
A Distributed Access Control Model for Java

Re�k Molva, Yves Roudier

Institut Eur�ecom, BP 193, 06904 Sophia-Antipolis - France

fmolva,roudierg@eurecom.fr

Abstract. Despite its fully distributed and multi-party execution model,

Java only supports centralized and single party access control. We sug-

gest a new access control model for mobile code that copes with the
shortcomings of the current access control model of Java. This new model

is based on two key enhancements: the association of access control in-

formation with each mobile code segment in the form of attributes and
the introduction of intermediate elements in the access control schema.

The combination of the current ACL-based approach with the capability

scheme achieved through mobile code attributes allows the new access
control model to address dynamic multi-party scenarios while keeping

the burden of security policy con�guration at a minimum. We �nally

sketch the design of an access control system based on the proposed
model using Simple Public Key Infrastructure (SPKI) certi�cates.

Keywords: Java, access control model, distribution, SPKI, capabilities

1 Introduction

The Java runtime environment (JRE) o�ers a rich set of security mechanisms

for mobile code. The security features of the JRE evolved from the con�nement-

based sandbox approach of release 1.0 and 1.1 to a full-
edged access control

model [GMPS97,Sun98,KG98] as implemented in release 1.2, also called Java 2.

Java 2 o�ers �ne-grained access control whereby the operations of mobile code

segments on the local resources are controlled via access control lists (ACL)

represented by a set of permissions. Each mobile code segment is granted a set

of access rights de�ned as permissions. Access control is enforced during runtime

by verifying the permissions of the mobile code for each operation attempting

an access to a protected resource.

This access control solution su�ers from a strong limitation: despite the truly

distributed nature of its execution model, access control in Java 2 is based on a

centralized security model. The JRE and the Java language o�er a perfect envi-

ronment for distributed computing in the sense that not only components from

various sources can be dynamically integrated with an application at runtime,

but also mobile programs can seamlessly run in remote environments like the

Java virtual machine. The basic assumption underlying the execution model of

Java is that each programmay consist of various components and that each com-

ponent can be generated by independent parties that can be geographically dis-

tributed. Such an execution model can be quali�ed as truly distributed, whereas

2

the access control model of Java 2 seems to be based on a centralized model. In

the security model of Java 2, each distributed component needs to be designed in

compliance with the security policy of the target environment and the security

policy of the target environment needs to ful�ll the requirements of each po-

tential component that might be imported by the target environment. The only

reasonable way to assure a meaningful collaboration between distributed com-

ponents and a local environment governed by the security policy seems to place

both the remote components and the local security policy under the jurisdiction

of a single party. This is a serious limitation in the face of a fully distributed

scenario taking advantage of the distributed nature of Java that a�ords a multi-

party execution model including components from multiple sources and runtime

environments with varying security policies.

In this paper, we suggest a new access control model for mobile code that copes

with the shortcomings of the current access control model of Java. Section 3

describes the new model that is based on two key enhancements: the association

of access control information with each mobile code segment in the form of

attributes and the introduction of intermediate elements in the access control

schema. The combination of the current ACL-based approach with the capability

scheme achieved through mobile code attributes allows the new access control

model to address dynamic multi-party scenarios while keeping the burden of

security policy con�guration at a minimum. Section 4 presents the design of an

access control system based on the proposed model using SPKI certi�cates.

2 Access Control in Java 2

If we summarize the goal of access control as the enforcement of a model de�n-

ing the authorized operations between active components called subjects, and

resources called objects, in the JDK 1.2 access control model, subjects corre-

spond to protection domains, and objects to local resources like �les or system

services. The protection domain of a class is identi�ed by the CodeSource of that

class and the CodeSource consists of the CodeBase or URL from which the class

was loaded, and the signature of the CodeBase on the class �le. In the recent

JAAS extension to JDK, the protection domain concept also encompasses the

identity of the user who runs the code within the JVM, thus allowing multi-user

operations within a single JVM. Access rights are in turn represented by Java 2

constructs called permissions that include the details of an operation authorized

on a protected resource. Access rights are granted to subjects by assigning per-

missions to protection domains in a policy �le during con�guration. The default

implementation of the JVM supports two policy �les de�ned respectively by the

system administrator and the user.

The actual enforcement of access control at runtime is based on the reference

monitor concept. The reference monitor can be implemented either by the Se-

curityManager class or the AccessController class. During its execution each

3

object is labeled as belonging to a protection domain and will be granted an

access based on this annotation.

Di�erent permissions can be granted to a <protection domain, resource> tuple.

