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ABSTRACT

Novel Fisher-Information Matrix (FIM) and Cramér-Rao
Bound (CRB) expressions for the problem of the ”partially
relaxed” Joint Angle and Delay Estimation (JADE) are de-
rived and analyzed in this paper. In particular, exact closed
form expressions of the CRB on the Angles and Times of
Arrival of multiple sources are presented. Furthermore, in-
teresting asymptotic and desirable properties are demon-
strated, such as high SNR behaviour and lower bound ex-
pressions on the CRBs of Angles and Times of Arrival of
multiple sources. Computer simulations are also given to
visualize CRB behaviour in regimes of interest.

Index terms— Fisher-Information Matrix (FIM), Cramér-
Rao Bound (CRB), JADE, Partial Relaxation, AoA

1. INTRODUCTION

Localization has been a challenging topic over the past 70
years. Applications include seismology, radar, sonar, com-
munications [1], etc. One way to achieve this task is to com-
pute the Angle-of-Arrival (AoA) between an anchor point
and the intended user. Many techniques were proposed for
this purpose, such as MUSIC[2] and ESPRIT[3]. Asymp-
totic studies were conducted on the variances of these method,
in which they attain the CRB with uncorrelated sources and
high SNR (or high number of antennas) [4]. The Joint An-
gle and Delay Estimation (JADE) [11] parametrizes each
source through its AoA and its Time-of-Arrival (ToA). Even
though more parameters are to be estimated, this allows
to resolve more sources [6]. As a result, many methods
were developed to solve the JADE problem, such as shift-
invariant ones in [7], single-snapshot methods [8], mutual
coupling agnostic methods [9], etc.
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Recently, the partial relaxation (PR) framework has been
introduced as a novel framework for the Angle-of-Arrival
(AoA) problem in [5]. In precise, the maximum likelihood
cost function is partially relaxed to include one parametrized
source, through its AoA and other un-parametrized sources.
This relaxation results in new cost functions that are able
to resolve AoAs in a reliable and computationally efficient
manner.

This paper derives and analyzes the Cramér-Rao Bound (CRB)
of the partially-relaxed JADE problem. Indeed, the tradi-
tional CRB of the JADE problem was presented in [11] and
analyzed in [7]. The contributions of this paper are the fol-
lowing: (i) The Fisher-Information-Matrix (FIM) and CRB
of the partially relaxed JADE problem are derived. (ii) Ex-
act closed form expressions are given on the FIM/CRB of
the AoAs and ToAs, (iii) Some interesting asymptotic prop-
erties are revealed, i.e. lower bounds on the CRBs of the
AoAs/ToAs are given. (iv) the cross-correlation CRB be-
tween ToA and AoA vanishes exponentially with linear in-
crease of number of subcarriers/antennas.

This paper is divided as follows: Section 2 presents the sys-
tem model. A possible formulation of the partially relaxed
JADE problem is presented in Section 3. Section 4 presents
the Cramér-Rao Bound for Times and Angles of Arrivals.
We reveal some important properties regarding the CRBs of
ToAs/AoAs. Computer simulations are given in Section 6 to
support the properties given in Section 5. The paper is con-
cluded in Section 7. Notations: Upper-case and lower-case
boldface letters denote matrices and vectors, respectively.
(.)> and (.)H denote the transpose and Hermitian operators.
Re(z), Im(z) denote the real and imaginary parts of z, re-
spectively. ⊗ is the Kronecker product.



2. SYSTEM MODEL

Consider an OFDM symbol consisting of M subcarriers,
and centered at a carrier frequency fc (usually 2.4/5 GHz)
that has been transmitted through a rich multipath channel
of q taps, and received via an array of N antennas. If we
parametrize the ith multipath component by a Direction-of-
Arrival (DoA) θi and Time-of-Arrival (ToA) τi, then the `th

received OFDM symbol could be expressed as

x(`) = H(θθθ, τττ)γγγ(`) + n(`) (1)

where H(θθθ, τττ) ∈ CMN×q and γγγ(`) ∈ Cq×1 are defined as

H(θθθ, τττ) =
[
h(θ1, τ1) . . . h(θq, τq)

]
(2)

γγγ(`) =
[
γ1(`) . . . γq(`)

]
(3)

and n(`) ∈ CMN×1 is additive circularly complex noise,
i.e. n(`) ∼ N (0, σ2IMN ). The vector x(`) is indexed as
follows

x(`) =
[
x>1 (`) . . . x>N (`)

]>
(4)

and
xn(`) =

[
xn,1(`) . . . xn,M (`)

]>
(5)

where xn,m(`) represents the data on the mth subcarrier
received by the nth antenna in the `th frame. The problem
is to estimate τττ ,θθθ given all observations x(1) . . .x(L).

