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Abstract—Distributed Denial of Service (DDoS) attacks
have become one of the most significant problems that
affects the user satisfaction by degrading the availability
of on-line services. Although intrusion detection systems
provide effective mechanism for discriminating various
DDoS attacks, they become impotent of detection when
bogus packets similar to normal ones are dispatched by
the attacker. One idea is to model the normal behavior
of the network traffic using time series representation
of that traffic together with advanced statistical analysis
techniques such as frequency domain analysis for detecting
the occurrence frequency (energy) of each basic element
in time series. However, frequency domain analysis may
become inadequate if the original frequency features are
used for the detection anomalies. Therefore, in this work,
we propose a hybrid approach that employs frequency
domain analysis with sparse representation model to find
discriminative characteristics for anomaly-based DDoS
detection. The proposed algorithm distinguish abnormal
traffic from the normal one based on the energy of time
series for the number of packets feature, which is extracted
from the time series data by using the sparse representation
model. Experimental results show that performance of the
proposed algorithm provides better DDoS detection results
than the state-of-the-art time-series based approaches in
the literature.

I. INTRODUCTION

With the increased popularity of cloud services, en-
suring the availability of online services have become
a significant issue due to the existence of Distributed
Denial of Service (DDoS) attacks [1], [2]. In DDoS
attacks, an attacker forms an army of distributed and
connected devices called bots to overwhelm the traffic of
a targeted network by masquerading source IP addresses
of these devices to attack the targeted network in an
untraceable manner. Therefore, incoming packets to the
targeted network can be categorized as legitimate traffic
for the protection mechanisms [3].

In order to protect online services from DDoS at-
tacks, intrusion detection systems are employed as a
defense mechanism. These systems can be categorized as
signature-based intrusion detection and anomaly-based
intrusion detection [4]. In the first approach, the detec-
tion mechanism is trained by the set of predetermined
malicious traffic. Then, features of malicious traffic such
as IP addresses of attackers, etc. are stored in a database

to be used in the detection for subsequent attacks.
When a new activity is detected, the database is queried
whether or not determine the activity is malicious. On
the other hand, in anomaly-based detection, the detection
mechanism of an IDS is trained using the pattern of
a normal activity. Then, any activity, which is out of
the normal one is reported as the intrusion. Although
traditional intrusion detection systems provide packet
level analysis to extract features of the network traffic
[5], they become impotent of detection with the new
generation DDoS attacks that mimics legitimate network
traffic.

Anomaly-based intrusion detection mechanisms are
studied over the years [6]–[9]. One of the recent ex-
amples in this research is the study in [7]. The proposed
approach uses the statistical measures of times series for
the attack and the normal traffics to detect the DDoS
attack. Another study in [8] uses entropy of time series
to discriminate DDoS attacks. In [9], Qin et al. proposed
the use of cluster modeling that jointly works with
entropy of the time series. Frequency domain analysis
of time series provides promising results for anomaly-
based DDoS detection [10], [11]. The study in [10]
employs Discrete Fourier Transform (DFT) [12] and
Discrete Wavelet Transform (DWT) to extract frequency
domain features of attack traffic and normal traffic from
the network traffic time series. In [11], the Multi-Scale
Principal Component Analysis algorithm is introduced
for frequency domain analysis by employing wavelet
transform and principal component analysis. Because of
the complex spectral correlation of frequency features
and the similarity between frequency domain attributes
of attack and normal traffics, using the original frequency
features to detect anomaly in the traffic, results in low
detection performance. To address this problem, feature
extraction step should be utilized to find discrimina-
tive characteristics. Sparse representation model is an
effective method to transfer higher dimension vectors
to the sparse vectors with a few non-zero elements.
These lower dimension vectors would be used as the
new feature sets which are expected to increase the
performance of the anomaly detection [13]. Therefore,
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Fig. 1: An Overall View of the Proposed Model

we aim at combining frequency domain analysis with
sparse representation model in order to increase the
DDoS attack detection performance.

In this work, we propose an anomaly-based DDoS
detection by using sparse representation model and fre-
quency domain analysis. To the best of our knowledge,
this is the first jointly use of these two methods for
DDoS detection. The proposed model uses the absolute
value of Discrete Fourier Transform (DFT) of the normal
traffic to learn a sparse dictionary by employing K-SVD
algorithm. Moreover, The sparse dictionary is employed
by basic matching pursuit algorithm (BMP) to generate
sparse coefficients of absolute value of DFT for both
normal and attack traffics [14]. The normal behavior
model is created by using sparse coefficients of the nor-
mal traffic and a self-organizing map (SOM) lattice [15].
Finally, we test the performance and the applicability
of the proposed model by using CAIDA dataset [16].
Numerical evaluations show that the proposed model
achieves high performance rates in terms of the detection
performance.

