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State of the Art Novel Contributions
Why Combined BP/MF/EP ?

I Dynamic autoregressive SBL (DAR-SBL): a case of joint Kalman filtering
(KF) with a linear time-invariant diagonal state-space model, and
parameter estimation, which can be considered an instance of nonlinear
filering.

I The authors in [RieglerTIT2013] propose a message passing (MP) approach
for inferring the posteriors combining belief propagation (BP) and mean
field (MF) approximations. As usual, they apply BP to detection (discrete
parameters) only and MF to all estimation (continuous parameters).

I The advantages of the MF approach are that it always admits a convergent
implementation while BP yields a good approximation of the posterior
marginals if the factor graph has no cycles.

I Expectation Propagation (EP)-Gaussian approx., intractable distributions.

Sparse Bayesian Learning (SBL)

I Dynamic SBL (AR(1) state space model):

State Update: xt = Fxt−1 + wt, wt ∼ CN (0,Λ−1)

Observation: yt = A(t)xt + vt, vt ∼ CN (0, 1
γI).

I SBL for compressed sensing does not exactly sparsify xt but works well in the
case of relatively limited date (eg underdetermined) in which case estimation
emphasis is given to large unknowns while small unknowns get mostly
ignored.

I Gamma prior to the precision of the state xt and the innovation sequences wt

(both with same support), allowing to sparsify the components of xt.
Λ−1 = Γ(I− FFH) = diag ( 1

λ1
, ..., 1

λM
), θ = {x,Λ, γ,F}

Combined BP and MF Approximation

The fixed points of the BP algorithm are shown to be the stationary points of the
Bethe free energy (BFE) [RieglerTIT2013]. However, for the MF approximation in
variational Bayes (VB) [BealThesis2003], the approximate posteriors are shown to
be converging to a local minimum of the MF free energy which is an approximation
of the BFE.

FBP,MF =
∑

a∈ABP

∑
θa

qa(θa) ln qa(θa)
fa(θa)

−
∑

a∈AMF

∑
xa

∏
i∈N (a)

qi(θi) ln fa(θa)−
∑
i∈I

(|NBP (i)| − 1)
∑
θi

qi(θi) ln qi(θi).

Constraints:
∑
θi

qi(θi) = 1, ∀i ∈ IMF \ IBP ,
∑
θa

qa(θa) = 1,

∀a ∈ ABP , qi(θi) =
∑
θa\θi

qa(θa), ∀a ∈ ABP , i ∈ N (a).

Message Passing Expressions

The fixed point equations corresponding to the constrained optimization of BFE
can be written as follows [RieglerTIT2013], (a-factor nodes, i-variable nodes)
qi(θi) = zi

∏
a∈NBP (i)

mBP
a→i(θi)

∏
a∈NMF (i)

mMF
a→i(θi), ni→a(θi) =

∏
a∈NBP (i)\a

ma→i(θi)
∏

a∈NMF (i)

ma→i(θi),

mMF
a→i(θi) == exp(< ln fa(θa) > ∏

j∈N (a)\i
nj→a(θj)), m

BP
a→i(θi) = (

∫ ∏
j∈N (a)\i

nj→a(θj)fa(θa)
∏
j 6=i
dθj).

Applications

I Massive MIMO channel estimation:

I Bayesian adaptive filtering.

Factor Graph for DAR-SBL

All the messages (beliefs or continuous pdfs) passed between the nodes in the
above factor graph can be shown to be Gaussian [TanLiTIT2013], parameterized
by the mean and variance of the beliefs. With the hard constraints, the equivalent
observation model:

yn −
M∑
l′ 6=l
An,l′x̂l′,n = An,lxl +

M∑
l′ 6=l
An,l′x̃l′,n + vn, where,

x̃l′,n ∼ CN (0, νl′,n), andmfδn→xl
∝ CN (xl; x̂n,l, νn,l),

Combined BP-MF-EP DAR SBL

Initialization f̂l|0, λ̂l|0 = a
b, γ̂0 = c

d, x̂l,0|0 = 0, σ2
l,0|0 = 0,∀l. Define Σt−1|t−1 = diag (σ2

l,t|t−1).
for t = 1 : T do

Prediction Stage:

I Compute x̂l,t|t−1, σ
2
l,t|t−1 using EP.

Filtering Stage (BP for x̂l,t|t, σ
−2
l,t|t):

I Compute x̂
(t)
n,l, ν

(t)
n,l. and update x̂l,t|t, σ

−2
l,t|t.

