
EURECOM
Department of Digital Security

Campus SophiaTech
CS 50193

06904 Sophia Antipolis cedex
FRANCE

Research Report RR-19-342

SwaNN: Switching among Cryptographic Tools for
Privacy-Preserving Neural Network Predictions

January 28th, 2019
Last update August 31th, 2019

Gamze Tillem, Beyza Bozdemir, and Melek Önen

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : G.Tillem@tudelft.nl, {Beyza.Bozdemir,Melek.Onen}@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group Research
and Technology, IABG, Monaco Telecom, Orange, Principauté de Monaco, SAP, Symantec.

SwaNN: Switching among Cryptographic Tools for
Privacy-Preserving Neural Network Predictions

Gamze Tillem, Beyza Bozdemir, and Melek Önen

Abstract

The rise of cloud computing technology led to a paradigm shift in techno-
logical services that enabled enterprises to delegate their data analytics tasks
to cloud servers which have domain-specific expertise and computational re-
sources for the required analytics. Machine Learning as a Service (MLaaS)
is one such service which provides the enterprises to perform machine learn-
ing tasks on a cloud platform. Despite the advantage of eliminating the need
for computational resources and domain expertise, sharing potentially sen-
sitive data with the cloud brings a privacy risk to the enterprises. In this
paper, we propose SwaNN, a protocol to perform neural network predic-
tions for MLaaS under privacy preservation. SwaNN brings together two
well-known techniques for secure computation: partially homomorphic en-
cryption (PHE) and secure two-party computation (2PC), and computes neu-
ral network predictions by switching between the two methods. The hybrid
nature of SwaNN enables to maintain the accuracy of predictions and to opti-
mize the computation time and bandwidth usage. Our experiments show that
SwaNN achieves a good balance between computation and communication
cost in neural network predictions compared to the state-of-the-art proposals.

Index Terms

privacy, neural networks, secure two-party computation, homomorphic
encryption

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Convolutional Neural Networks 3
2.2 Homomorphic Encryption . 5
2.3 Secure Two-party Computation 6

3 Prior Work 6

4 SwaNN 9
4.1 Scenario 1: Client - Server . 9

4.1.1 Non-interactive phase 10
4.1.2 Interactive phase . 11

4.2 Scenario 2: Two-Server . 13
4.3 Security Analysis . 14

5 Performance Evaluation 18
5.1 Optimizing Computations . 19
5.2 Experiments . 20

5.2.1 Experiment 1 . 20
5.2.2 Experiment 2 . 22

6 Conclusion 23

A Neural Network Structures 28

v

List of Figures

1 An overview of the neural network structure with input, output,
and hidden layers. 4

2 Convolutional filtering in convolutional layer. 4
3 Client-server scenario for SwaNN with a single input image. . . . 10
4 Two-server scenario for SwaNN with two input images. 14

vi

1 Introduction

Neural networks are a method of supervised machine learning which aims to
solve a classification problem. It computes the classification in two phases: a train-
ing phase in which a model is trained from previous observations whose classi-
fications are known beforehand; a prediction phase in which a classification is
computed for a new observation using the trained model [1].

Although the research on neural networks dates back to 1980s [2], they had not
been commonly used due to their long training times. With the recent technological
advances and the adaptation of GPUs in computation systems, the training time for
neural networks is reduced significantly [3]. The improvement in performance
triggered the popularity of neural networks, which in turn provided an outstanding
success in certain fields such as image classification [3,4], face recognition [5], and
board games [6].

The success of neural networks attracted many companies to apply it to their
businesses. However, it is difficult for companies to successfully benefit from neu-
ral networks without having adequate computational resources and expertise in
machine learning. Machine Learning as a Service (MLaaS) emerged as a solution
to this problem. MLaaS enables the clients to outsource their machine learning
tasks to a cloud platform which has computational resources and machine learning
expertise [7]. A major risk that is challenging enterprises in using MLaaS is the
sensitivity of the data sent to the cloud. The concern of exposing privacy-sensitive
data in MLaaS services requires the design of privacy-preserving protocols for ma-
chine learning methods.

In this paper, we aim to design one such protocol for MLaaS to compute neural
network predictions under privacy preservation. We assume that the network model
has already been computed during a previous training phase, and we only focus on
the privacy of data items during the prediction phase. Indeed, this problem drew
the attention of researchers recently and several mechanisms that provide privacy
protection in neural network predictions are proposed. The existing solutions that
rely on cryptographic tools can be regrouped mainly in two categories. The solu-
tions that are based on homomorphic encryption (HE) [1,8–10] enable computation
of linear operations and low-degree polynomials non-interactively, where compu-
tations are performed by an external semi-trusted server. These solutions usually
incur high computational cost due to the expensive nature of homomorphic encryp-
tion systems. Also, the restriction of linear and low-degree polynomial operations
degrades the accuracy of prediction. Secure two-party computation (2PC)-based
solutions [11–13], on the other hand, provide more realistic computation perfor-
mance and seem better in maintaining the accuracy of predictions. However, the
interactive nature of 2PC-based solutions leads to a higher bandwidth usage com-
pared to HE-based alternatives.

Having studied existing solutions, we aim to take the best of both worlds and
optimize the computational and the communication overhead at the same time.
We propose a hybrid protocol, SwaNN, which switches the computations between

1

HE and 2PC. Instead of using leveled or somewhat homomorphic encryption, we
make use of partially homomorphic encryption (more specifically the additively
homomorphic Paillier encryption) to perform linear operations over encrypted data.
This also helps the solution reduce the computational cost. Non-linear operations
are supported thanks to the use of 2PC. We show how to easily switch from one
cryptographic tool to the other. The combination of these two cryptographic tools
helps maintain the accuracy of predictions. The idea of using a hybrid protocol for
private neural network predictions is proposed in Gazelle [14] as well, which com-
bines Yao’s garbled circuits with a dedicated lattice-based additively homomorphic
encryption scheme. Our proposal differs from Gazelle by using well-known simple
cryptographic tools, which make the adoption of our proposal more practical.

SwaNN is designed to support two different settings: a client-server setting
and a non-colluding two-server setting. In the client-server setting, the majority of
operations are delegated to the server, and the client helps the server in intermediate
steps. In the two-server setting, the servers are provided the data beforehand, and
they perform the computations simultaneously, with a balanced workload on both
servers. Our contributions can be summarized as follows:

• We propose a hybrid protocol for neural network predictions, which is based
on the additively homomorphic Paillier encryption scheme and secure two-
party computation. We show how each underlying operation can be sup-
ported easily with the use of these two schemes only.

• Our protocol is flexible since it is suitable both for the client-server setting
and the non-colluding two-server setting.

• Compared to existing works, our protocol proposes several optimizations for
the computations in the linear layers of neural networks which improves the
efficiency in terms of computation cost. These optimisations consist of some
data packing dedicated to the Paillier cryptosystem and the use of multi-
exponentiation algorithm to reduce the cost of multiplications.

• The empirical results show that our protocol can compute the prediction on
a neural network with two activation layers in 10 seconds with 1.73 MB
bandwidth usage which is 30-fold better in computation cost than the state-
of-the-art HE-based solution and 27-fold more efficient in bandwidth usage
than the state-of-the-art 2PC-based solution.

Section 2 introduces neural networks and the underlying cryptographic tools
used in SwaNN. In Section 3, we discuss the contribution of our work along with
the prior work. We describe our protocol in Section 4. In Section 5, we present the
empirical evaluation of our work. We conclude our paper in Section 6.