The default policy is to deny all access to protected resources unless otherwise

stated. The e�ective access permission as derived by the reference monitor cor-

responds to the intersection of all permissions of objects that are part of the

execution thread, that is, the intersection of permissions from several protection

domains. The only exception to this rule is the "privileged code" mark that

enables a trusted code to keep its permissions from being shared by its callers'.

3 Shortcomings

Unlike the Java execution model that is fully distributed, the access control

mechanisms of Java 2 are based on a centralized security model. As depicted

in the previous section, in the default implementation of JDK 1.2, the access

rights of each mobile component are de�ned in a con�guration �le located in

the runtime environment. This �le includes the mapping between each mobile

component and the permissions granted to the component during its execution

on the local runtime environment. The reliance of access control decisions on the

local con�guration �le results in two major limitations from the point of view of

a distributed environment. First, each possible remote component or mobile code

that can be authorized to access local resources must be identi�ed beforehand

and registered in the policy con�guration of the runtime environment. Second,

each component designer or mobile code programmer must take into account

the access control restrictions of all potential target runtime environments at

the design stage.

Apart from numerous practical di�culties in terms of programming, these limita-

tions hinder the deployment of a dynamic distributed environment by requiring

a static de�nition of all distributed components and their security attributes at

once.

Further analysis points to the fact that these limitations are due to the cen-

tralized nature of the underlying access control model for Java 2. This model,

which is based on the access control list (ACL) concept, requires that all the

access control information be located near the resources that are subject to ac-

cess control. Since the access control information includes both the identities

and the attributes of all the potential subjects that might issue access requests,

the resulting access control system necessarily needs to keep a centralized and

static information base including all potential components and their attributes.

Figure 1 depicts the centralized and single party access control model of Java 2.

Even though an ACL-based model can quite e�ciently suit a centralized organi-

zation whereby a single party manages the security policy of all the components,

4

Centralized authority

Security Policy - ACL

Resources

Java Virtual
Machine

 Mobile
component

Access requests in
compliance with the

security policy

Access
Control
Information

Fig. 1. Centralized and single party access model of Java 2.

it does not meet the requirements of dynamic multi-party scenarios akin to In-

ternet applications. Multi-party environments require that the access control

decisions be shared between the local party that manages the resources, or ob-

jects in the access control terminology, and the remote parties that generate

mobile code components, or subjects. Dynamic scenarios on the other hand call

for a solution that suits dynamic populations both in the subject and object cat-

egories. A dynamic solution would then allow mobile code components to join

and leave the set of potential subjects as well as a variable number of runtime

environments to o�er a variable set of resources for access by mobile components.

Another shortcoming of the single party model of Java 2 is that it does not

properly exploit the public key infrastructure (PKI) on which it relies for au-

thentication. Java 2 requires authentication of each mobile component based

on digital signature veri�cation using identity certi�cates de�ned as part of an

X.509 PKI. The main objective of a PKI based on X.509 is to allow any two

parties to be able to authenticate one another without any prior knowledge or

without any bilateral trust relationship between those parties other than a trust

chain that can be established through the global certi�cation tree. Because of its

centralized and single party access control model, Java 2 does not take advantage

of the underlying PKI's global communication capabilities. Instead of a global

PKI, a simple authentication model based on shared keys or a
at public key

infrastructure using a single certi�cation authority would as well be su�cient to

meet the authentication requirements of Java 2.

As a result of the limitations in its access control model, Java 2 does not seem

suitable for scenarios that are inherently multi-party or applications that involve

dynamic populations of mobile code producers and consumers. For example,

an extranet that consists of two or more interconnected corporate networks or

intranets raises an access control problem that is inherently multi-party. Let's

5

consider a mobile code access scenario whereby a mobile code component from

intranet A attempts to access the resources of intranet B. The access control

decision should take into account not only the security policy of intranet B with

respect to its local resources but also the attributes of the mobile code component

as de�ned by intranet A. Using Java 2's single party model in this scenario would

require intranet B to incorporate into its access control information the attributes

of authorized mobile code components from intranet A.

4 Towards a Distributed Access Control Model

In order to alleviate the limitations of Java's centralized and single party access

control model, this paper suggests a new access control model that allows for

distributed and multi-party operations.

This model enhances the existing access control model with two new concepts:

{ access control attributes located with the mobile code segments, in addition

to the access control information located within the runtime environment;

{ intermediate access control elements that allow for the independent con�g-

uration of access control attributes accompanying the mobile programs and

access control information located in the runtime environments.

