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Abstract—Crowd density analysis is a crucial component in
video surveillance mainly for security monitoring. This paper
proposes a novel approach for crowd density classification, in
which learned features substitute the commonly used hand-
crafted features. In particular, the approach consists of employing
deep networks to extract useful crowd features that can further
be manageable by a classifier. This process is favorable for
crowd features extraction due to the large learning capability of
deep networks compared to traditional methods based on hand-
crafted features. The proposed approach is evaluated on three
challenging datasets, and the results demonstrate the effectiveness
of learned features for crowd density classification. Furthermore,
we include an extensive comparative study between different
learned/hand-crafted features in order to investigate their dis-
criminative power to handle such problems. Their performance
is evaluated using different classifiers and strategies as well.

I. INTRODUCTION

Studying crowd phenomenon is becoming of significant inter-
est with the increasing number of popular events that gather
many persons such as in subways, religious events, public
demonstrations, sport events and car traffic. In this context,
crowd analysis has emerged as a major topic for crowd
monitoring and management in visual surveillance community
[1]–[3]. In particular, the estimation of crowd density is
receiving much attention for security reasons. It could be used
for developing crowd management strategies by measuring the
comfort level in public spaces. Also, its automatic monitoring
is important to prevent overcrowd which can potentially lead
to disastrous and fatal accidents. For these reasons, early
detection of unusual situations in large scale crowd is required
and appropriate decisions for safety control have to be taken
to insure assistance and emergency contingency plan.

In this context, many recent works in the field of automatic
video surveillance have been proposed to address the prob-
lem of crowd density analysis [4]–[6]. Precisely, significant
progress has been made in this field over the last decade using
low level and holistic features. This paradigm is proposed as

an alternative solution to pedestrian detection based methods
(such as [7]) because of the partial occlusions that often occur
in the crowd, and that make delineating people a challenging
task. Thus, recent works mostly bypass the task of detecting
people and instead focus on learning a mapping between a set
of low level features and the crowd density.

The taxonomy of crowd density analysis methods can
be categorized into two groups: crowd counting and crowd
density classification for which the goal is to estimate the
number of people, or to alternatively estimate the crowd level
[5], [6]. In this paper, we particularly emphasize the need
for estimating crowd level mainly to prevent overcrowd when
the number of persons flooding some areas exceeds a certain
level (e.g. in some religious or sport events). According to
the classification introduced in [8], the crowd density can be
categorized into 5 levels: free, restricted, dense, very dense,
and jammed flow.

One of the key aspects of crowd density analysis is the
features extraction step. Early attempts to handle this prob-
lem generally made use of texture features which are more
frequently used than statistical features (usually employed
for people counting problem). Based on the observation that
regions of low density crowd tend to present less dense
features compared to a high-density crowd, many texture
features such as: Gray Level Co-occurrence Matrix (GLCM)
[9], Gradient Orientation Co-occurrence Matrix (GOCM) [10],
Gray Level Dependence Matrix (GLDM) [11], Gabor filter
[12], and dynamic texture features [13] have been proposed
so far to handle the problem of crowd level classification.

The use of Local Binary Pattern (LBP) [14] as local texture
features has been an active topic in this field. In [15], LBP
is used in blocks, from which Dual-Histogram LBP (DH-
LBP) is computed and K-means clustering is used for crowd
density classification. In [16], the dynamic texture of the
walking crowd is extracted using a sparse spatio-temporal local
binary pattern (SST-LBP) features. Afterwards, a statistical
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property of SST-LBP is employed as crowd features and
then classified into a range of density levels by adopting
Support Vector Machine (SVM). In [17], an histogram model
based on improved uniform LBP that has the advantages of
being invariant to intensity and rotation is proposed. In the
same context, a combination of principal component analysis
(PCA) and linear discriminant analysis (LDA) to project high-
dimensional LBP to low-dimensional discriminative feature
space has been proposed in [18].