2

2 Preliminaries

In this section, we present the necessary background information on convo-
lutional neural networks and the cryptographic primitives we use in our design.
Table 1 summarizes the notation we use throughout the paper.

Table 1: Notation table.
Symbol Explanation

X = {x0,0, x0,1, . . .} Input matrix
Y = {y0,0, y0,1, . . .} Output matrix
W = {w0,0, w0,1, . . .} Model weight matrix
B = {b0,0, b0,1, . . .} Bias matrix
f(X,W) = Y Function f that operates on inputs X,W and re-

turns output Y
N Plaintext modulus of the Paillier cryptosystem
N2 Ciphertext modulus of the Paillier cryptosystem
` Bit size for 2PC operations
κ Security parameter
a ∈R A a is chosen uniformly randomly from A

� Dot product symbol
⊗ Matrix multiplication symbol
[·] Paillier ciphertext
〈·〉i Input share of party i for 2PC operations

2.1 Convolutional Neural Networks

Convolutional neural networks are specifically designed for image recognition.
They combine a series of layers to perform classification. Each layer takes an input
X, evaluates a function f on the input along with a weight matrix W, and returns
an output Y to the subsequent layer. Fig. 1 illustrates an overview of the neural
network structure. The first layer of the neural network is the input layer, where the
input is provided to the network. The last layer is the output layer, where the result
of the classification is revealed. The layers between input and output are called
hidden layers. Each hidden layer evaluates the function associated with that layer
on its input and delivers the output to the next layer.

Below we describe the most common hidden layers used in convolutional neu-
ral networks.
Convolutional Layer (Conv) is based on convolutional filtering in image process-
ing. It applies a filter, W, on the input X by sliding the filter every time to work
on each index of the input matrix. The sliding factor is called stride (s). The size
of the input can be adjusted to fit to filter size by appending some border values

3

Input
Layer

Hidden
Layers

Output
Layer

…
…

…
…

…

…

Figure 1: An overview of the neural network structure with input, output, and
hidden layers.

which is called padding (p). The operation performed in convolutional layer is a
dot product such that

f(X,W) = W �X+B (1)

=
∑

wi,j × xi,j + bi,j . (2)

Fig. 2 shows the operation of convolutional filter on the input.

⊙

X W Y
Figure 2: Convolutional filtering in convolutional layer.

Fully Connected Layer (FC) connects each neuron in the current layer to each
neuron in the previous layer along with a weight value. The operation is a matrix
multiplication

Xt = Xt−1 ⊗W, (3)

where Xt are the neurons of the current layer and Xt−1 are the neurons of the
previous layer.

4

Pooling Layer (Pool) is a scaling layer which reduces the size of the input matrix.
Reduction is performed by sliding a filter on the input and performing the pooling
operation on each area that is covered by the filter. The two common types of
pooling are

• max pooling where the maximum value within the area covered by the filter
is selected.

• average pooling where the average of the values within the area covered by
the filter is selected.

Unlike previous layers, the pooling operations are nonlinear.
Activation Layer (Act) is also a nonlinear layer. In this layer, a nonlinear activa-
tion function f(xi,j) = yi,j is applied to each neuron of the input layer. The size
of the output is same with the size of the input. Most commonly used activation
functions are

Sigmoid:
1

1 + e−xi,j
, (4)

Hyperbolic tangent (tanh):
e2xi,j − 1

e2xi,j + 1
, (5)

Rectified Linear Units (ReLU): max (0, xi,j). (6)

2.2 Homomorphic Encryption

Homomorphic property enables a cryptosystem to perform operations on the
encrypted input without decryption. If a cryptosystem enables both additions and
multiplications under encryption, it is called fully homomorphic whereas if it sup-
ports a single type of operation, it is called partially homomorphic. Despite their
flexibility on performing both types of operations, fully homomorphic cryptosys-
tems are expensive in computation. In contrast, partially homomorphic schemes
are more efficient with their reasonable computation cost.

In this paper, we use a partially homomorphic cryptosystem, namely the Pail-
lier cryptosystem [15] which supports additive homomorphism. The public key of
the Paillier cryptosystem is (N, g), where N is the product of two large primes p
and q, and g ∈ Z∗N2 . The private key is (λ, µ), where λ = lcm(p − 1, q − 1)
and µ = (L(gλ mod N2))−1 mod N . The encryption function of the Paillier
cryptosystem is probabilistic such that every encryption of the same plaintext re-
sults in a different ciphertext. Encryption of a message m ∈ ZN on modulus N is
computed as E(m) = gm · rN mod N2, where r ∈ Z∗N2 . An encrypted message
E(m) can be decrypted using the formula m = L(cλ mod N2) · µ mod N . As
it is described in [16], the decryption function of the Paillier cryptosystem supports
threshold decryption. In our paper, when necessary, we use a 2-out-of-2 variant
of the threshold decryption which distributes the private key among two parties.
Successful decryption requires both parties to compute the decryption function.

5

Using the Paillier cryptosystem, it is possible to compute addition and scalar
multiplication on encrypted messages as depicted in the following equations

E(m1)× E(m2) = gm1 · rN1 × gm2 · rN2 mod N2

= gm1+m2 · (r1 · r2)N mod N2

= E(m1 +m2), (7)

E(m)c = gcṁ · (rc)N mod N2

= E(c ·m). (8)

We refer readers to [15] for the details of the cryptosystem. In the rest of the paper,
we represent a Paillier ciphertext with [·] symbol.

2.3 Secure Two-party Computation

Secure two-party computation enables two parties to jointly compute a function
f on their inputs without revealing the inputs to each other. In our work, we use
two different methods for secure two-party computation which are arithmetic secret
sharing [17] and Boolean secret sharing [18].
Arithmetic secret sharing: Given two parties P1, P2, their arithmetic shares on an
`-bit valuem are 〈m〉1 and 〈m〉2 such that 〈m〉1+〈m〉2 ≡ m mod 2`. Arithmetic
sharing enables computation of addition and multiplication operations on secretly
shared values. The addition of two secret shared values is computed locally by each
party as 〈z〉i = 〈x〉i + 〈y〉i. Computing multiplication is, however, more compli-
cated. It can be computed using Beaver’s multiplication triplet technique [17]. We
refer readers to [17] for a detailed explanation of the technique.
Boolean secret sharing: Given the parties P1, P2, their Boolean shares on a single
bit value m are 〈m〉1 and 〈m〉2 such that 〈m〉1 ⊕ 〈m〉2 ≡ m mod 2, where ⊕
is the XOR operation. Boolean circuits can compute both linear and nonlinear
operations.

In arithmetic sharing, additions can be computed locally without any additional
cost. A multiplication operation requires some additional computation and com-
munication cost; however, it is less expensive than the multiplication in Boolean
sharing [19]. Therefore, in our protocol, we use arithmetic sharing for addition and
multiplication operations. When other types of operations such as comparisons are
needed, we use Boolean sharing.

3 Prior Work

In this section, we regroup existing privacy preserving neural networks into
several categories based on the underlying privacy enhancing technology. We fur-
ther highlight their relevance with respect to our protocol.

