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Abstract—We consider the problem of multicast transmission
in cooperative cellular systems, where a base station (BS) aims
at conveying a common message to a set of user equipments
(UEs) that are also connected with each other via device-to-
device (D2D) links. Assuming statistical channel knowledge at the
BS, we design a two-phase scheme that exploits multi-antenna
transmission at the BS and D2D communications between the
UEs to achieve a non-vanishing multicast rate when the number
of UEs grows large. This represents a non-trivial extension of our
previous work, which is restricted to the case of instantaneous
channel knowledge at the BS (and is thus impractical for dense
networks). Finally, we study the scaling of the resulting multicast
rate as a function of the number of UEs and BS antennas for
different practical scenarios.

Index Terms—Cooperative communications, device-to-device
communications, multicasting, statistical precoding.

I. INTRODUCTION

We study the multicast channel, in which a transmitter
aims at conveying a common message to a set of receivers.
Such a channel is relevant to many emerging applications,
ranging from media streaming in wireless edge caching [1],
[2] to broadcasting of safety messages in vehicular networks
[3]. Multicasting over wireless channels is challenging due to
the worst-user-kills-all effect, whereby the multicast capacity
vanishes as the number of user equipments (UEs) increases
significantly [4], [5].

Cooperative multicasting represents a new transmission
paradigm that promises to bring significant performance gains
in multicast applications with a large UE population (such as
connected car networks) [6], [7]. In this respect, device-to-
device (D2D) communications can be used to overcome the
vanishing multicast capacity when the number of UEs grows
large [8]–[10]. Cooperative multicasting schemes usually di-
vide the total transmission duration in two phases: in the first
phase, the BS multicasts a common message to the UEs and,
in the second phase, the UEs who have successfully decoded
the message in the first phase jointly (yet non-coherently)
retransmit it to the rest of the UE population. Such two-phase
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protocols have been extensively studied in the literature for
the case of single-antenna BS (e.g., in [8]–[11]) and have been
extended to multi-antenna BS in our recent work [12].

In this paper, we propose a two-phase protocol where the
precoding optimization at the multi-antenna BS relies only on
the channel statistics. This is a key difference with respect to
[12], which assumes perfect channel state information (CSI)
at the BS. An anticipated advantage of this approach is the
great reduction in the overheard necessary to acquire costly
instantaneous CSI, which is a major limitation in scenarios
with large number of UEs. Hence, we jointly design a simple
UE scheduler and the corresponding optimal precoding matrix
such that the multicast rate is maximized while ensuring a
target successful decoding probability of all the UEs after the
two phases. Furthermore, we show that the proposed scheme
achieves a non-vanishing multicast rate in the limit of a large
number of UEs and/or BS antennas.

II. SYSTEM MODEL

Consider a wireless network where a BS equipped with M
transmit antennas serves a set K , {1, . . . ,K} of single-
antenna UEs uniformly randomly distributed over a finite
area, with K � M . The UEs can communicate with each
other via D2D links and operate in half-duplex mode. We
focus on a cooperative multicast scheme divided in two
phases as follows (see Figure 1): i) in the first phase, the
BS multicasts the transmit signal x0 ∈ CM×1 containing a
common message for all the UEs with transmit covariance
matrix Γ , E[x0x

H
0 ] ∈ CM×M (with tr(Γ) ≤ 1) and at rate

r, referred to as multicast rate; ii) in the second phase, the
UEs who have successfully decoded the common message in
the first phase jointly (yet non-coherently) retransmit it to the
rest of the network through the D2D links.

Let us define the uniform linear array (ULA) response
vector at the BS for a given steering angle θk as

ak ,
[
1, ej2πδ cos(θk), . . . , ej2πδ(M−1) cos(θk)

]T ∈ CM×1 (1)

where δ is the antenna spacing-wavelength ratio, with ‖ak‖2 =
M . The channel from the BS to UE k is given by hk ,
ηk
√
γkak ∈ CM×1, where ηk ∼ CN (0, 1) is the small-

scale fading coefficient and γk is the average channel power
gain: here, we assume γk = d−αk and γk = d−βk in case of
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Fig. 1. A BS equipped with M antennas multicasts a common message to a
given subset of UEs with a given precoding strategy in the first phase (solid
lines). The UEs who successfully decode the message retransmit it in the
second phase to the remaining UEs via D2D links (dashed lines).