4.1 Access Control Attributes

As depicted in section 2, a mobile code producer and its consumer are di�erent

parties: this requires both parties to cooperate in order to de�ne a security policy

that suits both parties. Each mobile code component has its own resource usage

pattern that is a priori unknown by potential code consumers. In the current

access control model of Java 2, the mobile code programs do not carry any access

control information other than some identity certi�cate and a digital signature

required for the purpose of authentication.

The �rst enhancement suggested in this paper consists in associating part of the

access control information with the mobile code using a new type of component

annotation called attribute. Attributes de�ne a mobile code's authorizations in

terms of access requirements, behavior, and software compatibility. Attributes

are the basic means through which multi-party access control can be achieved,

i.e. parties other than the runtime environment can participate in the access

control process.

Similarly, the security requirements of dynamic distributed environments can

be met thanks to the distributed de�nition of access control information using

attributes. The other part of the access control information is not de�ned for

speci�c components, but rather as general rules for generating a speci�c per-

mission. A typical access control process using attributes should thus include an

6

additional operation called attribute resolution. The main purpose of attribute

resolution is to combine the information contained in the attribute with the

access control rules stored in the local security policy in order to derive local

access permissions and rules for the compatibility of the mobile component with

the runtime environment or with other components. Once attribute resolution is

complete, access enforcement during runtime is performed based on the existing

Java 2 model.

4.2 Intermediate Elements

Even if each mobile code was tagged with attributes, the con�guration of ac-

cess control information in a dynamic environment might still be very complex.

If access control information included in the attributes were de�ned in terms

of (subject, object, right) tuples, each party de�ning an attribute for a mobile

code would need to be aware of individual resources (objects) available at po-

tential target runtime environments and, conversely, access control information

included in each runtime environment would still have to enumerate all possible

mobile code components (subjects). In this case, the advantage of introducing

attributes over the existing Java 2 access control model would merely be limited

to multi-party extension. Because of the inherent complexity, this solution would

still not scale to large populations of code producers and consumers.

In order to cope with this complexity, we suggest a second enhancement that

consists in factoring the access control information represented by the basic

(subject, object, right) relation used in Java 2 into two simpler relations: (sub-

ject, intermediate element) and (intermediate element, object, right) (Figure 2).

Parties involved in the access control process have to agree on intermediate

elements that are abstractions of existing subjects and objects. Suitable in-

stances for intermediate elements could be source authorizations (roles, groups)

or prede�ned levels of execution contexts (library requirements, dynamic re-

source requirements, acceptable behavior, etc.).

The resulting access control information o�ers several advantages in terms of

reduced complexity and independence of multi-party operations:

{ an access control model for n subjects, m objects using p intermediate elements

can be described using (n+m)� p entries whereas the simple model would

require n�m entries; there is a clear advantage when n and m are very large

with respect to p;

{ the two relations can be de�ned independently; in particular, subject and

object populations can be managed in a totally independent manner;

{ the �rst relation, (subject, intermediate element), lends itself perfectly to

the de�nition of attributes whereas the second one, (intermediate element,

object, right), is suitable for the description of access control rules stored

with the runtime environment.

7

P 1

P 2

P 3

P 4

 Mobile
programs

Local
resources

 Attributes

Local management
of access policy

Runtime
Environment

Intermediate
Element 1

Intermediate
Element 2

Intermediate
Element 3

Distributed management
of access policy

 Rules

Fig. 2. Intermediate elements.

Another argument speaks for the use of intermediate elements. In the sug-

gested distributed model, a mobile code is to carry its security attributes. If a

simple model were used, these attributes would grow with the number of po-

tential execution sites, since each would have di�erent resources and di�erent

policies applied to them. With the use of intermediate elements, we can achieve

to de�ne the resources needed by a mobile code for several runtime environments

simultaneously.

4.3 Advantages over the Centralized Model

The main improvement of the suggested model is the independence between code

producers and code consumers with respect to the de�nition of access control

policy. Unlike the current Java 2 model, the new model does not require the

mobile code consumer to keep track of each mobile code component that can

potentially be integrated or executed on the local runtime environment. Con-

versely, the code producer does not need to know any detail about the runtime

environment at the time of code writing. Nonetheless, he can specify as part of

the attributes the features relevant for the successful execution of his code. As a

result of this independence, access control for mobile code can be achieved in very

dynamic and complex environments with a large number of code producers and

code consumers. In particular, the security policy of the runtime environments

does not need to be updated when new parties produce mobile code components

destined to these environments.