Some related works to crowd density estimation using LBP
descriptor include other texture features to encode image char-
acteristics. For instance, in [19], GLCM is computed on LBP
image instead of the original gray image. The resulting texture
descriptor called LBP Co-occurrence Matrix (LBPCM) is
constructed from several overlapping cells in an image block,
and then classified into different crowd density levels. Another
fusion approach has been proposed in [12], where Uniform
LBP features that reduce the dimension of the conventional
LBP and Gabor features that are extracted after convolving the
original image with a bank of Log-Gabor filters at different
scales and orientations are combined in a single feature vector
to train a multi-class SVM classifier.

In this paper, we particularly intend to investigate the
discriminative power of such hand-crafted features, essentially
based on LBP descriptor since it is the most commonly used
in the field of crowd density analysis compared to learned
features. Indeed, deep learning models [20] have recently
shown good performance in different applications, essentially
for image classification and recognition by means of Convolu-
tional Neural Networks. Deep feature representation in these
networks can act as a set of feature extractors which have the
potential of being representative and generic enough with the
increasing depth of layers [21]. Similar attempts have been
investigated in other applications such as gender recognition
[22], pedesterian and face dectecion in [23].

The increasing interest in deep learning techniques has
been expanded to crowd people counting problem [24]–[27].
For instance, a Multi-column Convolutional Neural Network
(MCNN) architecture is proposed in [24] to estimate the crowd
number in a single image from almost any perspective. Also,
a modified three-tier MCNN architecture is employed in [25].
In [26], the authors propose to consider the temporal infor-
mation in video sequences by using a variant of convolutional
LSTM (ConvLSTM) for crowd counting. Even though many
research works have been conducted using deep networks for
crowd counting, fewer studies for crowd density classification
problem have been explored in this context, except [28], where
a cascade optimized convolutional neural network based on the
multi-stage ConvNet for crowd density estimation is adopted.
This problem will be exceedingly studied in the current
paper, where we are essentially interested in investigating
the discriminative power of learned features vs. hand-crafted
features for exhibiting relevant crowd features. To achieve this
goal, a comparative study between different learned feature
representations namely, by pre-trained models and a proposed
Convolutional Neural Network (CNN) is presented. Further-

more, the performance of learned features is compared to
hand-crafted features. The results using different classifiers are
compared as well.

The contribution of this paper is three-fold: First, we substi-
tute the commonly used hand-crafted features for crowd level
classification with learned features by adopting various deep
networks, such as pre-trained models and a proposed CNN
architecture that improves the overall classification rate using
three challenging datasets. Second, we conduct extensive ex-
periments using various classifiers to evaluate both of learned
and hand-crafted features in order to prove the effectiveness of
our proposal. Third, additional tests are provided and analyzed
to demonstrate the generalization ability and the representative
capacity of learned features regarding hand-crafted features.

The remainder of the paper is organized as follows: In Sec-
tion II, different techniques of feature extraction (both of hand-
crafted and learned features) for crowd density classification
are presented. The different presented feature extractors are
evaluated using three datasets and the experimental results are
analyzed in Section III. Finally, we conclude and present some
potential future works in Section IV.

II. FEATURE EXTRACTION FOR CROWD DENSITY
CLASSIFICATION

To handle the problem of crowd level classification, the
feature extraction is a key step as in any classification prob-
lem. In this section, different proposed techniques for feature
extractors are presented. Generally, existing feature represen-
tations can be divided into two categories: the hand-crafted
features and the learned features. The hand-crafted features
are those extracted from separate images according to some
predefined algorithms based on the expert knowledge. The
learned features are contrary derived from a dataset by training
[21]. In this paper, we consider 2 types of learned features:
those extracted from pre-trained models and by training a
CNN architecture. For hand crafted features, LBP descriptor
is considered since it is the most commonly used in the field
of crowd density analysis.

A. Hand-Crafted Features

Based on the observation that high density crowd has
fine patterns of texture, and images of low density have
coarse patterns of texture, texture features can be employed
for crowd level classification. Major attempts to handle this
problem made use of LBP [14] as hand-crafted features. This
descriptor has aroused increasing interest in many applications
of computer vision field, in particular, it has been extensively
studied in face recognition. Likewise, significant progress has
been made in the field of crowd density analysis using this
descriptor. The advantage of using LBP as feature extractor
is that it is a powerful descriptor that embeds the structure of
the local image texture which is highly relevant to the crowd
density.