line-of-sight (LoS) and non-line-of-sight (NLoS) conditions,
respectively, with 2 ≤ α < β ≤ 4 and where dk denotes the
distance between the BS and UE k. Hence, the receive signal
in the first phase reads as

yk,1 ,
√
p0 hH

k x0 + nk, ∀k ∈ K (2)

where p0 denotes the transmit power at the BS and nk ∼
CN (0, σ2) is the noise term at UE k. The D2D channel
between UEs k and j is denoted by hjk , ηjk

√
γjk ∈ C,

where ηjk ∼ CN (0, 1) is the small-scale fading coefficient
and γjk is the average channel power gain (defined similarly
to γk for LoS and NLoS conditions between the UEs). The
receive signal in the second phase is expressed as

yk,2 ,
∑
j∈U

√
pj hkjxj + nk, ∀k ∈ K \ U (3)

where U ⊂ K is the set of UEs who have successfully
decoded the message in the first phase, pj is the transmit
power at UE j, and xj is the transmit signal in the second
phase (with E[|xj |2] = 1).

III. D2D-AIDED MULTI-ANTENNA MULTICASTING IN A
DENSE NETWORK

In this paper, we assume statistical CSI at the BS, which
consists of the position of the UEs within its coverage area
together with a map of the latter. Building on this information,
the BS can easily obtain the average channel gains {γk}k∈K
and {γkj}k,j∈K together with the steering angles {θk}k∈K. On
the other hand, we assume that the BS has no knowledge of
the small-scale fading coefficients {ηk}k∈K and {ηkj}k,j∈K.

The BS multicasts the common message at rate r ,
log2(1 + s), where s is a design parameter to be optimized.
Hence, each UE k successfully decodes in the first phase if
its receive signal-to-noise ratio (SNR) is greater than s, which
occurs with probability

Pk,1(s,Γ) , P
[
ρ0|ηk|2γkaH

k Γak ≥ s
]

(4)

= exp

(
− s

ρ0γkaH
k Γak

)
(5)

where ρ0 , p0/σ
2 denotes the transmit SNR at the BS. Let

zk(s,Γ) , 1[ρ0|ηk|2γkaH
k Γak ≥ s] be a binary variable equal

to one if UE k successfully decodes the message in the first
phase and to zero otherwise. We use P2(s,Γ) to denote the
joint success probability, i.e., the probability that all UEs suc-
cessfully decode the message after the two phases, defined as

P2(s,Γ),E
[ ∏
k∈K

P
[∣∣∣∣∑
j 6=k

hkjρj

∣∣∣∣2≥s(1−zk(s,Γ)
)∣∣z(s,Γ)

]]
(6)

where ρj , pj/σ
2 is the transmit SNR at UE j and z(s,Γ) ,

[z1(s,Γ), . . . , zK(s,Γ)] ∈ {0, 1}K . Building on [10, Th. 4], a
deterministic-equivalent expression for P2(s,Γ) is derived in
the following proposition.

Proposition 1. Assuming independent channels between the
BS and the UEs and between UEs, we have

P2(s,Γ)
P→

K→∞
P̄2(s,Γ) (7)

where

P̄2(s,Γ) , exp

(
−
∑
k∈K

s
(
1− Pk,1(s,Γ)

)∑
j∈K\{k} Pj,1(s,Γ)γjkρj

)
(8)

is the deterministic equivalent of P2(sΓ).

A. Problem Formulation
We consider the problem of maximizing the outage multi-

cast rate, i.e., the multicast rate subject to an outage constraint
on the joint success probability, in a dense network where
the number of UE is increased within a finite network area.
Assuming that the total transmission time is divided equally
between the two phases, we study the optimization problem

max
s>0,Γ�0

log2(1 + s)

s.t. tr(Γ) ≤ 1
P̄2(s,Γ) ≥ 1− ε

(9)

where ε ∈ [0, 1) is the target outage probability after the
two phases and where we have replaced P2(s,Γ) with its
deterministic equivalent defined in Proposition 1.

B. Statistical Multi-Antenna Multicasting
In absence of the second phase of cooperative D2D commu-

nications, the objective of the BS is to maximize the multicast
rate r1 , log2(1 + s1) subject to an outage constraint on the
joint success probability over the first phase, i.e., P̄1(s1,Γ) ≥
1− ε, where we have defined P̄1(s1,Γ) ,

∏
k∈K Pk,1(s1,Γ).

