . (5)
Further exploiting the orthogonality property of the LMMSE channel
estimate, we can write S = Eh|ĥ

(
hhH

)
= ĥ ĥH + Rh̃h̃ =

CWLCH , where WL = D̂1/2ĉĉHD̂1/2 + D̃. For the convenience
of analysis in the following sections, we define the following quan-
tities, CHhLS = d̂ = d + d̃, where d = CHh ∼ CN (0,D)
and d̃ ∼ CN (0, σ̃2IL). We also investigate the subspace channel
estimator (SV) [7], the effect of limiting CCEE to the covariance
subspace (LMMSE without weighting). It is defined as, ĥS =
CCH ĥLS = h + PC h̃LS , Rh̃S h̃S

= σ̃2CCH .
In this paper, we analyze the scenario where the channel estimation

quality remains constant with SNR. It is difficult to meet the required
CSIT quality particularly in the frequency division duplexed (FDD)
systems. At the UE, downlink (DL) training can be used to obtain
the CSIT. But obtaining CSIT in the UL requires feedback from the
UE due to the lack of channel reciprocity. This leads to the finite
rate feedback model [10], where each UE feedbacks the estimated
channel information through finite number of bits. Motivated by this,
we also consider the case of CCEE in the uplink. Even though in
this paper, we do not explicitly consider the pilot contamination
effects in the channel estimation phase as in [11], the CCEE scenario
considered herein can also be interpreted as representing the case
of pilot contamination assuming UL powers are less than or not
proportional to that of the DL Tx power.

B. Beamforming with Partial CSIT

Since the CSIT is imperfect, we look at the optimization of
expected weighted sum rate (EWSR). We observed that ESIP-WSR
represents an upper bound to the MaMIMO ergodic capacity. Three
types of BF design with partial CSIT can be analyzed, rewriting (1)

yk= ĥHk gk xk + h̃Hk gk xk +
K∑

i=1,6=k
(ĥHk,bi gi xi + h̃Hk,bi gi xi) +vk

(6)

From the law of total expectation, we formulate the BF design
with a sum power constaint at each BS (Pc) as follows

EWSR = Eĥ max
g

EWSR(g), with
Ki∑

i=1,bi=c

‖gi‖2 ≤ Pc, where

EWSR(g) = Eh|ĥWSR(g) =

K∑
k=1

uk Eh|ĥ ln(sk/sk) = (7)

Eh|ĥ

K∑
k=1

uk ln(1 +
|hHk gk|2

sk
)

(a)
≈ Eh|ĥ

K∑
k=1

uk ln(1+
|hHk gk|2

Eh sk
)

(b)

≤
K∑
k=1

uk ln(1 +
Eh|ĥ|h

H
k gk|2

Eh|ĥ sk
)

=

K∑
k=1

uk ln(r−1

k
rk) = ESIP−WSR(g) (8)

where uk are the rate weights, g represents the collection of BFs gk.
Transition (a) is due to the MaMISO limit (K →∞) and (b) is due
to the concavity of ln(.) and Jensen’s inequality. This leads to the
ESIP-WSR upper bound. The (channel dependent) interference plus
noise power is sk and sk is the total received power, with conditional
expectations rk, rk:

sk = 1 +
∑
i6=k
|hHk,bigi|

2, sk = sk + |hHk gk|2, γk = sk
s
k
− 1

rk = Eh|ĥsk = 1 +
∑
i 6=k

gHi Sk,bigi,

rk = Eh|ĥsk = rk+gHk Skgk, Sk = CkWkCk.
(9)

Further, we can show that [7], we get the optimized BF w.r.t. partial
CSIT, in the stochastic geometry MaMIMO regime as follows, with
an interference leakage aware water filling (ILA-WF) for user powers
(µbk is the Lagrange multiplier)
g′k =

g′′k
‖g′′k‖

, g′′k = Γ−1
k Ckvk, vk = Vmax(Wk), gk = g′k

√
pk

Γk = Ak+µbk I, βi = ui(
1
ri
− 1

ri
),

ILA-WF: pk = ( uk

σ
(2)
k

+µbk

− 1

σ
(1)
k

)+,

σ
(1)
k = g′Hk Bkg

′
k, σ

(2)
k = g′Hk Akg

′
k,

(10)
where Ak =

K∑
i=1,6=k

βiSi,bk ,Bk = r−1

k
Sk. Also, note that the BF

expression above (10) is quite generic and holds for all the cases
0)-4) described below, with different Ak for each case.
0) Perfect CSIT: This corresponds to the case when we replace
h̃k = 0, ∀k in the optimizing function EWSR(g). For the perfect
CSIT case, we can obtain

