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Abstract—This paper investigates the problem of user rate
balancing with power constraints for the downlink transmission
of multiuser Multiple-Input-Multiple-Output (MIMO) system.
However, this max-min rate problem is not jointly convex. There-
fore, we transform the original problem into matrix-weighted
user Mean Squared Error (MSE) balancing. In particular, we
enhance user fairness by solving the min-max matrix-weighted
MSE optimization problem by power allocation and choice of
transceiver filters in a way to maximize the minimum down-
link rate of the users. Formulating the balancing operation
as constraints, we introduce the corresponding Lagrangian for
which we reach the saddle point by alternating optimization.
Various aspects of Perron Frobenius theory are exploited in the
process. Simulation results are provided to validate the proposed
algorithm and demonstrate its performance improvement over
e.g. unweighted MSE balancing.

Index Terms—rate balancing, max-min fairness, Lagrange
duality, transceiver optimization, multi-user MIMO

I. INTRODUCTION

One important criterion in designing wireless networks is
ensuring fairness requirements. In fact, fairness is said to be
achieved if some performance metric is equally reached by all
users of the system, depending on their priority allocations.
With respect to applications in communication networks, fair-
ness is closely related to min-max or max-min optimization
problems, also referred to as balancing problems. Actually,
balancing a given metric or a utility function among users
implies that the system performances are limited by the weak
users. At the optimum, the performance of the latter is brought
to be improved [1].

However, most of balancing optimization problems are non-
convex and can not be solved directly. Despite that, several
works over the litterature have developped optimal solutions.
For instance, [2] solved the max-min problem by a sequence
of Second Order Cone Programs (SOCP). Also, [3] showed
that a semidefinite relaxation is tight for the problem, and
the optimal solution can be constructed from the solution
to a reformulated semidefinite program. In [4], the authors
proposed an algorithm based on fixed-point that alternates
between power update and beamformer updates, and the
nonlinear Perron-Frobenius theory was applied to prove the
convergence of the algorithm.

Another way to solve balancing optimization problems is
to convert the problem from the downlink channel to its
equivalent uplink channel, by exploiting the uplink-downlink
duality. Doing so, the transformed problem has better mathe-

matical structure and convexity in the uplink, thus, the com-
putational complexity of the original problem can be reduced
[5]. The uplink-downlink duality has been widely used to
design optimal transmit and receive filters that ensure faireness
requirements w.r.t the Signal-to-Interference-plus-Noise Ratio
(SINR), the Mean Square Error (MSE), and the user rate.

The objective being to equalize all user SINRs, the SINR
balancing problem is of particular interest because it is directly
related to common performance measures like system capacity
and bit error rates. Maximizing the minimum user SINR in the
uplink can be done straightforwardly since the beamformers
can be optimized individually and SINRs are only coupled by
the users’ transmit powers. In contrast, downlink optimization
is generally a nontrivial task because the user SINRs depend
on all optimization variables and have to be optimized jointly
[5]–[10].

Another well-known duality is the stream-wise MSE duality
where it has been shown that the same MSE values are achiev-
able in the downlink and the uplink with the same transmit
power constraint. This MSE duality has been exploited to solve
various minimum MSE (MMSE) based optimization problems
[11]–[13].

In this work, we focus on user rate balancing in a way
to maximize the minimum per user (weighted) rate in the
network. This balancing problem is studied in [14] without
providing an explicit precoder design. As in [15], we provide
here a solution via the relation between user rate (summed
over its streams) and a weighted sum MSE. But also another
ingredient is required: the exploitation of scale factor that
can be freely chosen in the weights for the weighted rate
balancing. User-wise rate balancing outperforms user-wise
MSE balancing or streamwise rate (or MSE/SINR) balancing
when the streams of any MIMO user are quite unbalanced. In
[15] the problem is transformed into weighted MSE balancing
using non-diagonal weight matrices. Here we solve the user
rate balancing problem using diagonal weight matrices by
diagonalizing the user signal error covariance matrices, which
allows to link the per stream and per user power allocation
problems. Also, the optimization of the matrix-weighted MSE
balancing problem is held in the downlink (DL) to stick to
the problem definition, unlike in [15] where the optimization
is related to the equivalent uplink (UL) problem. However,
we exploit Lagrangian duality to transform WMSE balancing
into a weighted sum MSE optimization problem. This also
leads to limited use of UL/DL duality with transmit filters



(a)

(b)
Fig. 1. System model: (a) downlink channel, (b) equivalent downlink channel.

appearing as MMSE receivers in a dual UL, and Lagrange
multipliers for the balancing constraints becoming uplink user
powers. Actually, UL and DL user powers will be left and
right Perron Frobenius eigenvectors of a matrix of weighted
interference plus noise to signal power ratios..