6

The first category of solutions consists of solutions based on secure multi-
party computation. In [11], SecureML designs a privacy-preserving neural net-
work training and classification method using 2PC, where clients secretly share
their own private data among two non-colluding servers. SecureML builds the
model with the stochastic gradient descent method. Authors compute ReLU using
garbled circuits and implement polynomial approximations of nonlinear functions
such as the sigmoid and softmax functions. Additionally, a solution for switching
between arithmetic and Yao’s sharing is proposed. As an extension to SecureML,
authors [12] propose ABY3 which shares the private inputs between three non-
colluding servers. To securely share sensitive data among three servers, the au-
thors redefine arithmetic, Boolean and Yao’s sharings of the ABY framework [19].
MiniONN, proposed by Liu et al. [13], also uses 2PC for privacy-preserving neu-
ral network operations. Different from [11] and [12], MiniONN focuses on the
prediction phase only. The authors propose a 2PC protocol between the client
and the cloud. The client and the cloud additively share each of their input and
output values for each layer of the neural network. To ensure data privacy, Min-
iONN defines oblivious transformations for each CNN operation and implements
the transformations using the ABY framework. Furthermore, Rouhani et al. [20]
propose DeepSecure which is based on Yao’s garbled circuits to securely com-
pute the deep learning model. The authors are able to use sigmoid and tanh as
activation functions thanks to the optimization of garbled circuits. Another study
which uses 2PC is Chameleon by Riazi et al. [21]. Authors propose a protocol
that switches among sharing circuits for secure function evaluation, where two
parties jointly perform a computation without disclosing their inputs. Chameleon
can be considered as an alternative protocol to ABY [19]. TFEncrypted [22] is
another framework which enables secure computation in TensorFlow [23] using
secret sharing and secure channels between the parties. Moreover, a very recent
scheme named SecureNN [24] uses secure three-party computation for the train-
ing and classification phases with convolutional neural networks using the MNIST
dataset. SecureNN shares the input and output among two parties using 2-out-of-2
arithmetic shares, and the third party joins the protocols during the online compu-
tation. In comparison to SecureNN, SwaNN requires interaction with the client for
the computation of the square function only, which is less than compared to the
interactions of three parties in SecureNN.

In the second category, we analyze fully homomorphic encryption (FHE)-
based solutions. To the best of our knowledge, CryptoNets [8] is the first privacy-
preserving neural network protocol which is based on FHE. Authors in [8] use
the SEAL library [25] to compute convolutional neural network predictions on en-
crypted images. Similar to CryptoNets, CryptoDL [26], Chabanne et al. [1] and
Ibarrondo et al. [27] use FHE for privacy-preserving neural networks. The main
difference with CryptoNets is the fact that they approximate nonlinear functions
with higher degree polynomials using different techniques such as Taylor series,
numerical methods or Chebyshev polynomials. The use of batch normalization
is also proposed to obtain some performance gain. The goal of all these solu-

7

tions is to keep a good level of accuracy while using FHE to protect the input
data. Later on, Bourse et al. [28] uses a conversion of a trained neural network to
a Discretized Neural Network (DiNN) using an efficient FHE called TFHE [29].
Authors claim that DiNN can be used for deep neural networks with large num-
ber of neurons. Similarly, TAPAS [30] also proposes binary neural networks over
TFHE-encrypted data. However, TAPAS differs from [28] mainly due to the ability
of the server to update the neural network at any time without the need for the data
being re-encrypted by the client. More recent works, namely [31] and [32] pro-
pose the idea of training neural networks over FHE-encrypted data and classifying
encrypted predictions. In their studies, the client supplies the training data in its
encrypted form using its own public key, and the server trains this encrypted data to
build the encrypted model. This model is further used by its owner to classify a new
encrypted input. Because both the training data and the model are encrypted, the
server cannot discover any information on both phases. Authors claim to achieve
a reasonable performance. Moreover, Faster CryptoNets [33] is a system employ-
ing the sparse encodings over the neural network model and data when it remains
encrypted under the FHE scheme. The authors propose some efficient polynomial
approximations for activation functions. The scheme also includes a training phase
that uses differential privacy to protect the data.

In comparison with existing solutions from these two categories, we propose
a hybrid protocol that combines 2PC with partially HE. Our goal in SwaNN is to
come up with private neural network predictions by making use of more simple
cryptographic tools, where the client can obtain the prediction result without dis-
closing its input to the server, and the privacy of server’s neural network against
the client is ensured. Therefore, we propose to take advantage of both privacy
enhancing technologies and optimize their respective costs (computational and/or
communication cost). To reduce the computational cost, FHE is replaced with
the additively homomorphic Paillier encryption scheme. This algorithm is used
to compute linear operations and the x2 function. Additionally, we obtain better
performance results for computing nonlinear operations thanks to the use of 2PC.

Few early approaches, such as [9] and [10], also use the Paillier encryption
scheme and Yao’s garbled circuits. Although these solutions seem similar to our
proposal, they study very small neural networks and suffer from significant com-
munication overhead due to frequent client-server interactions. Furthermore, au-
thors in [9] and [10] do not provide any performance results of their solution exe-
cuted over the encrypted data. Additionally, Gazelle [14] is a secure neural network
inference scheme implemented under a dedicated lattice-based additively homo-
morphic encryption scheme proposed in the paper. This solution also makes use
of Yao’s garbled circuits to perform ReLU and to reduce the noise in the cipher-
text. Unfortunately, this results in linear growth in computation and communica-
tion costs, and it also increases the depth of the circuit. Instead, we make use of
a secure square protocol to compute the activation function without Yao’s garbled
circuits.

Lastly, there exist several works, such as [34], [35], and [36], which propose

8

to combine some machine learning techniques, including neural networks, with
trusted hardware.

4 SwaNN

In the Machine Learning as a Service (MLaaS) model, the client has limited
computation capabilities or knowledge of machine learning. Thus, he outsources
the computations to the server who has expertise in performing machine learning
with adequate computation power. In a desirable scenario, the workload on the
client side should be minimized. In this paper, we consider two different scenarios
both of which aim to minimize the computations at the client side and the overall
computation cost while maintaining privacy.
1st Scenario - Client-Server: In this scenario, a client shares a private image with
a server. The server, which holds the neural network model, computes the predic-
tion result on the private image. The majority of the computations are performed
by the server. The client helps the server perform decryptions and/or circuit evalu-
ations when it is necessary.
2nd Scenario - Two-Server: To reduce the workload on the client side further,
we design a two-server setting where two semi-honest non-colluding servers per-
form the computations together. The client provides the servers their shares on the
input and private keys. Thus, the computations on the client side are completely
delegated to the servers. In such a setting to fully utilize the capabilities of both
servers, one image can be provided to each server such that at one execution they
evaluate two images simultaneously.

In both scenarios, we assume a semi-honest security model, where the parties
do not collude. In this security model, parties exactly follow the protocol steps.
However, they are curious to obtain some information from their output and inter-
mediary messages. In both of our scenarios, the client’s goal is to hide the image
content and the result of classification from the server. On the other hand, the
server does not want to reveal the model parameters used during computations to
the client. In the rest, we explain the computation of private neural network pre-
dictions for both scenarios individually.

4.1 Scenario 1: Client - Server

In the client-server scenario, the majority of computations are performed by
the server, and the client is involved when intermediary decryptions are needed.
Figure 3 illustrates our first scenario. The client encrypts an image with his public
key and sends it to the server who computes the secret prediction result using the
neural network parameters. Depending on the operation performed by the server,
the client might involve in the computations.

In Section 2.1, we summarize the common layers for convolutional neural net-
works and the necessary operations to compute the functions in these layers. Be-

9

Client Server

Figure 3: Client-server scenario for SwaNN with a single input image.

low we explain how we can compute these layers under privacy preservation in the
client-server scenario. Essentially, we separate the computations into two phases as
non-interactive phase and interactive phase. In the non-interactive phase, the oper-
ations are performed by the server without the client’s involvement. The interactive
phase, however, requires the collaboration of the server and the client for compu-
tations. By convention, convolutional neural networks start with a convolutional
layer. Therefore, we assume that the computations always start with an image that
is encrypted under the Paillier cryptosystem by the client. This encrypted image is
sent to the server.

