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ABSTRACT
The manual specification of transformations between heteroge-
neous schemas is a key activity in data integration. While there
are tools exposing correspondences between elements of schemas,
precise schema mappings still need to be manually specified every
time, even if the two schemas at hand are similar to others that have
already been mapped. In fact, schema mappings are defined over
the properties of the original schemas and cannot be reused on new
ones. We tackle the transformation reuse problem by generalizing
schema mappings as meta-mappings, a novel formalism describ-
ing transformations between generic data structures called meta-
schemas. We introduce techniques to infer meta-mappings from
schema mappings. Once inferred, we organize meta-mappings into
a repository, which can be efficiently searched to identify reusable
transformations when a new pair of schemas is given. We report ef-
fectiveness results from an experimental evaluation over real-world
scenarios and show that our system can infer, store, and search
millions of meta-mappings in seconds.

1 INTRODUCTION
Schema mappings are widely used as a tool for data exchange and
integration. However, although there are systems supporting data
architects in the creation of mappings [5], designing them is still
a time-consuming task. In this framework, given the overwhelm-
ing amount of “enterprise knowledge” stored in traditional data
warehouses and in data lakes, reuse is an opportunity of increasing
importance [1]. In particular, data transformation scenarios are
often defined over schemas that are different in structure but simi-
lar in semantics. This is especially true if data sources, which are
extremely heterogeneous, have to be mapped to a shared format.
It follows that a great opportunity to reduce the effort of transfor-
mation design is to reuse existing schema mappings. Unfortunately,
there is no obvious approach for this problem. Consider the follow-
ing example.

Example 1.1. A central bank maintains a register with balance
data from all companies in the country (Figure 1). This register has
schema G, with a relation Balance storing, for each company, its
gains, zone of operation, and economic sector. External providers
send data to the bank in different forms. Provider A adopts a schema
SA, with a relation RA for companies (firms), with gains, zone of oper-
ation, and economic sector, whose code refers to relation Activity.
Provider B adopts a schema SB , with a relation RB for companies
(enterprises), their gains, sector, capital, and area, whose code refers
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Figure 1: A data transformation scenario

to relation Location. Data is moved from SA and SB into G, by
using two schema mappings:

σA: RA(f ,д, z, s),Activity(s,d) → Balance(f ,д, z,d).
σB : RB (e,д, s, c,a), Location(a,n) → Balance(e,д,n, s).

The example shows a data exchange scenario where the differ-
ences in the mappings are due to the structural differences between
SA and SB , which are, on the other hand, semantically very similar.
Moreover, every new data provider (e.g., SC in the figure) would
require the manual design of a new, ad-hoc mapping, even if there
is a clear analogy with the already defined mappings.

Our goal is to reuse σA and σB and avoid the definition of a
new mapping for SC . The intuition is to collect all available map-
pings in a repository; then, for any new pair of schemas (e.g., SC
and G in the figure), query such repository to retrieve a suitable
mapping. Unfortunately, this form of direct reuse is complicated
by the nature of schema mappings. A mapping characterizes the
constraint between a pair of schemas at a level of detail that en-
ables both logical reasoning and efficient execution. Yet, a simple
variation in a schema, such as a different relation or attribute name
or a different number of attributes, makes it not applicable. Our
experiments show that mappings from a corpus of 1.000 schema
mappings can be reused for new, unmapped pairs of schemas only



in 20% of cases. To be reusable, a mapping should be described in
a way that is independent of its specificities but, at the same time,
harnesses the essence of the constraint so as to work for similar
schemas.

Example 1.2. Consider a “generic" mapping ΣA, obtained from
σA by replacing names of the relations and attributes with variables.
It could be informally described as follows:
ΣA : for each relation r with key f and attributes д, a, s

for each relation r ′ with key s and attribute d
with a foreign key constraint from s of r to s of r ′

there exists a relation r ′′ with key f and attributes д, a, d .

If instantiated on SA, the generic mapping ΣA expresses a map-
ping to G that is the same as σA. This solution seems a valid com-
promise between precision, i.e., the ability to express the semantics
of the original mapping, and generality, as it can be applicable over
different schemas. However, ΣA falls short of the latter requirement,
as it is not applicable on SB . Indeed, there are no constraints on
attribute д and a, and so they could be bound to any of Gains,
Sector and Capital, incorrectly trying to map Capital into the
target.

