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Abstract—Variational Bayesian (VB) estimation allows for
approximate Bayesian inference. It determines the closest ap-
proximation in factored form of the posterior distribution by
minimizing the Kullback-Leibler distance to the posterior distri-
bution even if this last one is difficult to determine. In spite of this
well motivated derivation, the performance of VB techniques is
not very clear, especially compared to more classical performance
bounds. In this paper we explore recently introduced mismatched
Cramer-Rao bounds (mCRB) for Bayesian estimation in the
context of VB estimation. We focus on the case of bilinear signal
models. One particular application of these models arises in the
context of internal relative reciprocity calibration of Massive
antenna arrays, in which the received signals are linear in terms
of an intra array channel and the relative calibration factors. We
have recently shown that a VB approach allows for particularly
improved estimation performance that goes beyond the classical
CRB, which is now confirmed by the mCRB.

I. INTRODUCTION

Massive MIMO (Multiple Input Multiple Output) requires
CSIT (Channel state information at Tx) acquired using channel
reciprocity for a TDD (Time Division Duplexing) system.
However, Radio Frequency (RF) components are not recip-
rocal and we need to calibrate to compensate for this. This
calibration is typically achieved by a simple complex scalar
multiplication at each transmit antenna. Initial approaches to
calibration relied on explicit channel feedback from a user
equipment (UE) during the calibration phase to estimate the
calibration parameters. This is typically referred to as UE
aided calibration. However, what is popular today [1] is to
perform the calibration across the antennas of the base station
(BS) only and is referred to as internal calibration. In [2], the
authors propose a generalized approach towards reciprocity
calibration of which the existing estimation techniques are
special cases.

Both the classical deterministic estimation theory and
Bayesian framework are based on the assumption that the
assumed data model and the true data model (pdf) are the
same. However, in practice, either we may only have an
imperfect knowledge of the true data model or due to compu-
tational complexities associated with the computation of the
true posterior distributions, we prefer approximate Bayesian
inference (VB). In such a misspecified estimation framework,
it is important to quantify the performance of the estimator
using a mismatched Cramer-Rao bounds (mCRB) [3].

A. Contributions of this paper:
• We first review the constrained CRB for the case of a

bilinear system model (linear in terms of the relative
calibration factors and reciprocal channel coefficients).

RA

CA→B

CB→A

RB

TB

A B

HA→B

HB→A

TA

Fig. 1. Reciprocity Model

• We propose a VB (and other variants like AMAP, EC-
VB) based estimation algorithm for the joint estimation of
the calibration parameters, reciprocal channel coefficients
and hyper-parameters (precisions of the bilinear factors).

• Simulations demonstrate that the mean square error
(MSE) of the VB can be lower than that of the deter-
ministic CRB. Motivated by this result, we derive simple
and elegant expressions for the mCRB using Laplace
approximation for the relative calibration factors.

Notations: The operators tr(·), (·)T , (·)∗, (·)H , ‖·‖ represents
trace, transpose, conjugate, conjugate transpose and Frobenius
norm respectively. Boldface lower-case and upper-case char-
acters denote vectors and matrices respectively.

II. RECIPROCITY CALIBRATION SYSTEM MODEL

Consider a system as in Fig. 1, where A represents a BS
and B represents a UE, each containing MA and MB antennas,
respectively. The channel as observed in the digital domain,
HA→B and HB→A can be represented by,

HA→B = RBCA→BTA, HB→A = RACB→ATB ,
(1)

where (diagonal) matrices TA, RA, TB , RB model the
response of the transmit and receive RF front-ends, while
CA→B and CB→A model the propagation channels, respec-
tively from A to B and from B to A. Let us consider an antenna
array of M elements partitioned into G groups denoted by
A1, A2, . . . , AG. Group Ai contains Mi antennas such that
G∑
i=1

Mi = M. Each group Ai transmits a sequence of Li pilot

symbols, defined by matrix Pi ∈ CMi×Li where the rows
correspond to antennas and the columns to successive channel
uses. After all G groups have transmitted, the received signal
for each resource block of bidirectional transmission between
antenna groups i and j is given by{

Yi→j = RjCi→jTiPi + Ni→j ,
Yj→i = RiCj→iTjPj + Nj→i .

(2)

We define Fi = R−Ti Ti and Fj = R−Tj Tj to be the calibra-
tion matrices for groups i and j. Also, fi = vec(Fi) represents



the vectorized version. This needs to be augmented with a
constraint C(f̂ , f) = 0 . Typical choices for the constraint are
1) Norm plus phase constraint (NPC):

norm: Re{C(f̂ , f)} = ||f̂ ||2 − c , c = ||f ||2,
phase: Im{C(f̂ , f)} = Im{f̂Hf} = 0.