3. JADE BY PARTIAL RELAXATION

The optimal criterion in the presence of white Gaussian noise
{n(`)}`=1...L is to solve the Deterministic Maximum Like-
lihood (DML) cost, i.e.

(θ̂θθ, τ̂ττ , Ĝ) = arg min
θθθ,τττ,G

∥∥∥X−H(θθθ, τττ)G
∥∥∥2 (6)

where

X =
[
x(1) . . . x(L)

]
(7)

G =
[
γγγ(1) . . . γγγ(L)

]
(8)

Traditional beamformers aim at maximizing the above as-
suming one source at a time in H(θθθ, τττ). This leads to a sim-
ple and fast implementation of the final criterion that aims
at finding τττ ,θθθ, through peak finding, such as MUSIC. How-
ever, this is suboptimal due to existence of multiple sources,
when focusing on one. Said differently, equation (6) leads
to the following cost

(θ̂θθ, τ̂ττ) = arg min
θθθ,τττ

∥∥∥PPP⊥H(θθθ,τττ)R̂
∥∥∥2 (9)

where R̂ = XXH is the empirical covariance matrix. Now,
it is clear that one should jointly focus on all AoAs and

ToAs when solving the JADE problem. Unfortunately, the
cost in (9) is highly complex and may not be implementable
in most applications. One might resort to suboptimal tech-
niques such as MUSIC/ESPRIT. Another alternative is to
”partially relax” the parametric structure of the interfering
sources when looking in direction θ at time τ , i.e.

arg min
θ,τ,B

∥∥∥PPP⊥[h(θ,τ) B]R̂
∥∥∥2 (10)

In the above cost, we parameterize only one column in terms
of the times and angles of arrivals, whereas the other q − 1
columns, captured by an term B, are relaxed to have an ar-
bitrary structure. The matrix B could be seen as an interfer-
ence term in which q− 1 sources contribute to, when beam-
forming at the remaining one source. For example, in the
neighbourhood of (θ1, τ1), the matrix B will play the role
of an unstructured approximation of the last q − 1 columns
of H(θθθ, τττ).
In this paper, we derive the Fisher-Information Matrix (FIM)
and the Cramér-Rao Bound (CRB) assuming the above par-
tially relaxed JADE model. The paper in [12] presents meth-
ods that are capable of estimating θθθ, τττ by making use of the
partially relaxed cost above.

4. CRAMÉR-RAO BOUND FOR TIMES AND
ANGLES OF ARRIVAL

The Fisher-Information Matrix (FIM) measures the quantity
of information embedded in random parameters. We find
it useful to partition the FIM into smaller block FIMs to
separate the nuisance from parameters of interest as follows

Iββββββ =


Iθθ Iθτ Iθεεε Iθηηη
Iτθ Iττ Iτεεε Iτηηη
Iεεεθ Iεεετ Iεεεεεε Iεεεηηη
Iηηηθ Iηηητ Iηηηεεε Iηηηηηη

 (11)

Iβiβj
=

2L

σ2
Re
(
tr
{

Π
∂HH

∂βi
P⊥H

∂H

∂βj

})
(12)

where
Π = PHHR−1HP (13)

and P represents the source covariance matrix, namely

P = E
[
γγγ(`)γγγH(`)

]
(14)

Using straightforward manipulations, we can say that

Iθθ =
2L

σ2
Π11d

H
θP⊥Hdθ (15)

Iττ =
2L

σ2
Π11d

H
τP⊥Hdτ (16)

Iθτ =
2L

σ2
Re
(
Π11d

H
θP⊥Hdτ

)
(17)



where dθ = da(θ)
dθ ⊗ c(τ) and dτ = a(θ) ⊗ dc(τ)

dτ . Now,
taking a look at the (i, j)th entry at the following block ma-
trices, we have

