
Dynamic Resource Shaping for Compute Clusters

Francesco Pace
Eurecom

Sophia-Antipolis, France

francesco.pace@eurecom.fr

Dimitrios Milios
Eurecom

Sophia-Antipolis, France

dimitrios.milios@eurecom.fr

Damiano Carra
Università di Verona

Verona, Italy

damiano.carra@univr.it

Pietro Michiardi
Eurecom

Sophia-Antipolis, France

pietro.michiardi@eurecom.fr

Abstract—Nowadays, data-centers are largely under-utilized
because resource allocation is based on reservation mechanisms
which ignore actual resource utilization. Indeed, it is common to
reserve resources for peak demand, which may occur only for
a small portion of the application life time. As a consequence,
cluster resources often go under-utilized.

In this work, we propose a mechanism that improves compute
cluster utilization and their responsiveness, while preventing
application failures due to contention in accessing finite resources
such as RAM. Our method monitors resource utilization and
employs a data-driven approach to resource demand forecasting,
featuring quantification of uncertainty in the predictions. Using
demand forecast and its confidence, our mechanism modulates
cluster resources assigned to running applications, and reduces
the turnaround time by more than one order of magnitude while
keeping application failures under control. Thus, tenants enjoy a
responsive system and providers benefit from an efficient cluster
utilization.

I. INTRODUCTION

Data-center efficiency is a subject that attracted a vast

amount of research [1]–[7]. Recently, the cloud computing

paradigm, both in its public and private forms, fueled the

proliferation of a wide array of resource management tools

[4], [5], [8], [9] aiming at an efficient operating point, where

cluster resources are fully utilized. Despite such efforts, data-

center resources go often under utilized, as shown in recent

traces from large-scale production clusters [10], [11]: in most

cases (∼ 80%) resource utilization is less than 40% or 80%

of the allocated resources depending on application types.

Current approaches that address efficiency requirements fall

in two broad categories. The first involves methodologies

that steer tenants’ behavior through the design of incentive

mechanisms; tenants are endowed with the task of optimizing

their cost to operate their applications, whereas providers

operate on prices to regulate the allocation of idle resources.

Such approaches are largely adopted by public cloud providers

[1]. The second category concerns approaches that operate

at the system level, and propose mechanisms that allocate

resources based on tenants’ reservations [3]–[5], [8], [9], [12],

[13]. Essentially, existing approaches either let tenants reason

in terms of value and costs [1], or let the system determine

how to avoid wasting scarce and costly resources.

In this paper, we discuss a methodology that belongs to the

second category: we present a mechanism that dynamically

adjusts resources allocated to running applications according

to their expected utilization, as opposed to a static allocation

based on tenants’ reservations. In the context we consider, we

define as applications the use of distributed frameworks such

as Apache Spark [14] and Google TensorFlow [15] that use

different components to produce work.

In general, cluster schedulers provision and manage re-

sources as follows: given a resource request, the resource

manager determines its admission in the cluster based on

reservation information.1 An admitted request triggers a re-
source allocation procedure, which concludes with reserved

resources being allocated to the request [5]. In most system

implementations, the concept of reservation and allocation co-

incide, although neither is representative of the true resource
utilization a request might induce on the system. In fact,

resource utilization is generally not constant throughout time,

but fluctuates according to application behavior [16].

The main consequence for current cloud environments is

that reservation requests are engineered to cope with peak
resource demands of an application, which is one key factor

that induces poor system utilization, and ultimately, negatively

impacts system efficiency. This is exacerbated by coarse-

grained reservation specifications: instance flavors exhibit dis-

crete gaps in terms of resource units. In fact, picking the

right configuration for cloud applications (and in particular

for the “big data” applications we consider in this paper) is a

daunting task [17], which requires sophisticated optimization

mechanisms going beyond human tuning abilities.

Thus, mechanisms to reduce resource slack, which is

defined as the difference between resource allocation and

utilization, are truly needed, for they can prevent clusters from

denying admission to new requests which would queue up,

while spare capacity goes unused.

Problem Statement. We study the problem of cluster effi-

ciency by reducing the resource slack induced by reservation-

centric application schedulers, which match allocation to

reservation. To do so, we introduce a new mechanism that

predicts the resource utilization and adjusts the resource

allocation accordingly. The main challenge to face is that

prediction errors may have problematic consequences, since

sudden spikes could wreak havoc the system [4]. When dealing

with finite resources such as RAM, in fact, not providing

the correct amount of resources leads to application failures.

Careful engineering would suggest to introduce a buffer that

1In our prose, we neglect several important technical details that are
however irrelevant to our point, such as quota management, security aspects,
and concurrency control, to name a few.



will act as “safe-guard” to prediction errors. This results in a

trade-off, since on the one hand the safe-guard buffer should

be small to minimize slack, while on the other hand it should

be sufficiently large to prevent application failures.

In our approach, we leverage on three key ideas: prediction

confidence, application elasticity and controlled failures. In the

prediction process, we argue for models that provide additional

information about the confidence of the prediction. We use

such information to dynamically adapt the safe-guard buffer

that should prevent application failures. In addition, applica-

tion frameworks are composed by several elements that are

characterized by either a core or elastic nature [4], [18]. Core

components are compulsory for a framework to produce useful

work (e.g, Apache Spark requires a controller, a master, and

one worker); additional elastic components can contribute to a

job, e.g. by decreasing its runtime. An application that features

only core components is called rigid, whereas applications

with a mix of core and elastic components are called elastic.

If the resource demand is higher than the available resources,

we intervene (when possible) on elastic components to avoid

application failures. As a last step, should the previous two

mechanisms not be sufficient to provide enough resources,

we explicitly decide which application should fail so that to

minimize the amount of wasted work.

Contributions. In this paper we present our design of a

data-driven resource shaping mechanism that improves cluster

utilization, thus decreasing the average turnaround time, while

preventing application failures due to resource contention.

Our approach monitors resource utilization and relies on

online forecasting of resource demand to modulate allocated

resources such as they approximate utilization patterns well.