I Compute ν
(t)
l,n, x̂

(t)
l,n.

I Continue steps 1) to 2) until convergence.
Smoothing Stage:

Initialization: Σ
(0)
t−1|t = Σt−1|t−1, x̂

(0)
t−1|t = x̂t−1|t−1. Define B(t) = FTA(t)TR̃−1

t A(t)F +

Σt−1|t−1,ht = FTA(t)TR̃−1
t yt, R̃t = A(t)Λ−1A(t)H + 1

γI.

I Pi,j =
−B(t) 2

i,j

B
(t)
i,i+

∑
k∈N (i)\j

Pk,i

, µi,j =(hi,t+
∑

k∈N (i)\j
Pk,iµk,i),∀i, j.

I σ−2i,t−1|t=B
(t)
i,i +

∑
k∈N (i)

Pk,i, x̂i,t−1|t=σ
2
i,t−1|t(hi,t+

∑
k∈N (i)

Pk,iµk,i)

I Σ
−(i)
t−1|t = (F̂H

|t A
(t)HR̃−1t A(t)F̂|t + diag (A(t)HR̃−1t A(t))ΣF|t + Σ

−(i−1)
t−1|t ), R̃t = A(t)Λ−1A(t)H + 1

γI.

I x̂
(i)
t−1|t = Σ̂

(i)

t−1|t(Σ̂
−1
t−1|t−1x̂

(i−1)
t−1|t + F̂HA(t)HR̃−1t yt).

Estimation of hyperparameters (Define: x′k,t = xk,t − fkxk,t−1, ζt = βζt−1 + (1 − β) <∥∥yt −A(t)xt
∥∥2
>):

I Compute f̂l|t, σ
2
fl|t

using MF rule, γ̂t=
c+N

(ζt+d) and λl|t=
(a+1)

(<|x′k,t|
2
>|t+b)

.

Optimal Partitioning of BP/MF nodes
mCRB refers to mismatched CRB (CRB under model misspecification) [Rich-
mondTSP15].
Theorem:If the parameter partitioning in VB is such that the different param-
eter blocks are decoupled at the level of Fisher Information Matrix (FIM), then
VB is not suboptimal in terms of (mismatched) Cramer-Rao Bound. If a finer
partitioning granularity is used (such as up to scalar level as in MF), then VB
becomes quite suboptimal, which can be alleviated by using BP instead.

mCRBBP = blkdiag(CRB) = blkdiag(FIM−1),
mCRBV B = (blkdiag(FIM))−1,
So,mCRBBP = mCRBV B ifFIM = blkdiag(FIM).

Hence: BP may also improve parameter estimation.

Identifiability

Non-singularity of FIM =⇒ local identifiability.
Lemma: The AR(1) model parameters require (at least lag 1) smoothing for
identifiability.
For the AR(1) parameters, we obtain the FIM submatrix Jt = D − D(D +
Jt−1)

−1D, ifJ−1 = 0, then Jt = 0,∀t ≥ 0. For xt, Jx,t = Λ + γA(t)HA(t) +
ΛF(FΛFH + Jx,t−1)

−1ΛFH, diagonal Jx,t =⇒ MF is sufficient for xt at
prediction stage.

Smoothing

yt = A(t)Fxt−1 + ṽt, where ṽt = A(t)wt−1 + vt, Define D = (I− FFH)−1,

JF,t = Γ diag (A(t)HR̃−1
t A(t)) + D−D(D + JF,t)

−1D, Jp,t =

[
JΛ,t JΛγ,t

JΛγ,t Jγγ

]
We obtain Jx,t = FTA(t)HR̃−1

t A(t)F + Λ−ΛF(FΛFH + Jx,t−1)
−1ΛFH, which is a full matrix.

Conclusions:

I BP required for smoothing of xt, xt−1|t.
I Lag 1 smoothing is sufficient for AR(1) parameters.
Corollary

I For the smoothing stage, an optimal partitioning is to apply BP for
estimation of the state vector x, x̂t−1|t and MF for F.

Numerical Results
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Conclusion and Future Work

I Introduced a fast SBL algorithm called BP-MF-EP DAR-SBL, which uses a
combination of BP, VB and EP techniques to better approximate the
posteriors of the sparse state x and parameters and track a time varying x.

I Extension to dictionary learning ongoing.


