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ABSTRACT

In-band Full Duplex (FD) is a wireless communication technology
which has the potential to transmit and receive simultaneously in the
same frequency band. Self-interference cancellation (SIC) is the key
enabler to achieve FD operation. As the SI is severe, some SIC is
required at the antenna level and in the analog domain before analog
to digital converter (ADC) in the receiver chain because the ADC has
only a limited dynamic range. Here we consider deliberately scaling
up the received signal, provoking ADC saturation due to the SI sig-
nal. This leads to missing samples which we propose to reconstruct
under the assumptions that the receive signal of interest is a low pass
bandlimited signal with known spectrum (mask), oversampling and
(perfect) digital SIC after the ADC. The missing samples are estima-
ted by fixed lag Kalman smoothing. More upscaling leads to fewer
available samples but with less quantization noise. Hence an opti-
mum compromise arises. We provide an approximate resulting MSE
analysis based on large random matrix theory, replacing randomly
selected Fourier transform vectors by vectors of i.i.d. variables. Si-
mulation results show the improvement in reconstruction Signal to
Noise Ratio (RSNR) and the optimal compromise behavior.

Index Terms— Full Duplex, Missing samples, Saturated samples,
Saturation, Signal recovery, Fixed lag Kalman smoothing.

1. INTRODUCTION

Ongoing evolution in wireless communication systems is subject to
tremendous growth for the number of users in a limited wireless
spectrum. Full duplex (FD) systems theoretically double the spect-
ral efficiency [1–4], hence very prominent to overcome the saturation
of available spectrum. To achieve FD operation, the self-interference
(SI) signal needs to be subtracted from the total receive (Rx) signal
to allow proper reception. SI signal power is around 110 dB hig-
her compared to the Rx signal of interest and its cancellation is not
an easy task. This is mainly due to the nonlinearities present in the
transmit (Tx) and Rx chains, which lead to inaccurate SI channel
estimate and limit the SI cancellation (SIC) capabilities.

However, continuous advancement in SIC techniques at the an-
tenna level, in the analog and digital domain has made FD operation
feasible [5–7]. The first ever WiFi FD system was presented in [1],
later extended to the MIMO case in [2]. Multiple solutions since then
have been proposed to push the limits of SIC to make FD operation
feasible also at the high Tx power scenarios. Beamforming based
techniques have also been proposed to improve the performance of
SIC [8–11]. Complexity of the analog SIC stage was a major chal-
lenge to deploy FD in massive MIMO scenarios, but recently a so-
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lution based on hybrid SIC has been proposed, which decreased its
complexity considerably [12].

Besides the nonlinearities, also the limited dynamic range
(LDR) of analog to digital converters (ADCs) can limit the per-
formance of a FD system. Saturation of converters in Rx chains
limits the correct adaption of digital SIC (DSIC) stage to mimic the
SI signal with opposite sign. Moreover, we also loose the Rx sig-
nal of interest for the duration of saturation. In [13, 14], the authors
claim that saturation of ADCs is a major bottleneck for FD sys-
tems, which is preventing us to benefit from their full potential. The
first analysis of residual SI for a FD MIMO-OFDM system which
took into account the LDR model was presented in [15]. Recently,
we analyzed the performance of a multistage/hybrid beamforming
for an OFDM FD backhaul system by using the LDR model [16].
Though all the other critical challenges to achieve FD operation ha-
ve been well tackled by the researchers, the possibility to reconstruct
saturated/missing samples has not been yet taken into account. So
the work we present here considers for the first time ever this pos-
sibility to achieve higher gains. To avoid saturation, one existing
solution is the automatic gain control (AGC) which scales down the
total signal to fit it into the LDR of converters. But, this solution
preserves only few quantization levels for the Rx signal of interest
and hence increases the quantization noise (QN). Recently, an al-
ternative FD transceiver structure to discard the saturated samples
based on non uniform sampling and zero crossing of the SI signal
for an OFDM system has been proposed [17]. In contrast to their
approach, our approach is more appealing as it doesn’t require ad-
ditional hardware as in [17] and applicable to FD systems equipped
with classical ADCs having uniform samplers.