II. SYSTEM MODEL

The considered network is a multiuser MIMO downlink
system, (see Figure 1). We focus on a Base Station (BS) of
M transmit antennas serving K users of each Nk antennas,
(k = 1, ...,K is the users’ index). The channel between the
kth user and the BS is denoted by HH

k ∈ CM×Nk , and
HH = [HH

1 , ...,H
H
K ] is the overall channel matrix.

We assume zero-mean white Gaussian noise nk ∈ CNk×1

with distribution CN (0, σ2
nI) at the kth user. We assume inde-

pendent unity-power transmit symbols s = [sT1 . . . s
T
K ]T, i.e.,

E
[
ssH
]

= I , where sk ∈ Cdk×1 is the data vector to be trans-
mitted to the kth user, with dk being the number of streams
allowed by user k. The latter are transmitted using the transmit
filtering matrix G = GP 1/2 ∈ CM×Nd , composed of the
beamforming matrix G = [G1 . . .GK ] = [g1 . . . gNd

] with
normalized columns ‖gi‖2 = 1 and the diagonal non-negative
downlink power allocation P 1/2 = blkdiag{P 1/2

1 , . . . ,P
1/2
K }

where diag(Pk) ∈ Rdk×1+ contains the transmission powers
and Nd =

∑K
k=1 dk is the total number of streams. The total

transmit power is limitted, i.e., tr
(
P ) ≤ Pmax.

Similarly, the receive filtering matrix for each user is
defined as FH

k = P
−1/2
k βkF

H
k ∈ Cdk×Nk , composed

of beamforming matrix FH
k ∈ Cdk×Nk and the diago-

nal matrices βk contain scaling factors which ensure that
the columns of FH

k have unit norm. We define β =
blkdiag{β1, . . . ,βK} = diag{[β1 . . . βNd

]} and F =
blkdiag{F1, . . . ,FK} = [f1 . . .fNd

] with normalized per-
stream receivers, i.e., ‖fi‖2 = 1.

The MSE per stream εDL
i between the decision variable ŝi

and the transmit data symbol si is defined as follows

εi = E
{
|ŝi − si|2

}
= β2

i /pif
H
i H

( Nd∑
j=1

pjgjg
H
j

)
HHfi

− 2βiRe
{
fH
i Hgi

}
+ σ2

nβ
2
i /pi + 1,∀i ∈ {1, ..., Nd}. (1)

III. RATE - WEIGHTED MSE RELATION

In this work, we aim to solve the weighted user-rate
max-min optimization problem under a total transmit power
constraint, i.e., the user rate balancing problem expressed as
follows

max
{G,P ,F ,β}

min
k

rk/r
◦
k

s.t. tr
(
P ) ≤ Pmax (2)

where rk is the kth user-rate

rk = ln det
(
I+HkGkGH

kH
H
k

(
σ2
nI+

∑
j 6=k

HkGjGH
j H

H
k

)−1
)

(3)

and r◦k is the rate scaling factor for user k. However, the
problem presented in (2) is complex and can not be solved
directly.