4.1.1 Non-interactive phase

In this phase, the server, who has received the encrypted image, computes the
linear layers of the neural network as follows.
Convolutional Layer: The main operation in the convolutional layer is the dot
product. Given an input image X and a weight matrix W, their dot product is
computed as Y =

∑
xi,j × wi,j . When the input image is encrypted with the

Paillier cryptosystem and the weight matrix is in plaintext, using the homomorphic
property of encryption, the dot product is computed as

[Y] =
[∑

xi,j × wi,j
]
=
∏

[xi,j]
wi,j . (9)

Since this computation does not require any decryption, it can be performed non-
interactively by the server.
Fully Connected Layer: Fully connected layer requires to compute a matrix
multiplication. The underlying operation for matrix multiplication is the dot prod-
uct, but it has to be performed for each column and row pair. Given an encrypted
image as input, the fully connected layer is computed by performing Equation 9
repetitively.

10

Mean Pool Layer: Despite the computation of pooling layer is nonlinear, follow-
ing the convention in the state-of-the-art works [8, 13] we use a linear approxima-
tion of the mean pooling operation. Originally, the computation of mean pooling
requires the summation of the values within a subgroup and then a division by the
subgroup size. Following the approach in [8, 13], we compute scaled mean pool
instead of the mean pool, where the summation is performed, but the division is
omitted. The scaled mean pool can be computed by additive homomorphic prop-
erty of the Paillier cryptosystem without interaction.

4.1.2 Interactive phase

In this phase, the server computes the nonlinear layers of the neural network in
collaboration with the client as follows.
Activation Layer: Computing the nonlinear activation function in neural net-
works is a challenging task when privacy preservation is required. Since the Pail-
lier homomorphic encryption supports only additions, activation functions cannot
be computed without performing decryption. In the existing literature on privacy-
preserving neural networks, there are two approaches to compute the activation
function.

The first approach is to compute a polynomial approximation of the function.
CryptoNets [8] and MiniONN [13] use x2 as the approximation of the sigmoid
function. In SwaNN, we propose two solutions to compute the approximation
function x2. Since the Pailler cryptosystem does not support multiplications, as a
first solution, we design an interactive secure square function using the additively
homomorphic property of the Paillier cryptosystem. Our solution adapts the secure
multiplication protocol in [37] to a secure square protocol (see Protocol 1). Our
second solution for the computation of x2 uses a multiplication operation under
arithmetic sharing. The multiplication requires to switch the computations from
homomorphic encryption to arithmetic sharing. Later in this section, we explain
how we can perform such a switching operation.

The second approach to compute the ReLU activation function using secure
two-party computation techniques. MiniONN [13] and SecureML [11] are the
state-of-the-art solutions which use arithmetic circuits and Yao’s garbled circuits [38]
to compute the ReLU activation function. In SwaNN, we adapt a similar approach
and use the circuit-based approach when the computation of ReLU is required. We
compute ReLU using a comparison gate under Boolean sharing.
Max Pool Layer: Unlike the mean pool layer, we do not use an approximation
function for the computation of the max pool layer. Instead, we implement the
maximum pooling using the comparison gates under Boolean sharing. We perform
the max pool layer right after the activation layer to reduce the number of switching
operations between 2PC and PHE.

Switching between HE and 2PC In the previous subsections, we describe how
to compute linear and nonlinear layers of neural networks using partially homo-

11

Protocol 1: Secure Square Protocol

Client (pk, sk) Server (pk)

[x], r ∈R {0, 1}`+κ

[xr]← [x] · [r]
[xr]← [x+ r]

[xr]←−−−−
xr ← decr([xr])

x2
r ← xr · xr

[x2
r]← enc(x2

r)
[x2r]−−−−→

[x2
r] ·

(
[r2] · [x]2r

)−1

[x2]←
[
x2
r − r2 − 2xr

]

morphic encryption (PHE) and secure two-party computation (2PC). Since linear
and nonlinear operations follow each other repetitively, we need a secure switching
mechanism between the two cryptographic techniques. We design a protocol for
secure switching which is similar to the secure decryption mechanism described
in [39]. Protocol 2 and 3 demonstrate the steps of switching from PHE to 2PC and
2PC to PHE, respectively.

Protocol 2: PHE to 2PC Secure Switching Protocol

Client (pk, sk) Server (pk)

[x], r ∈R {0, 1}`+κ

[x+ r]← [x] · [r]
[x+r]←−−−

x+ r ← decr([x+ r])

x+ r → 〈x+ r〉c + 〈x+ r〉s 〈x+r〉s−−−−→
r → 〈r〉c + 〈r〉s〈r〉c←−−

〈x〉c ← 〈x+ r〉c − 〈r〉c 〈x〉s ← 〈x+ r〉s − 〈r〉s

Switching from PHE to 2PC (Protocol 2) requires to perform a secure decryp-
tion by masking the encrypted value with a random r. Once the client securely
decrypts the masked value x + r, he creates the secret shares of it for himself and
for the server as 〈x+ r〉c and 〈x+ r〉s. In the mean time, the server creates the
secret shares of the random r as 〈r〉c and 〈r〉s to remove the mask from the original
value x. Finally, both parties perform a local subtraction on their shares 〈x+ r〉
and 〈r〉 to compute the secret shared value 〈x〉 which is going to be used in 2PC
computations.

Switching from 2PC to PHE (Protocol 3) reverses the former procedure. It

12

Protocol 3: 2PC to PHE Secure Switching Protocol

Client (pk, sk) Server (pk)

〈x〉c 〈x〉s , r
′ ∈R {0, 1}`+κ

r′ → 〈r′〉c + 〈r
′〉s

〈r′〉
c←−−−

〈x+ r′〉c ← 〈x〉c + 〈r
′〉c

〈x+ r′〉s ← 〈x〉s + 〈r
′〉s

〈x+r′〉
s←−−−−−

x+ r′ ← 〈x+ r′〉c + 〈x+ r′〉s
[x+ r′]← enc(x+ r′)

[x+r′]−−−−→
[x]← [x+ r′] · [r′]−1

starts with a secret shared value 〈x〉. Similar to the previous protocol, to prevent
the leakage of the original value the parties reveal it after masking. Thus, the server
generates a random mask r′ and sends a secret share of the random 〈r′〉c to the
client. Both parties perform an addition operation to mask 〈x〉, and then the server
sends the masked value 〈x+ r′〉s to the client. Client reveals x+ r′ by adding the
two shares and encrypts it with his public key. In the final step, the server removes
the random mask from [x+ r′] with a homomorphic subtraction.

4.2 Scenario 2: Two-Server

The client-server scenario necessitates a certain level of computation power
from the client, despite the majority of the operations are performed by the server.
To reduce the workload from the client’s side, we design a second scenario which
outsources the computations to two non-colluding servers. In this scenario, the
client provides the input to both servers, and the servers perform the operations
and return the result to the client. However, if only a single image is provided to
the servers one of the servers is going to be idle during the non-interactive phase of
the computations. Thus, we propose to provide one different image to each server
to fully utilize the computation capabilities of the servers and classify two images
at once.

