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ABSTRACT
With the advent of mobile and smart-home devices such as Ama-
zon Alexa or the Google Assistant providing voice-based interfaces,
voice data is commonly transferred to corresponding cloud services.
This is necessary to quickly and accurately perform tasks like au-
tomatic speaker verification (ASV) and speech recognition (ASR)
that heavily rely on machine learning.

While enabling intriguing new applications, this development
also poses significant risks: Voice data is highly sensitive since it
contains biometric information of the speaker as well as the spoken
words. Thus, the security and privacy of billions of end-users is
at stake if voice data is not protected properly. When developing
privacy-preserving solutions to mitigate such risks, it is also im-
portant to keep in mind that the involved machine learning models
represent intellectual property of the service providers and there-
fore must not be revealed to users.

The contribution of our work is three-fold: First, we present an
efficient architecture for privacy-preserving ASV via outsourced
secure two-party computation (STPC). Compared to existing so-
lutions based on homomorphic encryption (HE), the verification
process is 4,000x faster, while retaining a high verification accuracy
and guaranteeing unlinkability, irreversibility, and renewability of
stored biometric data.

Since cryptographic secure computation protocols currently
do not scale to more involved tasks like ASR, we then present
VoiceGuard, an architecture that efficiently protects speech process-
ing inside a trusted execution environment (TEE). We provide a
proof-of-concept implementation and evaluate it on speech recog-
nition tasks isolated with Intel SGX, a widely available TEE imple-
mentation, demonstrating even real time processing capabilities.

Finally, we present Offline Model Guard (OMG) to enable privacy-
preserving speech processing on the predominant mobile comput-
ing platform ARM even in offline scenarios. Beyond relying on
the Intel SGX equivalent ARM TrustZone, we employ the security
architecture SANCTUARY (NDSS’19) for strict hardware-enforced
isolation from all other system components. Our prototype imple-
mentation performs privacy-preserving keyword recognition using
TensorFlow Lite in real time.

1 INTRODUCTION
Devices providing voice-based interfaces are omnipresent in today’s
world. Amazon Alexa, Apple Siri, Google Assistant, or Microsoft
Cortana are available to the more than two billion smartphone
users in 2019. Also, there is a steadily increasing number of smart-
home devices, like Amazon Echo, Apple HomePod, or Google Home,
solely relying on voice-based interaction. Possible application sce-
narios are not restricted to the consumer market but increasingly
cover professional activities, for example enterprise-ready smart as-
sistants guiding through complicated business processes in order to
increase productivity or banks remotely verifying users’ identities
via their biometric voice characteristics.

In any of the aforementioned cases, voice data is commonly
transferred to the cloud for remote speech processing, such as au-
tomatic speaker verification (ASV) and speech recognition (ASR)
that heavily rely on machine learning. This poses significant secu-
rity and privacy risks since voice data contains sensitive biometric
information as well as the spoken words: in case unprotected voice
data gets out of hand, it may be abused, e.g., for impersonation
attacks, assembling fake recordings, or simply extracting intimate
as well as secret and sensitive content.

Privacy breaches in this domain are a reality: in 2018, a customer
requested his recording archive from Amazon, but accidentally ob-
tained access to 1,700 audio files from a stranger [23]. Furthermore,
state authorities ordered Amazon to hand out recordings as they
might contain evidence of crime [9].

A naive solution to these problems is to ship the speech process-
ing code together with corresponding models to users to run locally.
However, handing out such models in unencrypted form is mostly
not in the interest of the service provider: A production-level model
constitutes intellectual property since the underlying training data
is usually hard to obtain and the creation of an accurate yet com-
pact model requires extensive expertise. Furthermore, if attackers
have unrestricted model access, the privacy of people represented

∗This extended abstract combines three works which were recently published [5]
or are currently in submission [3, 26].
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in the training data is even more threatened by, e.g., membership
inference attacks [25] and unintended memorization [7].