In summary, the contributions we present in this work are as

follows:

• We present a new mechanism that dynamically adjusts re-

sources allocated to applications by an existing scheduler.

In this work, we target a specific family of application

schedulers, and materialize our ideas for such systems.

• We compare parametric and non-parametric machine

learning methodologies for the forecasting of resource

utilization. In particular, we focus on quantification of

uncertainty, which is used to steer system parameters to

safeguard against unexpected resource demand peaks.

• We perform an extensive simulation campaign using

publicly available production traces from Google data-

centers, and discuss about the trade-off that an optimistic

vs. a pessimistic approach to application preemption en-

tails. We also present a full-fledged implementation of our

mechanism, that we use in an academic compute cluster

serving hundreds of students and researchers. Our results

indicate substantial improvements in terms of efficiency,

which translate in a system capable of ingesting a heavier

workload with the same number of machines.

The remainder of the paper is organized as follows. In

Section II we review the related literature. In Section III we

present our system design, and we validate our ideas using a

simulation campaign in Section IV. We present our prototype

implementation in Section V and its evaluation in Section V-A.

Finally we conclude in Section VI.

II. RELATED WORK

Resource allocation has been approached in many different

ways in the literature [1]–[4], [6], [7], [12], [19]–[27].

The authors in [19], [20] use feedback control loop which

requires every framework to periodically send application-

specific information to the scheduler, which is used to steer

resource allocation. In contrast, our approach does not require

such instrumentation, as it is application agnostic.

The authors in [6] introduce a reservation-based scheduler

and propose a Reservation Definition Language (RDL) that al-

lows users to declaratively reserve access to cluster resources.

They formalize the planning of current and future cluster

resources as a mixed-integer linear programming problem and

they integrate their work in YARN [28]. In our work, we avoid

delegating this task to users by asking them to specify such

information; generally, users have no knowledge of how their

applications will behave.

The authors in [27] develop a feedback control loop for

virtual machines, using a simple regression model to forecast

future allocation. They show that it is possible to reduce the

CPU resource slack, but they do not address memory and

the consequences that under-provisioning such resource has

on applications, as we do in our work.

The authors in [29] adopt a distributed scheduling architec-

ture, whereby each scheduler aims at minimizing task com-

pletion time by careful placement strategies that use estimates

of task runtime and their resource utilization. Contrary to our

work, they use over-provisioning of resources and they tackle

conflicts in an optimistic-manner. Our approach cooperates

with an existing scheduler, instead of replacing it, and does

not use task runtime to gauge cluster resources.

Some other works [1], [25] propose to address the problem

with economics principles. In particular, in [25] the authors

build a pricing model that enables infrastructure providers

to incentivize their tenants to use graceful degradation, a

self-adaptation technique originally designed for constructing

robust services that survive resource shortages. The authors

in [1], present a framework for scheduling and pricing cloud

resources, aimed at increasing the efficiency of cloud resources

usage by allocating resources according to economic princi-

ples. However, they achieve that by allocating more capacity

than what is physically available, i.e., over-provisioning, which

is a solution prone to uncontrolled failures2 when utilization

exceeds available resources.

Finally, works such as [3], [7], [12], [21]–[24], [30], [31],

focus either on resource placement or on meeting Service

Level Objective (SLO). In the first case they relate to a packing

problem and try to optimize it; Karanasos et al [30] suggest

to dynamically re-balance the load across hosts if the packing

2The Operating System (OS) kills processes due to Out Of Memory (OOM)
following its own algorithm.



performed at a certain time leads to uneven loaded hosts. In the

second case they leverage the elasticity of some frameworks

and they increase resources for applications that are falling

behind on their SLO. Our work is orthogonal to such methods

and can leverage them to improve the system performance.

The authors in [32] propose task scheduling and data place-

ment techniques that rely on historical resource utilization.

Specifically, they process the history of CPU utilizations using

the Fast Fourier Transform. Using the k-means algorithm,

they cluster patterns in three categories: periodic, constant

and unpredictable. They exploit the patterns of periodic and

constant categories to improve the quality of task scheduling.

Albeit all these works are valid and propose their own

vision of the problem, they share one element: although

some of them address a multi-dimensional packing problem

for provisioning resources to applications, when it comes to

reclaiming resources granted to applications they mostly focus

on “time sharable” resources, like the CPU, rather than “finite”

resources like memory. As a consequence, such methods are

limited to improve system efficiency from the perspective of

CPU utilization.

An example of prior work that modulates “finite” resources

is Borg [4]. Borg features a resource reclamation system that

seizes unused resources and offers them to other applications.

The authors study the impact of wrong memory reallocation on

running tasks, which causes resource contention: the OS enters

a special state to kill processes that are OOM. The authors

present different levels of “rigidity” for their reclamation

system (baseline, medium and aggressive) and show both the

benefit and the number of OOMs events for each of them.

They conclude by accepting the trade-off obtained by the

medium setting. Instead, we present a dynamic allocation

system that relies on online resource forecasting, with accurate

quantification of uncertainty. In addition, we seek to gain

control over the OS and minimize application failures events

while maximizing the resource utilization.

What sets apart our approach from previous work is as
follows. We use on-line forecasting with quantification of
uncertainty to steer system behavior. We explicitly take into
account finite resources which, if handled improperly, can
lead to failures. Additionally, we operate on low-level UNIX
processes, and take control over the OS for shaping the
resources allocated to applications.

III. SYSTEM DESIGN

Figure 1 illustrates the architecture we assume in our work.

The backend module is an instance of a cluster management

system, such as Docker [33] or Kubernetes [34]. Additionally,

we assume the presence of an application scheduler such as

[18], which reads the compute cluster state from a dedicated

database component. The monitoring component populates

the cluster state database with allocation and utilization mea-

surements taken from the backend, for every component of

every running application. To minimize intrusiveness, this

component uses standard metrics (CPU, memory, etc) as they

Fig. 1. System overview: shaded boxes represent existing components, white
boxes indicate new components presented in this work.

are seen by the OS. In this Section, we focus on the two

additional components we present in this paper:

Utilization forecasting module. The goal of this module is to

anticipate the resource utilization of every application compo-

nent. We study both parametric and non-parametric modeling

approaches to predict resource utilization, with emphasis on

the quantification of the uncertainty associated to these pre-

dictions. A more detailed exposition of the methodology we

employ can be found in Section III-A.