Fig. 4 illustrates our scenario. The client encrypts two images with his public
key and provides one image to each server. Furthermore, he creates shares of the
private key for each server as described in [16] and sends the shares to each server.
Similar to the first scenario, we divide the computations into two phases as non-
interactive and interactive phases. In the non-interactive phase, the servers compute
the linear operations on their inputs as the same way described in Section 4.1.1.
The interactive phase and the switching phase are also similar to the description
in Section 4.1.2, but they differ in the decryption procedure. In the first scenario,
the client is responsible for performing the decryption operations. However, in

13

Client

Server 2

Server 1

Figure 4: Two-server scenario for SwaNN with two input images.

the two-server scenario, the decryption task is also delegated to the servers along
with their shares on the secret key. Therefore, the decryption function decr([·]) in
Protocol 1 and Protocol 2 is performed by both servers. To clarify the procedure, in
Protocol 4 we illustrate how secure square protocol works when the computations
are delegated to the two servers.

While the execution of non-interactive phase can be done by each server lo-
cally, the interactive phase requires the involvement of both parties. The servers
can execute this phase sequentially based on a predetermined order, or they can
execute it in parallel which improves the computation cost further.

4.3 Security Analysis

SwaNN aims to compute neural network predictions under the privacy preser-
vation assumption in the semi-honest adversarial model. We assume the semi-
honest adversary is non-adaptive and computationally bounded. In this security
model, for both of the scenarios we propose, the two parties should not be able
to retrieve any additional information from the protocol execution apart from their
inputs, outputs, and intermediary messages. We achieve our security goal thanks
to the security of the cryptographic techniques we use in the design of SwaNN.
Both the Paillier cryptosystem and secure two-party computation are proven to be
secure. In the non-interactive phase of SwaNN, the security is guaranteed by the
semantic security of the Paillier cryptosystem. The Paillier cryptosystem satis-
fies semantic security against chosen plaintext attacks under decisional composite

14

Protocol 4: Secure Square Protocol in the two-server scenario

Server 1 (pk, sk1) Server 2 (pk, sk2)

[x], r ∈R {0, 1}`+κ

[xr]← [x] · [r]
[xr]← [x+ r]

[xr]
′ ← decr2([xr])

[xr]
′

←−−−−
xr ← decr1([xr]′)

x2
r ← xr · xr

[x2
r]← enc(x2

r)
[x2r]−−−→

[x2
r] ·

(
[r2] · [x]2r

)−1

[x2]←
[
x2
r − r2 − 2xr

]

residuosity assumption [15]. Thus, in the computation of convolutional, fully con-
nected, and mean pool layers, the server(s) cannot reveal any valuable information
from the encrypted messages on the condition that the encryption is performed
with a key that meets the current security requirements.

The activation and max pool layers, on the other hand, requires interactive
protocols between two parties during which the computations might be switched
from homomorphic encryption to secure two-party computation, and vice-versa.
Besides the security of the Paillier cryptosystem, arithmetic secret sharing and
Boolean secret sharing, which are used in the interactive phase of SwaNN as se-
cure two-party computation techniques, achieve indistinguishability given that the
shares are generated from a uniformly random distribution [18]. Assuming that the
Paillier cryptosystem and secure two-party computation are secure, the security of
the interactive phase of SwaNN can be deduced to the security of switching or de-
cryption operations. In the rest of this section, we provide a formal security proof
using the simulation paradigm [40] to show that the switching and decryption op-
erations can be performed securely. Due to limited space, we provide the proof
only for Protocol 2, which switches the operations from homomorphic encryption
to secure two-party computation in the client-server scenario.

In the simulation paradigm, the ideal security setting is outsourcing inputs of
both parties to a trusted third party who can perform the computations and return
the output. In the real-world setting, the security goal is to show that if an adversary
A can attack the protocol in the real world, then the attack can be also performed
by an adversary S in the ideal world. Since the attacks of S are not successful in
the ideal setting, the attacks in the real world also fail and the protocol is proved
to be secure in the real world. In Definition 41 and Definition 42, we provide the
formal definitions for security and indistinguishability from [40].

15

Definition 41 (Computational Indistinguishability). Let X(a, κ) and Y (a, κ) are
two probability ensembles where a ∈ {0, 1}∗ is the input of the parties and κ is
the security parameter. X(a, κ) and Y (a, κ) are computationally indistinguish-
able (i.e. X(a, κ)

c≡ Y (a, κ)) if there exists a negligible function µ(κ) for every
nonuniform polynomial time algorithm D, and for every a ∈ {0, 1}∗ and κ ∈ K
such that

|Pr [D(X(a, κ)) = 1]− Pr [D(Y (a, κ)) = 1]| ≤ µ(κ). (10)

Definition 42 (Definition of Security). P1 and P2 are two parties who want to run a
protocol π on their inputs x and y to compute a functionality f(x, y) which outputs
f1(x, y) and f2(x, y) for each party. In the execution of π, the view of parties are

viewπ
1 (x, y, κ) = (x, r1;m1,m2, · · · ,mt), (11)

viewπ
2 (x, y, κ) = (y, r2;m1,m2, · · · ,mt), (12)

where r1, r2 are the randomness of the parties, κ is the security parameter and
mi’s are the intermediary messages received by each party. The output of π is
outputπ(x, y, κ) = (outputπ1 (x, y, κ), outputπ2 (x, y, κ)), such that outputπ1 (x, y, κ)
and outputπ2 (x, y, κ) are the local outputs of P1 and P2. We say that π securely
computes f(x, y) in the presence of semi-honest, non-adaptive, computationally
bounded adversaries, if there exist probabilistic polynomial-time simulators S1 and
S2 such that

{S1(1κ, x, f1(x, y)), f(x, y)}
c≡

{viewπ
1 (x, y, κ), outputπ(x, y, κ)} , (13)

{S2(1κ, y, f2(x, y)), f(x, y)}
c≡

{viewπ
2 (x, y, κ), outputπ(x, y, κ)} . (14)

Accordingly, Protocol 2 is a protocol π between a server and a client which
computes the functionality f that switches the computations from PHE to 2PC.
The client does not provide an input for π (i.e. his input is an empty string⊥) apart
from the auxiliary inputs encryption and decryption keys (pk, sk). The server’s
input is an `-bit value x which is encrypted under the Paillier cryptosystem [x].
Given [x], f computes f (⊥, [x]) = (〈x〉c , 〈x〉s) which are secret shares of x for
the client and the server.

Theorem 41. The switching protocol π (Protocol 2) securely computes the func-
tionality f (⊥, [x]) = (〈x〉c , 〈x〉s) in the presence of semi-honest, non-adaptive,
computationally bounded adversaries.

Proof. In the following, we prove Theorem 41 for a corrupted server and client
separately, by showing that the view of adversary A in the real world is computa-
tionally indistinguishable from the simulated views of Si, where i ∈ {c, s} is for
the client and the server.

