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Abstract—We introduce, in this paper, a new scheme of score
level fusion for face authentication from visible and thermal face
data. This proposed scheme provides a fast and straightforward
integration into existing face recognition systems and does not
require recollection of enrollment data in thermal spectrum. In
addition to be used as a possible countermeasure against spoofing,
this paper investigates the potential role of thermal spectrum in
improving face recognition performances when employed under
adversarial acquisition conditions. We consider a context where
individuals have been enrolled solely in visible spectrum, and
their identity will be verified using 2 sets of probes: visible
and thermal. We show that the optimal way to proceed is to
synthesis a visible image from the thermal face in order to create
a synthetic-visible probe; and then to fuse scores resulting from
comparisons between visible gallery with both visible probe and
synthetic-visible probe. The thermal-to-visible face synthesis is
performed using a Cascaded Refinement Network (CRN) and
face features were extracted and matched using LightCNN and
Local Binary Patterns (LBP). The fusion procedure is performed
based on several quality measures computed on both visible and
thermal-to-visible generated probes and compared to the visible
gallery images.

Index Terms—Score fusion, thermal-to-visible face synthesis,
quality assessment

I. INTRODUCTION

The growing necessity for digital and physical security
has spreadingly led to the deployment of biometric systems.
Particularly, face recognition has received a lot attention
these last decades for its wide range of applications, from
law enforcement and security systems to increasing everyday
life safety. This is mainly motivated by the fact that face
recognition is considered as a fast, passive and non intrusive
systems compared to other biometric traits. Nevertheless, it is
important to admit that face recognition technology is still not
fully reliable, giving that it is still encountering challenges
due to poor data quality, missing information and diverse
threats. Taking into account that most face recognition systems
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are based on visible spectrum, variable or low illumination
conditions have been proved to be one of the major challenges.
Moreover, face recognition technology is also threatened by
presentation attacks that endeavour to spoof the system. Some
prompt actions have been taken such as requiring an eye
blink, smile or other visual reaction to prove the liveness
of the user, yet this can be easily tricked using video replay
attacks. More advanced solutions, developed in order to detect
face presentation attack, are available in [1]. Although, face
recognition systems are extensively implemented for border
and access control and surveillance systems. Thereby, it is
necessary to seek solutions of presentation attack detection
that are cost effective and easy to integrate with existing face
recognition systems. Thermal imagery is considered a natural
spoofing countermeasure, as the heat emitted by the human
face provide evidence of the user’s liveness. Thermal imagery
technology has drastically advanced during the last couple
of decades, and thermal cameras have evolved to become
affordable and user friendly. Even though thermal imaging
solutions are significantly advancing, they still suffer from
poor performances due to low image resolution, lack of color,
and poor texture and geometric information. Several studies of
face recognition have thoroughly focused on bringing visible
and thermal spectra together to benefit from the advantages of
each. Particularly, cross-spectrum face recognition, aims in our
case of study to identify a person imaged in thermal spectrum
from a gallery containing face images acquired in the visible
spectrum. We draw focus on image synthesis strategy for
cross-spectrum face recognition [2]–[4], consisting in generat-
ing visible-like images from thermal captures. These generated
visible-like images will be then matched against a gallery of
visible faces. Opting for this strategy is essential to enable
its integration in the existing face recognition systems as well
as manual face verification by human examiners. It has been
revealed that synthesis based cross-spectrum face recognition
outperformed visible spectrum based face recognition systems
when engaged in poorly lit environments. Although, generated
images are still far from optimal compared to visible images
when confronting other sorts of variations, such as occlusion
or head pose variations. In an attempt to achieve a more



robust and accurate face recognition system, we suggest to fuse
scores obtained while matching visible face probes with visible
face gallery and the scores obtained by matching thermal-to-
visible generated images from thermal face against the same
visible face gallery. Based on the intuition that quality can be
indicative of the utility of a face sample, we propose score
fusion scheme weighted by quality similarity scores.

Conventional multi-modal fusion systems usually perform
the authentication process separately on each modality con-
sidering gallery and probe samples from the same modality.
However, the novelty of this work lies in considering solely
one set of gallery images acquired in visible spectrum. This is
motivated by the need of a fast and convenient integration of
thermal imagery in existing face recognition systems, as it has
been proven effective for nighttime face recognition. Quality-
weighted score fusion of visible and thermal spectrum will
ensure a robust face authentication operational at daytime and
nighttime.

