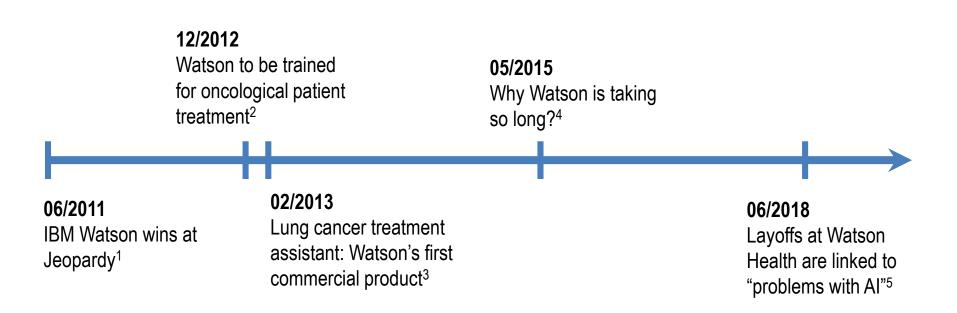


Expert in the loop: Humanmachine interaction to build safe AI-based systems

Maria A. Zuluaga

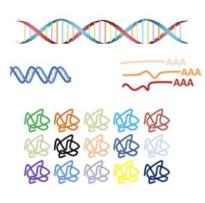
Reliable AI: Healthcare as a use case



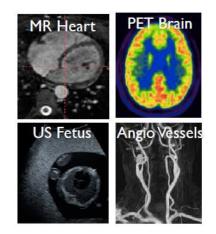
¹IEEE Spectrum - <u>http://disq.us/t/dyp9wt;</u> ²IEEE Spectrum - <u>http://disq.us/t/gki3ri;</u> ³Forbes - <u>https://bit.ly/2TBIYJi</u> ⁴IEEE Spectrum - <u>http://disq.us/t/1q91ji9;</u> ⁵IEEE Spectrum - <u>http://disq.us/t/33p3080</u>

The challenges

1. Data is inherently complex and expensive to collect



Molecular & -omics data



Biomedical images

Clinical records

The challenges

- 1. Data is inherently complex and expensive to collect
- 2. High-impact, high-risk decisions with little tolerance to errors

source: https://www.mskcc.org/locations/directory/memorial-hospital

"...the rate of agreement was about 33 percent — so the hospital decided not to buy the system " STAT, Boston Globe Media - Sept 5, 2017

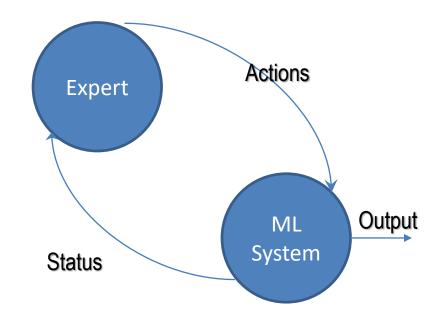
source: https://bit.ly/2xOq7QK

The challenges

- 1. Data is inherently complex and expensive to collect
- 2. High-impact, high-risk decisions with little tolerance to errors

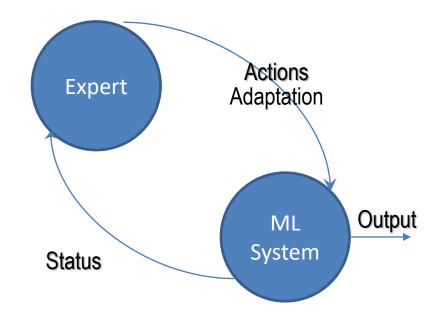
There is a need for <u>robust and reliable</u> methods that can be safely deployed in practice