[Iθεεε]i,j =
2L

σ2
Re
(
tr
{

Πe1d
H
θP⊥Hei+1e

H
j+1

})
(18)

[Iθηηη]i,j =
2L

σ2
Re
(
tr
{
jΠe1d

H
θP⊥Hei+1e

H
j+1

})
(19)

[Iτεεε]i,j =
2L

σ2
Re
(
tr
{

Πe1d
H
τP⊥Hei+1e

H
j+1

})
(20)

[Iτηηη]i,j =
2L

σ2
Re
(
tr
{
jΠe1d

H
τP⊥Hei+1e

H
j+1

})
(21)

In compact matrix form, the above could be expressed as

Iθεεε =
2L

σ2
Re
(
ΠH

21 ⊗ (dH
θP⊥HE)

)
(22)

Iθηηη =
2L

σ2
Re
(
jΠH

21 ⊗ (dH
θP⊥HE)

)
(23)

Iτεεε =
2L

σ2
Re
(
ΠH

21 ⊗ (dH
τP⊥HE)

)
(24)

Iτηηη =
2L

σ2
Re
(
jΠH

21 ⊗ (dH
τP⊥HE)

)
(25)

Iεεεεεε = Iηηηηηη =
2L

σ2
Re
(
Π22 ⊗ (EHP⊥HE)

)
(26)

Iεεεηηη =
2L

σ2
Re
(
jΠ22 ⊗ (EHP⊥HE)

)
(27)

The Cramer-Rao bound is the inverse of the FIM. In our
setting, we can say that

Cββββββ = I−1ββββββ =


Cθθ Cθτ Cθεεε Cθηηη

Cτθ Cττ Cτεεε Cτηηη

Cεεεθ Cεεετ Cεεεεεε Cεεεηηη

Cηηηθ Cηηητ Cηηηεεε Cηηηηηη

 (28)

By using the matrix block inversion formula, we can say
that[
Cθθ Cθτ
Cτθ Cττ

]−1
=

[
Iθθ Iθτ
Iτθ Iττ

]
−
[
Iθεεε Iθηηη
Iτεεε Iτηηη

] [
Iεεεεεε Iεεεηηη
Iηηηεεε Iηηηηηη

]−1 [
Iθεεε Iθηηη
Iτεεε Iτηηη

]H
(29)

The involved block matrices could be written as[
Iθεεε Iθηηη
Iτεεε Iτηηη

]
= K1

(
ΠΠΠH

21 ⊗
[
Re(dH

θP⊥HE) − Im(dH
θP⊥HE)

Re(dH
τP⊥HE) − Im(dH

τP⊥HE)

] )
K2

(30)[
Iεεεεεε Iεεεηηη
Iηηηεεε Iηηηηηη

]
= K2

(
ΠΠΠ22⊗

[
Re(EHP⊥HE) − Im(EHP⊥HE)
− Im(EHP⊥HE) Re(EHP⊥HE)

] )
K2

(31)

Figure 1: CRB Cθθ

Figure 2: CRB Cθτ

Figure 3: The Traditional JADE CRB vs the Partially Re-
laxed JADE CRB (M = 5, N = 2)



Figure 4: The Traditional JADE CRB vs the Partially Re-
laxed JADE CRB (M = 100, N = 2)

where K1,K2 are suitable permutation matrices. Using
the following identities

(A⊗B)−1 = A−1 ⊗B−1 (32)
(A⊗B)(C⊗D) = AC⊗BD (33)

and noting that the quantity ΠΠΠH
21ΠΠΠ

−1
22 ΠΠΠ21 is a scalar. After

some straightforward arrangements, we can write (29) as[
Cθθ Cθτ
Cτθ Cττ

]
=

σ2

2αL

[
dH
θP⊥Hdθ Re(dH

θP⊥Hdτ )
Re(dH

θP⊥Hdτ ) dH
τP⊥Hdτ

]−1
(34)

where α = ΠΠΠ11 −ΠΠΠH
21ΠΠΠ

−1
22 ΠΠΠ21 is the Schur’s complement

of ΠΠΠ w.r.t its block matrix ΠΠΠ22. Finally, the CRBs of the
parameters of interest are given as

Cθθ =
σ2

2αL

dH
τP⊥Hdτ

(dH
θP⊥Hdθ)(dH

τP⊥Hdτ )− Re2(dH
θP⊥Hdτ )