Example 1.3. Consider now a more elaborated generic mapping
that uses constants to identify attributes:

ΣHB : for each relation r with key e and attributes д, s , c , a
for each relation r ′ with key a and attribute d

with a foreign key constraint from a of r to a of r ′

where д = Gains, s , Gains, s , Capital, c , Gains,
c , Sector

there exists a relation r ′′ with key e and attributes д, d , s .

This generic mapping is precise enough to correctly describe both
σA and σB and can be re-used with other schemas.

The example shows a combination of attributes, identified by
constraints on their names and role, that form a correct and useful
generic mapping. Once pinpointed, generic mappings can be stored
in a repository, so that it is possible to use them for a new scenario.
In our example, given SC and G, the generic mapping ΣHB can be
retrieved from the repository and immediately applied.

There are three main challenges in this approach.
- We need a clear characterization of what it means for a generic
mapping to correctly describe and capture the semantics of an
original schema mapping.

- As a generic mapping is characterized by a combination of condi-
tions on attribute names and roles, for a given schema mapping
there is a combinatorial number of generic mappings. We need a
mechanism to generate them.

- For a new scenario (e.g., new schemas), there is an overwhelming
number of generic mappings that potentially apply, with different
levels of “suitability”. We need efficient tools to search through
and choose among them.
In this work, we address the above challenges with GAIA, a system
for mapping reuse. GAIA supports two tasks, as shown in Fig-
ure 2: (1) infer generic mappings, called meta-mappings, from input
schema mappings, and store them in a repository; (2) given a source
and a target schema, return a ranked list of meta-mappings from the

Figure 2: The architecture of GAIA.

repository which are used to generate possible mappings between
these schemas. GAIA provides the following key contributions:
• The notion of fitness: a semantics to precisely characterize and
check when a meta-mapping is suitable for a reuse scenario.

• An algorithm to infer meta-mappings from schema mappings
with an approach that extends previous efforts for the definition
of schema mappings by example; this algorithm is used to popu-
late a repository of meta-mappings supporting schema mapping
reuse.

• An approach to reuse based on: (i) the search, in the repository of
available meta-mappings, for those that fit a new pair of source
and target schemas and (ii) the construction, from the retrieved
meta-mappings, of possible mappings to be proposed to the de-
signer.
Because of space limitation, algorithms and details are in the

full version of the paper [2]. In the rest of this paper, we provide
examples of meta-mappings (Section 2) and experimental results
from an evaluation of our system with more than 20,000 real-world
data transformations over 40,000 schemas (Section 3).

2 MAPPING AND META-MAPPINGS
We recall the notion of schema mapping [6] and introduce that of
meta-mapping. While the former notion models specific transfor-
mations, the latter introduces an abstraction over mappings [7, 8]
and models generic mappings between schemas. Building on these
notions, we illustrate the functionalities of our system.
Schema mappings. Let S (the source) and T (the target) be two
relational schemas and let Inst(S) and Inst(T) denote the set of all
possible instances of S and T, respectively. A (schema) mapping
M for S and T is a binary relation over their instances, that is,
M ⊆ Inst(S) × Inst(T) [3].

Without loss of generality, we consider mappings expressed
by a single source-to-target tuple-generating-dependency (st-tgd)
σ : ∀x(ϕ(x) → ∃yψ (x, y)) where x and y are two disjoint sets of
variables, ϕ(x) (the left-hand-side, LHS) is a conjunction of atoms
involving relations in S and ψ (x, y) (the right-hand-side, RHS) is
a conjunction of atoms involving relations in T. The dependency
represents a mapping M in the sense that (I , J ) ∈ M if and only
if (I , J ) satisfies σ . In this case, J is called a solution of I under
σ . We can compute a suitable J in polynomial time by applying
the chase procedure to I using σ [6]: the result may have labeled
nulls denoting unknown values and is called the universal solution,
since it has a homomorphism to any possible solution J ′, that is, a
mapping h of the nulls into constants and nulls such that h(J ) ⊆ J ′.
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schemas
SA = {RA(Firm, Gains, Zone, Sector), Activity(Code, Description), RA .Sector 7→ Activity .Code} G = {Balance(Company, Gains, Zone, Sector)}

SB = {RB(Enterprise, Gains, Sector, Capital, Area), Location(Code, Name), RB .Area 7→ Location.Code}}

mappings
σA : RA(f , g, z, s), Activity(s, d) → Balance(f , g, z, d). σB : RB(e, g, s, c, a), Location(a, n) → Balance(e, g, n, s).
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meta-mappings
ΣA : Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),FKey(F , R, S ),Rel(S ),Key(K2, S ),Att(A3, S ) → Rel(T ),Key(K1, T ),Att(A1, T ),Att(A2, T ),Att(A3, T )

qS (x) = Rel(R), Key(K1, R), Att(A1, R), Att(A2, R), Att(A3, R), FKey(F , R, S ), Rel(S ), Key(K2, S ), Att(A4, S ) qT (x, y) = Rel(T ), Key(K1, T ), Att(A1, T ), Att(A2, T ), Att(A4, T )