16

• Server is corrupted by A: Ss is given the input and output of the server which
are [x], 〈x〉s, and the security parameter 1κ. In simulation, we need to show that
Ss can generate the view of incoming messages to the server, which is 〈x+ r〉s.
Ss works as follows:

1. Ss chooses a uniformly distributed random tape, r1.

2. Ss picks an `+ κ-bit random value r′ using the random tape r1.

3. Ss creates the secret shares 〈r′〉c and 〈r′〉s.
4. Using the output 〈x〉s, Ss computes 〈x+ r′〉s = 〈x〉s + 〈r′〉s.

The view of the server in the real world is

viewπ
s (⊥, [x]) = ([x], rs; 〈x+ r〉s) , (15)

while the view generated by the simulator

Ss(1κ, [x], 〈x〉s) =
(
[x], r1;

〈
x+ r′

〉
s

)
. (16)

Since Ss does not have access to the decryption key sk, it cannot simulate
decr([x + r]). On the other hand, it can generate the intermediary message
〈x+ r′〉s, but if r′ is uniformly sampled from r1, then

{Ss(1κ, [x], 〈x〉s), f (⊥, [x])}
c≡

{viewπ
s (⊥, [x]), outputπ (〈x〉c , 〈x〉s)} , (17)

if for every nonuniform polynomial time distinguisherD there exists a negligible
function µ(κ) such that∣∣∣Pr [D (([x], r1; 〈x+ r′

〉
s

)
∧ (〈x〉c , 〈x〉s)

)
= 1
]
−

Pr [D (([x], rs; 〈x+ r〉s) ∧ (〈x〉c , 〈x〉s)) = 1]
∣∣∣≤ µ(κ). (18)

Equation 18 holds due to the security of secure two-party computation and the
uniformity of the random tape. The indistinguishability guarantees that a cor-
rupted server has no advantage on differentiating 〈x+ r′〉s from 〈x+ r〉s.

• Client is corrupted by A: Different from the server, the client does not have
an input for π. Sc is only provided the output 〈x〉c and the public and private
keys pk, sk. To simulate the intermediary messages [x + r] and 〈r〉c, Sc works
as follows:

1. Sc chooses uniformly distributed random tapes r1 and r2.

2. Sc picks an `-bit random value x′ and an (`+κ)-bit random value r′ using
the random tapes r1, r2.

3. Sc encrypts x′ + r′ as [x′ + r′] using the public key pk.

17

4. Sc creates secret shares for r′ such that r′ → 〈r′〉c + 〈r′〉s.

The view of the client in the real world and the view generated by the simulator
are

viewπ
c (⊥, [x]) = (⊥, rc; [x+ r], 〈r〉c) , (19)

Sc(1κ,⊥, 〈x〉c) =
(
⊥, r1, r2; [x′ + r′],

〈
r′
〉
c

)
, (20)

respectively. Then,

{Sc(1κ,⊥, 〈x〉c), f (⊥, [x])}
c≡

{viewπ
c (⊥, [x]), outputπ (〈x〉c , 〈x〉s)} (21)

in the existence of a negligible function µ(κ) for every nonuniform polynomial
time distinguisher D such that∣∣∣Pr [D ((⊥, r1, r2; [x′ + r′],

〈
r′
〉
c

)
∧ (〈x〉c , 〈x〉s)

)
= 1
]
−

Pr [D ((⊥, rc; [x+ r], 〈r〉c) ∧ (〈x〉c , 〈x〉s)) = 1]
∣∣∣≤ µ(κ). (22)

Equation 22 is correct when a semantically secure encryption scheme and secret
sharing scheme are used in securing messages [x+ r] and 〈r〉c which eliminate
the advantage of distinguishing [x + r] from [x′ + r′] and 〈r〉c from 〈r′〉c. Us-
ing the Paillier encryption scheme, which satisfies the semantic security under
the decisional composite residuosity assumption, and arithmetic secret sharing,
which guarantees information theoretic security, a corrupted client cannot break
the indistinguishability. Furthermore, the adversary cannot reveal any informa-
tion about x from the decryption of [x + r], given that a sufficiently large, uni-
formly random value (`+ κ bits) is selected for masking x.

5 Performance Evaluation

We implemented SwaNN to evaluate its performance in different settings and
to compare it with the state-of-the-art. We used the C++ programming language
for the implementation and GMP 6.1.2 library for big integer operations. We used
the ABY framework [19] for secure two-party computation operations. For the
homomorphic operations, we used the Paillier implementation of ABY due to its
efficiency. We selected 2048 bits modulus size in Paillier operations to meet the
current security standards. For the ABY operations we selected 32-bit shares. The
machine we used in the experiments runs Ubuntu 16.04 operating system with Intel
Core i5-3470 CPU@3.20GHz.

18

5.1 Optimizing Computations

In each layer of neural networks, the same operations are repeated for each
index of the input independently. Thus, in our implementation we use several opti-
mization techniques which help reduce the computation time and communication
usage by enabling simultaneous execution. To optimize 2PC computations, we use
single instruction multiple data (SIMD) techniques [41] which are provided in the
ABY framework. SIMD techniques cannot be fully utilized for the computations
with the Paillier cryptosystem. Therefore, to improve the efficiency in homomor-
phic encryption, we adapt two techniques to the Paillier encryption which enables
simultaneous computation.

The first technique we use is data packing. It packs multiple data items into a
single ciphertext as described in [42]. Accordingly, we create slots of t + κ bits
for each data item where κ is the security parameter and t is the length of the data
item. Given the plaintext modulus N , we can pack ρ =

⌊
log2N
t+κ

⌋
items in a single

ciphertext as in Equation 23.

[x̂] =

ρ−1∑
m=0

[xi,j] · (2t+κ)m (23)

Using data packing we can use the full plaintext domain in the Paillier cryptosys-
tem and perform additions on the packed ciphertext simultaneously. Furthermore,
in interactive protocols, using data packing helps reduce the bandwidth usage and
the cost of decryption operations.

The second technique we use to improve efficiency of homomorphic encryption
is using a multi-exponentiation algorithm to simultaneously perform the operations
in the form of

w∏
i=1

abii = ab11 · ab22 . . . abww . (24)

Lim-Lee’s multi-exponentiation algorithm [43,44] enables to perform Equation 24
simultaneously by modifying the binary exponentiation algorithm using several
precomputation techniques. In our work, we can apply multi-exponentiation for the
computation of dot product (Equation 9) over encrypted data thanks to the additive
homomorphism of the Paillier cryptosystem. We summarize the optimizations used
in each layer of neural networks as follows:

• Conv: Multi-exponentiation technique is used to reduce the cost of dot prod-
ucts.

• Act: Data packing is used before performing the activation function. If ac-
tivation is performed with 2PC operations, then SIMD optimization is used.

• Pool: No optimization technique is needed.

• FC: Multi-exponentiation technique is used to reduce the cost of matrix mul-
tiplications.

19

5.2 Experiments

Table 2: Computation time per layer in the client-server and the two-server scenario
(in ms). The timings are provided for optimized and non-optimized PHE-only
setting and optimized hybrid setting. The total timings marked with * show the
simultaneous run time of SwaNN for two images.

Non-optimized - PHE only Optimized - PHE only Optimized - Hybrid

Layer Client Server Server-1 Server-2 Client Server Server-1 Server-2 Client Server Server-1 Server-2

Conv – 1873 1850 1857 – 372 377 369 – 371 370 372
Act 12629 15754 32680 32536 2484 19038 23494 23328 2366 3714 6078 6164
Pool – 35 32 32 – 34 32 32 – 33 32 32
Conv – 2852 2843 2831 – 550 566 547 – 548 548 550
Pool – 35 35 35 – 35 37 35 – 35 35 35
FC – 6395 6333 6319 – 2238 2227 2211 – 2216 2219 2234
Act 1496 1864 3846 3847 311 2207 2758 2758 273 501 798 786
FC – 9 9 9 – 9 9 9 – 9 9 9

Total 42915 47466* 27248 29500* 10066 10182*

We design two experiments with respect to the activation function used in the
neural network. In the first experiment we used x2 as the activation function and
re-trained the neural network structure used in CryptoNets [8]. In the second exper-
iment we used ReLU as the activation function and re-trained the neural network
structure used in MiniONN [13]. The properties of the neural networks are detailed
in Appendix A.