Lemma 1. The rate of user k in (3) can also be represented
as

rk = max
Wk,Fk

[
ln det

(
Wk

)
− tr

(
WkEk

)
+ dk

]
. (4)

where
Ek = E

[
(ŝk − sk)(ŝk − sk)H

]
= (I −FH

kHkGk)(I −FH
kHkGk)H

+
∑
j 6=k

FH
kHkGjGH

j H
H
k Fk + σ2

nFH
kFk (5)

is the kth-user downlink MSE matrix between the deci-
sion variable ŝk and the transmit signal sk, and W =
{Wk}1≤k≤K are auxiliary weight matrix variables with opti-
mal solution rk = − ln det

(
Ek

)
and [16], [17], [18]

Wk=E−1
k =I+GH

kH
H
k (σ2

nI+

K∑
j=1

HkGjGH
j H

H
k )−1HkGk, (6)

Fk = (σ2
nI +

K∑
j=1

HkGjGH
j H

H
k )−1HkGk. (7)

Now consider both (2) and (4), and let us introduce ξk =
ln det

(
Wk

)
+dk−rMk , the WMSE requirement, with target rate

rMk . Assume that we shall be able to concoct an optimization
algorithm that ensures that at all times and for all users the
matrix-weighted MSE (WMSE) satisfies εw,k = tr

(
WkEk

)
≤

dk and ln det
(
Wk

)
≥ rMk or hence ξk ≥ dk. This leads ∀k to

εw,k
ξk
≤ 1

⇐⇒ ln det
(
Wk

)
+ dk − tr

(
WkEk

)
≥ rMk (8)

(a)
=⇒ rk/r

M
k ≥ 1

where (a) follows from (4). To get to (8), what we can exploit
in (2) is a scale factor t that can be chosen freely in the rate
weights r◦k in (2). We shall take t = mink rk/r

◦
k, which allows

to transform the rate weights r◦k into target rates rMk = tr◦k,
and at the same time allows to interpret the WMSE weights
ξk as target WMSE values.

Doing so, the initial rate balancing optimization problem
(2) can be transformed into a matrix-weighted MSE balancing
problem expressed as follows

min
{G,P ,F ,β}

max
k

εw,k/ξk

s.t. tr
(
P
)
≤ Pmax, (9)

which needs to be complemented with an outer loop in which
Wk = E−1k , t = mink rk/r

◦
k, rMk = tr◦k and ξk = dk+rk−rMk

get updated. The problem in (9) is still difficult to be handled
directly.



IV. THE WEIGHTED USER-MSE OPTIMIZATION

In this section, the problem (9) with respect to the matrix
weighted user-MSE is studied. Consider first the per stream
MSE values ε = diag

{
[ε1 . . . εNd

]
}

= ε. The downlink power
allocation achieving these MSEs is obtained by solving the
MSE expressions (1) w.r.t. the powers,

p = σ2
n(ε−D − β2ΨT )−1β21Nd (10)

where the diagonal matrix D is defined as

[D]ii = β2
i g

H
i H

Hfif
H
i Hgi − 2βiRe{gHi HHfi}+ 1

and
[Ψ]ij =

{
gHi H

Hfjf
H
j Hgi, i 6= j

0, i = j.

The link between stream-wise and user-wise MSEs is sim-
plified if W is diagonal. This can be obtained without loss in
optimality as a unitary transformation will leave the spatially
white transmit signal vectors white [19]. So, introduce the
eigendecomposition Ek = VkΣkV

H
k . Considering the optimal

Ek in Lemma 1, we can obtain diagonal E with a transformed
transmit filter as

Ĕk = Σk, Ğk = GkVk = GkP
1/2
k Vk = ĞkP̆

1/2
k . (11)

Now, as explained in [19], it is not actually required to carry
out explictly this diagonalization. Indeed if in (4) the matrices
Wk are constrained to be diagonal, then this leads a priori to
a minorization, but actually this minorization is tight, since it
will lead to BF filters that will adjust themselves to lead to
diagonal Ek.

With diagonal weight matrices, we can furthermore consider
the user weighted MSE problem directly in the DL and
optimize the DL power allocation, unlike in [15] where we
solve the equivalent UL problem and optimize the respective
UL power allocation.