We propose to deliberately scaling up the total Rx signal before
the ADC, which of course leads to have more saturated samples but
reduces QN on the available samples as well. Missing samples are
then reconstructed according to their linear minimum mean square
error (LMMSE) estimate by fixed lag Kalman smoothing. For the
state of the art on the LMMSE estimation of missing samples, we
refer to [18]. In this work, we deal only with the case of real sig-
nals but in principle our approach should be applied to both I and
Q branches. Here we assume that the available samples are SI free,
but ideally the joint optimization of DSIC stage and reconstructing
of missing samples should be considered. Classical LMMSE esti-
mation techniques requiring matrix inversions, may not be feasible
when the dimensions increase. Our fixed lag Kalman smoothing ap-
proach to reconstruct missing samples in a FD system is more ap-
pealing, being computationally very efficient, as it is a recursive ap-
proach.

1.1. Contributions of this paper
• For the first time ever, we consider the possibility to recon-

struct missing samples in a FD system by deploying Fixed lag
Kalman smoothing, which leads to significant performance



improvement.
• We provide an approximate resulting MSE expression based

on large random matrix theory as a function of the available
fraction of samples β. Also, the link between β and saturation
point ∆ of an ADC is established.

• Simulation results demonstrate that when the signal to be
reconstructed is upsampled of factor 1/α, then missing
samples can be reconstructed with small β.

Notation: In this paper, boldface lower-case and upper-case cha-
racters denote vectors and matrices, respectively. The operators
E{·}, tr{·}, (·)H, (·)T,Pr(·) denote expectation, trace, Hermitian
transpose, transpose and probability, respectively.

2. SYSTEM MODEL
We consider the scenario consisting of a FD system with single Tx
and Rx antenna, which is serving only one user. Let x be the signal
transmitted from its user and y be its received version. We assume
that x is generated according to an autoregressive (AR) process of
order M , so at time k its sample can be written as

xk = −a1xk−1 − a2xk−2 − ........− aMxk−M + z (1)

where z ∼ N (0, σ2
z) is an independent noise term driving the AR

process. We further assume that x is a bandlimited signal with a
known low pass specturm Sx,x(f) and upsampled of factor 1/α,
where α is a rational number. We further assume perfect SIC for the
fraction of available samples β, so we are ignoring the nonlinearities
of Tx and Rx chain. At the receiver side, the measurement equation
for non saturated sample of x at time k can be written as

yk = xk + vk (2)

where vk denotes the granular QN. Let δ and b denote the quantiza-
tion step size and the number of bits of an ADC. Then, vk is uni-
formly distributed in [−δ/2, δ/2] with variance σ2

v and connected to
∆ by δ = ∆/2(b−1), where b denotes the number of bits. Missing
samples are denoted with y′k and their measurement equation can be
written as

y′k = xk + vk + sk (3)

where sk denotes saturation noise. For y′k, sk dominates and has va-
riance σ2

sk >> σ2
vk . It is easy to identify the positions of missing

samples as y′k = ±∆. So, also the position of missing samples are
well known and we discard these values by replacing them with ze-
ros. Our Rx signal obeys (1) and the coefficients of this AR process
can be estimated by using the following equation

rx,x(0) rx,x(1) . . . rx,x(M)

rx,x(1)
. . . . . .

......
. . . . . . rx,x(1)

rx,x(M) . . . . . . rx,x(0)




1
a1
...
aM

 =


σ2
z

0
...
0

 , (4)

where rx,x(·) is the correlation sequence of x obtained by inver-
se DFT of the low pass spectrum Sxx(f), which is assumed to be
known at the Rx side. The system of equations (4) is known as Yule-
Walker equations and by scaling all the elements by σ2

z , it can be
rewritten as

RM+1 a = e1 (5)

where RM+1, a and e1 are the matrix of correlation sequence, vec-
tor of AR coefficients and the first standard basis vector, respectively.
Now a can be obtained as a = R−1

M+1e1, from which we can reco-
ver the coefficients of (1) as [1,−a1,−a2, ...,−aM ]T = aT /eTa.

Also Levinson’s algorithm can be used to solve (4), which is a recur-
sive approach, has complexity O(M2) and it further provides an
accurate estimate of σ2

z .
Kalman’s filter equations are very appealing to the case in which

unknown parameters that we wish to estimate follow a state space
model. These unknowns are estimated by minimizing the mean squa-
re error (MSE). It consists in following a series of steps at each time
instant to predict the future state by performing LMMSE prediction,
based on the so called Gauss-Markov model. Then Kalman gain is
evaluated based on the estimation error and measurement covariance
matrices and its objective is to correct the a priori estimate. Correc-
tion of the state estimate at time k consists in summing to the a priori
estimate, a factor consisting of the Kalman gain Kk multiplying in-
novation, which is a difference between the measured value and the
a priori estimate. Kalman gain varies from [0, 1] and it is 0 when
the measurements are very noisy and innovation is not taken into
account at all. It assumes value 1 when the measurement can provi-
de perfect information to update the a priori estimate by summing
up directly the innovation. Finally, LMMSE is achieved with mini-
mum prediction MSE multiplying (1−Kk). For the state of the art
on Kalman Filtering and the state space model, we refer the reader
to [19].