5.2.1 Experiment 1

In the first experiment, we measured the performance of SwaNN with x2 acti-
vation function in the client-server and the two-server scenario. For each scenario,
we designed two different cryptographic setting. The first setting is an only-PHE
setting which is totally based on the Paillier cryptosystem. We implemented the
activation function x2 as described in Protocol 1. The second setting is a hybrid
setting where the computation switches between PHE and 2PC. We implemented
the secure switching protocols in Protocol 2 and Protocol 3 for this setting and im-
plemented x2 using the ABY framework. Table 2 demonstrates the performance
of SwaNN for both scenarios in the only-PHE and the hybrid setting for each layer
of the network. For the only-PHE setting we provide the timings with and without
optimizations. For the hybrid setting, we provide only optimized timing values.

The results show that in the client-server scenario when no optimizations are
used, the prediction of one image is computed approximately in 43 seconds. How-
ever, when we use optimization techniques, we can reduce the computation time to
27 seconds. In a hybrid setting, this cost is reduced to 10 seconds. Furthermore,
in the two-server scenario with a slight increase in computation time, two images
can be processed simultaneously. More particularly in an optimized hybrid setting
the two servers can compute the prediction result for two images in 10 seconds
simultaneously.

20

Table 3: Detailed computation time for the activation layer in the client-server and
the two-server scenario for the hybrid setting (in ms).

Operation Client Server Server-1 Server-2

Packing – 3544 3551 3553
Decryption 73 – 142 146
Unpacking 0.1 – 0.1
ABY 11 14 27 27
Encryption 2282 156 2358 2437

Total 6069 6078*

In Table 3 we provide the details of the computation time for the activation
layer in the hybrid setting. The packing, decryption and unpacking operations are
performed during the switching from PHE to 2PC. The encryptions are computed
by both parties when switching the operations from 2PC to PHE. In the client-
server scenario, the client spends 2.36 seconds for the computations while the
server spends approximately 3.7 seconds. In the two-server scenario, both servers
spend approximately 6 seconds for the computation of the activation layer of two
images.

Apart from computation time, we also analyzed the bandwidth usage of SwaNN
for different settings. Table 4 shows the communication cost in both scenarios for
the only-PHE setting and the hybrid setting. The packing technique used in the
activation layers helps reduce the bandwidth usage by half. Besides due to the in-
teractive nature of 2PC, the bandwidth usage in the hybrid setting is higher than
the only-PHE setting for both scenarios.

Table 4: Bandwidth usage of SwaNN in different settings (in MB).
Client-Server Two-Server

PHE only (w/o opt.) 0.97 0.96
PHE only (w/ opt.) 0.51 0.51
Hybrid (w/ opt.) 1.63 1.73

As a final analysis, in Table 5 we compare SwaNN with the state-of-the-art
works CryptoNets [8] and MiniONN [13] with respect to computation time and
bandwidth usage. CryptoNets, which uses fully homomorphic encryption for com-
putations, requires 297.5 seconds for one prediction. The protocol enables simul-
taneous computation by packing 4096 images into a single ciphertext. This is
an advantage when the same client has very large number of prediction requests.
MiniONN can compute the prediction result for the same network in 1.28 seconds.
However, this computation requires 47.6 MB bandwidth usage. SwaNN can com-

21

pute the same prediction result in 10 seconds. Although the computation time of
SwaNN is higher than MiniONN, SwaNN achieves a 27-fold less bandwidth usage.

Table 5: Comparison with the state-of-the-art in Experiment 1.
Computation time (s) Bandwidth usage (MB)

CryptoNets [8] 297.5 372.2
MiniONN [13] 1.28 47.6
SwaNN 10.1 1.73

5.2.2 Experiment 2

As the second experiment, we measured the performance of SwaNN with
ReLU activation function for the network described in Table 9 in Appendix A.
We used maximum operation for pooling layers. We provide the timings for the
max pooling along with ReLU function since we implemented them together. We
measure the timings in the client-server and the two-server scenario only with op-
timizations. Table 6 details the computation time for each layer. Due to larger
number of input size in each layer of the network, the computation cost of SwaNN
reaches to 61 seconds. The first activation layer is the dominant layer in the run
time. As expected, the high computation cost is caused by the decryption opera-
tions which are performed during the switching phase from PHE to 2PC.

Table 6: Computation time per layer in the client-server and the two-server scenario
(in ms).

Layer Client Server Server-1 Server-2

Conv – 4118 4102 4098
Act+Pool 6855 46795 48777 48869
Conv – 460 457 457
Act+Pool 766 4418 5602 5597
FC – 1318 1329 1331
Act 277 506 815 815
FC – 6 6 6

Total 57824 61173

In Table 7, we compare the performance of SwaNN with MiniONN. Clearly,
MiniONN outperforms SwaNN almost 7-fold in computation time. However, in
terms of communication, SwaNN is more efficient with a bandwidth usage of 228
MB (compared to 657 MB in MiniONN).

22

Table 7: Comparison with the state-of-the-art in Experiment 2.
Computation time (s) Bandwidth usage (MB)

MiniONN [13] 9.32 657.5
SwaNN 61.17 228.1

6 Conclusion

We have proposed a privacy preserving neural network prediction protocol that
combines the additively homomorphic Paillier encryption scheme with secure two-
party computation. Thanks to the use of the Paillier encryption algorithm for linear
operations and also the x2 activation function, the solution achieves better com-
putational cost compared to existing HE-based solutions. Different computation
optimisations based on the use of data packing and the multi-exponentiation al-
gorithm have been implemented. Furthermore, the communication cost is also
minimized since 2PC is only used for non-linear operations (max pooling and/or
RELU). SwaNN can be executed in the two-server setting, in case the client lacks
resources. Experimental results show that SwaNN actually achieves the best of
both worlds, namely, better computational overhead compared to HE-based solu-
tions and, better communication overhead compared to 2PC-based solutions.

References

[1] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff, “Privacy-
preserving classification on deep neural network,” IACR Cryptology
ePrint Archive, vol. 2017, p. 35, 2017. [Online]. Available: http:
//eprint.iacr.org/2017/035

[2] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network
model for a mechanism of visual pattern recognition,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 13, no. 5, pp. 826–834, 1983.

[3] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” CoRR, vol. abs/1202.2745, p. 20, 2012.
[Online]. Available: http://arxiv.org/abs/1202.2745

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Process-
ing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., 2012, pp. 1106–1114.

[5] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in IEEE Conference on Computer Vision

23

and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
IEEE Computer Society, 2015, pp. 815–823.

[6] N. Jones, “Computer science: The learning machines,” Na-
ture: Computer Science, vol. 505, no. 7482, pp. 146–148,
January 2014. [Online]. Available: https://www.nature.com/news/
computer-science-the-learning-machines-1.14481

[7] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, “Mlaas: Machine learning as
a service,” in 14th IEEE International Conference on Machine Learning and
Applications, ICMLA 2015, Miami, FL, USA, December 9-11, 2015. IEEE,
2015, pp. 896–902.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data with
high throughput and accuracy,” in Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016. JMLR.org, 2016, pp. 201–210.

[9] M. Barni, C. Orlandi, and A. Piva, “A privacy-preserving protocol for neural-
network-based computation,” in Proceedings of the 8th workshop on Multi-
media & Security, MM&Sec 2006, Geneva, Switzerland, September 26-27,
2006. ACM, 2006, pp. 146–151.