LBP operator is based on labeling the pixels of an image
by thresholding the 3 x 3 neighborhood of each pixel with the
center value and considering the result as a binary digit. Then,
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Fig. 1. The proposed crowd CNN architecture composed of three convolutional layers and three fully connected layers for crowd level classification: 5 classes
of density: Very Low (VL), Low (L), Medium(M), High(H), and Very High(VH)

a binary number is obtained by concatenating all binary values
in a clockwise direction, starting from the top left neighbor.
Thus, for a given pixel (xc, yc), the LBP code in decimal form
is defined as:

LBP (xc, yc) =

P−1∑
p=0

S(ip − ic)2
p

where ic and ip denote, respectively, the gray values of the
center pixel and the P surrounding pixels. S refers to a

thresholding function defined as: S(x) =

{
1 if (x ≥ 0)

0 otherwise
In this paper, from each image under analysis, the histogram

sequence is employed by computing the occurrence of LBP
codes. To justify the choice of LBP as hand-crafted features,
other texture features are considered for comparisons: GLCM,
Gabor and a combination of Uniform LBP and Gabor filter as
recently proposed in [12]. For GLCM features, 4 statistical
properties are extracted: contrast, homogeneity, energy and
entropy. For Gabor, two types of features are computed: local
energy and mean amplitude using a bank of Log-Gabor filters
at five different scales and six different orientations. These
features are combined in [12] with Uniform LBP which is
a reduced version of the conventional LBP of size 59 which
results in a feature vector of size 119 in total.

B. Learned Features

Deep learning has reformed machine learning field and
has consequently brought a revolution to the computer vision
commmunity in recent years. Different algorithms have been
proposed so far, marked by a cascade of many layers organized
in a hierarchical way, where each layer adds certain abstraction
to the overall feature representation [21]. The deep networks
considered in this paper, are based on Convolutional Neural
Networks (CNN). Since the final convolutional layers of a
CNN architecture encode high level features, it is possible to
consider these deep layers for features extraction. Precisely,
in this paper, to extract learned features, we propose a CNN
architecture. Also, the most commonly known pre-trained
CNN models are evaluated.

1) Learned features by a proposed CNN architecture:
Since CNN architectures embed different representations at
different levels of abstraction, the deep layers can be employed
as features extractor. Under this perspective, we propose a
simple CNN architecture as shown in Fig. 1 which contains
three convolutional and three fully connected layers. This
architecture is referred as CrowdCNN in the rest of the paper.
It is basically inspired from a CNN model in [29] which is
initially proposed to handle the problems of people counting
and density map estimation. We made some modifications to
this architecture mainly in the last two layers to adapt it to
the problem of crowd classification. Also, we changed the
number of filters in each layer while keeping the same size of
filters following the Bayesian optimization to find the optimal
network parameters and the training options [30].

As depicted in Fig. 1, the first convolutional layer has 8
7x7x3 filters, the second convolutional layer has 32 7x7x32
filters and the last convolutional layer has 32 5x5x32 filters.
Each convolutional layer is followed by a 2x2 max pooling
layer with 2x2 stride. After each convolution layer, Rectified
Linear Unit (ReLU) as activation function is applied. The
proposed network is ended by three fully connected layers.
The fc4 and fc5 have 1000 and 400 neurons, respectively. The
last layer fc6 has 5 neurons which is the number of classes.

2) Learned features by pre-trained CNN models: The
features extraction step can be performed using pre-trained
models. Fine-tuned high-level CNN features have shown good
performance for many applications [23], [31], [32]. Typically,
a CNN model previously trained on a large dataset for a given
classification task can be fine-tuned for another classification
task. The high-level features of a CNN model can be retrieved
from high layers and can be further fed into a classifier since
higher layers are less dependent on the dataset compared to
lower layers. By adopting this approach of training, we take
advantage of the large-scale training data of CNN models.
After fine-tuning a pre-trained model, the weights from one
fully connected layer are used for classification.