Resource shaper module. This module uses utilization fore-

casts to adjust the resources allocated to every component of

running applications. We anticipate prediction errors, thus we

compensate using a “safe-guard” buffer of size β to artificially

increase (that is, to force over estimation) predicted peak

resource utilization. A more detailed exposition of β can

be found in Section III-B. Additionally, the resource shaper

is in charge of application preemption. Preemption policies

can either be optimistic [4], [5] or strict (pessimistic). We

advocate for a strict policy, to avoid delegating application

preemption to the OS, which manages resource shortage (such

as OOM) in an application agnostic and “unpredictable” way.

A detailed exposition of the preemption policy can be found

in Section III-B.

A. Utilization Forecasting Module

The forecasting module is responsible for making predic-

tions about future resource utilization, for each application

component. For a given application, we forecast both CPU and

memory utilization using measurement time series that reflects

resource usage across time. We seek to discover patterns of

resource usage that allow reasoning about our expectations on

the future state of the system utilization.

We advocate for the need to quantify the level of un-
certainty associated with each prediction: predictive errors

may have serious impact on “finite” resources (i.e. memory),

as they can cause application failures. Although errors are

unavoidable to a certain extent, predictive confidence can be

used to adjust the degree of adaptiveness to the anticipated

workload: intuitively, a prediction with low confidence implies



that the resource shaper should be conservative regarding

changes in resource allocation.

In this work we compare the traditional parametric Au-

toregressive Integrated Moving Average (ARIMA) model to

an alternative non-parametric model that offers a principled

quantification of uncertainty.3 On the one hand, we use state-

of-the-art ARIMA implementations that automatically tune

hyper parameters and that provide a method to compute

confidence levels associated to predicted values [36]. On the

other hand, we model resource utilization using GP regression

[37], which is a Bayesian non-parametric regression method

with many attractive features. Bayesian approaches control

model complexity and thus avoid problems such as over-

fitting [38]. Moreover, GPs offer a sensible framework for

tuning their hyper parameters, through evidence maximization,

that does not require cross-validation approaches which are

typically more expensive and unpractical in the context of

our work. Finally, the output of a GP regression model is a

predictive distribution, rather than a single prediction, which

allows reasoning about uncertainty in a principled way.

1) Time-series Prediction with ARIMA: ARIMA [36] is

often considered as the “go-to method” for time series fore-

casting: it is a generalization of the Autoregressive Moving

Average (ARMA) model to cope with non-stationary time se-

ries data, which appear frequently in real-life applications such

as the one we consider in this paper. Considering observation

yt at time t, the ARMA(p′,q) model is described as follows:

yt−α1yt−1− ...−αp′yt−p′ = εt+ θ1εt−1+ ...+ θ1εt−q (1)

where α are the parameters of the autoregressive part of the

model, θ are the parameters of the moving average part and

the ε are error terms, and p′, q ≥ 1 ∈ N refer to the order of

the autoregressive and moving average parts of the model.

The idea of ARIMA is that current values of a time series

can be obtained by a linear combination of its past values,

using finite differencing to produce stationary data. Formally,

the ARIMA(p,d,q) model using lag polynomials is:

(1−
p∑

i=1

φiL
i)(1− L)dyt = δ + (1 +

q∑

i=1

θiL
i)εt (2)

where p = p′ − d, δ is a constant and L is defined as the

lag or back-shift operator. d is an integer greater than or equal

to zero and refers to the order of the integrated parts of the

model and controls the level of differencing. Generally d = 1
is enough in most cases.

In this work, we perform model selection – i.e., searching

through combinations of order parameters to pick the set that

optimizes model fit criteria – using the Akaike information

criteria, a method that is widely available in most ARIMA

implementations. Note that parameter optimization is an op-

eration that needs to be performed multiple times during a

forecasting period, to adapt to time series dynamics.

3We are aware of alternative approaches, e.g. [35], but none of them offer
a principled quantification of uncertainty as Gaussian Process (GP) model do.

Finally, most ARIMA implementations output confidence

intervals associated with the selected model parameters [36].

We note that confidence intervals should not be confused

with prediction intervals: the former are associated to the

probability of the true model parameters to be within the

confidence interval, whereas the latter are associated to the

likely range of future values output by the model. As discussed

in the literature [36], confidence intervals for the mean are

generally much narrower than prediction intervals. This has a

direct consequence in the context of our work, which revolves

around the idea of using predictive confidence to steer system

behavior: for this reason, in the next section, we develop a

Bayesian approach to time series modeling that features a

principled approach to compute predictive confidence.

2) Time-series Prediction with GPs: In the GP literature,

time series are treated as state space models, which are gen-

eralizations of auto-regressive models [39], [40]. Considering

state xt and observation yt at time t, a state space model is

described as follows:

xt+1 = f(xt) + εt

yt = g(xt) + vt
(3)

where f(xt) is the state transition function and εt is the process

noise, which follows a normal distribution. The state xt may

not be observed directly; an observation yt is given as a

function of the state g(xt), which is additionally corrupted

by observation noise vt. According to Equation (3), a time

series is modeled as a non-linear Markovian dynamical system.

The Markov property implies that the current state xt is

conditionally independent from past states {xτ : τ < t − 1},
given the previous state xt−1. The same is not true for

the observations however. Thus, given a collection of noisy

observations {yτ : τ ≤ t}, the goal for time series prediction

is to infer the future state xt+1. This requires learning the

functions f and g, which involves placing a GP prior over

f and g. However, the posterior over a non-linear dynamical

system is not Gaussian, thus several approximation methods

have been proposed in the literature [41], [42].