Ak =
∑
i6=k

βihi,bkhHi,bk . (11)

1) Naive BF EWSR: In the optimizing function EWSR(g), just
replace h by ĥ in a perfect CSIT approach, i.e., ignore h̃ everywhere.
For naive BF

Ak =
∑
i6=k

βiĥi,bk ĥHi,bk . (12)

2) EWSMSE BF [12]: It accounts for covariance CSIT in the
interference terms, but also associates the signal h̃ term with the
interference. EWSMSE, also called the ”use and forget lower bound”
in [13], can indeed be shown to be a lower bound for EWSR. For
EWSMSE, we just have to replace

Ak =
∑
i6=k

βiSi,bk − βkCkD̃kC
H
k . (13)

For EWSMSE criterion, it is suboptimal in that it exploits the rate-
MSE (mean squared error) relation to transform weighted sum rate
(WSR) in weighted sum MSE (WSMSE) but the order of expectation
and optimization over weights is reversed, to simplify the cost



function.
3) EWSR upper bound ESIP-WSR: It also accounts for covariance
CSIT in the interference term but, unlike EWSMSE, associates the
signal h̃ term with the signal power.
4) Covariance CSIT (CoCSIT): CoCSIT represents the case when
only the channel covariance information (of all the users in the
system) is known at the BS, i.e the knowledge of C and D. For
the CoCSIT case, we obtain

Ak =
∑
i 6=k

βiCi,bkDi,bkCH
i,bk

, vk = ei,max (14)

In fact, (11) tells us that BF is along only one of the unitary vectors
(or dominant eigen vector) in the covariance subspace Ck, which
leads to a reduction signal power which accounts for the rate offset
for the CoCSIT case, see Section IV-E.

III. ASYMPTOTIC ANALYSIS: STOCHASTIC GEOMETRY
MAMIMO REGIME

In this section, we analyze the asymptotic SE behaviour of
MaMIMO systems using ESIP-WSR BFs solved using ergodic ca-
pacity formulation under partial CSIT. In the following sections, we
use an abuse of notation for convenience, when we refer to M→∞−−−−→

a.s
,

we refer to the almost sure convergence in the large system limit
where M, K → ∞ with L being finite, and the ratio KL

M
=

κ ∈ (0, 1). Also, whereas the BF optimization with partial CSIT
concerns EWSR(g) = Eh|ĥWSR(g), the large system analysis
actually analyzes the resulting ergodic rate EĥmaxgEh|ĥWSR(g)
or approximations thereof.

To motivate the large system analysis results we provide, we
illustrate it with a simple example of perfect CSIT case. First, we
consider the computation of the deterministic equivalent of the signal
power part, |hHk gk|2. Using Lemma 4 from [2], the term hHk gk

becomes hHk Γ−1
k hk

M→∞−−−−→
a.s

tr{QΓ−1
k }, where Q = Rhkhk . In

tr{QΓ−1
k }, Γk can be considered as a sum of K terms (bringing

in term k has negligible effect as K → ∞). Further we look at the
deterministic equivalent of the SINR and rate, which is based on the
following theorem.