The remainder of the paper is organised as follows. Sec-
tion II presents the related work in thermal-to-visible face
synthesis and quality based fusion. Section III describes the
proposed method of quality-weighted comparison of visible
and thermal-to-visible images to visible enrollments. Sec-
tion IV reports the experimental setup, followed by results
and discussion. Conclusions are presented in Section V.

II. RELATED WORK

Interest in cross spectrum face recognition based on
thermal-to-visible face synthesis has grown over the last
several years. It enables a straightforward integration in the
existing face recognition systems trained on data acquired in
visible spectrum. Moreover, it offers an interpretable represen-
tation allowing human examiners to verify face matches across
different spectra more efficiently.

Li et al. [4] is considered one of the first to investigate
thermal-to-visible face synthesis. The proposed approach con-
sists in a learning framework that benefits from the local
linearity in the spatial domain of the image as well as in the
image manifolds. Organizing the image patches and improving
the generated visible face were performed using Markov
random fields. More recently, the rise of deep learning have
significantly boosted the state-of-the-art in numerous domains
of computer vision. It offers an opportunity to approach
the problems which were hardly solvable with conventional
machine learning. Therefore, several works were based on
Generative Adversarial Neural network (GAN) to synthesize
visible faces from thermal images. Wang et al. [2] used a
conditional GAN to synthesize faces from thermal images.
The authors proposed to integrate facial landmark loss in the
CycleGAN model [5] that portrays face identity preserving
features. Another work, inspired from pix2pix model [6], is
presented by Zhang et al. [3]. This work uses the same gener-
ator as pix2pix network coupled with multitask discriminator
that performs closed-set face recognition in order to preserve
the face identity information from the thermal inputs.

Our own recent work [7] presented a solution using Cas-
caded Refinement Networks (CRN) [12] to generate high-
quality color visible image. The proposed network is trained
using contextual loss function [13], enabling it to be inherently
scale and rotation invariant. This work has reported higher
recognition performance [7] and better visual quality [8]
compared to models proposed in [3], [6]. Underlining the
motivation of face synthesis from thermal-to-visible spectrum,
it has been proved that face recognition performance reported
on the synthesized images is significantly higher than the
performance reported on visible spectrum when operated in
poorly lit environments, as it was improved by 37.5%. How-
ever, under standard illumination conditions, face recognition
based solely on visible spectrum outperforms by far systems
based on generated visible-like face images, even under other
challenging operating scenarios such as occlusion or head pose
variation.

Several fusion and modality selection solutions were pro-
posed, in setting multimodal biometric systems, based on qual-
ity assessment of the biometric sample. Good quality image
usually yields to a robust matching performance. Fierrez-
Aguilar et al. [9] introduced one of the earliest works of
biometric quality fusion at score level, integrating quality
information into a Bayesian statistical model for multimodal
biometric classification. Using a unimodal biometric system,
Vatsa et al. [10] proposed fusing RGB channel based on
quality scores to improve the performance of iris recognition.
Zhou et al. [11] presented quality based eye recognition
by segmenting the eye into iris ans scelra and performing
classification on the selected region as reported by its quality.

III. QUALITY-WEIGHTED SCORE FUSION

In this section, we describe in details the proposed fusion
solution. First, we present thermal-to-visible face synthesis
model used in this paper. This model will provide an estima-
tion of the visible information based on the thermal input when
it is initially missing in the visible spectrum. Then, we define
the two face recognition systems used to compare face samples
and obtain their matching scores. Subsequently, we list the
quality assessment metrics considered in this paper. Finally,
we describe the proposed quality-weighted fusion scheme.

A. Thermal-to-visible face synthesis

Thermal-to-visible face synthesis model, presented in [7], is
based on Cascaded Refinement Networks (CRN) [12]. Choos-
ing CRN as the basic block for our image synthesis model was
motivated by the fact that it considers multi-scale information
and requires training a limited number of parameters resulting
in high resolution image generation. CRN is a convolutional
neural network that consists of inter-connected refinement
modules. Each module consists of only three layers, input,
intermediate, and output layer. The first module considers the
lowest resolution space (4x4 in our case). This resolution
is duplicated in the successor modules until the last module
(128x128 in our case), matching the target image resolution.



Fig. 1: Samples of visible images generated from thermal captures. Each group of three images have the source thermal image
(TH) on the left, the generated visible image (GVIS) in the middle and the ground-truth visible image (VIS) on the right for
comparison.