8

Thanks to the use of intermediate elements, access control does not rely

on mobile components' identities. Like in capability schemes, the veri�cation of

attributes granted to a mobile code component does not require the knowledge

of any identity. Consequently, this model can potentially achieve anonymity with

mobile code components.

4.4 Deployment Cases

Possible deployment cases of the proposed model are depicted for some generic

scenarios.

Single Party Case. This case is similar to the usual Java 2 scenario whereby a

single party, the code consumer, de�nes all the access control information for the

runtime environment. Even in this simple case, our model o�ers an advantage

over the access control of Java 2 in that a dynamic mobile code population can

be supported through the grouping of their common features with intermediate

elements without increasing the complexity of the security policy con�guration

on the code consumer side.

Two-Party Case. The two-party case fully takes advantage of the new access

control model.

Local Party

Security Policy: ACL

Resources

Java Virtual
Machine

Mobile Code
Component

Attributes

Remote Party

 Agreement on
intermediate

elements

Access control
information

Fig. 3. Two-party case.

As depicted in Figure 3, access control is ruled by two di�erent parties: the

local party associated with the run-time environment sets the access control in-

formation concerning the resources located at the run-time environment whereas

9

the remote party associated with the mobile code de�nes the attributes of the

mobile code. The intermediate elements used in the de�nition of the access con-

trol information and the attributes can either be de�ned through a negotiation

between the local party and the remote party or they can simply consist of pre-

de�ned values. For instance, the local party might de�ne two permission sets, one

for games, and one for professional applications, each corresponding to several

smaller-grained permissions about local resources. It might also de�ne attributes

to enable the mobile code to check if a given freeware library is installed or not

before running, but forbid the same inquiry about a commercial library, and so

on. If a number of such intermediate elements were established as a minimal

standard, existing mobile code programs might be retro�tted with a
exible yet

simple access control policy.

Three-Party Case. In the three-party case (Figure 4), the local party associ-

ated with the runtime environment sets the access control information governing

the access to the resources managed by the runtime environment as in the two-

party case.

Local Party

Security Policy: ACL

Resources

Java Virtual
Machine

Mobile Code
Component 1

Attributes

Remote Party 1

 Agreement on
intermediate

elements

Access control
information

Mobile Code
Component 2

Attributes

Remote Party 2

Fig. 4. Three-party case.

In this scenario a di�erent remote party is associated with each of the two

mobile code segments. Most interactions between the three parties occur in fact

10

between one of the remote parties and the local party. These interactions thus

resolve to two-party case interactions. However, some interactions involve the

three parties at the same time. This occurs for instance in the following con-

ditions: a component from remote party 1 that introduces new permissions is

used in a program from remote party 2; remote party 2 ignores the identity of

remote party 1, the access to component 1 being enforced by the local party. In

that instance, the agreement on intermediate elements mentioned in the previ-

ous scenario involves the three parties. After an agreement has been reached on

a given intermediate element determined either implicitly or explicitly, each re-

mote party can annotate its mobile code components separately, in a distributed

manner. Reaching an agreement might be as simple as de�ning a role for each

participant.

5 Design of a Distributed Access Control System for Java

The previous section presents a distributed access control model as an alternative

to the centralized Java 2 access control model. This section presents the design

of a solution based on the new model using the Simple Public Key Infrastructure

(SPKI) framework as a basis for implementing intermediate elements.

5.1 SPKI

The Simple Public Key Infrastructure (SPKI) [EFL+98a,EFL+98b,EFL+99] was

started as an authorization-based infrastructure destined to answer access con-

trol problems in wide-scale networks. SPKI is now supported by IETF.

The focus of SPKI is the de�nition of authorization certi�cates. An SPKI autho-

rization certi�cate is the encoding of an access control capability: it states that

a given subject is granted a set of permissions by an authority, called the issuer,

and under some conditions (for instance a given duration), called the validity.

This statement is corroborated by the accompanying signature of the issuer and

the certi�cate also includes the public key of the issuer.

As opposed to X.509 [IT88], SPKI does not require the identi�cation of a party

as a prerequisite to the access control decision concerning an operation requested

by that party. SPKI allows instead to verify the rights of a party regardless of the

party's identity. In addition, like X509, SPKI also allows for the representation

of identities in public key certi�cates.