Expert in the loop



Expert in the loop

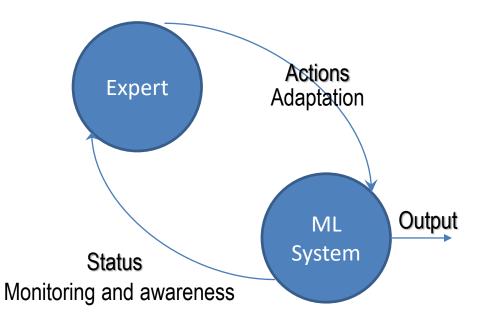
Challenge 1: Interactivity



Expert in the loop

Challenge 1: Interactivity

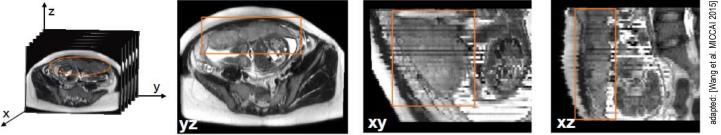
Challenge 2: Feedback



INTERACTIVITY TO DEAL WITH DATA

Low quality training data

Human placenta: 3D reference and view from the 3 standard anatomical planes



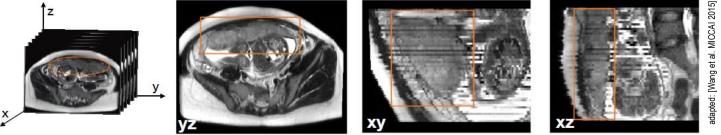
Challenges: Poor 3D image quality and varying locations

State of the art

- Large number of interactions
- Constrained interactions
- Limited learning ability of the underpinning model

Low quality training data

Human placenta: 3D reference and view from the 3 standard anatomical planes



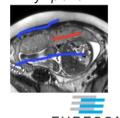
Challenges: Poor 3D image quality and varying locations

State of the art

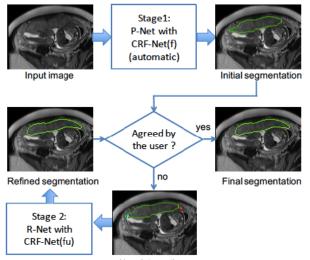
om & Société numérique

- Large number of interactions
- Constrained interactions
- Limited learning ability of the underpinning model

Minimally interactive Flexible Robust Works in 2D & 3D Human placenta: yz plane

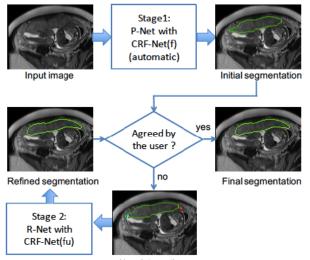


1.