The rest of the paper is organized as follows. The
proposed model is introduced in Section II. Discussions
and preliminary results are given in Section III. In
Section IV, we discuss the detection performance of
the proposed model. Finally, the paper is concluded in
Section V.

II. THE PROPOSED MODEL

In this study, we propose the improved version of
DDoS detection approach in [10] by employing sparse
coding to extract the most discriminating features from
the frequency domain. Moreover, SOM Model is em-

ployed to create the normal behavior of the system.
The overall view of the proposed model is as shown in
Figure 1. The proposed method operates in Four steps,
namely Feature Extraction Step, Dictionary Generation
Step, Normal Behavior Modeling Step and Test step,
which are defined as follows:

1) Feature Extraction Step: DDoS and Normal traf-
fic samples from the input dataset are generated
in this step. First, time windows are obtained by
dividing the dataset into 128-millisecond windows.
Then, for each window, absolute value (ABS) of
DFT is estimated and is labeled as DDoS sam-
ple or normal sample. Later, Normal samples are
divided as the training, the evaluation and the test
parts in order to be used in the following modules.

2) Dictionary Generation Step: We employ K-SVD
algorithm to generate the sparse dictionary of
the normal samples. Dictionary is generated by
applying K-SVD algorithm on the training part of
normal samples that are already generated in the
feature extraction module.

3) Normal Behavior Modeling Step: BMP algo-
rithm is applied on both training and evaluation
part of normal samples to estimate the sparse co-
efficients. Then, SOM model based on coefficients
of the training part is generated and the empirical
distribution of the minimum euclidean distance
between neurons of SOM and coefficients of the
evaluation part is used as the normal behavior of
the system.

4) Test Step: BMP with the same dictionary of the
previous part is executed on the test part of attack
and normal traffics. In order to assign attack or



normal label for each test sample, the minimum
euclidean distance between corresponding coef-
ficients and the SOM lattice is calculated and
compared with the normal behavior model.

Fig. 2: Dividing time series into time windows

A. Feature Extraction Step

Feature extraction step of the proposed model operates
as follows. First, the number of all arriving packets
are counted for each 1ms time window in order to
generate time series Pn1 , where n is the total duration
of the network traffic. Later, the time series, P , is
divided into L = 128 milliseconds length windows as
Xwindow# = {x1, x2, . . . , x128} with 64-length over-
lapped values with consecutive windows as shown in Fig.
2. Then, these windows are transferred into frequency
domain by applying DFT which is accomplished by
convolving the signal with complex exponential as given
in the following equation:

X[fn] =
1

L

L−1∑
k=0

xke
−j2πfnT , (1)

where xk ∈ Xwindow# and X[fn] are the kth element of
the corresponding window and the energy of the window
at fn frequency bin, respectively. The output of DFT is a
complex signal with the same length as input windows.
Then, we use the absolute value of DFT as a feature.
Since absolute value of DFT for a real signal is symmet-
ric, we only consider one half of it, and therefore, for
each window, we obtain 64 samples. Output samples of
the feature extraction step are labeled as DDoS samples
and normal traffic samples. The normal traffic samples
are divided into three categories as training, evaluation
and test samples to be used in the subsequent steps of
the proposed model.

B. Dictionary Generation Step

The Dictionary Generation step operates on the train-
ing samples, which are obtained in the previous. We
employ K-SVD algorithm [17] on training samples to
generate an over-complete dictionary D. This dictionary
is used to estimate the sparse coefficients of the samples.
In sparse coding, an observation y ∈ RN can be modeled
by y ≈ Dx where D ∈ RN×M and x ∈ RM are

dictionary matrices, and k−sparse vector respectively
and N < M . By using k− sparse vector, we guarantee
that only k � N elements in x become non-zero. The
idea behind the sparse coding is to reconstruct y by using
linear combination of k columns (or atoms) out of D.
Then, x can be approximated by solving the following
optimization problem:

x̂ = argmin
x
‖x‖0 s.t. y = Dx (2)

where ‖x‖0 is the l0 pseudo-norm that counts the number
of non-zero elements in x [17].

C. Normal Behavior Modeling Step

To generate the normal behavior model, first we obtain
corresponding k number of coefficients by applying
BMP algorithm on the training part of normal data
using dictionary D. Then, Self-Organizing Map (SOM)
algorithm [15] is applied on k coefficients to generate
a SOM model. Finally, the evaluation part of normal
traffic is processed in the BMP algorithm with the same
D dictionary and the corresponding k coefficients are
estimated. The set of the minimum euclidean distance
between evaluation part coefficients and SOM model is
used as the normal behavior of the system.