Solutions based on cryptography, i.e., homomorphic encryp-
tion (HE) or secure multi-party computation (SMPC), guarantee
that neither user nor vendor need to reveal their respective in-
put data in the clear. For ASV, we present an efficient privacy-
preserving architecture based on outsourced secure two-party com-
putation (STPC) [26]. However, secure computation protocols still
infer a high overhead in computation time and communication
costs. For more involved tasks like ASR, we therefore present
VoiceGuard [5], the first architecture that efficiently protects speech
processing inside a trusted execution environment (TEE). Further-
more, we present Offline Model Guard (OMG) [3] to enable privacy-
preserving speech processing on the predominant mobile comput-
ing platform ARM even in offline scenarios.

2 SPEAKER VERIFICATION [26]
In ASV, the biometric characteristics of a speaker’s voice are used
to verify the speaker’s identity. According to international stan-
dards for biometric information protection (BIP) [13], stored data
needs to be unlinkable, irreversible, and renewable, meaning that
the data from an individual cannot be linked across services, that
no biometric data can be reconstructed from it, and that updates of
the architecture without re-capturing biometric data are possible.
Recently, Nautsch et al. [18] showed how to achieve BIP in ASV
based on probabilistic embeddings (i-vectors) using HE. In addition,
the vendor’s model can also be protected. However, the usage of
HE introduces a significant overhead, especially for the variant that
protects the model. To reduce this overhead, we show how one can
efficiently hide the model and enable BIP in embedding-based ASV
using outsourced STPC [26].

Architecture Overview. Our architecture protects stored bio-
metric information and the model used for the verification while
making no additional assumptions compared to the architecture
of [18]. The basic idea is to use the concept of outsourced STPC [14],
where two servers 𝑃0 and 𝑃1 are in possession of secret shares of
the user’s data and the vendor’s model and can therefore invoke
STPC to securely compute the verification without gaining any
knowledge about the inputs (assuming that both servers do not
collude to exchange their shares and recover the secret).

In Fig. 1, our architecture is shown for the example of ASV based
on the cosine score 𝑆cos between the stored reference embedding 𝒀 ,
the freshly extracted probe vector 𝑿 , and a threshold 𝜂. The user
is authenticated if 𝑆cos (𝑿 , 𝒀 ) > 𝜂. The secret shares ⟨𝒀 ⟩0 and ⟨𝒀 ⟩1
are generated by the user during enrolment.

To optimize this architecture for ASV, we employ a mix of dif-
ferent protocols that operate on different sharing types. The ABY
framework [10] provides methods to efficiently convert between
the different sharing types and protocols. Arithmetic shares in the
GMW STPC protocol [12] allow for highly efficient score computa-
tion. After 𝑆cos is securely computed using GMW, the corresponding
arithmetic share is transformed into a share for Yao’s garbled circuit
protocol [29], which allows to efficiently compute the threshold
comparison. Both resulting shares are then used to reveal the com-
puted decision to the authenticating server 𝑃1. We extend this basic
mixed-protocol outsourced STPC architecture to more complex

state-of-the-art ASV architectures relying on probabilistic linear
discriminant analysis (PLDA) by also secretly sharing the model
parameters between the servers and evaluating the PLDA-based
ASV using the same mix of STPC protocols.

This architecture achieves unlinkability and irreversibility be-
cause of the information-theoretic security of the employed secret
sharing. Due to the additively homomorphic property of the arith-
metic secret sharing, it is also renewable without requiring the
user to re-enroll. Our solution has the same requirements as [18],
because it assumes that the servers honestly follow the protocol
(semi-honest security) and that that they do not collude. The latter
enables device-independent ASV because the user does not need
to store a key. Moreover, our solution is secure against a malicious
user, because the user would need to guess a correct probe in order
to be verified successfully. This is not the case in [18], where a
malicious user can be authenticated just by sending an encrypted,
accepting score to the authenticating server.
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4.3. ⟨yes / no⟩𝑌 = ⟨𝑆cos (𝑿 , 𝒀 ) > 𝜂⟩𝑌
5. 𝑃1 performs 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (⟨yes / no⟩𝑌 ) →yes / no.

Figure 1: Privacy-preservingASVbased on comparing the co-
sine score between reference and probe embeddings 𝒀 and𝑿
to a threshold 𝜂 using outsourced mixed-protocol STPC.
⟨𝑿⟩𝑇

𝑖
denotes the secret share of 𝑿 held by party 𝑃𝑖∈{0,1} of a

type used for the arithmetic GMW STPC protocol (𝑇 = 𝐴) or
for Yao’s garbled circuit protocol (𝑇 = 𝑌 ).