Furthermore, systems designed using SPKI often rely on delegation. Delegation

means issuing an authorization certi�cate for a certain set of rights to another

issuing authority. This authority can then itself issue certi�cates granting a sub-

set of these rights, and so on. Delegation provides support for the distributed

de�nition of authorizations. SPKI de�nes a precise semantics describing how to

11

reduce a chain of delegated authorization certi�cates.

In addition to the basic authorization and identity certi�cates, SPKI has bor-

rowed a mechanism for group certi�cates from the SDSI framework [RL96,Aba98]:

an SDSI group certi�cate refers to a group of certi�cates. Group certi�cates al-

low treating a set of entities as a single entity. It is thus possible to grant or

revoke rights to/from a set of users in a single authorization certi�cate. A key,

that is, a subject, is considered to possess its own namespace corresponding to

a group.

In summary, three types of certi�cates coexist in SPKI:

{ public key certi�cates that can be modeled as< Kissuer; namesubject; Ksubject;

validity > 4-tuples: the issuer states that subject namesubject is identi�ed

by key Ksubject

{ group certi�cates, corresponding to < Kissuer; namegroup ; name1:::namen;

validity > 4-tuples: the issuer says that the name chain "name1 ... namen"

is identi�ed by namegroup in his namespace; "Kissuer2 namegroup2" is an ex-

ample of a name chain de�ning the name group2 in the certi�cate namespace

of issuer2.

{ authorization certi�cates, that is, < Kissuer; namesubject; delegation; au-

thorization, validity > 5-tuples: the issuer states that namesubject has been

granted some authorization; if delegation is true, it states that the subject

has also been granted the right to issue certi�cates stating the same privi-

leges than those he was granted, or a subset of these privileges, to another

subject.

An issuer can conclude the correctness of a set of certi�cates only when it can

establish a chain of certi�cates starting from a self-signed certi�cate. The process

through which a certi�cate chain is veri�ed is named "reduction" in SPKI.

For many access control matters, SPKI now supersedes X.509. The delegation

mechanism of SPKI is far superior to the simple cross-certi�cation, and can

implement it in a straightforward way. Moreover, with group certi�cates, SPKI

can now specify role-based access control policies.

5.2 Components of the Design

Let's now focus on how SPKI certi�cates are used to support the annotation

of mobile code attributes in our design. SPKI group certi�cates o�er a perfect

ground for the de�nition of intermediate elements, as depicted in Figure 5(a).

Group certi�cates link the namespace of the local party with the namespaces

of remote parties. Group certi�cates may also be used as a declaration of the

intermediate element to the remote party. For instance, the certi�cate that we

abbreviate as < KLP ; group1; KRP1 group1 > means that the local party (iden-

ti�ed by its key KLP) will declare group1 to the remote party RP1 (identi�ed by

12

its key KRP1). Group 1 will be referred under the same name in the namespaces

of both parties and in subsequent certi�cates.

A mobile code component is identi�ed by a public key certi�cate issued by its

producer. It can also be identi�ed by an SPKI group certi�cate issued by its pro-

ducer and that can be ultimately identi�ed by a public key certi�cate. Attributes

will be written as SPKI group certi�cates attached to components. The latter

group certi�cates will be issued by a remote party, but they must be chained

with a certi�cate issued by the code consumer in order to be interpreted. An

attribute re
ects which intermediate element - be it a role, a user community,

or an execution context - a mobile code is mapped to. A given mobile code can

carry several such certi�cates. In Figure 5(b), remote party 2 issues the certi�-

cate < KRP2; group3; KMC2 > associating mobile code MC2 with group 3.

Remote
Party 1

Remote
Party 2

MC 1

Mobile code
components
(Protection
Domains)

Local
Party

<KRP1, group2, KMC1>

<KLP, group1, KRP1 group1>

Runtime
Environment

(c) SPKI chains reduction

MC 2

<KLP, group2, KRP1 group2>

(a) SPKI group definitions

(b) SPKI group membership

<KRP1, group1, KMC1>

<KRP1, group1, KMC2>

<KRP2, group3, KMC2>

<KLP, group3, KRP2 group3>

chain 1: <KRP1, group1, KMC2> + <KLP, group1, KRP1 group1>
chain 2: <KRP2, group3, KMC2> + <KLP, group3, KRP2 group3>

Fig. 5. Issuing and resolving access control attributes.

Attribute-policy resolution rules specify how intermediate elements should be

translated into resource access rights, i.e. e�ective Java 2 permissions concerning

the JVM local resources. These rules can be stored within SPKI authorization

certi�cates. With intermediate elements interpreted as subjects, the rules pro-

vide a summary of the potential ACL entries for the runtime environment. The

rules also seem to be a useful tool for making the inspection and revocation of

13

access rights an easier task.