D. Test Step

The performance of the proposed model is analyzed
in this step. Since the dictionary D is generated by
using the normal traffic data, we expect to have different
sparse coefficients when applying BMP algorithm on the
attack samples using this dictionary. Both test part of
normal traffic and DDoS attack are fed to BMP algorithm
with D as the sparse dictionary. The minimum euclidean
distance between the coefficients of each sample and the
SOM lattice is calculated and compared with the normal
behavior model.

III. DISCUSSIONS AND PRELIMINARY RESULTS FOR
CAIDA DATASET

In this section, we give the discussions and prelim-
inary results based on the application of the proposed
model on CAIDA dataset with respect to sparse coding,
normal behavior modeling based on sparse coefficients
and SOM. The number of packets in each time intervals
is the network feature which we employ in this work.
The number of packets are counted per each 1ms; there-
fore, according to the Nyquist theorem, the maximum
frequency of received signal which can be realized for
this sample rate, is 500Hz. By 128-millisecond window,
we achieve 7.8Hz frequency resolution, distributed in 64
bins.

Figure 3 displays an example of the normalized abso-
lute value of DFT of number of packets for both normal
and DDoS traffic of CAIDA dataset. Compared to the
attack traffic in which has different dominant frequency
bands, normal traffic tends to be a slow traffic. Both



the attack traffic and the normal traffic share different
number of periodic components. DFT feature would
not be a good choice for DDoS attack detection by
itself and therefore, we use sparse coding for extracting
discriminating features.
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Fig. 3: Normalized Absolute Value of DFT (a) Normal,
(b) DDoS Attack.

A. Sparse Coding by using K-SVD Algorithm for Dic-
tionary Generation

As defined in Section II.B, an over-complete dictio-
nary D ∈ R64×256, is estimated by applying K-SVD
algorithm on the training part of the normal traffic data.
D is initialized by using Gaussian random matrix and
then it is processed by K-SVD algorithm. This dictionary
is used by matching pursuit method to find the k = 5
coefficients of sparse coding for absolute value in DFT
of the number of packets. k and the size of the dictionary
D are selected empirically and by applying embedded
feature selection method. Figure 4 displays the receiver
operating characteristics (ROC) for different values of k.
The discrimination accuracy of a model, can be related
to the area under the ROC which is so called area under
the curve (AUC). Considering this metric, the model with
k = 5 outperforms compared to other values of k. By
fixing k as 5, the performance of the model is analyzed
by considering three different sizes of dictionary. Figure
5 displays the ROC results for different dictionary sizes.
Dictionary with the size of 256 outperforms others with
respect to AUC.

B. Normal Modeling Based on Sparse Coding Coeffi-
cients

In an anomaly detection approach, the model for
the normal activity is obtained and used as the metric
for spotting malicious activities. Any digression from

normal behavior is considered as abnormality. One way
to find the normal behavior of the network traffic is to
utilize a learning algorithm. For this respect, we propose
to use SOM algorithm as a learning algorithm in this
work. Before modeling the normal behavior, the input
data and the coefficients set obtained from basic match-
ing pursuit are normalized with respect to the z-score
of each observation. In order to create a SOM lattice,
the size of the map should be specified. The number
of neurons is determined by the number of observations
in the training dataset using Q ' 5 ×

√
(O) where Q

and O are the number of neurons and the number of
observations respectively [18]. From this observation, the
number of neurons is selected to be 144.

Later, the SOM model is trained by the coefficients
of normal training dataset. The number of iterations is
assigned approximately as 500 times of the product of
lattice dimension which is 72000 [15]. In the next step,
the minimum euclidean distance between each coeffi-
cient of evaluation part of normal data and the neurons
of the SOM are calculated and empirical probability
distribution of those distances is utilized as the normal
behavior of the system. Figure 6 represents the empirical
probability density and normal Q-Q plot of the minimum
euclidean distance of evaluation dataset from the neurons
of the SOM model. From the Figure 6, we can infer that
the model is heavy-tailed and right skewed.

Table I summarizes some statistical parameters of the
empirical distribution. The Shapiro-Wilk (SW) test(P −
value < 0.05) and a visual inspection of the empirical
pdf and normal Q-Q plot(Fig 6), show that minimum
distances are not normally distributed. Moreover kurtosis
(5.54 > 3) and skewness (1.33 > 0) indicate that distri-
bution is fat-tailed (leptokurtic) and skewed to the right
respectively. In the normal distribution extreme events
are less likely than of fat-tailed one. This properties
of fat-tailed distribution should be taken into account
during the threshold value estimation. Underestimating
this parameter would increase the false positive rate and

Fig. 4: ROC For Different Values of
K={5,10,15,20,25,30,35}



Fig. 5: ROC For Different Dictionary size
of{128,192,256} and K = 5
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Fig. 6: (a) Empirical pdf and (b) Q-Q Plot of Minimum
Distance From Neurons of SOM Model.

decreases the DDoS detection performance.

