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Objectives and Contributions

Initialization of variational parameters has a huge role in the convergence of

stochastic variational inference but received little to no attention in current lit-
erature.

Contributions:
» New initialization for svi based on Bayesian linear models;
» Applied to regression, classification and CNNs;
» Experimental comparison against other initializations;
» SoTA performance with Gaussian svi on large-scale CNNs.

Stochastic Variational Inference - svi

A DNN is a composition of nonlinear vector-valued functions f"
f(x) = (f(L—l)(W(L—”) 0. ofO(W)) (x)

Prior on model parameters

Objective of Bayesian inference
p(YIX, W)p(W)J

p(Y|X) Marginal Likelihood J

Posterior over the weights
Intractable for DNNs

p(WIX)Y) =

svl reformulates this problem as minimization of the negative evidence lower

bound (or NELBO) under an approximate distribution qo(W) [2]:
qs;(W) s.t. 0 = arg mein{NELBO}
NELBO = Eg, [—logp(Y|X, W)] 4 KL (qo(W)l[p(W))
Commonly used family of variational distribution: mean field Gaussians
W) =[Nl o) o ={(n o) :1=0,...,.L -1}
1)

How do we initialize 0?

After Poor Initialization After Our Initialization

Iterative Bayesian Linear Modeling Initializer - I-BLM

Figure: Representation of 1-BLM. In (left) and (center) we learn two Bayesian linear models, whose
outputs are used on the (right) for the following layer.

In a nutshell.
» Inspired by residual networks and greedy initialization of DNNSs.

» Grounded on Bayesian Linear regression but extended to classification and
to convolutional layers.

» Regression on transformed labels obtained through the interpretation of
classification labels as the coefficients of a degenerate Dirichlet distribution.

» Scalability achieved thanks to mini-batching.

But how does it work?
Transform the labels if it's a classification task [3].
For each layer (1):

» Propagate a mini-batch of X up to the previous layer (1 —1);
» Extract the patches if it's a convolutional layer;
» Learn a Bayesian linear model and use its solution to initialize qo(W'Y).

Effect of batch-size: the full training set leads to

Bayesian Linear Regression - BLR a better estimate of the posteriors
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tional Bayes for Deep Models”. Proceedings of the 36th International
Conference on Machine Learning (ICML 2019). 2019.

Some more insights!

Timing profiling (LENET-5): before training, 4 out of 5 optimal initializers are 1-BLM
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Figure: Comparison of initialization time versus test MNLL.
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Regression and Classification on Bayesian DNNs
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Figure: Progression of test error and test mNLL with different initializations on a 5x100 architecture.
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I-BLM for Bayesian CNNs - VvGG16

» Another initialization for Gaussian svi based on a MAP optimization (MAP INIT).

» Loss optimized for the same amount of time required by 1-BLM. Solution
used to initialize the means, while the log-variances are —5.5.

» Models are trained for 100 minutes for the entire end-to-end training

(curves are shifted by the initialization time).
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Figure & Table: Comparison between Gaussian factorized svi, MCD and NOISY-KFAC on VGG16 with
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Figure: Entropy distribution while testing on MNIST and NOT-MNIST.
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