In the context of recording resource utilization, we can make

some simplifying assumptions. It is reasonable to assume that

an observation yt matches the state xt. Of course, we have

to acknowledge that resource utilization constantly fluctuates;

these fluctuations however can be sufficiently explained by the

noise term εt, which now accounts for both the process and the

observation noise. We shall additionally make the dependency

on past states explicit; for a history window of size h, we

consider the following state-space model:

yt = f(yt−1, . . . , yt−h) + εt (4)

To make predictions, we shall learn the transition function f
by means of standard GP regression. From Equation (4), the

transition function depends on the history explicitly. In this

way, we avoid the additional costs of approximating the true

posterior of a non-linear dynamical system.

A GP model transfers information across points that are

considered similar, as this is reflected in the choice of kernel



k(x, x′), which determines the prior covariance between inputs

x and x′. If we assume that the inputs X solely consist of the

recorded times, then similarity is only a matter of temporal

locality, which is not optimal practice if the aim is to predict

sudden changes of behavior.

Hence, we resort to the definition of a kernel that relies on

the observation history. It is implicitly assumed that if two

sequences of observations are similar, then they must have

been caused by the same “hidden” background processes; it

is reasonable then to extrapolate and predict that the future

observations will be similar as well. Such a history-dependent

kernel can be easily constructed by transforming the data in

an appropriate way. Consider a history window of size h,

the training instances will be utilization patterns expressed as

vectors of the form:

x̃t = [xt, yt−h, . . . , yt−1]
� (5)

where xt is the t-th recorded time. Therefore, the history-

dependent kernel is implemented by applying a typical expo-

nential kernel on the transformed inputs:

kh(x, x
′) = k(x̃, x̃′) (6)

Two different inputs x and x′ will be similar if they have a

similar history pattern, or equivalently, if the h preceded inputs

have similar outputs. Note that we have kept the recorded times

xt along with the history, thus we do not completely ignore

locality in the original input space.

3) How Online Forecasting Works: In practice, our fore-
casting component operates in an online manner. As long as

new data is available, the predictive model will be trained and

subsequently queried about the future workload. Depending

on the modeling methodology, our approach is as follows.

Using the ARIMA model. The online training and prediction

process that uses ARIMA operates by appending the new

resource utilization data to the collection of observations

gathered so far. ARIMA hyper-parameters are optimized using

well-known, albeit computationally expensive, methods [43],

[44].

Using the GP model. The online training and prediction

process that uses GP regression operates as follows:

1) New resource utilization data is appended to the collec-

tion of observations X,y. The rows of X are patterns

as defined in Equation (5).

2) Using a history-dependent kernel kh(x, x
′), Equa-

tions (7) and (8) are used to make predictions based

on observations X,y.

Under the assumption of a zero-mean prior and a Gaus-

sian likelihood, that is, for any input-output pair we have

y ∼ N(f(x), σ2), the posterior is also a GP whose mean

and covariance can be calculated analytically as follows:

E[f(x) | X] = kh(x,X)(kh(X,X) + σ2)−1y (7)

Var[f(x) | X] = kh(x, x
′)

− kh(x,X)(kh(X,X) + σ2)−1kh(X, x)
(8)

The predicted value at a new point will be the expectation

under the posterior distribution, and the posterior variance

quantifies the uncertainty about the prediction.

The regression step can be computationally expensive.

Equations (7) and (8) involve a matrix inversion (for

k(X,X) + σ2), which is an operation of cubic complexity.

Moreover, the set of observations X,y will grow indefinitely

during the lifetime of the system. While there is a plethora of

methodologies on sparse GPs in the literature [45]–[48], that

can be used to reduce the complexity of regression, in this

work we adopt the simple solution of restricting the dataset

X,y to the N latest observations, thus keeping the model

tractable. Note that N is the number of patterns used; it should

not be confused with h, which is the size of each pattern.

Discussion. We have performed a preliminary study on our

modeling approaches, using a dataset consisting of approx-

imately 6000 time series that monitor the memory usage

of applications in our academic cluster. Overall, our results

indicate that ARIMA exhibit lower error rates than a GP

model. However, crucially, the confidence intervals associated

with ARIMA are excessively small, even smaller than the

measured prediction error rate. Instead, the GP model provides

an accurate quantification of prediction uncertainty. In other

words, ARIMA’s confidence intervals can reveal harmful when

used as the only information to reason about uncertainty,

because they could lead to over-confident decisions. This is

corroborated by our experimental results.

B. Resource Shaper Module

We use the resource shaper module to adjust resource

allocated to an application and its components as a function

of predicted utilization, and its confidence. When resource

are underutilized, the resource shaper “redeems” the excess

capacity such that the application scheduler can dequeue

idle applications. On the contrary, upon a utilization spike,

the resource shaper needs to redeem resources from running

applications and dedicate them to those experiencing a peak

demand, for otherwise such applications are doomed to fail.

Thus, the goal of the preemption policy we associate to the

resource shaper is to decide how to redistribute resources, by

operating on running applications and their components. Such

a policy can optionally account for application priorities, as

dictated by the application scheduler. Irrespectively of the cho-

sen preemption policy, a failed application is resubmitted to
the application scheduler, making sure it enters the scheduling

queue in a position commensurate to its original priority.

Recent works [4] study an optimistic preemption policy,

which is reminiscent of optimistic concurrency control [5]:

resources are redeemed without taking explicit actions to

manage the consequences of resource redistribution. Either

explicit (and often manually set) priorities determine the fate

of running applications, or the task is left to the OS.

Here, we present an alternative preemption policy, which

we call pessimistic. Our goal is to control which application

should be partially or fully preempted, while minimizing



the amount of work that is wasted. We consider preemption

primitives such as the kill operation, which inevitably

waste work. Component or application suspension [49] and

migration are outside the scope of this work.

Algorithm 1 presents the pessimistic preemption policy,

which is triggered by the output of the forecasting module.

Given the current cluster state, and the resource utilization

forecasts, the algorithm computes a new resource allocation for

each running application, which is then imposed on the cluster

by operating directly on application components through low-

level preemption primitives.