As we are interested in also smoothing our estimates of mis-
sing samples, we leverage fixed lag Kalman smoothing with lag
L << N , where N is the total number of samples. So to estima-
te the sample at time k, measurements up to time k + L are taken
into account. The state space model for the fixed lag Kalman smoot-
hing can be written as

xk = Hxk−1 + e1z (6)

yk = A(xk + vk + sk) (7)
where xk is the L×1 state vector at time k, vk is the granular quan-
tization noise state vector, A is the L × L state observation matrix,
yk is the observed state at time k, e1z is noise of the AR process, sk
is the saturation noise state vector with non zero elements only for
saturated samples, H is the L × L state space matrix with its first
row [−a1, ..,−aM 0], its left lower block is an identity of size L−1
denoted with IL−1 and its L-th column is made of all zeros. We de-
note with x̂−k and x̂+

k the a priori and posteriori estimate of the state
xk, with Rk−

x̃x̃ and Rk+
x̃x̃ the a priori and posteriori error covariance

matrices and with Qk the measurement covariance matrix.
The LMMSE estimates of missing samples with fixed lag Kal-

man smoothing can be obtained by iterating algorithm 1. The smoot-

Algorithm 1 Fixed lag Kalman smoothing

Initialize x+
0 = E[x0] and R0+

x̃x̃ = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T ]
for k = 1, ....., N , where N denotes the total samples of x

1. Rk−
x̃x̃ = HRk−1+

x̃x̃ HT + e1Qk−1

2. Kk = Rk−
x̃x̃A

T
k (ARk−

x̃x̃A
T + Rk)

3. x̂−k = Hx̂−k−1

4. x̂+
k = x̂−k + Kk(yk −Ax̂−k )

5. Rk+
x̃x̃ = (IL −KkA)Rk−

x̃x̃

end

hed LMMSE estimate of sample xk can be found in the L−th ele-
ment of the state vector xk+L and the minimum mean square error
is contained in R

(k+L)+
x̃x̃ (L,L).

3. MSE LARGE SYSTEM ANALYSIS
In this section, we derive analytically the approximate resulting MSE
as a function of the fraction of available samples β. Our derivation



is based on the properties of trace operator, random matrix theory,
cyclic permutation, circulant matrix approximation and partially on
the expressions derived in [20]. At the end, we also establish the link
between β and saturation point ∆ of an ADC.

The error correlation matrix for the LMMSE estimation can be
written as

Rx̃x̃ = Rxx −RxxA
H(ARyyAH)−1ARxx, (8)

where A now becomes a K × N matrix which selects K non sa-
turated samples from the total of N received samples to achieve
β = K/N , Ryy = Rxx + σ2

vI and Rxx are the correlation mat-
rix of the received and transmitted signal. Rxx is a Toepliz matrix
and can be approximated as a circulant matrix Rc

xx, which can be
written as

Rc
xx =

1

N
FHDF, (9)

where D is the DFT of the finite correlation sequence of (4), F de-
notes the DFT of size N and also F−1 = FH is true. We assu-
me that A performs random sub-selection of the samples to achie-
ve β and approximate AFH ∼ S, a K × N matrix with elements
si,j ∼ N (0, 1). This approximation can be introduced because A
performs random subset selection of samples to achieve β. This frac-
tion is strictly related to the commulative distribution of A as the
DFT matrix has unit magnitude and different phase terms. A selects
its K rows randomly and therefore AFT can be seen as a random
set of orthonormal columns. By taking the elements pairwise, the
average norm of S (if divided by N ) as N → ∞ goes to one, the
inner product between two rows goes to zero and the inner product
between two elements goes to 0 as it has independent variables. By
taking into account the aforementioned approximations, we can rew-
rite (8) as follows

Rx̃x̃ = F−1DF− F−1DSH(SDSH +Nσ2
vI)
−1SDF. (10)

By applying the trace operator and dividing everything by N , we
have

tr(Rx̃x̃)

N
= tr(

F−1DF

N
− F−1DSH

N
(SDSH +Nσ2

vI)
−1SDF).