Evaluation. We implemented our architecture using the STPC
framework ABY [10] and evaluated it on the NIST i-vector ma-
chine learning challenge [17] consisting of 1,306 reference iden-
tities and 9,634 probes, forming a progress and an evaluation set.
We report on the results of the latter, which consists of 7,542,271
comparisons. The i-vectors are given with 5-digit precision. Our
implementation supports full floating point operations for the score
computation in the Boolean GMW protocol as well as a scaled score
computation in the arithmetic GMW protocol, which can greatly
improve efficiency by representing the embeddings as integers.
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As for the biometric performance, an evaluation using error
trade-off plots [16] shows that the scaled version of our architec-
ture does not decrease verification accuracy in any way. Our scaling,
however, limits the precision of the threshold 𝜂 a service can pro-
vide to three digits. Nonetheless, for ASV and current technological
demands, we assume that even 2-digit precision is sufficient. Our
evaluation shows that even our scaled architecture achieves a recog-
nition performance identical to the plaintext ASV.

To evaluate the runtime performance, we ran our implemen-
tation on two machines equipped with Intel Core i9-7960X CPUs
and 128GB of RAMconnectedwith a bandwidth of 1 Gbit/s and 1ms
round trip time to emulate well-connected service providers. We
compare our solution to the implementation of [18] that hides the
subject data and the vendor’s model. Though parts of the computa-
tion need to be computed on the user’s device in [18], we ran the
implementation on one server to obtain comparative benchmarks.

ABY allows to split the secure computation of a functionality
into an input-independent offline phase and an input-dependent
online phase. The offline phase can be executed at any time before
the actual verification procedure and is therefore not considered rel-
evant to the verification times. The results show that compared to
the HE-based solution, our architecture significantly reduces ASV
runtimes. For the cosine-based verification, our implementation
takes between 3.7ms and 4.2ms for i-vector dimensions ranging
from 50 to 600. This displays an improvement of 6x to 47x compared
to [18]. The advantages of using outsourced STPC for ASV become
clear when services want to use state-of-the-art ASV technologies
that rely on PLDA. In that scenario, our implementation takes be-
tween 11ms and 530ms, which is an improvement of factor 1,421x
to 4,099x with regards to [18]. Even when accounting for the offline
phase, our architecture is still faster than the previous work. In that
case the total evaluation time ranges from 191ms to 19 s, the latter
still being an improvement of 112x. Our experimental evaluation
shows that STPC optimized for the use case of ASV is more effi-
cient than HE, effectively reducing the HE verification times from
about 36 minutes to about half a second.

3 VOICEGUARD [5]
VoiceGuard [5] is the first architecture that efficiently protects
speech processing tasks by using a trusted execution environ-
ment (TEE), concretely the widely available Intel Software Guard
Extensions (SGX). SGX allows the secure processing of confidential
data even in a hostile environment by combining cryptographic
techniques with hardware-enforced code and data isolation. Con-
cretely, SGX introduces the concept of enclaves, which are programs
executed in isolation from all other software on a system, including
privileged software, like the operating system (OS) or a hypervisor.

VoiceGuard can easily be extended to enable user-specificmodels,
such as feature transformations (including fMLLR), i-vectors, or
model transformations (e.g., custom output layers).

Architecture Overview. For the sake of simplicity we explain
our solution based on the ASR scenario visualized in Fig. 2. Voice-
Guard works in three phases: (I) preparation, (II) initialization, and
(III) operation. In the first phase, user𝑈 and vendor𝑉 need to agree
on the code to be executed in the enclave.

In the second phase, the enclave code is instantiated. 𝑈 and 𝑉
use remote attestation (RA) to establish secure channels with the
enclave through which they provision their respective encryption
keys to the enclave. In particular, RA enables an external party
to verify whether the enclave was created correctly, i.e., a crypto-
graphic hash of the initial memory state of the enclave is signed by
the platform signing key which is built into the CPU.