The algorithm starts by initializing (lines 1-5) the variables

that holds the information about the allocated resources. Then

it sorts (line 6) running applications according to the applica-

tion scheduler policy (e.g.; First-In-First-Out (FIFO), that is,

arrival times), and it computes (lines 7-33) an allocation by

trying to maximize the resource allocation while minimizing

the number of running applications. In particular, it first

allocates the core (lines 8-19) components and then all elastic

components4 that fit in the host (lines 23-33). The algorithm

continues until all running applications are processed.

Resource allocation is determined, and we can turn our

attention to preemption. Core components that no longer fit

a host entail full application preemption (lines 34-36). Also

elastic components can be preempted (lines 37-38), inducing

only a partial application preemption. In addition, in case of

elastics components, we can experience partial or entire loss of

the work done by the preempted component. For this reason,

our algorithm allocates the core components of an application,

then moves to the elastic components by giving priority to

the ones that have been living in the cluster for a longer

time (line 25). Components recently scheduled are suitable

candidates for preemption, because they have likely produced

less useful work. Finally, the algorithm resizes (lines 39-41)

the components according to the computed allocations. Our

algorithm currently supports CPU and Memory, but it can be

extended to other types of resource as well.

Safe-guard buffer. We are now ready to define the “safe-

guard” buffer. The buffer size β is a function of the uncertainty

quantified by the forecasting module β = K1RAi
+ K2VAi

,

where RAi
is the initial resource request for application Ai,

and VAi is the estimated variance of the prediction, as these

are given by the forecasting module (ARIMA or GP). β
involves a constant term K1RAi

and a dynamic term K2VAi
.

The constant term can be thought of as a minimum resource
allocation that is granted to application Ai [4]. The dynamic

term uses the confidence (expressed as variance VAi
) given by

the predictor to adjust β accordingly: it thus changes during

an application lifetime. In Section IV, we study how different

values of K1 and K2 affect the performance of our method.

4In case the application scheduler does not support the distinction between
core and elastic, all components are treated as core.

Algorithm 1: Overview of the pessimistic preemption
policy implemented by the resource shaper module.

Data: H ← Hosts, A ← Running Applications

1 cpusFree ← Array(H)
2 memFree ← Array(H)
3 foreach host ∈ H do
4 cpusFree[host] ← host.totalCpus
5 memFree[host] ← host.totalMem

6 J ← SORT(schedulingPolicy, A)
7 foreach req ∈ J do
8 cpus ← cpusFree
9 mem ← memFree

10 remove ← False
11 foreach c ∈ req.CoreCpts do
12 cpus[c.host] ← cpus[c.host]− c.futureCpus− β
13 if cpus[c.host] < 0 then
14 remove ← True
15 break
16 mem[c.host] ← mem[c.host]− c.futureMem− β
17 if mem[c.host] < 0 then
18 remove ← True
19 break

20 if remove then
21 INSERT(req, K)
22 else
23 cpusFree ← cpus
24 memFree ← mem
25 E ← SORT(timeAlive, req.ElasticCpts)
26 foreach e ∈ E do
27 cpus ← cpusFree[e.host]− e.futureCpus− β
28 mem ← memFree[e.host]− e.futureMem− β
29 if cpus ≤ 0 or mem ≤ 0 then
30 INSERT(e, KE )
31 else
32 cpusFree[r.host] ← cpus
33 memFree[r.host] ← mem

34 foreach req ∈ K do
35 foreach c ∈ (req.CoreCpts ∪ req.ElasticCpts) do
36 PREEMPCOMPONENT(c)

37 foreach e ∈ KE do
38 PREEMPCOMPONENT(e)

39 foreach req ∈ J \ K do
40 foreach c ∈ (req.CoreCpts ∪ req.ElasticCpts) do
41 RESIZECOMPONENT(c)

IV. SIMULATION-BASED EVALUATION

A. Methodology

We evaluate our mechanism using an event-based, trace-

driven discrete simulator which was developed to study the

scheduler Omega [5]. We have made additional extensions5 to

support the concepts of this work.

We use publicly available traces [10], [11], [50], [51], and

generate a workload by sampling from the empirical distribu-

tions computed from such traces. Our workload is composed

by 150,000 batch applications, both rigid (e.g. TensorFlow)

and elastic (e.g. Apache Spark) variants. Applications are

assigned a number of components ranging from a few to

tens of thousands. The resource requirements of application

components follow that of the input traces, ranging from a

5https://github.com/DistributedSystemsGroup/cluster-scheduler-simulator



Fig. 2. Boxplots comparing baseline vs optimistic vs pessimistic approaches
over different metrics, using an oracle in place of the prediction module. The
red triangle is the mean.

few MB of memory to a few dozens of GB, and up to 6 CPU

cores. Application runtime is generated according to the input

traces, and ranges from a few dozens of seconds to several

weeks (of simulated time). Inter-arrival times are drawn from

the empirical distributions of the input traces, and exhibit a bi-

modal distribution with fast-paced bursts, and longer intervals

between application submissions.

We simulate a cluster consisting of 250 homogeneous

machines, each with 32 cores and 128GB of memory. All

results shown here include 10 simulation runs, for a total of

roughly 3 months of simulation time for each run.

The metrics we use to analyze the results include: ap-

plication turnaround, which allows reasoning about system

responsiveness, resource slack, measured as the difference

of percentage of CPU and memory the scheduler allocates

to each application compared to the percentage actually used

by the application and application failures, which give us

information about the aggressiveness of our approach.

As anticipated in Section III, statistical models are prone

to prediction errors, which we address using the buffer β,

which is a function of the uncertainty produced by the model.

In our experiments we demonstrate the effect of the buffer

parameters (β = f(K1,K2)) on the average turnaround,

memory slack and application failures. The parameter K1

controls the fraction of the resource request that is guaranteed

to an application. The parameter K2 ∈ [0, 1, 2, 3] – in our

experiments – is a multiplicative constant applied to the

predictive variance output by a model. For such experiments,

we report (in Figure 3a and Figure 3b) the ratio of the

turnaround of our approach divided by the baseline.

B. Results

We first consider an ideal setup with an oracle having perfect

information about future workload: this allows to determine

an upper bound on the performance gains achieved by our

approach. Then, we compare ARIMA and GP models, to study

the impact of prediction errors on system performance.