The matrix weighted per user MSE can be expressed as
follows, with lk =

∑k−1
j=1 dj + 1 (dj being the number of

streams of user j)

εw,k = tr
(
WkEk

)
=

lk+dk−1∑
i=lk

wiεi, ∀k. (12)

Collecting all layer MSEs in a vector, we get with P =
diag{p}

ε1Nd = P−1
[
(D + β2Ψ)p+ σ2

nβ
21Nd

]
. (13)

Note that P−1Dp = D1Nd
. Now introduce the user powers

p̃, which relate to the stream powers as Pk = P̄kp̃k with
tr{P̄k} = 1 and P̄ = blkdiag(P̄1, . . . , P̄K). Also consider the
case of diagonal weighting matricesWk and the overall diago-
nal W = blkdiag(W1, . . . ,WK). Consider now the weighted
user MSE (WMSE) ε=w,ktr{WkEk} where the diagonal of (the
not necessarily diagonal) E = blkdiag(E1, . . . ,EK) is the set
of stream MSEs ε, and let εw = diag(εw,1, . . . , εw,K) be the
set of user WMSEs. We shall also need the per user stream
distribution matrix 1 = blkdiag(1d1 , . . . ,1dK ). Then we get
from (13)

εw 1K = 1
HWε = 1

HWP−1
[
(D + β2Ψ)p+ σ2

nβ
21Nd

]
.

(14)

Note that P1Nd
= p = P̄1p̃ and 1Nd

= 11K . By
multiplying both sides of (14) with diag{p̃}, we get

εw p̃ = Ap̃+ σ2
nC 1K with (15)

A = 1
HW (D + β2P̄−1ΨTP̄ )1,

C = 1
HWβ2P̄−1

1.

Let ξ = diag(ξ1, . . . , ξK), then

ξ−1εw p̃ = ξ−1Ap̃+ σ2
n ξ
−1C 1K . (16)

On the other hand we have the power constraint 1HKp
opt =

Pmax. Reparameterize p̃ = Pmax

1H
K p̃′

p̃
′

where now p̃
′

is uncon-

strained. This allows us to write (16) as (rewriting p̃
′

as p̃)

ξ−1εw p̃ = Λ p̃ with Λ = ξ−1A+
σ2
n

Pmax
ξ−1C 1K1HK . (17)

Now with (17), the WMSE balancing problem of (9) becomes

min
p̃

max
k

εw,k
ξk

= min
p̃

max
k

[Λ p̃]k
p̃k

(18)

According to the Collatz–Wielandt formula [20, Chapter 8],
the above expression corresponds to the Perron-Frobenius
(maximal) eigenvalue ∆ of Λ and the optimal p̃ is the
corresponding Perron-Frobenius (right) eigenvector

Λp̃ = ∆ p̃. (19)

Note that this implies the equality ξ−1εw = ∆ I .

V. ALGORITHMIC SOLUTION VIA LAGRANGIAN DUALITY

A. Algorithm
The max-min weighted user rate optimization problem (2)

can be reformulated as
min
t,G,P

− t

s.t. t r◦k − rk ≤ 0, tr(P )− Pmax ≤ 0 . (20)

Introducing Lagrange multipliers to augment the cost function
with the constraints leads to the Lagrangian

max
λ
′
,µ

min
t,G,P

L

L = −t+
∑
k

λ
′
k(t r◦k − rk) + µ(tr(P )− Pmax) (21)

Integrating the result (4), we get a modified Lagrangian
max
λ
′
,µ

min
t,G,P ,F,W

L

L = −t+
∑
k

λ
′
k(tr(WkEk)− ξk) + µ(tr(P )− Pmax) (22)

Introducing λk = λ
′

kξk, we can rewrite as
max
λ,µ

min
t,G,P ,F,W

L

L = −t+
∑
k

λk(
tr(WkEk)

ξk
− 1) + µ(tr(P )− Pmax) (23)

We shall solve this saddlepoint condition for L by alternating
optimization. As far as the dependence on λ,G,P ,F is
concerned, we have (omitting the power constraint)

max
λ

min
G,P ,F

∑
k

λk
tr(WkEk)

ξk
(24)

which is of the form Weighted Sum MSE (WSMSE). Opti-
mizing w.r.t. Rxs F leads to the MMSE solution mentioned