(11)
Now, using the property of trace operator which allows cyclic per-
mutation, FF−1 becomes identity in both of the terms of the MSE
expression. Hence, (11) can be further simplified as

tr(Rx̃x̃)

N
= tr(

D

N
− DSH

N
(SDSH +Nσ2

vI)
−1SD). (12)

By applying the matrix inversion lemma, we can simplify the ()−1

term in (12) as

SH(Nσ2
vI + SDSH)−1 = D−1(

1

Nσ2
v

SHS + D−1)
SH

Nσ2
v

, (13)

which allows us to rewrite (12) as
MSE

N
=

1

N
tr(D)− 1

N
tr((SHS +Nσ2

vD
−1)−1SHSD)

= σ2
vtr((S

HS +Nσ2
vD
−1)−1).

(14)

By using (8)-(14) from [20], for si,j being iid, (14) can be written as

MSE

N
= e σ2

v =
1

N
tr((

K

N

1

1 + e
IN + σ2

vD
−1)−1), (15)

which yields

e σ2
v =

1

N

N∑
i

1
K
N

1
1+e

+
σ2
v
di

. (16)

For the ideal low pass bandlimited spectrum case, fraction α of the
N di values are di = d. By taking the inverse DFT of the spectrum
of x, we get

σ2
x =

1

N
αNd, (17)

and for exact bandlimited spectrum it equals fraction α of the
(over)sampling frequency. Therefore, 1

α
denotes the oversampling

factor, which implies d = σ2
x/α and ρ = σ2

x/σ
2
v is the signal-to-

noise-ratio (SNR). By using the previous results, we can rewrite (16)
as

e σ2
v = α

1
K
N

1
1+e

+ α
ρ

. (18)

It implies
K

N

e

1 + e
+
α

ρ
e =

α

σ2
v

, (19)

which can be rearranged as

βe+
α

ρ
(e+ e2)− α

σ2
v

(1 + e) = 0. (20)

By multiplying with ρ and dividing by α we get

ρβ

α
e+ e+ e2 − ρ

σ2
v

(1 + e) = 0, (21)

which leads to the following expression

e2 + (1 +
ρβ

α
− ρ

σ2
v

)e− ρ

σ2
v

= 0, (22)

and finally by solving for e we get

e =
1

2

[
−(1 +

ρβ

α
− ρ

σ2
v

) +

√
(1 +

ρβ

α
− ρ

σ2
v

)2 +
4ρ

σ2
v

]
. (23)

Under the assumptions that xk, vk and the SI signal follow Gaussian
distribution and sk has the dominant contribution, the fraction of
available samples β can be linked to ∆ as

β = P (|y′k| < ∆) = 1− P (|y′k| ≥ ∆) = 1− 2P (y′k ≥ ∆)

=1−2(1−P (y′k ≤ ∆)) = 2P (y′k ≤ ∆)− 1=2F ′y(∆)− 1
(24)

where F ′y(·) is the CDF of y′k. Now Fy′(.) = Fs+x+v(.) ≈
Fs+x(.) ≈ Fs(.) where Fs(.) is the CDF of a Gaussian random
variable with zero mean and variance σ2

s . So under the assumption
that sk is Gaussian, we can finally conclude that β = 2Fs(∆)− 1.

4. SIMULATION RESULTS

In this section, we present simulation results to evaluate the per-
formance of fixed lag Kalman smoothing to reconstruct mis-
sing/saturated samples. We consider a FD system equipped with
a single Tx and Rx antenna, which receives a real signal form its
only user and has an ADC in its Rx chain with uniformly quantized
dynamic range. For evaluation purpose, we consider ADCs with re-
solution of 8, 10 and 12 bits to see the variation in reconstruction
performance. We assume that the SI signal has the same characte-
ristics of x, except the power. We assume also that after the analog
SIC stage a residual of 50 dB is left, to be taken care of in the base-
band. At the input of the ADC, we deliberately scale up the signal
consisting of residual SI and x, by letting it saturate with an AGC
to change β. Available samples change as a function of n, which is
linked to the saturation point as ∆ = 2nσx. We also assume perfect
SIC for the non saturated samples, so we are ignoring the nonlinea-
rities of the Tx and Rx chain. We further also assume that Rx signal



is upsampled of factor 1/α = 4 and its spectrum Sx,x(f) at the Rx
side to be known.