User interactions

- INTERACTION FOR DATA AUGMENTATION
- 2. INTERACTION TO DEFINE A PRIOR FOR SMOOTHER RESULTS



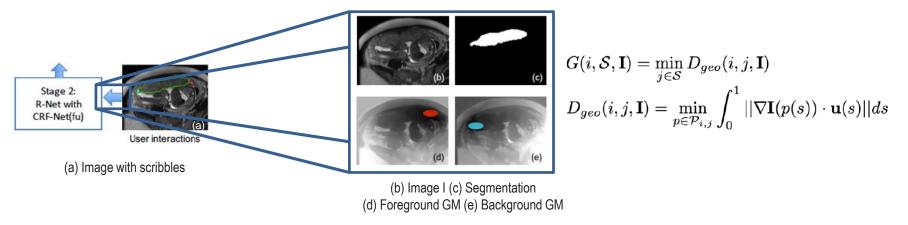
User interactions

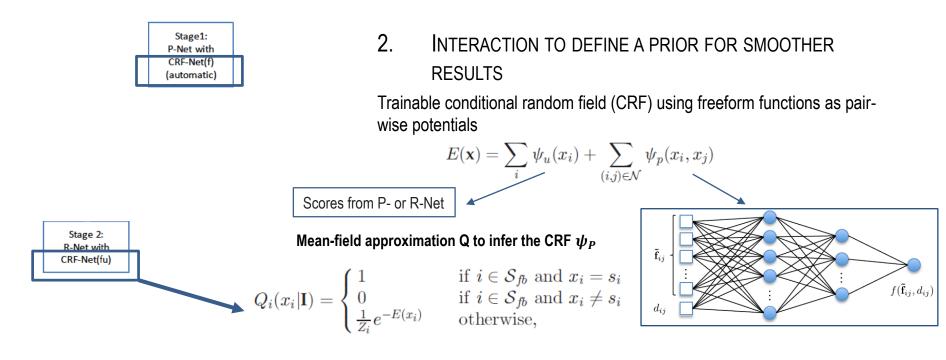
1. INTERACTION FOR DATA AUGMENTATION

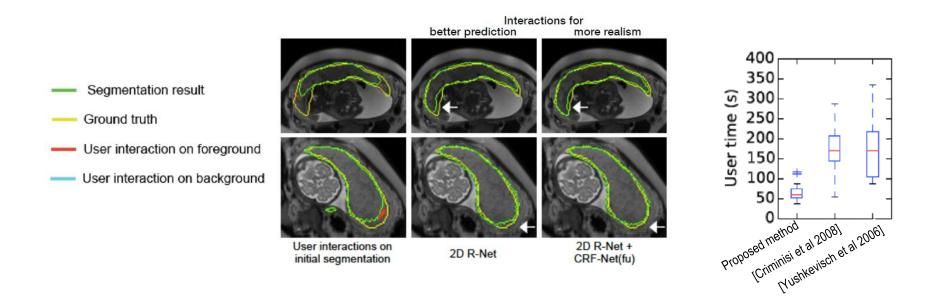
The original image I and the initial segmentation are concatenated with the geodesic distance maps and used as input of the refinement net (R-Net).

1. INTERACTION FOR DATA AUGMENTATION

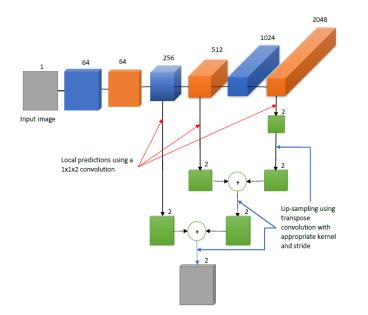
The original image I and the initial segmentation are concatenated with the geodesic distance maps and used as input of the refinement net (R-Net).

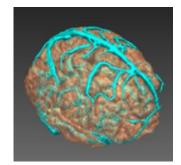


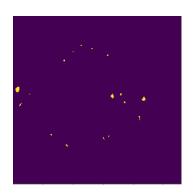




Currently: Deal with small objects







• Understand the effects of "bad" interactions

P. Mathur

Challenge 2:

FEEDBACK

Hidden Technical Debt of ML Systems

Sculley et al. NeurIPS 2015

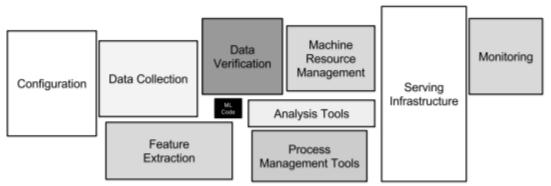


Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Hidden Technical Debt of ML Systems

Sculley et al. NeurIPS 2015

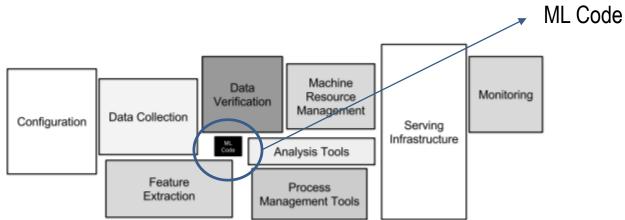
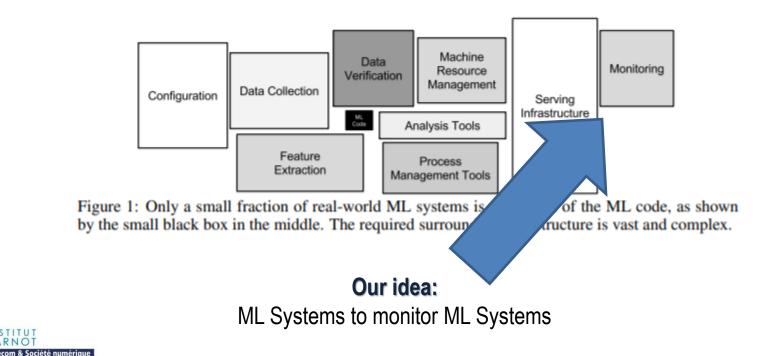