In this paper, we compare different popular CNN pre-trained
models for features extraction, namely, AlexNet [33], VGG-
19 [34] and Inception-v3 [35]. For more details, AlexNet
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was proposed for the first time in ImageNet ILSVRC-2012
competition and won the challenge with a significant margin
compared to the second-best entry. The network consists
of 11x11, 5x5, 3x3 convolutional layers, max pooling, and
ReLU activations. It employs dropout to reduce overfitting
in the fully-connected layers. More details about AlexNet
architecture can be found in [33]. VGG-19 [34] is one of
the best performing ConvNet models that achieved 7.3% error
rate in the ILSVRC-2014 classification challenge. It consists
of 19 layers with very small convolutional filters (of size
3x3) and is very appealing thanks to its uniform architecture.
Inception-v3 [35] is the third pre-trained model that we employ
for crowd features extraction. Its architecture incorporated all
precedent upgrades of inception architectures. It utilized in ad-
dition RMSProp optimizer, factorized convolutions, additional
regularization with batch-normalized auxiliary classifiers and
label-smoothing to scale up the network. This architecture
has achieved good results on ILSVRC-2012 classification
benchmark with 3.5% as top-5 error rate and 17.3% as top-1
error rate on the validation set.

III. EXPERIMENTAL RESULTS

A. Datasets and Experiments

The proposed features are evaluated within different chal-
lenging crowded scenes from multiple datasets. In particular,
we test hand-crafted and learned features on three challenging
datasets: PETS 2009 [36], MALL [37] and HNUCROWD
[38]. For the three datasets, different crowd levels are defined
according to the range of people in the scene (as specified in
[38]), see Table I.

Crowd Level Label Range of people

Very low 1 [0,10)

Low 2 [10,20)

Medium 3 [20,30)

High 4 [30,40)

Very high 5 ≥ 40

TABLE I
DEFINITION OF DIFFERENT CROWD LEVELS ACCORDING TO THE RANGE

OF PEOPLE.

PETS dataset [36] is a widely used dataset for different
video surveillance applications, mainly our experiments are
performed on section S1, originally dedicated to assess person
count and density estimation algorithms. Two other videos
from sections S2 and S3 are employed to reach the fourth
level (High) of the crowd. Therefore, using this dataset,
only four levels of the crowd density are experimented. For
each crowd level, 200 frames are selected. MALL [37], is
a publically available dataset collected from an accessible
surveillance camera in a shopping mall, extensively used for
crowd counting. This dataset contains 2000 annotated frames
of moving and stopping pedestrians with different lighting
conditions. Using this dataset and according to the defined

crowd levels in Table I, only frames for the three last crowd
levels (corresponding to high density scenes) are available.
HNUCROWD [38] is another dataset used in our experiments
which enables us to experiment the five levels of crowd. This
dataset was captured from the closed circuit television (CCTV)
surveillance system of Hebei Normal University in China. It
is a challenging dataset since some images contain disruptors
such as moving cars, which are common scenarios in real
scenes.

More details about the three datasets are given in Table II.
Fig. 2 shows some sample images of different crowd levels
from the three aforementioned datasets.

Crowd Level Number of images

PETS 2009 MALL HNUCROWD

Very low 200 - 300

Low 200 - 300

Medium 200 260 300

High 200 260 300

Very high - 260 300

TABLE II
DETAILS OF NUMBER OF FRAMES USED IN THE EXPERIMENTS FROM THE

THREE DATASETS: PETS 2009, MALL AND HNUCROWD.