IV. DDOS DETECTION PERFORMANCE

In order to test the DDoS detection performance of the
proposed model, we use CAIDA intrusion detection eval-
uation dataset [16]. Normal dataset is divided into three
subsets as Training 796(70%), Evaluation 169(15%) and

TABLE I: Empirical pdf Statistics

No Statistics Value
1 Mean(M) 0.5646
2 Std 0.2697
3 M+2Std 1.1264
4 M+3Std 1.4073
5 Kurtosis 5.54
6 Skewness 1.33
7 Shapiro-Wilk P-Value 4.8E-4

Test 169(15%). 169 TCP-based DDoS attack samples
are used in the Test step. To analyze the performance
of the proposed model, we use true positive (TP) and
false positive (FP). While the former one corresponds to
the total number of detected DDOS samples, the latter
one corresponds to the total number of normal instances
detected as attack samples.

The test dataset consists of normal and attack traffics,
where each traffic has 169 samples. Five non-zero co-
efficients set of each test sample is estimated by using
the dictionary D and BMP algorithm. In the next step,
the minimum euclidean distance of each coefficient set
from neurons of SOM model is found. Figure 7 displays
the box plot of corresponding distances set. There are
some points which reside outside the fence of the boxplot
of the normal distances. These data points are located
inside the boundary of attack distances which yields false
alarms during the performance test. These distances are
compared with the normal model which is the empirical
distribution of distance of the normal evaluation part
from the SOM model.

Table II summarizes the confusion table for different
threshold values based on the standard deviation of the
normal model. As the threshold value increases, the false
positive (FP) value decreases but simultaneously, the
detection deteriorates (True positive value(TP)). Select-
ing the 2 standard deviation of the mean value as the
threshold to separate normal and attack data results in
the best detection rate(TP); on the other hand, FP has
the worst value. Although the 5 standard deviation of
the mean value has the best FP, the detection rate of the
model decrease significantly. Selecting the 3 standard
deviation of the mean value as the threshold, gives the
best result which is the trade off between TP and FP.
The proposed algorithm achieves 1.2% and 99.4% of FP
and TP respectively.

The performance of the proposed algorithm regarding
to the overall accuracy, which is the total number of
correct decision of the model, is compared with pre-
vious works. Table III, compares the accuracy of the
proposed method with the previous works [7], [10]. In
[7], Skewness has the best accuracy among considered
statistical features. The model of naive Bayes with the
input of the combination of DFT and DWT outperforms
in [10]. Because the dataset used in [10] is different, we
re-simulate the method. According to the Table III, the
proposed method has the best prediction accuracy.

V. CONCLUSION

In this paper, we have proposed an anomaly-based
DDoS detection by using sparse coding and frequency
domain. A time series has been generated by counting
the number of packets of CAIDA dataset for each 1ms.
The obtained time series has been further divided into
128-length widows which each new window shared
first 64 samples with the previous one. The absolute
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TABLE II: Confusion Table for Different Threshold
Values.

Threshold Normal Attack

2Std(1.1264) Normal 156 13
Attack 0 169

3Std(1.4073) Normal 167 2
Attack 1 168

4Std(1.6434) Normal 168 1
Attack 54 115

5Std(1.9131) Normal 169 0
Attack 129 40

value of the DFT of windows have been employed as
the dataset for this work. While normal data has been
divided into three parts of training, evaluation and test,
the attack data has been kept for the test step. An over-
complete dictionary has been generated by applying K-
SVD algorithm on the training part of the normal dataset.
For each dataset including normal and attack traffic,
five sparse coefficients have been estimated by using
the obtained dictionary and BMP algorithm. The sparse
coefficients of the training part of the normal data has
been given as the input to the SOM algorithm to generate
a SOM lattice. The minimum euclidean distance between
sparse coefficients of each evaluation samples and the
neurons of the SOM lattice has been calculated and its
distribution has been used as the normal behavior. By
comparing the minimum euclidean distance between the
coefficients of each samples in the test part and SOM
lattice, the performance of the proposed method has
been analyzed. Our experimental results shows that the
proposed algorithm provides 99.11% accuracy for DDoS
attack detection and outperforms well-known studies in

TABLE III: Comparison Between Accuracy Of Algo-
rithms

Algorithm Accuracy(%)
Proposed Algorithm 99.11

Algorithm in [7] 98.33
Algorithm in [10] 93.27

the literature. As a future work, we are planning to test
the applicability of our approach in a real life scenario
by applying our model to different DDoS attack datasets.
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