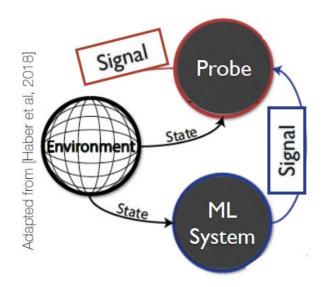
Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Hidden Technical Debt of ML Systems

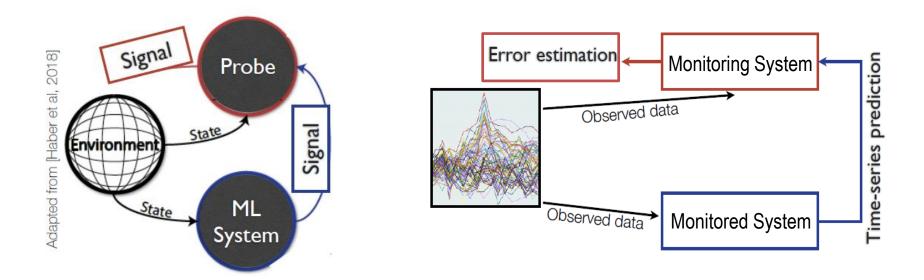
Sculley et al. NeurIPS 2015



Model monitoring: Probe principle



Model monitoring: Probe principle



Hypothesis: We can train a model to monitor the performance of other models over time

Model monitoring: Empirical study

Materials

- <u>Data</u>: 23.4K time series from the M4 benchmark
- <u>Monitoring models</u>: LSTM, CNN, Bayesian CNN, GP
- <u>Monitored models</u>: 10 different methods

Model monitoring: Empirical study

Materials

- <u>Data</u>: 23.4K time series from the M4 benchmark
- <u>Monitoring models</u>: LSTM, CNN, Bayesian CNN, GP
- <u>Monitored models</u>: 10 different methods

Method

 Measure the capacity of the monitoring models to estimate the forecast prediction error of the monitored models

$$sMAPE = \frac{1}{h} \sum_{t=1}^{h} 2\frac{|y_t - \hat{y}_t|}{|y_t| + |\hat{y}_t|}$$

Results: Monitoring

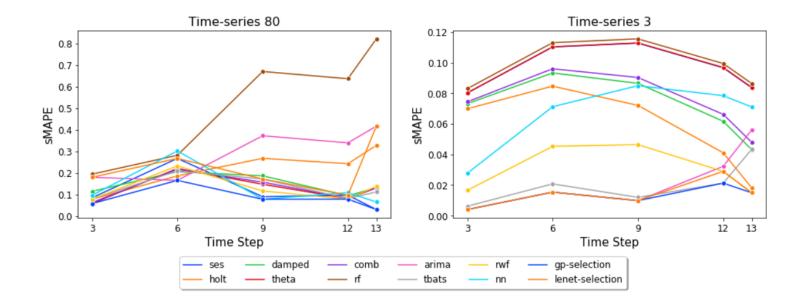
	Ground Truth		Monitoring models							Develier	
			LSTM		Bayes-LeNet		GPs		Baseline		
YEARLY - $h = 6$											
	model	sMAPE	monitored model	sMAPE	monitored model	sMAPE	monitored model	sMAPE	model	sMAPE	
1	comb	$0.166\ (0.196)$	damped	0.132(0.076)	comb	$\underline{0.144}$ (0.056)	comb	0.153(0.218)	rf	0.225(0.269)	
2	damped	0.167(0.31)	comb	0.133(0.094)	theta	$\underline{0.146}$ (0.058)	damped	0.155(0.237)	damped	0.368(0.310)	
3	theta	0.169(0.183)	theta	$0.136\ (0.072)$	damped	$\underline{0.149}$ (0.054)	theta	$\underline{0.159}(0.230)$	holt	0.370(0.322)	
4	holt	$0.176\ (0.225)$	holt	0.139(0.125)	holt	$0.156\ (0.126)$	holt	$\underline{0.163}(0.273)$	comb	0.385(0.313)	
5	ses	$0.191\ (0.182)$	ses	0.167(0.076)	ses	0.175(0.067)	ses	0.184(0.214)	theta	$0.406\ (0.320)$	
6	rf	$0.221 \ (0.241)$	rf	0.208(0.156)	rf	0.212(0.098)	rf	0.210(0.266)	ses	0.437(0.324)	