Let's now outline a typical attribute-policy resolution as depicted in Figure 5(c).

Each certi�cate chain carried by the mobile code is reduced with the SPKI en-

gine into a summary certi�cate that is issued by the local party. The summary

certi�cate de�nes the mapping of the attribute to an intermediate element. Cer-

ti�cates issued locally may not be included with the mobile code in order to

assure the compatibility of mobile components with a wide range of run-time

platforms, and in particular to avoid the need for a speci�c version of components

for each consumer. In that case, the certi�cate missing from an SPKI chain must

be stored locally, possibly in an intranet server. This certi�cate can be retrieved

at the time of reduction. The second part of resolution occurs when the mapping

between the attribute and the intermediate element has been established. The

local party has then to map the intermediate element obtained to an e�ective

set of Java 2 permissions. This is achieved using the translation rules mentioned

above. The resulting permissions are then included in the existing ACL de�ni-

tions.

A problem might persist in this scenario due to the veri�cation of validity condi-

tions included in the certi�cates: checking the summary certi�cate only once at

class loading is not su�cient to verify the validity of all the individual certi�cates

referenced by the summary certi�cate. The validity of the summary certi�cate

should be limited to the intersection of validity conditions of each individual

certi�cate. Two alternative solutions can be envisioned to solve this problem:

{ The validity of the summary certi�cate is re-evaluated at every access. In

Java 2, a class is marked as pertaining to a protection domain, which means

that the implementation associates a set of access control permissions to a

protection domain. Based on this technique, the runtime environment could

be extended so that it also stores and checks the validity conditions of the

certi�cates along with the permissions of the protection domains.

{ The policy con�guration is refreshed periodically. This can be achieved by

adding a background thread periodically calling the Policy.refresh() method.

However, the refreshed policy may not change the policy set for classes al-

ready loaded, depending on the caching strategy of the class loader. Addi-

tional mechanisms might be required in existing Java 2 implementations.

The latter solution is preferable, because of its relatively minor impact on the

performance of access control operations and the
exibility it o�ers with respect

to the de�nition of the refreshment frequency.

5.3 Example

In this section we turn to an example where our design is used to implement a

role-based access control system. Let's assume that a remote party, Bob, needs

to de�ne security restrictions on the applets he downloads from the Internet.

14

Applets should be enabled to perform read operations on disk, but strictly for-

bidden write operations except for the gaming applets written by Alice or Brian.

Bob might de�ne two di�erent applet roles, namely "browsing" and "gaming".

Suppose Alice and Brian have de�ned a role named "game" corresponding

to gaming applets. Alice and Brian would then issue SPKI group certi�cates

under this name and attach them to their various gaming applets. Bob will also

issue an SPKI group certi�cate for each of the roles that he de�ned, as well

as corresponding rights: the "browsing" certi�cate group will be used as the

role attached by default to any applet entering Bob's intranet with read access.

The "gaming" group certi�cate will be issued for Alice's and Brian's applets

which share the same access needs. This certi�cate will link Bob's certi�cate

namespace to Alice's (respectively Brian's) certi�cate namespace so that Alice's

"game" might be seen as Bob's "gaming" role. Roles of authorized applets thus

form a chain starting at Bob, who acts as his own authority. Based on the SPKI

principles, Alice and Brian are only identi�ed by their public keys, as stated in

the group certi�cate issued by Bob.

As part of the local access control policy, Bob must have con�gured the rights

associated with the "gaming" role. When an applet from Alice is loaded into a

machine in Bob's intranet with Alice's "game" certi�cate, a chain starting from

Bob using the "gaming" certi�cate stored in Bob's machine can be established

and matching writing rights are associated with the applet. Alice's and Brian's

applets share the same role: the same translation will therefore result in the same

set of Java rights for Brian's applets.

Within the global de�nition of the "gaming" role, sub-roles can be de�ned by

Alice and Brian who might decide to use routines from other parties and further

grant them the same rights their applet was granted by Bob. SPKI thus allows

Bob to delegate Alice or Brian the management of rights originally granted by

Bob. This would be achieved for instance by Alice's issuing new certi�cates

indicating that Mike's "high-score routine" is part of Alice's "game".