Baseline. We compare our approach to a simple, but largely

used baseline, the reservation centric approach first used by [5]

(similar to Mesos and Yarn). This approach statically allocates

the full amount of requested resource by an application. The

baseline achieves the performance reported in Figure 2.

Oracle-based resource shaping. We gloss over prediction

errors induced by a real statistical model and consider an

ideal scenario from the forecasting point of view. Ultimately,

our goal is to discern virtues and drawbacks of different

preemption policies. Results are summarized in Figure 2: the

plots correspond to resources slack and application turnaround,

whereas each box correspond to the baseline and our re-

source shaping approach, with an optimistic (as originally

implemented in the Omega simulator [5]) and our pessimistic

preemption policy. Note that our simulator implements the

concept of work lost upon failures and preemption.

Overall our results indicate that resource shaping brings

substantial benefits in terms of all metrics we consider, in

the absence of prediction errors. Cluster efficiency improves

because resource slack, computed as the difference between

allocated and used resources, drastically shrinks as shown in

Figure 2 (left) compared to the baseline. Similarly, turnaround

times are notably smaller as shown in Figure 2 (right) in

comparison to the baseline. Indeed, the system can ingest new

applications more quickly, because resources are better used.

Figure 2 can now be used to compare preemption policies,

in the absence of prediction errors. While both approaches

improve over the baseline, the pessimistic policy we introduce

in this work outperforms the optimistic policy. As shown in

Figure 2 (left), our policy induces the resource shaper to

follow very closely application resource utilization: in this

case, resource slack becomes negligibly small. This result

explains why turnaround times, Figure 2 (right), are almost

two orders of magnitude smaller with our policy: by freeing

up resources, the application scheduler is amened to trigger

new executions, thus queuing times shirk. Furthermore, we

compute the number of application failures: in case of the op-

timistic policy we record 37.67% application failures, whereas

with our policy no application fails because it avoids failures

through partial preemption, by freeing elastic resources first.

ARIMA-based resource shaping. We focus on Figure 3a

and slice it by row. When K2 = 0 we omit uncertainty

information and only consider the effects of a minimum

guaranteed resource allocation. Even with just K1 = 5%,

our approach achieves 7.5x average improvements in terms of

application turnaround, while resource slack is only 30% in

average. However, the number of crashed application is high:

roughly 26% of applications experience a failure in average.

The situation improves only for large values of K1. When

K1 = 100%, our method grants all requested resources: here

no application fails, but turnaround times and slack exhibit no

improvements on the baseline.

We note that the absence of a static term (i.e. K1 = 0%)

results in a turnaround that is very close to the baseline

regardless of K2, due to the high number of applications

failures which also lead to an high memory slack. This is a

consequence of the occasional high confidence of the predictor

in cases where a sudden change in the usage behavior occurs.

It is necessary to maintain a static component to accommodate

unexpected variations.



(a) ARIMA

(b) GP

Fig. 3. Heat maps showing the effect of K1 and K2, which compose β, on different metrics when using ARIMA and GP. Bright cells are better.

Finally, we focus on K1 = 5%: the minimum resource

allocation is small, and we absorb prediction errors and

fluctuations using uncertainty information. However, as K2

increases, all metrics remain similar: the uncertainty produced

by the ARIMA model is not sufficiently accurate to compen-

sate forecasting errors.

GP-based resource shaping. Next, in Figure 3b we can

see that while the GP model gives slightly worst results

when ignoring uncertainty information (K2 = 0) compared

to ARIMA – because its error rates are slightly higher – as

K2 increases, all metrics improve: average turnaround ratios

increase up to 10.6x, average slack is reduced to a 22% in

average, while application failures quickly decrease. This is

due to the accurate quantification of prediction uncertainty,

which allows to follow more closely real utilization patterns.

Overall, the best performance is achieved when the system

is flexible regarding the size of the buffer, i.e., a high value

for its dynamic and a small value for its static components.

V. SYSTEM IMPLEMENTATION

We materialize the ideas presented in this paper with a

full-fledged, python-based, implementation of our mechanism,

following the system design presented in Section III, and

depicted in Figure 1. In our implementation, the resource

shaper modulates both CPU and memory resources.

Back-end. We use Docker [8] as the back-end, which exposes

several methods to redeem resources (CPU and memory)

intially allocated to a container. We treat memory with care:

upon a sudden spike in the memory utilization, containers

might be killed by the OS, that checks memory limits. In our

work we use soft-limits: in this case, the OS notifies the pro-

cesses running in the container to free some of their resources

to reduce memory pressure. This practice is compatible with

frameworks such as the Java Garbage Collector (GC) that

attempts to release allocated but unused memory space. Note

that our technique is compatible with approaches such as [26],

which trade performance for a smaller memory footprint.

Monitoring module. It feeds the utilization forecast module

with data at regular time intervals. Frequent updates ultimately

result in better system efficiency, as the predictor operates

on a high-fidelity view of resource utilization in the cluster.

However, this might impose a high toll in terms of monitoring

scalability. On the other hand, infrequent updates improve

scalability at the expense of lower system efficiency and

responsiveness. In our implementation, we collect resource

utilization information every minute, which is in the same

orders of what is used in [4].

Forecasting module. It implements the two models we discuss

in Section III-A. For the ARIMA model we use the well-

known StatsModel [52] library, which features an efficient

implementation of the ARIMA model and its automatic pa-

rameter tuning through the Pyramid wrapper [53]. For the

GP model we use the well-known library GPy [54]. Both

models consider a small history of the ten past observations

for training, to keep computational complexity under control.

Resource shaping module. It implements resource allocation,

preemption and resizing, as outlined in Algorithm 1. It is

important to point out that the resource shaper adapts resource



Fig. 4. Boxplots comparing baseline vs pessimistic dynamic approach over
memory slack and turnaround time distributions using GP-based resource
shaping. The red triangle is the mean.

allocations only after enough historical data points are avail-

able for the forecasting module: we call this a grace period,

and set it to 10 minutes in our experiments.