(35)

Cττ =
σ2

2αL

dH
θP⊥Hdθ

(dH
θP⊥Hdθ)(dH

τP⊥Hdτ )− Re2(dH
θP⊥Hdτ )

(36)

Cθτ =− σ2

2αL

Re(dH
θP⊥Hdτ )

(dH
θP⊥Hdθ)(dH

τP⊥Hdτ )− Re2(dH
θP⊥Hdτ )

(37)

Notice that when the cross-term Re(dH
θP⊥Hdτ ) = 0, the

CRB on θ, Cθθ aligns with the expression in [10].

5. PROPERTIES AND RESULTS

In this section, we discuss some useful insights related to the
derived CRBs. First and foremost, we note that the cross-
correlation CRB term, Cθτ vanishes in the large regime (ei-
ther in space or frequency). This is easily seen as the term

Re(dH
θP⊥Hdτ ) −→ 0 (38)

for large M given a fixed N , or vice versa. Even more, this
regime allows us to lower bound the CRBs on θ and τ , i.e.

Cθθ > C∗θθ (39)
Cττ > C∗ττ (40)

where

C∗θθ =
σ2

2αL

(
dH
θP⊥Hdθ

)−1
(41)

C∗ττ =
σ2

2αL

(
dH
τP⊥Hdτ

)−1
(42)

Secondly, it is worth noting that the traditional CRB of the
Joint Angle and Delay Estimation problem [11] serves as a
lower bound on C∗θθ and C∗ττ , i.e.

Cθθ > C∗θθ > Ctrad
θθ (43)

Cττ > C∗ττ > Ctrad
ττ (44)

whereCtrad
θθ , Ctrad

ττ are extracted from the following quantity

CRB(θ, τ) =
σ̄

2

L∑
`=1

Re(BBBH
` FHP⊥HFBBB`) (45)

where σ̄ is the estimation noise variance and F =
[
dθ dτ

]
andBBB` = I2⊗diag{γγγ(`)}. Note thatCtrad

θθ , Ctrad
ττ is attained

only for large N or M and at high SNR for uncorrelated
sources, i.e. when ΓΓΓ is diagonal.

6. COMPUTER SIMULATIONS

In this section, computer simulations are presented to visu-
alize the behaviour of the partially relaxed CRB in different
scenarios.

In the first simulation, we plot the square root of the CRB
on θ on a dB scale, that is 10 log10

√
Cθθ for different num-

ber of subcarriers by keeping all other parameters fixed. We
have set N = 2, L = 100, ∆f = 3.125 MHz, τ1 = 10 nsec
and τ2 = 30 nsec, θ1 = 10◦ and θ2 = 60◦. As expected, we
see that the CRB Cθθ on both θ1, θ2 decreases linearly on a
logarithmic scale, by increasing the number of subcarriers
at the same rate, as shown in Fig. 1.

On the other hand, we fix the number of subcarriers toM =
2 and slightly change the number of antennas from N = 2
to N = 6 as depicted in Fig. 2. We can observe that the
cross-CRB Cθτ decreases massively (order ∼ O(102.5)).

In the third scenario, we study the behaviour of the three
CRBs mentioned in the previous section, i.e. the CRB of
the partially relaxed JADE problem Cθθ, its lower bound in
the large N,M regime C∗θθ and the CRB of the traditional



JADE problem Ctrad
θθ . Notice that C∗θθ converges towards

Ctrad
θθ at high SNR given M = 5 subcarriers and N = 2

antennas as depicted in Fig. 3. As the number of subcarri-
ers increase, we see that Cθθ and C∗θθ coincide at any SNR
with constant difference and that both converge towards the
traditional CRB, Ctrad

θθ .

7. CONCLUSIONS

In this paper, we have extended the CRB of the partial re-
laxation framework to the case of joint angle and delay es-
timation (JADE). The exact closed form expressions of the
Fisher Information Matrix (FIM), as well as the Cramér-rao
Bound (CRB) are derived. Some interesting asymptotic re-
sults are then presented, which reveals desired properties
and results of the partial relaxation framework, in the con-
text of Joint Angle and Delay Estimation (JADE). Finally,
the results are then analyzed through computer simulations.
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