[10] C. Orlandi, A. Piva, and M. Barni, “Oblivious neural network computing via
homomorphic encryption,” EURASIP J. Information Security, vol. 2007, pp.
1–11, 2007.

[11] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and Pri-
vacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer
Society, 2017, pp. 19–38.

[12] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine
learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-
19, 2018. ACM, 2018, pp. 35–52.

[13] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions
via minionn transformations,” in Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. ACM, 2017, pp. 619–631.

[14] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low la-
tency framework for secure neural network inference,” in 27th USENIX Secu-
rity Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. USENIX Association, 2018, pp. 1651–1669.

24

[15] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding. Springer, 1999, pp. 223–238.

[16] I. Damgård and M. Jurik, “A generalisation, a simplification and some ap-
plications of paillier’s probabilistic public-key system,” in Public Key Cryp-
tography, 4th International Workshop on Practice and Theory in Public Key
Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Pro-
ceedings. Springer, 2001, pp. 119–136.

[17] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 11-15, 1991, Pro-
ceedings. Springer, 1991, pp. 420–432.

[18] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or
A completeness theorem for protocols with honest majority,” in Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA. ACM, 1987, pp. 218–229.

[19] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for efficient
mixed-protocol secure two-party computation,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015. The Internet Society, 2015, pp. 1–15.

[20] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: scalable
provably-secure deep learning,” in Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, June 24-29,
2018. ACM, 2018, pp. 2:1–2:6.

[21] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and
F. Koushanfar, “Chameleon: A hybrid secure computation framework for ma-
chine learning applications,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, AsiaCCS 2018, Incheon, Repub-
lic of Korea, June 04-08, 2018. ACM, 2018, pp. 707–721.

[22] M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud, I. Livingstone,
J. Patriquin, and G. Uhma, “Private machine learning in tensorflow using
secure computation,” CoRR, vol. abs/1810.08130, 2018. [Online]. Available:
http://arxiv.org/abs/1810.08130

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

25

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[24] S. Wagh, D. Gupta, and N. Chandran, “Securenn: Efficient and private neural
network training,” in Privacy Enhancing Technologies Symposium. (PETS
2019), February 2019.

[25] “Simple Encrypted Arithmetic Library (release 3.1.0),” Dec. 2018, microsoft
Research, Redmond, WA. [Online]. Available: https://github.com/Microsoft/
SEAL

[26] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” CoRR, vol. abs/1711.05189, 2017. [Online].
Available: http://arxiv.org/abs/1711.05189

[27] A. Ibarrondo and M. Önen, “Fhe-compatible batch normalization for privacy
preserving deep learning,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology - ESORICS 2018 International Workshops, DPM
2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018, Proceedings.
Springer, 2018, pp. 389–404.

[28] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic eval-
uation of deep discretized neural networks,” in Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III. Springer,
2018, pp. 483–512.

[29] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachéne, “Tfhe: Fast fully
homomorphic encryption over the torus,” Cryptology ePrint Archive, Report
2018/421, 2018, https://eprint.iacr.org/2018/421.

[30] A. Sanyal, M. J. Kusner, A. Gascón, and V. Kanade, “TAPAS: tricks to
accelerate (encrypted) prediction as a service,” CoRR, vol. abs/1806.03461,
2018. [Online]. Available: http://arxiv.org/abs/1806.03461

[31] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” PoPETs, vol. 2018, no. 3, pp.
123–142, 2018.

[32] X. Jiang, M. Kim, K. E. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018. ACM, 2018, pp. 1209–
1222.

26

[33] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-
Fei, “Faster cryptonets: Leveraging sparsity for real-world encrypted
inference,” CoRR, vol. abs/1811.09953, 2018. [Online]. Available: http:
//arxiv.org/abs/1811.09953

[34] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa, “Oblivious multi-party machine learning on trusted proces-
sors,” in 25th USENIX Security Symposium (USENIX Security 16), 2016, pp.
619–636.

[35] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron: Privacy-
preserving machine learning as a service,” CoRR, vol. abs/1803.05961, 2018.
[Online]. Available: http://arxiv.org/abs/1803.05961

[36] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019. [Online]. Available: https://openreview.net/forum?id=
rJVorjCcKQ

[37] T. Toft, “Sub-linear, secure comparison with two non-colluding parties,” in
Public Key Cryptography - PKC 2011 - 14th International Conference on
Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-
9, 2011. Proceedings. Springer, 2011, pp. 174–191.

[38] A. C. Yao, “Protocols for secure computations (extended abstract),” in 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982. IEEE Computer Society, 1982, pp. 160–164.

[39] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and I. Wehrenberg, “TASTY:
tool for automating secure two-party computations,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS
2010, Chicago, Illinois, USA, October 4-8, 2010. ACM, 2010, pp. 451–
462.

[40] Y. Lindell, “How to simulate it - A tutorial on the simulation proof technique,”
in Tutorials on the Foundations of Cryptography. Springer International
Publishing, 2017, pp. 277–346.

[41] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” Des.
Codes Cryptography, vol. 71, no. 1, pp. 57–81, 2014.

[42] T. Bianchi, A. Piva, and M. Barni, “Composite signal representation for fast
and storage-efficient processing of encrypted signals,” IEEE Trans. Informa-
tion Forensics and Security, vol. 5, no. 1, pp. 180–187, 2010.

27

[43] C. H. Lim and P. J. Lee, “More flexible exponentiation with precomputation,”
in Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 21-25, 1994,
Proceedings. Springer, 1994, pp. 95–107.

[44] C. H. Lim, “Efficient multi-exponentiation and application to batch verifica-
tion of digital signatures,” Unpublished manuscript, August, vol. n.a., no. n.a.,
p. 1, 2000.

A Neural Network Structures

In our experiments, we use two neural network structures which are previously
trained by CryptoNets [8] and MiniONN [13] to perform image classification on
MNIST data. Table 8 summarizes the structure of the neural network proposed in
CryptoNets. The accuracy of the networks is 98.95%. The network has 9 layers.
Since the last layer of the network, the sigmoid activation, is applied only in the
training phase, we did not include it in our experiments. The activation function of
the network is x2. As pooling operation, scaled mean pooling is used. Secondly,
we used the neural network structure proposed in MiniONN (Figure 12) [13]. The
accuracy of the network is 99.31%. Table 9 demonstrates the layers of the network.
The activation function of the network is ReLU. Max pooling is used in the pooling
layer.

Table 8: CryptoNets Neural Network structure [8].
Layer Input size Output size Filter Stride

Conv 28× 28 5× 13× 13 5× 5 (2,2)

Act 5× 13× 13 5× 13× 13

Pool 5× 13× 13 5× 13× 13 3× 3 1

Conv 5× 13× 13 50× 5× 5 5× 5 (2,2)

Pool 50× 5× 5 50× 5× 5 3× 3 1

FC 50× 5× 5 100× 1

Act 100× 1 100× 1

FC 100× 1 10× 1

28

Table 9: MiniONN Neural Network structure [13].
Layer Input size Output size Filter Stride

Conv 28× 28 16× 24× 24 5× 5 (1,1)

Act 16× 24× 24 16× 24× 24

Pool 16× 24× 24 16× 12× 12 2× 2 2

Conv 16× 12× 12 16× 8× 8 5× 5 (1,1)

Act 16× 8× 8 16× 8× 8

Pool 16× 8× 8 16× 4× 4 2× 2 2

FC 16× 4× 4 100× 1

Act 100× 1 100× 1

FC 100× 1 10× 1

29