In the third phase, the enclave is ready to perform speech pro-
cessing. Using the keys transmitted in the previous phase,𝑈 and 𝑉
provide their respective inputs to the enclave in encrypted form.
The user’s input consists of audio samples and, if applicable, also
user-specific adaptation parameters 𝜃 (e.g., i-vectors). The vendor’s
input consists of an acoustic model AM, typically a deep neural
network (DNN), and a language model LM, typically a decoding
graph. The result of the operation phase (which may contain up-
dated adaptation parameters 𝜃 ) is encrypted with the user’s key, so
only she can decrypt it. Once in the operation phase, the system
can be queried repetitively by the user, thereby avoiding repeated
preparation and initialization costs.
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Figure 2: VoiceGuard architecture. User 𝑈 establishes a se-
cure channel with the Intel SGX enclave hosted at untrusted
service provider 𝑃 and sends sensitive voice data as well as
user-specific adaptation data𝜃 . Similarly, vendor𝑉 sends the
sensitive acoustic and language models (AM and LM, respec-
tively) through a secure channel. 𝑃 securely processes 𝑈 ’s
voice data using 𝑉 ’s models within an SGX enclave.

The protection guarantees of VoiceGuard hold even if the adver-
sary is in full control over the software in the service provider’s
infrastructure (including privileged software like the OS or a hy-
pervisor). However, we assume that the adversary cannot perform
invasive hardware attacks like extracting keys from the CPU and
we consider physical side-channel attacks, like differential power
analysis [15], out of scope. To protect against side-channel attacks
leveraging micro-architectural effects, the enclave developer has to
incorporate appropriate defense mechanisms [4, 8, 24].
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Evaluation. We created a proof-of-concept implementation
which embeds the ASR toolkit kaldi [19] in an Intel SGX enclave
using the Graphene library OS [27]. We ran experiments on two
representative corpora: DARPA Resource Management (RM) [20]
and Wall Street Journal (WSJ) [11]. For RM, the trained DNN is
about 3MB (9 hidden layers, 750 k parameters), the uni- and bigram
decoding graphs are 0.5MB and 2MB, respectively. For WSJ, the
trained DNN is about 14MB (15 hidden layers, 3.6M parameters),
the pruned trigram decoding graph is about 641MB.

Table 1: Performance of VoiceGuard w.r.t. baseline kaldi and
achieved word error rate (WER).

Test WER Baseline (s) VoiceGuard (s) Overhead
RM-bigram 2.3 % 351 522 48.5 %
RM-unigram 15.4 % 585 815 39.3 %
WSJ 18.1 % 1 427 2 854 100.1 %

We ran kaldi on an Intel Core i7-7700 CPU@ 3.6GHz over every
corpus and report the run time of each test in Tab. 1. The overhead
of VoiceGuard is between 39% and 49% for RM and between 98%
and 104 % for WSJ. The higher overhead for WSJ is due to its larger
model (graph) size: in the current version of SGX, enclaves can only
use up to 96MB memory and rely on swapping to access additional
data. Even though processing time is doubled in some cases, our
results show that VoiceGuard enables privacy-preserving speech
processing even in real time.

4 OFFLINE MODEL GUARD (OMG) [3]
VoiceGuard [5], as presented in §3, depends on Intel SGX, a TEE
implementation in Intel CPUs which are not commonly used in
smartphones and tablets. However, there are usability issues when
relying on online speech processing in mobile use cases: high la-
tency and therefore a bad user experience occurs if the user has
an unreliable or low-bandwidth network connection, and high
roaming fees may apply if the user is abroad. In offline scenarios,
cloud-based processing is impossible.

Therefore, we build Offline Model Guard (OMG) [3], a generic
architecture that efficiently protects machine learning tasks on mo-
bile devices and demonstrate its practicality using offline keyword
recognition as an example application. OMG leverages SANCTU-
ARY [6], a security architecture for the predominant mobile comput-
ing platform ARM. SANCTUARY mitigates existing flaws of ARM’s
own TEE implementation TrustZone via user-space enclaves: the
speech processing tasks are executed in an environment that is
protected via strict hardware-enforced two-way isolation from all
other system components to minimize the attack surface.