Theorem 1 ( [2, Theorem 1]). Let QM ∈ CM×M be a Hermitian
deterministic matrix and AM = XMDXH

M , with XM contains K
independent columns with covariance matrix Θi for ith column. D is
a diagonal matrix, with ith diagonal element being di. Also, assume
that QM , Θi have uniformily bounded spectral norms. Then, for any
z > 0

1
M

tr{QM (AM + zIM )−1} − 1
M

tr{QMT(z)} M→∞−−−−→
a.s

0, with,

T(z) =

(
1
M

K∑
i=1

diΘi
1+ei(z)

+ zIM

)−1

, where,

ei(z) = e
(∞)
i (z) is defined as the unique positive solution of

ei(z) = 1
M

tr{diΘi

(
1
N

K∑
i=1

diΘi
1+ei(z)

+ zIM

)−1

}.
(15)

Theorem 2. In Theorem 1, let Qk = CkDkC
H
k ∈

CMbk×Mbk be a Hermitian deterministic matrix and Γk =
K∑
i=1

Ci,bkVi,bkΛi,bkVH
i,bk

CH
i,bk

, with Ci,bkVi,bk contains Li,bk in-

dependent columns with covariance matrix Θi,bk = 1
M

IM for rth

column. Λi,bk is a diagonal matrix, with rth diagonal element being
λ
(r)
i,bk

. Then, for any z > 0

1
Mbk

tr{Qk(Γk + zIM )−1} − 1
Mbk

tr{Dk}ec
M→∞−−−−→
a.s

0,

with, bk = c, ec, is defined as the unique positive solution of

ec = ( 1
Mbk

K∑
i=1

Li,c∑
r=1

βiλ
(r)
i,c

1+βiλ
(r)
i,c ec

+ z)−1.

(16)

The fixed point solution of e can be found by iterating, see [2].
Note that [5] consider extensions to the partial CSIT case with
general covariance matrices for channels and their estimates and
errors, leading to cumbersome solutions. Now here comes in our
MaMIMO Stochastic Geometry assumptions which simplify the large
system results in [5]. Considering again the perfect CSIT case (signal
power part) and applying Theorem 1, we arrive at the simplified result
in Theorem 2 which forms the basis of the LSA results for all BF
and channel estimator combination. For the purpose of the LSA here,
an Mbi × Li,bi matrix Ci which is Haar (uniformly random semi-
unitary) can be replaced by a matrix of i.i.d elements when Li,bi
remains finite.

Also, it is to be emphasized that there is no trace of matrices in
(2) compared to (15). Also, there is only one e to be computed per
BS, instead of one e per every user as in (15). This also explains the
reasoning behind the simplified results in this paper compared to [5].
We also define

xc =
e2c
Mc

K∑
i=1

Li,c∑
r=1

β2
i λ

(r), 2
i,c

(1+βiλ
(r)
i,c ec)

2
, e′c =

e2c
1−xc .

(17)

The LSA of the ESIP-WSR BF starts with an eigenvalue decom-
position of Wi,c, Wi,c = Vi,cΛi,cV

H
i,c. We remark that C′k,bi ,

which is the product of a Haar matrix and a unitary matrix remains
Haar, whose entries can be modeled and thus Theorem 2 remains
applicable. The computation of the eigenvalues λ

(r)
i,c is based on

a rank-2 approximation of the eigenvalue decomposition (EVD),
which is described in detail in [7]. The eigenvalue matrix Λi,c is
approximated as

Λ = σ̃2D(σ̃2I + D)−1 + tr{D(I + σ̃2D−1)−1} e1e
H
1 .

(18)

IV. SIMPLIFIED SUM RATE EXPRESSIONS WITH DIFFERENT BF
AND CHANNEL ESTIMATORS

A. Sum Rate Analysis at any SNR

Even though in general, the true channel eigenvalues may be
distinct, it is illustrative to consider an extreme case where the eigen-
values are all equal. We discuss the simplified sum rate expressions
for naive, EWSMSE and ESIP-WSR BFs for LMMSE/SV/LS channel
estimators under multi cell (C cells), with identical parameters,
σ̃2
k,c = σ̃2, Lk,c = L, Dk,c =

ηk,c
L

I, Pc = P,∀c and Mc =
M,∀k, c. Number of users in cell c is denoted as Kc = K/C,∀c.
For ESIP-WSR BF with LMMSE channel estimate, substituting these
values in (18), we obtain

λ
(1)
k,c = ζk,c + λ

(2)
k,c, ζk,c =

η2k,c
Lσ̃2 + ηk,c

, λ
(2)
k,c =

σ̃2ηk,c
Lσ̃2 + ηk,c

,

(19)
and rest of the eigenvalues λ(r)

k,c = λ
(2)
k,c, ∀r = 2, ..., L. In the case

of naive BF with LMMSE channel estimate, there will only be one
eigenvalue and that will be ζk,c. For the SV channel estimator, the
eigenvalues are λ

(1)
k,c = (ηk,c + Lσ̃2) + σ̃2, λ

(r)
k,c = σ̃2, ∀r 6= 1.