TABLE I
PSEUDO CODE OF THE PROPOSED ALGORITHM

1. initialize: G(0,0)
k = (Idk : 0)T, P̄ (0,0)

k = 1
dk
Idk , p̃(0,0)k =

q̃
(0,0)
k = Pmax

K
, P (0,0)

k = p̃
(0,0)
k P̄

(0,0)
k , m = n = 0 and fix

nmax,mmax and r◦(0)k , initialize W (0)
k = Idk and ξ(0)k = dk

2. initialize F (0,0), β(0,0) in F(0,0) = Fβ(0,0)P (0,0)−1/2 from
(7)

3. repeat

3.1. m← m+ 1
3.2. repeat

n← n+ 1
i update Gk , P̄k in Gkp̃

1/2
k P̄

1/2
k = Gk from (25)

ii update F , β in F = FβP−1/2 from (7)
iii compute Λ, update p̃ and q̃ as right and left Perron Frobenius

eigen vectors of Λ, and update Pk = p̃kP̄k
3.3 until required accuracy is reached or n ≥ nmax

3.4 compute E(m)
k and update W (m)

k = (diag(E
(m)
k ))−1

3.5 determine t = mink
r
(m)
k

r
◦(m−1)
k

, r◦(m)
k = t r

◦(m−1)
k ,

and ξ(m)
k = dk + r

(m)
k − r◦(m)

k
3.6 set n ← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to

re-enter the inner loop

4. until required accuracy is reached or m ≥ mmax

in Lemma 1. Optimizing w.r.t. Txs G leads to dual MMSE
solutions as in [19] with weights Wk replaced by λk

ξk
Wk,

namely
Ḡ = (HHFW ′FHH + σ2

n
tr(W ′FHF)

Pmax
I)−1HHFW ′

Gk =

√
p̃k

tr(ḠH
k Ḡk)

Ḡk (25)

where W ′ = blkdiag{W ′
1, . . . ,W

′
K} and W ′

k = λk/ξkWk.
The optimization of the Lagrange multipliers λ follows from
Perron Frobenius theory. With (18), we can reformulate (24)
as

∆ = max
λ:

∑
λk=1

min
p̃

∑
k

λk
[Λ p̃]k
p̃k

(26)

which is the Donsker–Varadhan–Friedland formula [20, Chap-
ter 8] for the Perron Frobenius eigenvalue of Λ. A related
formula is the Rayleigh quotient

∆ = max
q̃

min
p̃

q̃TΛ p̃

q̃T p̃
(27)

where p̃, q̃ are the right and left Perron Frobenius eigenvectors.
Comparing (27) to (26), then apart from normalization factors,
we get λk/p̃k = q̃k or hence λk = p̃kq̃k.

The proposed optimization framework is summarized in
Table I. Superscripts refer to iteration numbers. This algorithm
is based on a double loop. The inner loop solves the WMSE
balancing problem in (9) whereas the outer loop iteratively
transforms the WMSE balancing problem into the original rate
balancing problem in (2).

B. Proof of Convergence

In case the rate weights r◦k would not satisfy rk ≥ r◦k, this
issue will be rectified by the scale factor t after one iteration

(of the outer loop). It can be shown that t = mink
r
(m)
k

r
◦(m−1)
k

≥ 1.

Fig. 2. User rate VS number of outer iterations for one loop (nmax = 1)
and two loops (nmax = 4): K = 3, SNR= 15 dB, M = 6, Nk = dk = 2.

By contradiction, if this was not the case, it can be shown to

lead to
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

> 1, ∀k and hence ∆(m) > 1. But
we have

∆(m) =
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

, ∀k,= maxk
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

(a)
<maxk

tr
(
W

(m−1)
k E

(m−1)
k

)
ξ
(m−1)
k

= maxk
dk

ξ
(m−1)
k

(b)
< 1 .

(28)
Let E = {Ek, k = 1, ...,K} and

f (m)(E) = maxk
tr
(
W

(m−1)
k Ek

)
ξ
(m−1)
k

. Then (a) is due to the fact
that the algorithm in fact performs alternating minimization of
f (m)(E) w.r.t. G, F , q̃ and hence will lead to f (m)(E(m)) <

f (m)(E(m−1)). On the other hand, (b) is due to ξ
(m−1)
k =

dk + r
(m−1)
k − r◦(m−1)k > dk, for m ≥ 3.