To control the training of our CRN network, we used the
contextual loss function (CL) [13]. This loss function fulfills
our needs, as it is robust to not well aligned data and neglects
outliers at the pixel level (in comparison to pixel level loss [6],
[14]). Gramm loss [15] can satisfy the two aforementioned
conditions, however, unlike CL, it does not constrain the
content of the generated image since it describes the image
globally.

The CL function can be computed between the source
(thermal) and the generated images, and between the target
(ground-truth) and the generated images. The source-generated
loss aims at saving the details of the source image such as
detailed boundaries. The target-generated loss maintains the
properties of the target image in the generated image, e.g.
target image style. In our case, as will be presented in the
section IV, the source and target training image pairs are
of identical faces. Therefore, the target-generated loss also
maintains the detailed properties of the face in the source
image.

Training of thermal-to-visible face synthesis model was
carried out using numerous facial variations taken in controlled
illumination conditions. For more details, one can refer to [7].

The images in Fig. 1 are samples of the generated visible
images from thermal faces acquired in poorly lit environment.
For each sample, we show the source image (TH), the gener-
ated visible image (GVIS), and the ground-truth visible image
(VIS), in this order from left to right. We can observe that
the thermal-to-visible face synthesis model has succeeded to
generate a faithful estimation of the visible face. In other
words, this step is essential to provide the missing visible
information due to lack of illumination.

B. Face feature extraction and matching

We present here the face comparison systems used to obtain
the matching scores on which the fusion will be applied. We
selected the state-of-the-art system based on deep learning em-
beddings and a second system based on handcrafted features.

LightCNN [22] is a new implementation of CNN for face
recognition designed to have fewer trainable parameters and
to handle noisy labels. This network introduces a new con-
cept of maxout activation in each convolutional layer, called
Max-Feature-Map, for feature filter selection. This network
has achieved better performance than CNNs while reducing
computational costs and storage space. When evaluated on the
LFW database, LightCNN achieved face recognition accuracy
of 99.33%. We used the learned network with 29-layers
to obtain embeddings of 256-dimension from face images.
Embeddings extracted from gallery and probe templates are
compared using cosine similarity.

Local Binary Pattern (LBP) was originally introduced
by Ojala et al. [23] for texture analysis, but later on it was
thouroughly explored in numerous applications. Particularly,
it has shown its efficiency for face analysis. LBP represent a
binary pattern that describes the local neighborhood of each
pixel of the face image. The obtained LBP features are then
concatenated to create a single histogram feature vector of
256-dimensions. Histograms extracted from gallery and probe
image samples are compared using Chi-square dissimilarity
measure.

C. Quality assessment metrics

Most often, quality of face samples reflects its convenience
in providing a correct and accurate identification with a high



matching score. High quality samples often deliver highly
informative features, yet low quality samples suffer heavily
from noisy data and missing information. Therefore, selecting
quality assessment metrics is very critical in boosting or
lowering recognition performance.

We present, in this paper, a number of quality metrics
in order to study the impact of each on face recognition
performance.
• Lightening symmetry [16]: it quantifies the symmetry

between sub-regions of an image and can be measured as
the difference between the histogram of intensity in each
half sub-region.

• Brightness [17]: is given by the average value of the
image intensity histogram.

• Contrast [17], [18]: can be defined as the scale difference
between maximum and minimum intensity values in an
image.

• Exposure [19]: indicates the amount of light in the image
and can be measured using image statistical measures.

• Global Contrast Factor (GCF) [20]: is the weighted
sum of local contrast for various resolutions of the image.

• Blur [21]: is based on the fact that sharp images have
thin edges and blurry images have wider edges, blur is
expressed as the edge width.

• Sharpness [18]: is defined as the sum of gradients at
every pixel intensity.