The resource shaper uses the mechanisms exposed by

Docker (as discussed above) to adjust application resources,

and to eventually preempt components or entire applications.

This module computes a new resource allocation for all

running application in the system, based on the predicted

value and variance obtained from the forecasting module. The

buffer β is set to compensate for prediction uncertainty, using

the parameters that we obtain through simulations, that is

K1 = 5% and K2 = 3.

A. Experimental Evaluation

We have deployed the mechanism presented in this paper

in our cluster (which we operate using [55]) to perform a

comparative analysis between dynamic resource shaping and

a reservation centric baseline, as done in Section IV.

Workload. In our experiments, we use a trace that we syn-

thesize based on an analysis of our platform logs. The trace

takes approximately 24 hours from the first submission to the

completion of the last application. In our academic platform,

users submit two kinds of applications: Apache Spark jobs

(representative of elastic frameworks) and TensorFlow appli-

cations (representative of rigid frameworks).

Our trace includes 60% of elastic and 40% of rigid ap-

plications for a total of 100 applications. Application inter-

arrival times follow a Gaussian distribution with parameters

μ = 120 sec, and σ = 40 sec, which is compatible with what

we observe in our cluster logs.

An application to submit is chosen among two Spark jobs

that implement a recommender algorithm using alternating

least squares and a random-forest regression model respec-

tively, a TensorFlow application that implements an approxi-

mate deep GP model [56] and an Extract, Transform and Load

(ETL) application that uses SparkSQL. Applications have 3

different flavors: while they all have 3 core components, the

number of elastic components varies depending on the flavor.

In terms of RAM, all flavors have different reservation values

that span from 8GB to 32GB. The TensorFlow application,

instead, requests 1 worker and 8-16-32GB of RAM depending

on the flavor.

Experimental setup. We run our experiment on our academic

platform with 20 server-grade machines, using Ubuntu 14.04

and Docker 17.09.0. Docker images for the applications are

preloaded on each machine to prevent startup delays and

network congestion.

Summary of results. We compare our dynamic resource

shaper mechanism with our pessimistic preemption policy to

the typical reservation centric baseline, which simply allocates

all requested resources and never modifies such allocation.

Overall, the our approach largely outperforms the baseline.

We measure substantial improvements in terms of resource

allocation: indeed our system can afford to ingest more ap-

plications, that would otherwise wait to be served. Figure 4

(left) illustrates resource slack, which is roughly 40% lower

with our resource shaping mechanism. As a consequence,

applications spend less time in the scheduler queue and have

short turnaround times, as shown in Figure 4 (right). The

median turnaround times are ∼ 50% shorter. Note also that the

tails of the distributions are in favor of our approach. Finally,

we report that no application, nor component failed due to

resource shaping.

VI. CONCLUSIONS

The emergence of “the data-center as a computer” paradigm

has led to unprecedented advances in cluster management

frameworks, that aim at exposing distributed cluster resources

to a variety of business-critical and scientific applications.

However, the current resource reservation model hinders an

efficient use of cluster resources. Resource utilization dy-

namics induce over-provisioning, which is one of the main

culprit of poor efficiency. The problem of underutilization

has been addressed by several approaches. For example, the

design of economic incentives to steer system operation has

led to the development of complex resource markets, e.g.

AWS Spot instances, which call for the design failure tolerant

applications, due to the ephemeral nature of the resources they

are offered.

In this work, we presented a mechanism that cooperates

with a scheduler to dynamically adjust resources allocated to

an application, so that they closely match those they actually

use throughout their lifecycle. Our design featured: a method

to build a statistical model to forecast resource utilization, and

a preemption policy that reallocates system resources while

minimizing failures.

We have validated our mechanism with an thorough ex-

perimental campaign, both in simulation and using a real

implementation. Our simulations shed lights on the key role

played by the ability to model and use prediction uncertainty,

and by the a strict preemption policy to manage concurrency

issues. We implemented a system prototype of our dynamic al-

location mechanism and deployed it in our academic platform,

where we executed a real workload. Results indicate notably

improved system efficiency, which translates in better system

responsiveness.



REFERENCES

[1] M. Babaioff et al., “Era: A framework for economic resource allocation
for the cloud,” in Proceedings of the 26th International Conference
on World Wide Web Companion. International World Wide Web
Conferences Steering Committee, 2017, pp. 635–642.

[2] Y. Yang et al., “Pado: A data processing engine for harnessing transient
resources in datacenters,” in Proceedings of the Twelfth European
Conference on Computer Systems. ACM, 2017, pp. 575–588.

[3] J. Rasley et al., “Efficient queue management for cluster scheduling,” in
Proceedings of the Eleventh European Conference on Computer Systems.
ACM, 2016, p. 36.

[4] A. Verma et al., “Large-scale cluster management at google with borg,”
in Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[5] M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters,” in Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, 2013, pp. 351–364.

[6] C. Curino et al., “Reservation-based scheduling: If you’re late don’t
blame us!” in Proceedings of the ACM Symposium on Cloud Computing.
ACM, 2014, pp. 1–14.

[7] G. Ananthanarayanan et al., “True elasticity in multi-tenant data-
intensive compute clusters,” in Proceedings of the Third ACM Sympo-
sium on Cloud Computing. ACM, 2012, p. 24.

[8] Docker, “Docker,” http://www.docker.com/.
[9] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing

in the data center,” in Proc. of the USENIX NSDI 2011, ser. NSDI’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 295–308.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972488

[10] C. Reiss et al., “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing. ACM, 2012, p. 7.

[11] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, posted at http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html.

[12] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple
resource types,” in NSDI, vol. 11, no. 2011, 2011, pp. 24–24.

[13] A. W. S. (AWS), “Elastic map reduce,” https://aws.amazon.com/emr/.
[14] Apache, “Spark,” http://spark.apache.org/.
[15] Google, “Tensorflow,” https://www.tensorflow.org/.
[16] Y. Yan et al., “Tr-spark: Transient computing for big data analytics,”

in Proceedings of the Seventh ACM Symposium on Cloud Computing.
ACM, 2016, pp. 484–496.