As described in Section II, both of hand-crafted and learned
features are evaluated for crowd level classification. This
multi-classification problem is 4-class, 3-class and 5-class
for PETS, MALL and HNUCROWD datasets, respectively as
depicted in the previous table and Fig. 2. Each time the overall
available frames are randomly split into training and testing
sets with 60% of the data as training set. For instance, this
results in a 4-class training set of 120 frames and a testing set
of 80 frames on PETS dataset. For tests, the feature vector is
identified as one of the classes by the multi-class SVM clas-
sifier following one-vs-one strategy. The top-1 identification
accuracy is reported for hand-crafted features and compared
to learned features in order to demonstrate the discriminative
power of each category of features. Furthermore, within each
category, different methods are investigated, for instance for
hand-crafted features, LBP performance is compared to 3 other
texture features: GLCM, Gabor and Uniform LBP+Gabor [12].
Likewise, for learned features, extensive comparative study is
given in order to highlight the effectiveness of the proposed
architecture and the pre-trained models. Whatever the adopted
feature extractor is, its performance is evaluated using SVM
classifier (using both of linear and RBF kernels). Comparisons
to other frequently used classifiers, namely decision tree [39],
Bagging predictors [40], KNN [41], and subspace KNN [42]
are also provided.

B. Results of hand-crafted features and analysis

We first report the classification accuracy obtained by ap-
plying SVM classifier using linear and RBF kernels on LBP
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Fig. 2. Sample frames from the three experimented datasets: From top to bottom: HNUCROWD, MALL and PETS 2009 crowd datasets. From left to right:
5 levels of crowd density: free flow (very low), restricted flow (low), dense flow (medium), very dense flow (high) and jammed flow (very high)

Dataset Classifier LBP features

HNUCROWD Linear SVM 88.33

RBF SVM 92.5

MALL Linear SVM 77.56

RBF SVM 85.58

PETS Linear SVM 78.44

RBF SVM 91.88

TABLE III
THE CLASSIFICATION ACCURACY USING LBP FEATURES BY EMPLOYING

LINEAR AND RBF KERNELS OF SVM ON THE THREE EXPERIMENTED
DATASETS.

features, see Table III. As shown in the table, LBP features
achieve good classification accuracy on the three datasets, with
better performance on HNUCROWD dataset since the crowd
in this dataset is more uniformally distributed in the scene
than the other datasets. Using RBF kernel, the results are better
compared to linear kernel, which complies with other previous
works [12], [18]. Thus, SVM using RBF kernel is selected for
the next experiments. To demonstrate the effectiveness of LBP
as hand-crafted feature extractor for crowd density estimation,
we compare LBP with other frequently used texture features:
Gabor and GLCM. Also a combination between Gabor and
Uniform LBP proposed in [12] is evaluated, see Fig.3. As
depicted in the figure, it is clearly shown that LBP outperforms
the other descriptors namely, GLCM, Gabor, and Uniform
LBP + Gabor [12], which justifies the relevance of using LBP
as hand-crafted features for crowd density classification.

Fig. 3. Comparisons of different hand-crafted features (LBP, Uniform LBP +
Gabor [12], Gabor, and GLCM) using RBF kernel SVM on the three datasets:
HNUCROWD, MALL and PETS.

C. Results of learned features and analysis

At this stage, we intend to evaluate the performance of
learned features. These features are extracted from the sec-
ond fully connected layer in all models and trained using
SVM classifier. Precisely, the performance of the proposed
CrowdCNN architecture and the pre-trained models on the
different datasets are compared using SVM on both linear
and RBF kernels, the results are reported in Table IV. From
the obtained results, it is shown that the proposed Crowd-
CNN architecture slightly outperforms the three pre-trained
models. The classification accuracy reaches 96.00%, 91.99%,
and 95.94%, on HNUCROWD, MALL and PETS datasets,
respectively. Also, the obtained results by pre-trained models
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Dataset Classifier CrowdCNN AlexNet VGG-19 Inception-v3

HNUCROWD Linear SVM 96.00 95.17 94.5 93.00

RBF SVM 95.83 94.17 94.83 94.67

MALL Linear SVM 91.03 88.78 92.31 88.14

RBF SVM 91.99 90.06 90.06 88.14

PETS Linear SVM 95.94 91.87 95.31 94.38

RBF SVM 95.63 93.44 96.25 92.81

TABLE IV
THE CLASSIFICATION ACCURACY USING LEARNED FEATURES FROM THE PROPOSED CROWDCNN ARCHITECTURE COMPARED TO THREE DIFFERENT

PRE-TRAINED MODELS (ALEXNET, VGG-19 AND INCEPTION-V3) BY EMPLOYING LINEAR AND RBF KERNELS OF SVM ON THE THREE EXPERIMENTED
DATASETS.

are good, mainly the results of VGG-19 model. In overall,
the results of learned features are better than the hand-crafted
features with a significant margin which complies with our
proposal and with the general trend in computer vision field.