D. Proposed fusion scheme

We illustrate, in Fig. 2, the proposed asymmetric approach
of quality weighted fusion at score level. Let QVIS, QGVIS and
QGallery denote the quality measures of the visible image probe,
the quality of the thermal-to-visible generated image probe,
and the quality of visible gallery image, respectively. During
authentication, we calculate the quality similarity scores of
the original visible image and the thermal-to-visible generated
image by determining their similarity to QGallery, as follow:

QSi = e
QGallery−Qi

QGallery , where i ∈ {V IS,GV IS} (1)

Once the quality scores are obtained, they are normalized
using min-max normalization. Then, we compute the weight
to be assigned to each entity, as wi = QSi

QSV IS+QSGV IS
,

i ∈ {V IS,GV IS}. The closer Qi is to QGallery , the higher
the weight will be assigned to i. Next, the face matching
scores, denoted by Si, are computed. SV IS are obtained by
comparing the visible image probe to the visible gallery set.
SGV IS

are calculated by performing face comparison between
the generated visible-like image and the visible gallery set.
The obtained matching scores are then normalized. The overall
fused score is computed using the weighted exponential sum
rule, as follow:

Sfused =
∑
i

wie
Si , where i ∈ {V IS,GV IS} (2)

wi =
QSi

QSV IS +QSGV IS

, where i ∈ {V IS,GV IS} (3)

Fig. 2: Framework of the proposed quality-based score fusion
scheme, where VIS, TH and GVIS denote the visible image, the
thermal image and the generated visible like image from the
thermal capture, respectively.

Simply put, the quality weight will play a role in determin-
ing whether the visible sample is reliable enough to provide
an accurate authentication. The quality of visible samples
deteriorates mostly due to lack to illumination. Thereupon,
the proposed fusion scheme will favor the generated visible-
like sample as it is estimated from thermal inputs that are
immune to illumination variations. The proposed method is
summarized in the algorithm 1.

IV. EXPERIMENTS AND RESULTS

In this section, we present the database used for training
the model of thermal-to-visible face synthesis and ultimately
for performing face authentication based on quality weighted
fusion. Then, we detail the evaluation protocol used to assess
the proposed fusion approach. Finally, we present the obtained
results followed by an analysis of the impact of different
quality assessment metrics on face authentication performance.

A. Database

We used the VIS-TH face database [24] for the development
and the evaluation of our solution. The database is publicly
available1 and contains face images in both visible spectrum
with pixel resolution of 1920×1080 and thermal spectrum of
pixel resolution 160×120 with a spectral response range of
7.5 - 13.5µm. Unlike the few existing databases of visible
and thermal face, this database is acquired simultaneously
using the dual sensor camera Flir DUO R [25] considering

1Visible And Thermal Paired Face Database: http://vis-th.eurecom.fr/



Algorithm 1: Quality-weighted score fusion
Input Probe Samples: set of samples acquired simultaneously in visible and thermal spectrum under various facial variations.

Gallery Samples: set of neutral face samples acquired solely in visible spectrum.
for p ∈ Probe Samples do

V IS ← Read Visible Image (p)
TH ← Read Thermal Image (p)
GV IS ← Thermal-to-Visible face synthesis (TH) as per Sec.III-A
QV IS ← Quality Estimation( V IS)
QGV IS ← Quality Estimation (GV IS)
for g ∈ Gallery Samples do

Gallery ← Read Visible Image (g)
QGallery ← Quality Estimation(Gallery)
QSV IS(p, g)← Quality Similarity Score (QV IS , QGallery) as per Eq.1
QSGV IS (p, g)←Quality Similarity Score (QGV IS , QGallery) as per Eq.1
SV IS(p, g)← Matching Score (V IS,Gallery) as per Sec.III-B
SGV IS (p, g)← Matching Score(GV IS , Gallery) as per Sec.III-B

end
end
Min-Max normalization of QSV IS , QSGV IS , SV IS and SGV IS

Compute weights wV IS and wGV IS as per Eq.3
Sfused ← Quality-weighted score fusion (wV IS , SV IS , wGV IS SGV IS ) as per Eq.2
return the overall fused score Sfused

a wide range of facial variations. The database contains in
total 2100 images collected from 50 subjects of different ages,
gender, and ethnicities. For the evaluation, we have considered
5 subsets of the database split per facial variation, as illustrated
in Fig. 3.

Fig. 3: Illustration of visible and thermal images for various
facial variations.

B. Experimental protocol and results

A detailed protocol of training and evaluating thermal-to-
visible face synthesis is described in [7].

For face authentication experiment, we consider as gallery
set the neutral face image acquired in visible spectrum and
as probe set all the remaining face variations from visible
and thermal-to-visible generated face images. We use LBP
and LightCNN for face features extraction. Feature vectors
from gallery set and probe sets are compared to obtain
the matching scores of the two entities. In parallel, quality
measures are computed using 7 different quality assessment
metrics and quality similarity scores are then deduced. We
perform quality weighted fusion at score level as described

above. The performance of our proposed fusion approach is
compared to the performance of fusing scores obtained from
matching visible probes and thermal probes against a common
visible gallery set.