Similarly for the naive BF with SV channel estimator, the only one
eigenvalue is, λ(1)

k,c = (ηk,c+Lσ̃2). For ESIP-WSR BF with LS only
channel estimate, the only eigenvalue will be λ(1)

k,c = (ηk,c +Mσ̃2).
For the case of identical eigenvalues for all users (ηk,c = η), we

denote the eigenvalues (which are the same for all the Wk,c) are of
the form λ

(1)
k,c = λζ +λ2 λ

(r)
k,c = λ2 ∀r > 1, where ζ1, ζ2 are defined

below. Further we can write the equation for solving ec as
1
ec

= K
M

βλ1
1+βλ1ec

+ KL
M

βλ2
1+βλ2ec

+ µc, ζ = η2

Lσ̃2+η
,

λ2 = σ̃2η
Lσ̃2+η

, λ1 = ζ + λ2.
(20)

Theorem 3. In the large system limit, the quantities γk−γk
M→∞−−−−→
a.s

0, rk−rk
M→∞−−−−→
a.s

0, rk−rk
M→∞−−−−→
a.s

0 where γk is the deterministic
equivalent of the SINR. Further we can show that, since the loga-
rithm is a continuous function, by applying the continuous mapping



theorem, it follows from the almost sure convergence of γk that,
Rk − Rk

M→∞−−−−→
a.s

0, where Rk = ln(1 + γk) is the rate of user k,

with Rk = ln(1 + γk). The deterministic limits for the ESIP-WSR
BF with LMMSE and SV channel estimates are obtained as

γ
(Opt)
k,L =

pk(1−x
(L,Opt)
c ) ηk,c

1
Mbi

∑
i6=k

pi
ηk,bi
Lk,bi

tr{B−2
k,bi
}+1

, bk = c

βk = uk( 1
r
k
− 1

rk
),where, x(L,Opt)c =

e2c
Mc

K∑
i=1

Li,c∑
r=1

β2
i λ

(r), 2
i,c

(1+βiλ
(r)
i,c ec)

2
.

(21)
Similarly for the naive BF, we obtain the deterministic equivalent for
SINR as

γ
(N)
k,L =

(1−x(L,N)
c )

η2k,cpk

(ηk,c+σ̃
2
k
Lk,c)

1
M

K∑
i=1

piηk,bi
+1

, x
(L,N)
c =

e2c
Mc

K∑
i=1

β2
i λ

(1), 2
i,c

(1+βiλ
(1)
i,c ec)

2
.

(22)
Proof: See [7] for detailed derivations.

In the above SINR expression, the quantities (1−x(L,Opt)c ), (1−
x
(L,N)
c ) represent the loss in signal power due to the amount of ZF

happening at any SNR, which varies from no ZF at very low SNR

to ZF to all the paths (
K∑
i=1

Lk,c of them, case of CCEE) to which

gk cause interference. The details of this analysis will be dealt in
the following sections. Also, note that from (21), we can conclude
that for the SV channel estimator the signal power gets reduced by
a factor ηk,c

ηk,c+σ̃
2
k
Lk,c

compared to the LMMSE. This is attributed to
the absence of weighting which is present in the case of LMMSE
channel estimator. We consider below certain special cases for which
the implicit equation of ec can be analytically solved.

B. Extreme SNR Regimes: Naive BF
Corollary 3.1. For the naive BF with LMMSE channel estimate (or
with LS or SV estimator), 1

ec
= K

M
βλ1

1+βλ1ec
+µc, after some algebraic

manipulations, it can be shown to be the solution of a quadratic
equation and the positive ec can be obtained as

ec=
−(µc + βλ1(α− 1))+

√
(µc+βλ1(α− 1))2+4βλ1µc)

2βλ1µc
.