ΣB : qS (x) → qT (x, y) ΣPB : qS (x), A1=Gains, A2=Sector, A3=Capital → qT (x, y)
ΣNB : qS (x), A1,Sector, A1,Capital, A2,Gains, A2,Capital, A3,Gains, A3,Sector → qT (x, y) ΣHB : qS (x), A1=Gains, A2,Gains, A2,Capital, A3,Gains, A3,Sector → qT (x, y)

Figure 3: Schemas, m-schemas, mappings, and meta-mappings discussed along the paper.

Example 2.1. Consider the schemas SA, SB and G of Figure 1,
which we recall in Figure 3 with all the formalisms that will be
discussed throughout the paper.

A mapping between SA and G is the st-tgd σA discussed in the
Introduction and reported in Figure 3 (quantifiers are omitted for the
sake of readability). Intuitively, the application of the chase to the
instance of SA using σA enforces this dependency by generating
one tuple in the target for each pair of tuples in the source for
which there is a binding to the LHS of the dependency. The result
includes the first two tuples in relation Balance in Figure 1. Besides,
a mapping from SB to G is represented by the s-t tgd σB in Figure 3.

Meta-mappings. A meta-mapping describes generic mappings be-
tween relational schemas and is defined as a mapping over the
catalog of a relational database [8]. Specifically, in a relational
meta-mapping, source and target are both defined over the follow-
ing schema, called (relational) dictionary: Rel(name), Att(name, in),
Key(name, in), FKey(name, in, refer) (for the sake of simplicity, we
consider here a simplified version of the relational model). An in-
stance S of the dictionary is calledm-schema and describes relations,
attributes and constraints of a (standard) relational schema S. Fig-
ure 3 shows the m-schemas of the schemas SA, SB , and G of the
running example.

We assume, hereinafter, that, given a schema, its correspond-
ing m-schema is also given, and vice versa. A meta-mapping is
expressed by means of an st-tgd over dictionaries that describes
how the elements of a source m-schema map to the elements of a
target m-schema.

Example 2.2. Mapping σA of Example 2.1 can be expressed, at
the dictionary level, by meta-mapping ΣA in Figure 3. This st-tgd
describes a generic transformation that takes two source relations
R and S linked by a foreign key F and generates a target relation T

obtained by joining R and S on F that includes: the key K1 and the
attributes A1 and A2 from relation R and the attribute A3 from S .

Given a source m-schema S and a meta-mapping ℳ , a target
m-schema T is generated by applying the chase procedure to S
using ℳ .

Example 2.3. The chase of SA using ΣA, both in Figure 3, gen-
erates the following target m-schema where ⊥R is a labelled null
denoting a relation name.

Rel
name
⊥R

Key
name in
Firm ⊥R

Att
name in
Gains ⊥R
Zone ⊥R

Description ⊥R

This m-schema describes the relational schema:
R(Firm,Gains,Zone,Description)

A meta-mapping operates at schema level rather than at data
level and thus provides a means for describing generic transforma-
tions. Subtleties could arise from the chase procedure in presence
of existential quantifications in meta-mappings producing duplica-
tions of relations in the result. This is avoided by assuming that, for
each existentially quantified variable, there is a target equality gen-
erating dependency (egd) [6] ensuring that whenever two relations
in the target have the same structure, then they coincide.
From meta-mappings to mappings. Given a source schema S
and a meta-mapping Σ, it is possible not only to generate a tar-
get schema by using the chase, as shown in Example 2.3, but also
to automatically obtain a schema mapping σ that represents the
specialization of Σ for S and T [8]. The schema to data exchange
transformation (SD transformation) generates from S and Σ a com-
plete schema mapping made of S, a target schema T (obtained by
chasing the m-schema of S with the meta-mapping), and an s-t tgd
σ between S and T. The correspondences between LHS and RHS of
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σ are derived from the provenance information computed during
the chase step, in the same fashion as the provenance computed
over the source instance when chasing schema mappings [4].

Example 2.4. Consider again the scenario in Figure 3. If we apply
the SD transformation to the schema SA and the meta-mapping ΣA,
we obtain the target m-schema of Example 2.3 and the following
mapping from SA to ⊥R :

σ : RA(f ,д, z, s),Activity(s,d) → ⊥R (f ,д, z,d).