We present, in table I, rank-1 identification of LightCNN
and LBP systems under expression, head pose, occlusion and
illumination variations. In this table, we report firstly the
identification performance of each of the following setups
separately: matching visible probe, original thermal probe and
thermal-to-visible synthesized faces against visible gallery. We
observe that face identification using the generated visible-
like images yields to better performance than when using
thermal images, which proves the efficiency of thermal-to-
visible face synthesis in reducing the gap between visible and
thermal spectra. Although, the generated visible-like images
are still far from optimal and that is marked for all the facial
variations. Concretely, this discrepancy is mostly significant
when the facial variations are more prominent, as it is the
case for different head poses and occlusions, and to a less
degree facial expression and illumination variations.

To highlight the main motivation of thermal spectrum usage
in face authentication, we display, in Fig. 4, the receiver
operating characteristic (ROC) curve of the three setups afore-
mentioned for face images that were acquired in total darkness.
We can clearly observe that the setup based on thermal-
to-visible synthesized images provides significantly higher
performance compared to the setup based on visible images.
This affirms the efficacy of thermal imagery in most of the
challenging scenarios such as poorly lit environments. Also,
we note that the setup based on thermal-to-visible synthesized
images outperforms the thermal based setup, which proves
the efficiency of thermal-to-visible face synthesis in reducing
spectral gap between visible and thermal data.

Furthermore, we can evidently perceive that face authentica-
tion using deep learning embeddings (LightCNN) outperforms



Fig. 4: ROC curves in dark environment using LightCNN
system.

hand-crafted features (LBP) which confirms the assertions
presented in [26].

To assess the impact of each quality metric used in this pa-
per, we report rank-1 identification of quality weighted fusion
of visible images and generated visible-like images (denoted as
(VIS, GVIS) in table I) for each quality metric, where Q1, Q2,
Q3, Q4, Q5, Q6 and Q7 denote lightning symmetry, brightness,
contrast, exposure, GCF, blur and sharpness, respectively. Qavg

refers to using the average quality score of the 7 quality
metrics. Furthermore, we consider quality weighted score
fusion of visible face images and original thermal images
(denoted as (VIS,TH) in table I) as a baseline. We note that
the described fusion scheme using the thermal-to-visible face
synthesis outperforms considerably the plain fusion of visible
and thermal images. This divergence in performance certifies
the proficiency of thermal-to-visible face synthesis in bringing
the two spectra closer together.

Regarding the impact of each quality metric, we can deter-
mine that the proposed quality weighted score fusion shows
nearly similar performances for all the quality assessment
metrics. Nevertheless, we note that weighing the matching
score to be fused with the average quality score results in
a better performance in most cases.

To get a deeper understanding of the performance of our
proposed fusion scheme, we plot the ROC curves, in Fig. 5.
We compute the ROC curve over all the facial variations
contained in the database, so as to demonstrate the efficacy of
our proposed approach in a wide range of operative scenarios.
The plot confirms our previous observation, as we can see
that all the considered quality assessment metrics impact the
performance of the fused system similarly. Conclusively, we
observe that the proposed fusion based approach in this paper
outperforms face authentication operating solely on visible
data. It is fair to admit that the difference of performance
is not considerably large, that is due to the distribution of the
variations within the database, as it contains only one sample

that highlights the thermal imagery usage.

V. CONCLUSION

Integrating thermal imagery in face recognition systems
does not only confront spoofing attacks, but it also tackles the
poor illumination challenge for visible spectrum. Therefore,
we have proposed, in this paper, a new scheme of score
level fusion for robust face authentication from visible and
thermal face data that enables straightforward integration in
the existing face recognition systems. The proposed system
operates according to the following protocol in face recogni-
tion: individuals had been enrolled solely in visible spectrum
(i.e. gallery) but can be afterwards controlled by dual visible
and thermal acquisition (i.e. probe). Considering that the gap
between the visible and thermal spectra is important, it was
necessary to include a step where we generated visible-like
images from thermal inputs. This solution benefits from the
quality measures of the visible gallery and probe faces to
assign weights for visible and thermal samples. The results
report an interesting improvement in face recognition perfor-
mance compared to when using solely visible samples. In ad-
dition, results have proved the efficiency of thermal-to-visible
face synthesis in providing more accurate face authentication
system.
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