The fixed lag Kalman smoothing initializes at time instant L+1
and by choosingL = 20 we assume that xL is known in a noisy form
(only QN). We generate the Rx signal of length N = 1000 with va-
riance σ2

x = 1 according to an AR process of order M = 10, which
has a perfect lowpass spectrum Sx,x(f). At the Rx side, as Sx,x(f)
is supposed to be known, its inverse DFT is calculated to get the cor-
relation sequence of size M + 1 which appears in (4). Then, the AR
coefficients and σ2

z driving the process are estimated by using the Le-
vinson’s algorithm. For the SI signal, we assume that it has the same
spectrum, same length and generated using the same AR coefficients
of x, but with different variance σ2

s . Figure 1 shows β as a function
of n, which varies with step size 0.5. We define the signal-to-noise-
ratio as SNR= σ2

x/σ
2
v . To evaluate the reconstruction performance,

we define reconstruction SNR (RSNR) as = σ2
x/MSE. For fixed

lag Kalman smoothing with lag L, the MSE for each sample at time
k is obtained by averaging over the (L,L)-th element of the poste-
riori error covariance matrix R

(k+L)+
x̃x̃ .
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Fig. 1. Fraction of available samples as a function of n.

The reconstruction performance is shown in Fig. 2, which clear-
ly exhibits the optimal compromise between QN and β(n), resul-
ting to be different for different ADCs. It may worth mentioning that
because of the initialization condition, state at time L to be perfectly
known, the LMMSE estimates of missing samples with very small β
tends to still give a positive RSNR (in dB). This occurs because the
saturated samples from time L+ 1 onwards are estimated according
to the AR model (1) and for n ∈ [1, 6] only very few innovations are
taken into account to update the a priori estimates.This leads to ha-
ve almost the same reconstruction performance for n ∈ [1, 6], even
with ADCs with different resolution as the available samples occu-
py the whole LDR and the effect of QN is negligible. For n > 6,
when more than 25% (upsampling of factor 4) becomes available
then more and more innovations are taken into account to impro-
ve the performance. However as the QN also start to become non
negligible and it is different for ADCs with different resolution, the
reconstruction performance also varies. It is worth emphasizing that
the initial condition for which we suppose the state at time L to be
known, represents the case in which saturation may occurs due to
instantaneous SI power increase, but before that we still have some
non saturated samples available, which we can use to estimate the

saturated samples. Initializing the estimation process with no know-
ledge of available samples leads to different MSE for the three ADCs
considered when n ∈ [1, 6] and results to be the same for n > 6.

It is clearly visible from Fig. 2 for the case of 8 bit ADC that
RSNR is equal to SNR when only 25% (1/α = 4) of the non satu-
rated samples are available. For each ADC considered, there exits a
different optimum point leading to RSNR∗. This point represents the
optimum compromise between β and QN, which allows to achieve
higher gains for FD systems. It is evident from Fig. 2 that, as the
resolution increases, the QN variance decreases and therefore to ac-
hieve RSNR∗ (higher than SNR) more and more fraction of available
samples are needed. The tuning of AGC should be done to make su-
re that we receive the optimum fraction of available samples β∗ at
the receiver side to reconstruct the missing samples.
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Fig. 2. Reconstruction SNR for 8, 10 and 12 bit ADCs as a function
of n

5. CONCLUSION
Saturation of ADCs in the Rx chains is a major bootleneck of FD
systems. Tuning with AGC has been used so far to avoid saturation,
but it is based on scaling the total Rx signal (residual SI and Rx sig-
nal of interest) completely to fit it into the LDR of ADCs. This leads
to preserve very few quantization levels for the signal of interest and
hence increases QN. In this work, for the first time ever we consi-
dered the possibility to reconstruct saturated samples according to
their LMMSE estimate by using fixed lag Kalman smoothing. To le-
verage our approach, we assume that the signal to be reconstructed
follows an AR model, its upsampled and its spectrum to be perfectly
known at the receiver side. We deliberately provoke saturation which
leads to have fewer available samples but with very less quantization
noise. Simulation results show that saturated samples can be recon-
structed very well if the assumptions mentioned above are met. Also,
the optimum compromise between the fraction of available samples
and QN is evident, which results to be different for ADCs.

Future work direction of our proposed approach may consider
its extension to the multi-user MIMO case, possibly exploiting the
OFDM signal model. Moreover, in principle also digital SIC sta-
ge should be adapted as the SI channel estimation results to be er-
roneous due to saturated samples. Therefore, one further direction
would be the joint optimization of DSIC stage and AGC.
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