In this context, for a given transmit covariance matrix Γ,
the outage multicast rate r1 is maximized when the outage
constraint is satisfied with equality, leading to

s1 = ρ0 log

(
1

1− ε

)(∑
k∈K

1

γkaH
k Γak

)−1
. (10)

Then, the optimal transmit covariance is obtained by solving

min
Γ�0

∑
k∈K

1

γkaH
k Γak

s.t. tr(Γ) ≤ 1

(11)



by means of semidefinite programming. This case is referred
to in the following as statistical multi-antenna multicasting
(SMAM).

Proposition 2. Assume that the set K consists of M UEs
exhibiting mutually orthogonal array responses, i.e.,∑

k∈K

aka
H
k = MIM (12)

with IM being the M -dimensional identity matrix. Then, the
optimal transmit covariance matrix for problem (11) can be
written in closed form as

Γ1 ,
1

MνK

∑
k∈K

1
√
γk

aka
H
k (13)

with νK ,
∑
k∈K 1/

√
γk.

Proof. See Appendix A.

Note that a set of array response vectors satisfying (12) can be
obtained as the columns of the M -dimensional discrete Fourier
transform (DFT) matrix or, alternatively, it can be constructed
along specific virtual angles as described in [13].

C. D2D-Aided Statistical Multi-Antenna Multicasting

In presence of the second phase of cooperative D2D com-
munications, solving problem (9) is non-trivial as P̄2(s,Γ) in
(8) is non-convex in both the optimization variables. To reduce
the complexity, we decouple the optimization of Γ and s as
follows. Assuming that the UE distribution is uniform in the
angular domain, we build on Proposition 2 and construct the
subset U of UEs to be targeted in the first phase by selecting
M UEs satisfying the condition in (12): by doing so, the
BS spreads its transmit power along a set of directions that
span the whole angular domain.1 In this setting, the transmit
covariance matrix that maximizes the outage multicast rate
over the UEs in U is given by Γ1 in (13), and we define the
resulting outage multicast rate is r = log2(1+s) with (cf. (10))

s = ρ0 log

(
1

1− ε1

)
M

ν2U
(14)

where we have defined νU ,
∑
k∈U 1/

√
γk and where ε1 ∈

[0, 1) denotes the target outage probability after the first phase
over the UEs in U . Next, we optimize the value of ε1 in order
to maximize the multicast rate with target outage probability
ε after the two phases. The target outage probabilities ε1 and
ε (i.e., after the first and the second phase, respectively) are
related through (14) as

∑
k∈K

s

(
1− exp

(
− s

ρ0γkaH
k Γak

))
∑
j∈K\{k} exp

(
− s

ρ0γjaH
j Γaj

)
γjkρj

= log

(
1

1− ε

)
(15)

1As K is large, we assume that it is always possible to select M UEs
whose steering angles satisfy (12).

(with s being a function of ε1), which is simply obtained by
plugging (5) into (8) and equating it to the target success
probability 1 − ε. This case is referred to in the following
as D2D-aided statistical multi-antenna multicasting (D2D-
SMAM). Note that, as the left-hand-side of (15) is a mono-
tonically decreasing function of ε1, the latter can be optimized
efficiently via bisection methods.

D. Asymptotic behavior of D2D-SMAM

In this section, we study the asymptotic behavior of the
proposed D2D-SMAM scheme as a function of the num-
ber of UEs and BS antennas. Considering the expression
in (15) when ε → 0 (and, hence, ε1 → 0), we have
exp

(
− s/(ρ0γkaH

k Γak)
)
' 1 − s/(ρ0γkaH

k Γak) and, thus,
we can write the following asymptotic approximation of s:

s '
ε→0

s̄ ,

√√√√ ρ0 log
(

1
1−ε
)∑

k∈K
1

γkaH
k Γak

(∑
j∈K\{k} γjkρj

)−1 . (16)

We assume that dk ∈ [Rmin, Rmax] ∀k, where Rmin and Rmax

denote the minimum and maximum distance from UE k to the
BS respectively. Hence, let us consider the worst-case scenario
where

γk = R−βmax, ∀k ∈ K (17)