Moreover, we include a comparison between learned fea-
tures using different classifiers, namely, decision tree [39],
Bagging predictors [40], KNN [41] and subspace KNN [42]
see Fig. 4. Using different classifiers, it has been again
demonstrated that the proposed CrowdCNN architecture out-
performs the three pre-trained models, which corresponds to
the previous results. Better performance is almost noticed
using subspace KNN compared to the other classifiers. The
results of this classifier on the three experimented datasets are
close to those obtained using SVM classifier.

D. Discussion and evaluation of generalization

To summarize, extensive tests on different datasets and us-
ing various feature extractors are performed. The quantitative
evaluation of the obtained results demonstrates the effective-
ness of learned features (by means of a proposed CrowdCNN
architecture and pre-trained models) for crowd level classifi-
cation with a significant margin compared to LBP as hand-
crafted features. Nevertheless, it has been shown that LBP
achieves good performance compared to other texture features,
which justifies the choice of this descriptor as hand-crafted
features. In addition, by comparing learned features, better
performance is almost noticed using the proposed architecture
regarding the pre-trained models, except for VGG-19 model
that performs equally well with the proposed architecture.

To better highlight the generic aspect of learned features
vs. hand-crafted features, we evaluate the results by mixing
the three datasets using SVM classifier (with RBF kernel). By
doing that, high performance is achieved using the three pre-
trained models, precisely, the obtained accuracies are 93.26%,
94.07% and 93.25% using AlexNet, VGG-19 and Inception-
v3, respectively. The results of pre-trained models are high and
even exceed the average results of the three datasets. Also, the
proposed architecture achieves 93.90% as accuracy, which is
a quite satisfactory result. Whereas, the performance of LBP
as hand-crafted features is decreased to 87.26% only.

To conclude, as demonstrated from the obtained results, by
mixing the three datasets, some results are affected more than
others. Precisely, the fact of using heterogeneous data does not
affect the performance of the pre-trained models. These results
are expected since such models are trained on huge datasets
and are capable of effectively encoding image representations
in different situations and tasks. A limited impact of heteroge-
neous dataset is noticed on the proposed architecture as well
thanks to the effectiveness of deep representations.

IV. CONCLUSION

In this paper, we focused on the problem of feature ex-
tractors to characterize the crowd texture. In particular, we
employed deep learning models for automatic feature extrac-
tion in the crowd. To achieve this goal, we assessed different
learned features compared to the commonly used hand-crafted
features. Furthermore, we included a large comparative study
between different classifiers to better prove the obtained re-
sults. The experimental results highlight a high performance
of learned features (from the proposed architecture and pre-
trained models) compared to LBP descriptor as hand-crafted
features. In addition, it has been demonstrated from the
obtained results using heterogeneous dataset that CNN features
are effective enough for scene generalization. Hence, the
representative power and the generalization ability of CNN
features compared to hand-crafted features have been proven
through this current paper for crowd density application, which
complies with previous works for other classification tasks
[21]–[23] in the literature.

There are several possible extensions of this research work.
Since CNN features obtained from intermediate layers encode
useful information, one potential perspective of this paper
could be the fusion and the selection of multi-layer features for
complementary aspect in order to achieve better performance.
Also, a combination of hand-crafted and deep learning features
can be studied as recently proposed in other other fields of
application [43] [44]. Finally, this study can be practically
useful for other video surveillance applications since the
choice of features to describe an image content is a crucial
component in any visual recognition task.
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Fig. 4. Comparisons of the proposed CrowdCNN architecture with pre-trained models on different datasets (HNUCROWD, Mall, PETS) using different
classifiers, namely decision tree [39], Bagging predictors [40], KNN [41], and subspace KNN [42].
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