In this example, intermediate elements are just roles, but provide a sim-

ple common denominator: Alice's applets would run on Fred's browser as well,

provided that he con�gured his runtime environment so that Alice's "game" is

recognized as a role and is granted enough access rights. Other types of inter-

mediate elements might be introduced, for instance, Alice might also state in a

certi�cate that a particularly complex game needs a powerful CPU. Reducing

such a certi�cate would mean that Bob has installed a plugin so that the SPKI

engine performing the attribute-policy resolution can check the microprocessor

of his machine.

5.4 Application: An Extranet Using Mobile Code

A federation of intranets or extranet o�ers another interesting example highlight-

ing the suitability of our design for distributed and multi-party scenarios. An

extranet access control system has to cope with an inherently multi-party sce-

nario in that objects belong to several domains and each object can be accessed

by several subjects from di�erent domains. Suppose that applications programs

15

in that extranet consist of Java mobile codes. In such an extranet, application

deployment will require the granting of rights to mobile code components. These

rights will concern the resources of the runtime environments where each mobile

code can possibly be executed. The same mobile code must however be granted

rights for local resources of all potential consumers, that is, all intranets that

are part of the extranet. Enumerating all the combinations would be too com-

plex and cumbersome. Even worse, adding a new intranet to the extranet would

impact the attribute de�nitions in all the existing mobile codes segments.

Using the intermediate elements of our model, this deployment scenario be-

comes much simpler. For instance, instead of de�ning a hard disk or a printer as

a resource, an intranet might advertise two sets of resources, one dedicated to a

professional use, and another to a personal use; or de�ne a set of resources avail-

able to all users of a given intranet. These sets will be declared as intermediate

elements of access control.

In that particular application, each intranet advertises intermediate elements

as SPKI group certi�cates to other intranets that are part of the extranet. These

elements can then be viewed as standard service interfaces between the di�erent

intranets. As in X.509-based solutions, a cross-certi�cation process is needed. It

amounts to the exchange of the keys of certi�cate issuers. Our model otherwise

directly supports the distributed nature of an extranet. Certi�cate reduction

(the resolution of access control attributes into e�ective permissions) can be

automated. Another major bene�t of intermediate elements in this example is

that new intranets can join the extranet without any impact on the access control

de�nitions of existing components.

6 Related Work

A proposal by Nikander and Partanen [PN98,NP99] also addresses the issue of

how to enhance access control in Java. In order to cope with the current Java's

requirement on each end-user to individually set and update the security policy

�le on his machine, the authors suggest to store permissions in a distributed fash-

ion together with applets. Their design is based on a modi�ed version of SPKI

whereby SPKI authorization certi�cates serve as a tool to store Java 2 permis-

sions. This solution only applies to applets stored in an intranet or destined to an

intranet, because permissions de�ned as part of that solution only refer to local

resources and to a local access control policy. It cannot provide a solution for

de�ning the access control in a distributed way, as in the examples provided in

the previous section. It should be noted in particular, that the suggested model

still relies upon Java's centralized and single party security model.

In comparison, our work focuses on the de�nition of a truly distributed and

multi-party access control model. The de�nition and resolution of access control

attributes attached to Java mobile code are completely independent from the

de�nition of permissions associated with target resources. Like Nikander and

Partanen, we also presented a possible implementation using SPKI. However,

unlike their solution, our design is not based on authorization certi�cates of

16

SPKI, but on the group mechanism of SPKI. In addition, in our design, SPKI

certi�cates are used to store only attributes, not access control information, these

attributes being only interpreted at attribute-policy resolution. Since the bulk

of the access control information remains in the policy �le as in Java 2, very few

certi�cates need to be resolved when loading a mobile code component. This

should be contrasted with the access control checking performed in Nikander

and Partanen's work: it amounts to an SPKI chain reduction for every permis-

sion, performed each time the code requests access to a protected resource of

the runtime environment.

[WBDF97] also proposed to integrate prede�ned sets of typical privileges to web

browsers in order to help non-technical users. Our goal is similar, but we believe

that even technical users, and especially network administrators, need new tools

to cope with the wide-scale and pervasive deployment of mobile code. This is

why our proposal puts the emphasis on the distributed and multi-party nature of

the de�nition of the mobile code access control policy, which is a much broader

concept than the grouping of access rights.

[AF99] argues that the information used for authentication might be special-

ized on demand for particular applications without the requirement for a special

infrastructure for each new application. Based on this idea, speci�c intermedi-

ate elements might probably be encoded in a cleaner manner than with SPKI.

However, the focus of our proposal is quite di�erent from that of [AF99] since

the latter does not address access control, but only how to introduce specialized

attributes in authentication infrastructures.