[17] O. Alipourfard et al., “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in NSDI, 2017, pp. 469–482.

[18] F. Pace et al., “Flexible scheduling of distributed analytic applications,”
in CCGRID 2017, 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, May 14-17, 2017, Madrid, Spain, Madrid,
SPAIN, 05 2017.

[19] A. Kuzmanovska, R. H. Mak, and D. Epema, “Koala-f: A resource
manager for scheduling frameworks in clusters,” in Cluster, Cloud
and Grid Computing (CCGrid), 2016 16th IEEE/ACM International
Symposium on. IEEE, 2016, pp. 80–89.

[20] ——, “Dynamically scheduling a component-based framework in clus-
ters,” in Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, 2014, pp. 129–146.

[21] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in USENIX Annual Technical Conference
(USENIX ATC’15), 2015, pp. 499–510.

[22] P. Delgado, F. Dinu, D. Didona, and W. Zwaenepoel, “Eagle: A better
hybrid data center scheduler,” Tech. Rep, Tech. Rep., 2016.

[23] R. Grandl et al., “Multi-resource packing for cluster schedulers,” in ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4. ACM,
2014, pp. 455–466.

[24] D. Lo et al., “Heracles: improving resource efficiency at scale,” in ACM
SIGARCH Computer Architecture News, vol. 43, no. 3. ACM, 2015,
pp. 450–462.

[25] M. Shahrad et al., “Incentivizing self-capping to increase cloud uti-
lization,” in ACM Symposium on Cloud Computing 2017 (SoCC’17).
Association for Computing Machinery (ACM), 2017.

[26] W. U. Hassan and W. Zwaenepoel, “Don’t cry over spilled records:
Memory elasticity of data-parallel applications and its application to
cluster scheduling,” in USENIX Annual Technical Conference (USENIX
ATC 17), 2017.

[27] P. Padala et al., “Adaptive control of virtualized resources in utility
computing environments,” in ACM SIGOPS Operating Systems Review,
vol. 41, no. 3. ACM, 2007, pp. 289–302.

[28] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proc. of the ACM SoCC 2013. ACM, 2013, p. 5.

[29] E. Boutin et al., “Apollo: Scalable and coordinated scheduling for cloud-
scale computing.” in OSDI, vol. 14, 2014, pp. 285–300.

[30] K. Karanasos et al., “Mercury: Hybrid centralized and distributed
scheduling in large shared clusters.” in USENIX Annual Technical
Conference, 2015, pp. 485–497.

[31] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks. ACM, 2016, pp. 50–56.

[32] Y. Zhang et al., “History-based harvesting of spare cycles and storage in
large-scale datacenters,” in Proceedings of the 12th USENIX conference
on Operating Systems Design and Implementation, no. EPFL-CONF-
224446, 2016, pp. 755–770.

[33] Docker, “Swarm,” https://docs.docker.com/swarm/.
[34] Google, “Kubernetes,” http://kubernetes.io/.
[35] H. Nguyen et al., “AGILE: Elastic distributed resource scaling for

infrastructure-as-a-service,” in Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 13). San Jose, CA:
USENIX, 2013.

[36] P. Brockwell et al., Introduction to Time Series and Forecasting, Second
Edition. Springer, 2002.

[37] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[38] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms.
Cambridge University Press, 2003.

[39] A. McHutchon, “Nonlinear Modelling and Control using Gaussian
Processes,” Ph.D. dissertation, University of Cambridge, 2015.

[40] R. Frigola-Alcalde, “Bayesian Time Series Learning with Gaussian
Processes,” Ph.D. dissertation, University of Cambridge, 2015.

[41] R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational Gaussian Process
State-Space Models,” in Advances in Neural Information Processing
Systems. MIT Press, 2007.

[42] A. Svensson, A. Solin, S. Särkkä, and T. Schön, “Computationally
Efficient Bayesian Learning of Gaussian Process State Space Models,”
in Proceedings of the 19th International Conference on Artificial Intel-
ligence and Statistics, ser. Proceedings of Machine Learning Research,
vol. 51. PMLR, 2016, pp. 213–221.

[43] Pyramid, “Auto-arima,” http://pyramid-arima.readthedocs.io.
[44] R. Documentation, “Auto-arima,” https://www.rdocumentation.org/.
[45] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using

pseudo-inputs,” in Proceedings of the 18th International Conference
on Neural Information Processing Systems, ser. NIPS. Cambridge,
MA, USA: MIT Press, 2005, pp. 1257–1264. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976248.2976406

[46] J. Quiñonero Candela and C. E. Rasmussen, “A unifying view of sparse
approximate gaussian process regression,” J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[47] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in NIPS, 2007.

[48] K. Chalupka, C. K. I. Williams, and I. Murray, “A framework for
evaluating approximation methods for gaussian process regression,” J.
Mach. Learn. Res., vol. 14, no. 1, pp. 333–350, Feb. 2013. [Online].
Available: http://dl.acm.org/citation.cfm?id=2502581.2502592

[49] M. Pastorelli, M. Dell’Amico, and P. Michiardi, “Os-assisted task
preemption for hadoop,” in Distributed Computing Systems Workshops
(ICDCSW), 2014 IEEE 34th International Conference on. IEEE, 2014.

[50] C. Reiss et al., “Google cluster-usage traces: format + schema,” Google
Inc., Technical Report, Nov. 2011.

[51] Google, “Google traces,” https://github.com/google/cluster-data.
[52] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical

modeling with python,” in 9th Python in Science Conference, 2010.
[53] GitHub, “Pyramid,” https://github.com/tgsmith61591/pyramid.
[54] Sheffield, “Gpy,” https://sheffieldml.github.io/GPy/.
[55] Eurecom, “Zoe-analytics,” http://zoe-analytics.eu/.
[56] K. Cutajar, E. Bonilla, P. Michiardi, and M. Filippone, “Random feature

expansions for deep Gaussian processes,” in ICML 2017, 34th Inter-
national Conference on Machine Learning, 6-11 August 2017, Sydney,
Australia, Sydney, AUSTRALIA, 08 2017.