(23)
At extreme SNR regions (where µc ∝ 1/P ), it can be deduced that
lim
P→0

ec = 0, lim
P→∞

ec = ∞. Further by substituting for ec in (17)

leads to x
(LS,N)
c = x

(L,N)
c = x

(S,N)
c = K

M
at high SNR and

x
(LS,N)
c = x

(L,N)
c = x

(S,N)
c = 0 at low SNR for the naive BFs.

C. Extreme SNR Regimes: Perfect CSIT Case
Corollary 3.2. For WSR based BF design with perfect CSIT, which
represents a special case of ESIP-WSR BF considered in this paper
(D̃ = 0), the implicit equation for ec gets simplified as, 1

ec
=

K
M

βη
1+βηec

+µc. Note that there is only one eigenvalue corresponding
to the true rank one channel vector which is η. Hence we obtain a
positive solution by solving the resulting quadratic equation

ec =
−(µc + βη( κ

L
− 1)) +

√
(µc + βη( κ

L
− 1))2 + 4βηµc)

2βηµc
.

(24)
Again, at extreme SNR regions , it can be deduced that lim

P→0
ec =

0, lim
P→∞

ec = ∞. Further substituting these values in (17) leads to
the ZF dimension of K (interfering user channels) and hence the
rate expression can be written as (SNR represents Tx SNR, which
is P )

R = K ln

(
(1− K

M
)ρ
C

K

)
, ρ = SNRη. (25)

D. Extreme SNR Regimes: CoCSIT Case
Corollary 3.3. In the case of CoCSIT, the implicit equation for ec
gets simplified as, e−1

c = κβη(1 + βηec)
−1 + µc and a positive

solution obtained have the same form as (23), with λ1 = η. At
extreme SNR regions, it can be shown that lim

P→0
ec = 0, lim

P→∞
ec =

∞. Further by substituting for ec in (17) leads to x
(C)
c = KL

M

at high SNR and x
(C)
c = 0 at low SNR for the naive BFs. For

the CoCSIT case, the sum rate can be obtained as, RCoCSIT =
K ln

(
(1− KL

M
)SNR Cη

KL

)
. This represents a rate offset (per-user)

of ln M−K
M−KL + ln L w.r.t the perfect CSIT.

In Table I and Table II, we provide the simplified sum rate
expressions at high SNR and low SNR, respectively for various
BF and channel estimator combination. The simplified sum rate
expressions follow directly from the high SNR expressions for the
quantity ec as in [7] and hence the details are skipped here. For the
low SNR analysis, we observe that the sum rate can be written as
follows

R =
C∑
c=1

ln(1 + χcρc)
a
≈

C∑
c=1

χcρc, where, ρc = ηk,cP, (26)

where in (a), we made the approximation ln(1 + x) ≈ x, when
x � 1 and χ represents the SNR offset for various BFs.Also,
ηk,c = arg maxi ηi,c, representing the channel attenuation associated
with the strongest user. With ηk,c = η,∀c, the rate becomes
R ≈ Cχρ, ρ = ηP .

E. High SNR Analysis under CCEE

We observe that the sum rate expressions at high SNR can be
expressed as

R =

K∑
k=1

ln(1 + ωkρk,c), (27)

where ω = z
1+yP

represents the rate offset, where z, y varies w.r.t
the channel estimator and the type of BF design. For those BF
which saturates at high SNR, the saturation level is represented as
zP

1+yP
≈ z

y
. Under CCEE, the ESIP-WSR BF does pathwise zero

forcing and hence the reduction in signal power is (1 − KL
M

). With
LMMSE channel estimate, since the estimation error is also reduced
to the covariance subspace, ZF to the covariance subspace of the
interfering channels imply that the interference power gets reduced
to zero. Hence, KL spatial dimensions are used to suppress the inter-
cell and intra-cell interference. However, for the LS channel estimate,
since the estimation error is present in the entire M dimensional
space, interference power still remains. For the naive BF, where the
estimation error is not considered in the BF design, ZF to all the
interfering user channel estimates ((K − 1) ≈ K of them) does
happen and hence the signal power reduction due to ZF is (1− K

M
).