Proof-Carrying Code (PCC) [Nec97,NL98] aims at verifying the safety of a mo-

bile program with an original approach based on type checking. In this approach,

the code consumer speci�es a set of safety properties that should be met by the

mobile code. The code producer demonstrates that its mobile code conforms

to the properties explicitly indicated and bundles this proof together with the

mobile program. When the runtime environment receives the mobile code and

the proof, it decides whether the mobile program can be safely executed based

on the veri�cation of the proof. Checking that the proof is well formed gives the

assurance that the program sent indeed corresponds to the program on which it

has been proven.

Even though it relies on an approach fundamentally di�erent from our solu-

tion, PCC shares some similarities with our proposal: safety properties are a kind

of intermediate elements, on which an agreement must be reached between the

code producer and the code consumer before establishing any proof. After verify-

ing that the behavior is "safe", no safety checks are needed anymore. Although

very promising, PCC has some drawbacks, the �rst being the basic di�culty

of generating proofs. PCC also does not seem to address the distributed and

multi-party access control issues discussed in this paper.

17

7 Conclusion

We proposed a new access control model for Java components addressing the

problem of multi-party policy de�nition that has not been solved by the current

model of Java. This new model is based on two key enhancements. Each mo-

bile code component bears associated access control information or attributes.

Intermediate elements are introduced in the access control schema to factorize

access control policy de�nition. This model combines the current ACL-based

approach with a capability scheme achieved through mobile code annotation

with attributes to enable the description of dynamic multi-party systems while

keeping the burden of security policy con�guration at a minimum.We presented

a possible design based on this model using SPKI certi�cates and the existing

Java 2 run-time environment.

References

[Aba98] Martin Abadi. On SDSI's Linked Local Name Spaces. Journal of Computer

Security, 6:3{21, 1998.

[AF99] Andrew Appel and Edward Felten. Proof-Carrying Authentication. In
Proceedings of the 6th ACM Conference on Computer and Communications

Security, Singapore, November 1999.

[EFL+98a] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.

Thomas, and Tatu Ylonen. Simple Public Key Certi�cate, Internet Draft

<draft-ietf-spki-cert-structure-05.txt>, March 1998.

[EFL+98b] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.

Thomas, and Tatu Ylonen. SPKI Examples, Internet Draft

<draft-ietf-spki-cert-examples-01.txt>, March 1998.

[EFL+99] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. SPKI Certi�cate Theory, RFC 2693, September

1999.

[GMPS97] Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers.
Going Beyond the Sandbox: An Overview of the New Security Architec-

ture in the JavaTM Development Kit 1.2. In Proceedings of the USENIX

Symposium on Internet Technologies and Systems, Monterey, California,

December 1997.

[IT88] ITU-T. Recommendation X.509: The Directory - Authentication Frame-

work, 1988.

[KG98] Lora Kassab and Steven Greenwald. Towards Formalizing the Java Security
Architecture in JDK 1.2. In Proceedings of the European Symposium on

Research in Computer Security (ESORICS'98), Leuven-la-Neuve, Belgium,

LNCS. Springer, September 1998.

[Nec97] George C. Necula. Proof-Carrying Code. In Proceedings of the 24th ACM

Symposium on Principles of Programming Languages, Paris, France, Jan-
uary 1997.

[NL98] George C. Necula and Peter Lee. Safe, Untrusted Agents using Proof-

Carrying Code. Number 1419 in Lecture Notes in Computer Science.
Springer-Verlag, 1998.

18

[NP99] Pekka Nikander and Jonna Partanen. Distributed Policy Management for

JDK 1.2. In Proceedings of Network and Distributed System Security Sym-
posium, San Diego, California, February 1999.

[PN98] Jonna Partanen and Pekka Nikander. Adding SPKI Certi�cates to JDK

1.2. In Proceedings of the Nordsec'98, the Third Nordic Workshop on Secure

IT Systems, Trondheim, Norway, November 1998.

[RL96] Ron Rivest and Butler Lampson. SDSI - A Simple Distributed Security

Infrastructure. In Proceedings of the 1996 Usenix Symposium, 1996.

[Sun98] Sun Microsystems Inc. Sun. JDK 1.2 Security Documentation,

http://java.sun.com/products/jdk/1.2/docs/guide/security/index.html,

April 1998.

[WBDF97] Dan Wallach, Dirk Balfanz, Drew Dean, and Edward Felten. Extensible

Security Architectures for Java. In Proceedings of the 16th Symposium on

Operating Systems Principles, Saint-Malo, France, October 1997.