Hence, t ≥ 1. Of course, during the convergence t > 1.
The increasing rate targets {r◦(m)

k } constantly catch up with
the increasing rates {r(m)

k }. Now, the rates are upper bounded
by the single user MIMO rates (using all power), and hence the
rates will converge and the sequence t will converge to 1. That
means that for at least one user k, r(∞)

k = r
◦(∞)
k . The question

is whether this will be the case for all users, as is required for
rate balancing. Now, the WMSE balancing leads at every outer

iteration m to
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

= ∆(m),∀k. At convergence,

this becomes dk
ξ
(∞)
k

= ∆(∞) where ξ(∞)
k = dk + r

(∞)
k − r◦(∞)

k .
Hence, if we have convergence because for one user k∞ we
arrive at r(∞)

k∞
= r

◦(∞)
k∞

, then this implies ∆(∞) = 1 which
implies r(∞)

k = r
◦(∞)
k ,∀k. Hence, the rates will be maximized

and balanced.

VI. SIMULATION RESULTS

In this section, we numerically illustrate the performance of
the proposed algorithm. The simulations are obtained under a
channel modeled as follows : HH

k = BkUkAk where Bk,Ak

are of dimensions (M ×Nk) and (Nk×Nk) respectively, and



Fig. 3. Minimum rate in the system VS SNR: K = 3.

have i.i.d. elements distributed as CN (0, 1); Uk = µUk, with
the normalization parameter µ = (trace

(
Uk)

)−1/2
and Uk =

diag
{

1, α, α2, . . . , αNk−1
}

(α ∈ R being a scalar parameter).
This model allows to control the rank profile of the MIMO
channels. For all simulations, we fix α = 0.3 and take 1000
channel realisations and nmax = 20. The algorithm converges
after 3-4 outer iterations with 4 to 10 inner iterations, see
Figure 2.

Figure 3 plots the minimum achieved per user rate using i)
our max-min user rate approach with equal user priorities and
ii) the user MSE balancing approach [21] with respect to the
Signal to Noise Ratio (SNR). We observe that our approach
outperforms significantly the unweighted MSE balancing op-
timization, and the gap gets larger with more streams.

We observe, in Figure 4, the same behavior with the clas-
sical i.i.d. Gaussian channel, but with a smaller gap. Also, we
can see that the balanced rate obtained using diagonal {Wk}
and with DL power optimization outperforms the balanced
rate derived with non-diagonal weight matrices and UL power
optimization [15].

In Figure 5, we illustrate how rate is distributed among users
according to their priorities represented by the rate targets r◦k.
We can see that, using the min-max weighted MSE approach,
the rate is equally distributed between the users with equal
user priorities, i.e., r◦k = r◦1 ∀k, whereas with different user
priorities, the rate differs from one user to another accordingly.
Furthermore, the Sum Rate (SR) reaches its maximum when
user priorities are equal, as the channel statistics are identical
for each user.

Figure 6 considers a case where the number of transmit
antennas does not support the total number of streams; we
can see that the unsupported streams are off.

VII. CONCLUSIONS

In this work, we addressed the case of multiple streams
per user (MIMO links) for which we considered user rate
balancing, not stream rate balancing. Actually, we optimized

Fig. 4. Minimum rate in the system with respect to SNR for i.i.d. Gaussian
channel VS modelled channel: K = 3,M = 6, Nk = dk = 2.

Fig. 5. Rate distribution among users: K = 3, SNR= 10 dB, M = 6, Nk =
dk = 2.

Fig. 6. Downlink transmit power distribution among users: K = 3, SNR=
20 dB, M = 6, Nk = dk = 3.



the rate distribution over the streams of a user, within the rate
balancing of the users. In this regard, we proposed an iterative
algorithm to balance the rate between the users in a MIMO
system. The latter was derived by transforming the max-min
rate optimization problem into a min-max weighted MSE
optimization problem which itself was shown to be related to
a weighted sum MSE minimization via Langrangian duality.
We also compared our diagonal DL matrix-weighted MSE
approach with i) the min-max unweighted MSE optimization,
and ii) non-diagonal UL matrix-weighted MSE. Simulation
results showed that our solution outperforms the latters.
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