γjk = (2Rmax)−β , ∀k, j ∈ K. (18)

In this setting, we have

aH
k Γak =

1

MνU

∑
j∈U

1
√
γj
|aH
k aj |2 (19)

≥ M

νU
R
α/2
min (20)

where (20) follows from restricting the summation in (19)
to the worst case in which |aH

k aj |2 > 0 only for the two
indices j ∈ U corresponding to the adjacent steering angles
with respect to UE k. In the following, we consider the case
in which both the number of UEs K and the number of BS
antennas M increase with fixed ratio c , K/M > 1, as well
as the case in which K increases for a fixed M . Finally, we
can lower bound s̄ in (16) as

s̄ →
K→∞



√√√√ρ0ρUE log
(

1
1−ε
)
R
α/2
min

2β νU R
2β
max (c− 1)

K, for c = K
M > 1

√√√√ρ0ρUE log
(

1
1−ε
)
R
α/2
min

2β νU R
2β
max

M, for fixed M.

(21)

Based on (21), we obtain a lower bound on the outage multi-
cast rate that increases as log2

(
1 +O(

√
K)
)

in the first case
and that is constant (yet non-vanishing) in the second case.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the asymptotic expressions
obtained in Section III-D with numerical simulations. In doing
so, we assume that the links between the BS and the UEs and
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Fig. 2. Outage multicast rate obtained with the SMAM and D2D-SMAM
algorithms, together with the asymptotic behavior of latter, versus the number
of UEs for different values of c = K/M . As expected, the D2D-SMAM
algorithm achieves a non-vanishing multicast rate as opposed to the SMAM
algorithm, whereas the asymptotic behavior increases with K.

the D2D links between UEs are in LoS or NLoS conditions
with equal probability. We build the set U by identifying M
UEs whose steering angles satisfy the condition in (12), out
of which |U|/4 are assumed to be in NLoS conditions with
respect to the BS. The target outage probability is fixed to
ε = 10−3 and we consider a total transmission bandwidth of
10 MHz. For simplicity, we assume that all the UEs have the
same transmit SNR, i.e., {ρk = ρUE}k∈K, and set ρ0 = 20 dB
and ρUE = 10 dB. Furthermore, we fix the LoS and NLoS
pathloss exponents to α = 2 and β = 4, respectively. Lastly,
the numerical results are averaged over 3 × 103 uniformly
random UE locations within a half-disc area with minimum
radius Rmin = 10 m and maximum radius Rmax = 100 m
from the BS.

Figure 2 shows the outage multicast rate for the proposed
D2D-SMAM and SMAM algorithms together with the asymp-
totic behavior in (21) when both the number of UEs K and the
number of BS antennas M increase with fixed ratio c = K/M .
Unlike the baseline SMAM algorithm, the proposed D2D-
SMAM algorithm achieves an increasing outage multicast rate
as the number of UEs grows large, even when the target outage
probability is small as in the considered scenario. Recall that
this is achieved on the basis of statistical CSI only (and, thus,
with minimal overhead). Such benefits stem mainly from effi-
cient use of the resources available at both the BS and the UEs
to reach the whole UE population, as opposed to the baseline
scheme where the BS alone does not have enough spatial
degrees of freedom. In addition, the asymptotic behavior of
the D2D-SMAM algorithm increases as log2

(
1 + O(

√
K)
)
,

although with slow pace due to the pessimistic assumptions
made in (17)–(18). By fixing the number of UEs K, an
increase in the number of BS antennas M brings substantial
performance gains, as shown in Figure 3. Here, the outage
multicast rate achieve by the D2D-SMAM algorithm is again
increasing with K, whereas the asymptotic behavior in (21)
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Fig. 3. Outage multicast rate obtained with the SMAM and D2D-SMAM
algorithms, together with the asymptotic behavior of the latter, versus the
number of UEs for different values of M . As expected, the D2D-SMAM
algorithm achieves a non-vanishing multicast rate as opposed to the SMAM
algorithm, whereas the asymptotic behavior is constant with K.
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Fig. 4. Joint success probability over the two phases in (6) and its deter-
ministic equivalent in (8) versus the number of UEs for different values
of c = K/M . The asymptotic behavior of the joint success probability is
accurate even for small values of K.

is constant with K (i.e., non-vanishing). An increase in M is
also beneficial for the SMAM algorithm, although the obtained
outage multicast rate still vanishes with K. Lastly, Figure 4
compares the joint success probability obtained via numerical
simulations with its deterministic equivalent P̄2(s,Γ) in (8)
when both the number of UEs K and the number of BS
antennas M increase with fixed ratio c = K/M . Remarkably,
P̄2(s,Γ) is accurate even for small values of K.