For the naive BF also, the interference power still remains and the
sum rate saturates at high SNR. This explains the drastic improvement
in performance between ESIP-WSR BF with LMMSE/SV channel
estimate compared to the ESIP-WSR BF with LS channel estimate
and naive BFs.

V. SIMULATION RESULTS

In this section, we present the Ergodic Sum Rate Evaluations for
BF design for the various channel estimates. Monte Carlo evaluations
of ergodic sum rates are done with the following parameters: C,
number of cells. Kc, number of (single-antenna) users in cell c and
K =

∑
c

Kc. M , number of transmit antennas in each cell. We

consider a path-wise or low rank channel model as in section II-A,
with L = number of paths = channel covariance rank. The elements of
the eigenvalue matrix D is generated from an exponential distribution
with mean 1. Further, all the entries are scaled such that tr{D} = 1.
The eigenvectors, C of user channel covariance matrix are generated
as random unitary matrices. We do evaluate the sum rate performance
under CCEE regime. Notations: in the figures, iCSIT refers to the
optimal BF design for the instantaneous (or perfect) CSIT case [14].
“LSA” refers to Large System Approximation. In all the figures, we
compare the various BF designs such as ESIP-WSR, EWSMSE and



TABLE I: High SNR Rate Offset for Various BFs (Dk,c = η
L

IL) under CCEE

ωρ naive EWSMSE ESIP-WSR Perfect CSIT CoCSIT

LS
(1−K

M
) η

η+σ̃2M

σ̃2C ρ
η
+1

ρ
(1−K

M
) η

η+σ̃2M

σ̃2C ρ
η
+1

ρ
(1−K

M
) η

η+σ̃2M

σ̃2C ρ
η
+1

ρ (1− K
M

) C
K
ρ (1− KL

M
) C
KL

ρ

LMMSE/SV
(1−K

M
) η

(η+σ̃2L)
Cρ
M

+1
ρ

(1−KL
M

) η

(η+σ̃2L)
Cρ
M

+1
ρ (1− KL

M
) η
η+σ̃2L

ρ (1− K
M

) C
K
ρ (1− KL

M
) C
KL

ρ

TABLE II: Low SNR Rate Offset for Various BFs (Dk,c = η
L

IL)

χ naive EWSMSE ESIP-WSR

LS η
(η+σ̃2M)

η
(η+σ̃2M)

η
(η+σ̃2M)

LMMSE/Subspace 1
L

1
L

1
L
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Fig. 1: a) EWSR for C = 1 cell, K1 = K = 15 users, M = 100,
L = 4, σ̃2 = 0.1. b) EWSR for C = 4 cell, Ki = 7, ∀i, So, K = 28
users, M = 64, L = 2, σ̃2 = 0.1.

naive under different channel estimates. For the multi-cell simula-
tions, we multiply the inter-cell channels by a random scalar factor
(< 1) to represent the attenuation in channel power for inter-cell
channels from any BS.
A. CCEE

The CCEE regime looks the most interesting scenario in terms
of the superior performance improvement of ESIP-WSR based BF
design compared to the very suboptimal schemes such as naive
or EWSMSE BFs. The naive and EWSME BFs are observed to
saturate at high SNR as seen in Figure 1. In the same figure, we
also compare the performance of CoCSIT based BF with the ESIP-
WSR BF. From the Figure 1:a) we deduce that there is a sum rate
offset of 17 bits/sec/Hz for the CoCSIT compared to the perfect
CSIT which is very close to the rate offset predicted by the large
system approximations in Section IV-E. The BFs with LMMSE and

SV channel estimators converge to the same performance at high SNR
in the simulations which is also analytically proved in the paper.

VI. CONCLUSION
In this paper, we introduced a stochastic geometry inspired random-

ization of the channel covariance eigen spaces of the K different users
and analyzed the large system behavior. In particular, we focused
on a spatial correlation regime in which the ratio of the sum of
the ranks of the channels from a BS to the number of antennas
M remains a constant. Numerical simulations suggest that the large
system approximations are accurate even for finite values of M,K.
We provided simple and elegant expressions for the sum rate at
high and low SNR, providing useful analytical insights into the
SNR offsets between different suboptimal BFs which match with
our simulations. ACKNOWLEDGEMENTS
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