Thus, we get back, up to a renaming of the target relation, the
mapping σA in Figure 3 from which ΣA originates.

From mappings to meta-mappings While previous work fo-
cused on generating a mapping from a given meta-mapping [8], we
tackle the more general problem of mapping reuse, which consists
of: (i) generating a repository of meta-mappings from a set of user-
defined schema mappings, and (ii) given a new pair of source and
target schemas, generating a suitable mapping for them from the
repository of meta-mappings.

Example 2.5. For the scenario in Figure 3, our system first gen-
erates several fitting meta-mappings from σA between SA and G.
Once SB and G are given as input for a new transformation, the
system scans the corpus of existing meta-mappings and identifies
ΣA as a fitting meta-mapping from SB to G. This meta-mapping
is then instantiated to generate a schema mapping between them,
according to the SD transformation above.

3 EXPERIMENTAL EVALUATION
We implemented GAIA in PL/SQL 11.2 for Oracle 11g. All experi-
mentswere conducted onOracle Linux, with an Intel Core i7@2.60GHz,
16GB RAM.
Datasets and Transformations. We used data transformations
that are periodically executed to store data coming from several data
sources into the Central National Balance Sheet (CNBS) database,
an archive of financial information of about 40K enterprises. The
schema of CNBS has 5 relations with roughly 800 attributes in total.
Source data come from three different providers. The Chamber of
Commerce provides data for 20K companies (datasets Chamber).
While the schemas of these datasets are similar, the differences
require one mapping per company between relations of up to 30
attributes with an average of 32 (self) joins in the LHS of the map-
pings. Data for 20K more companies is collected by a commercial
data provider in a single database (CDP). This database is different
both in structure and attributes names from the schemas in Cham-
ber and requires one mapping involving 15 joins in its LHS. Finally,
data for further 1,300 companies (Stock) is imported from the stock
exchange, with each company requiring a mapping with 40 joins
on average.
Transformation scenarios. For the inference of themeta-mappings,
we consider two configurations: single, where a meta-mapping is
inferred from one mapping, and multiple, where the inference is
computed on a group of mappings for companies in the same busi-
ness sector. We observe that the results stabilize with 10 schema
mappings in the group and do not improve significantly with larger
numbers, therefore consider 10 mappings for the multiple configu-
ration.

Search precision. Let σ be a mapping from a source S to a target T
and let𝒬 be the set of meta-mappings inferred from σ . We measure,
in terms of search precision, the ability of the system to return the
meta-mappings in 𝒬 when queried with S and T, i.e., how well the
system retrieves correct cases.

We use a resubstitution approach: we populate an initially empty
repository by inferring the meta-mappings from a set Θ of map-
pings. For each schema mapping σ in Θ, we will denote by 𝒬σ
all the meta-mappings inferred from σ . We then pick a schema
mapping σ ′ from Θ and search the repository by providing as input
the source and target schemas of σ ′. We then collect the top-10
results according to the coverage and compute the percentage of
correctly retrieved meta-mapping, that is, those that belong to 𝒬σ ′ .

We test search precision with a corpus of mappings of increasing
size (from 200 to 21,301). In each test, we query the repository of
meta-mappings inferred from the given mappings by using 50 dif-
ferent source-target pairs and report their average search precision.
The experiment is executed on single and multiple configurations.
The largest repository contains about 700K explicit meta-mappings
in single configuration and 110K in multiple configuration. In the
multiple scenario, the test is considered successful on a mapping
σ when the retrieved meta-mapping originates from the group
that includes σ . On average, a meta-mapping includes 12 equality
and/or inequality constraints. For this test, the inference for all
meta-mappings took less than a minute and the search took always
less than 5 seconds.

The results shows that search precision is equal to 1 with up
to 5k mappings in the repository and it slightly decreases with
the repository size up to 0.98 with more than 20k mappings in the
single scenario and up to 0.995 with the multiple scenario. This
is because the larger numbers of mappings lead to an increasing
number of false positives in the result. When the CDP mapping
is inserted in the repository, it is immediately identified with both
configurations. This shows that specific structures and constants
lead to meta-mappings that are easy to retrieve. Meta-mappings
derived from multiple schema mappings improve search precision
because are more general than the ones from single mappings, thus
reducing the risk of overfitting.

Experiments show that our approach efficiently identifies useful
mappings for a new scenario, while the conventional approach
would require a user to completely define a new transformation.
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