Architecture Overview. The OMG architecture as visualized in
Fig. 3 is very similar to the architecture of VoiceGuard described
in §3. The main implementational difference is how SANCTUARY
provides code and data integrity as well as data confidentiality
while not negatively impacting the user experience: it leverages the
ARM TrustZone Address Space Controller (TZASC) to exclusively
bind attested memory to one (temporarily) dedicated CPU core

running security-critical code on the Zircon microkernel [2], which
provides a basic execution environment.

Note that SANCTUARY allows the user to directly and securely
provide voice data to the enclave as it allows secure input from
peripherals like the microphone. Conveniently, once the system is
in the operation phase, it can be queried repetitively by the user,
thereby avoiding repeated preparation and initialization costs as
well as interaction with the vendor. To do this, after a query is pro-
cessed, the SANCTUARY core can be reallocated to the commodity
OS while the memory is still locked s.t. no device or core is able to
access it. Then, when receiving a new query, a new SANCTUARY
core is allocated and the locked memory is mapped to it in order to
perform the processing task.

Side channel attacks that extract secrets from caches can be
prevented easily since the L1 cache is core exclusive and the shared
second level cache (L2) can be excluded from SANCTUARYmemory
without severe performance impact [6]. However, we assume that
the adversary cannot perform hardware attacks, e.g., a physical
side channel attack to extract secret keys.
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Figure 3: OMG architecture. The enclave is loaded and at-
tested to user𝑈 and vendor 𝑉 . 𝑉 provides the encrypted ML
model and sends the corresponding decryption key.𝑈 sends
voice data to the enclave and receives respective textual out-
put (which can be further processed into an action, as with
virtual assistants).

Evaluation. We provide a fully functional prototype implemen-
tation of OMG on an ARM HiKey 960 development board for of-
fline keyword recognition based on TensorFlow Lite for Microcon-
trollers [1]. The board is equipped with an ARMv8 octa-core SoC (4
cores @ 2.4 GHz, 4 cores @ 1.8 GHz) and 3GB of RAM.We use such
a development board instead of an off-the-shelf device since most
vendors restrict developer access to TrustZone, which prevents us
from setting up SANCTUARY. As our offline keyword recognition
application is just a proof of concept, following [5], we do not fo-
cus on best accuracy, but study whether accuracy and runtime are
affected when providing strong security guarantees.

The models are trained and evaluated on the Speech Command
dataset [28] consisting of over 105,000 WAVE files of people say-
ing 30 different words. The recordings were postprocessed to be a
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single word per file at a fixed 1 s duration. Features are computed us-
ing a 256 bin fixed point FFT across 30ms windows (20ms shift), av-
eraging 6 neighboring bins, resulting in 43 values per frame. The 49
frames for each recording are concatenated, forming a fixed 49× 43

compressed spectrogram (“fingerprint”) per utterance.
The network architecture resembles [21], but is simplified to

better match embedded requirements. It feeds the audio fingerprint
to a 2D convolutional layer (8 filters, 8 × 10, 𝑥 and 𝑦 stride of 2),
followed by ReLU activation and a regular layer that maps to the
output labels. During training, dropout is applied after the convo-
lution layer. We trained a system for a 12-class problem: silence,
unknown, “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”,
“go”. The model is first trained using TensorFlow and subsequently
converted to a TensorFlow Lite and “micro” model. The resulting
compressed model is 49 kB in size and achieves 75 % accuracy.

We evaluated the “micro” model on a subset of the published
test set comprising 10 examples for each class, excluding the two
rejection classes “silence” and “unknown”, since sensitivity for those
would typically be tuned for production. Running the test set on
a 2.4 GHz core of the ARM development board takes 387ms with
and 379ms without OMG protection, respectively. The runtimes
are very close due to the fact that the hardware-enforced two-way
isolation provided by SANCTUARY adds no additional overhead
during execution. Since the duration of the test set is 100 s, the
real-time factor is about 0.004.

In contrast to Intel SGX, SANCTUARY imposes no inherent
memory limitations on our implementation, therefore it also allows
to securely run more complex end-to-end systems, such as the very
recently released and also TensorFlow-based offline dictation model
by Google [22], making it highly practical.
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