V. CONCLUSIONS

We propose a two-phase multicasting scheme that exploits
both multi-antenna transmission through precoding at the BS
and cooperative D2D communications among UEs. Unlike
our previous work [12], our scheme is able to achieve a



non vanishing outage multicast rate on the basis of statistical
CSI only (and, thus, with minimal overhead). Our asymptotic
analysis shows that the resulting outage multicast rate grows
with the number of UEs K when the latter is increased
together with the number of BS antennas M with a fixed
ratio, whereas it achieves a constant (non-vanishing) outage
multicast rate when K is increased for a fixed M .

APPENDIX A
PROOF OF PROPOSITION 2

Since problem (11) is convex, a given Γ is optimal if and
only if it satisfies the Karush–Kuhn–Tucker (KKT) conditions.
Let us define the Lagrangian and its gradient as

L(Γ, µ,Ψ) ,
∑
k∈K

1

γkaH
k Γak

+µ
(
tr(Γ)−1

)
−tr(ΨΓ), (22)

∇L(Γ, µ,Ψ) = −
∑
k∈K

1

γk(aH
k Γak)2

aka
H
k + µIM −Ψ (23)

respectively, where we have introduced the dual variables µ ∈
R and Ψ ∈ CM×M . The KKT conditions of problem (11) can
be written as∑

k∈K

1

γk(aH
k Γak)2

aka
H
k = µIM −Ψ, (24a)

tr(Γ) ≤ 1, Γ � 0, (24b)
µ ≥ 0, Ψ � 0, (24c)

µ
(
tr(Γ)− 1

)
= 0, ΨΓ = 0. (24d)

The condition in (24a) suggests that the transmit covariance
matrix has the structure

Γ =
∑
k∈K

wkaka
H
k (25)

where
∑
k∈K wk = 1/M implies tr(Γ) = 1 and {wk ≥ 0}k∈K

implies Γ � 0. From (25), we can write

aH
k Γak =

∑
j∈K

wjφkj (26)

where we have defined φkj , |aH
k aj |2, with Φ , [φkj ]k,j∈K ∈

CK×K symmetric with diagonal elements equal to M2. Plug-
ging (25) into (24), we can rewrite the KKT conditions as

∑
k∈K

1

γk
(∑

j∈K wjφkj
)2 aka

H
k = µIM −Ψ, (27a)

∑
k∈K

wk =
1

M
, {wk ≥ 0}k∈K, (27b)

µ ≥ 0, Ψ � 0, (27c)

µ

(∑
k∈K

wk −
1

M

)
= 0, Ψ

∑
k

wkaka
H
k = 0. (27d)

Let us define w , [w1, . . . , wK ]T ∈ RK×1 and let ek denote
the kth column of IK . Choosing the weights that satisfy (27b)
allows us to set Ψ = 0 and, from (27a), we can show that

w =
1√
µM

Φ−1b (28)

where we have defined

b ,

[
1√

γ11TΦ−1e1

, . . . ,
1√

γK1TΦ−1eK

]T
. (29)

On the other hand, the dual variable µ can be obtained by
plugging (28) into the first condition in (27d), i.e.,

µ = M(1TΦ−1b)2 (30)

and, by plugging (30) into (28), we obtain

wk =
eT
kΦ−1b

M1TΦ−1b
, ∀k ∈ K. (31)

Finally, choosing {wk}k∈K as in (31), µ as in (30), and Ψ = 0
readily satisfies (27b)–(27d), whereas (27a) yields∑

k∈K

(1TΦ−1ek)aka
H
k =

1

M
IM . (32)

The latter is satisfied when Φ = M2IK , i.e., when K = M
and the steering angles of the UEs are such that aH

k aj =
0, ∀k 6= j (see, e.g., [13] for more details). In this setting,
it follows from (31) that wk = 1/(M

√
γkνK), from which

we obtain the expression of the optimal transmit covariance
matrix in (13).
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