Results: Monitoring

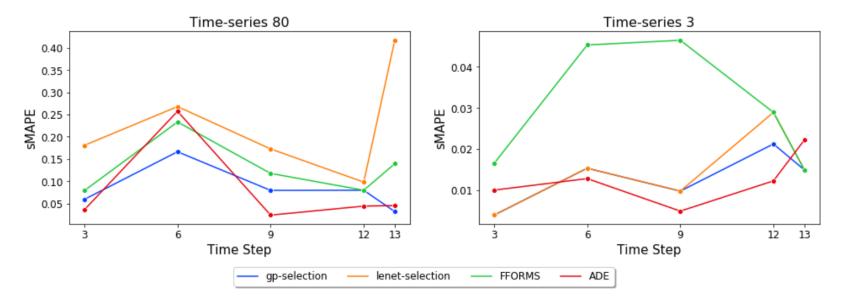
	Ground Truth		Monitoring models							Baseline		
			LSTM		Bayes-LeNet		GPs		Baseline			
YEARLY - $h = 6$												
	model	sMAPE	monitored model	sMAPE	monitored model	sMAPE	monitored model	sMAPE	model	sMAPE		
1	comb	$0.166\ (0.196)$	damped	0.132(0.076)	comb	$\underline{0.144}$ (0.056)	comb	0.153(0.218)	rf	0.225(0.269)		
2	damped	0.167(0.31)	comb	0.133(0.094)	theta	$\underline{0.146}(0.058)$	damped	0.155(0.237)	damped	0.368(0.310)		
3	theta	0.169(0.183)	theta	0.136(0.072)	damped	<u>0.149</u> (0.054)	theta	$\underline{0.159}(0.230)$	holt	0.370(0.322)		
4	holt	0.176(0.225)	holt	0.139(0.125)	holt	0.156(0.126)	holt	0.163(0.273)	comb	$0.385\ (0.313)$		
5	ses	$0.191\ (0.182)$	ses	0.167(0.076)	ses	0.175(0.067)	ses	0.184(0.214)	theta	$0.406\ (0.320)$		
6	rf	$0.221 \ (0.241)$	rf	0.208(0.156)	rf	0.212(0.098)	rf	0.210(0.266)	ses	0.437(0.324)		

• Further direction: Can we use it for model selection?

Results: Model Selection



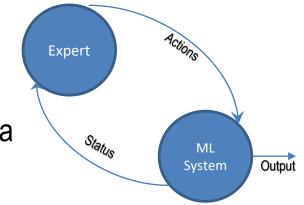
Error monitoring vs meta-learning



• Competitive results using simpler "base" learners

 Interactive ML is a promising way to achieve <u>robustness</u> and <u>reliability</u> by keeping experts involved and informed

- Demonstrations in two aspects:
 - Efficient user input to deal with training data
 - System feedback to alert the expert



Acknowledgments

EURECOM

Prof. P. Michiardi Prof. M. Filippone R. Candela P. Mathur

KCL Prof. S. Ourselin Prof. T. Vercauteren

KU Leuven Prof. J. Deprest, MD Dr. M. Aertsen

University of Electronic Science and Technology of China Dr. G. Wang

GOSH Dr. P.A. Patel, MD

Expert in the loop: Human-machine interaction to build safe AI-based systems

THANK YOU