2) Linear constraint: C(f̂ , f) = f̂Hg − c = 0 . (3)

If we choose the vector g = f and c = ||f ||2, then the
Im{.} part of (3) corresponds to (3). The most popular linear
constraint is the First Coefficient Constraint (FCC), which is
(3) with g = e1, c = 1. From (2), we have

Yi→j = RjCi→jR
T
i︸ ︷︷ ︸

Hi→j

FiPi + Ni→j .
(4)

We define Hi→j = RjCi→jR
T
i to be an auxiliary internal

channel (not corresponding to any physically measurable quan-
tity) that appears as a nuisance parameter in the estimation
of the calibration parameters. Note that the auxiliary chan-
nel Hi→j inherits the reciprocity from the channel Ci→j :
Hi→j = HTj→i. Upon applying the vectorization operator for
each bidirectional transmission between groups i and j, we
have

vec(Yi→j) = (PTi ∗ Hi→j) fi + vec(Ni→j). (5)
In the reverse direction, using Hi→j = HTj→i, we have

vec(YT
j→i) = (HTi→j ∗PTj )fj + vec(Nj→i)

T . (6)

Alternatively, (5) and (6) may also be written as

vec(Yi→j) =
[
(FiPi)

T ⊗ I
]

vec(Hi→j) + vec(Ni→j)
vec(YT

j→i) =
[
I⊗ (PTj Fj)

]
vec(Hi→j) + vec(Nj→i).

(7)
Stacking these observations into a vector
y =

[
vec(Y1→2)T vec(YT

2→1)T vec(Y1→3)T . . .
]T

, the
above two alternative formulations can be summarized into

y = H(h,P)f + n = F(f ,P)h + n, (8)

where h =
[
vec(H1→2)T vec(H1→3)T vec(H2→3)T . . .

]T
,

and n is the corresponding noise vector. The expressions
for the composite matrices H and F are the same as given
in [4, equation (18)]. The scenario is now identical to that
encountered in some blind channel estimation scenarios and
hence we can take advantage of some existing tools [5], [6],
which we exploit next.
A. Cramér-Rao bound

Treating h and f as deterministic unknown parameters,
and assuming that the receiver noise n is distributed as
CN (0, σ2I), the Fisher Information Matrix (FIM) J for jointly
estimating f and h can immediately be obtained from (8) as

J =
1

σ2

[
HH
FH

] [
H F

]
. (9)

The computation of the CRB requires J to be non-singular.
However, for the problem at hand, J is inherently singular. In
fact, the calibration factors (and the auxiliary channel) can only
be estimated up to a complex scale factor since the received
data (8) involves the product of the channel and the calibration
factors, Hf = Fh. As a result the FIM has the following null
space [7], [8]

J
[
fT −hT

]T
=

1

σ2

[
H F

]H
(Hf −Fh) = 0. (10)

To determine the CRB when the FIM is singular, constraints
have to be added to regularize the estimation problem. As the
calibration parameters are complex, one complex constraint
corresponds to two real constraints. Another issue is that we
are mainly interested in the CRB for f , the parameters of
interest, in the presence of the nuisance parameters h. Hence
we are only interested in the (1, 1) block of the inverse of
the 2 × 2 block matrix J in (9). Incorporating the effect of
the constraint (3) on f , we can derive from [8] the following
constrained CRB for f

CRBf = σ2Vf

(
VHf HHP⊥FHVf

)−1 VHf , (11)

where PX = X(XHX)†XH and P⊥X = I − PX are the
projection operators on resp. the column space of matrix
X and its orthogonal complement, and † corresponds to
the Moore-Penrose pseudo inverse. Note that in some group
calibration scenarios, FHF can be singular (i.e, h could be
not identifiable even if f is identifiable or even known). The
M×(M−1) matrix Vf is such that its column space spans the
orthogonal complement of that of ∂C(f)

∂f∗ , i.e., PVf = P⊥∂C
∂f∗

.
It is shown in [7], [8], [9] that a choice of constraints such

that their linearized version ∂C
∂f∗ fills up the null space of the

FIM results in the lowest CRB, while not adding information
in subspaces where the data provides information. One such
choice is the set (3) (NPC). Another choice is (3) with g = f .
With such constraints, ∂C

∂f∗ ∼ f which spans the null space of
HHP⊥FH. The CRB then corresponds to the pseudo inverse
of the FIM and (11) becomes CRBf = σ2

(
HHP⊥FH

)†
. If the

FCC constraint is used instead (i.e., (3) with g = e1, c = 1),
where e1 is an all zero vector with only the first coefficient
one, the corresponding CRB is (11) where Vf corresponds now
to an identity matrix without the first column (and hence its
column space is the orthogonal complement of e1).

B. Variational Bayes (VB) Estimation
In VB, a Bayesian estimate is obtained by computing an

approximation to the posterior distribution of the parameters
h, f with priors f ∼ CN (0, α−1IM), h ∼ CN (0, β−1INh

)
and α, β are assumed to have themselves a uniform prior.
Nh is the number of elements in h. This approximation,
called the variational distribution, is chosen to minimize the
Kullback-Leibler distance between the true posterior distribu-
tion p(h, f , α, β | y) and a factored variational distribution
q(h, f , α, β | y) = qh(h) qf (f) qα(α) qβ(β). The factors can
be obtained in an alternating fashion as [10],

ln(qθi(θi)) =< ln p(y,h, f , α, β) >k 6=i +ci, (12)

where θi refers to the ith block of θ = [h, f , α, β] and <>k 6=i
represents the expectation operator over the distributions qθk
for all k 6= i. ci is a normalizing constant. Further considering
the constraints on f (f⊥ represents the component of f in the
null space of the constraint) and applying VB (12),



f = f ′ + Vf f⊥, f ′ = g c
‖g‖2 , f

Hg = c > 0,VHf Vf = I,

ln qf (f) = 1
σ2 (f ′H + fH⊥ VHf ) < HH > y + 1

σ2y
H < H >

(f ′ + Vf f⊥)− 1
σ2 (f ′H + fH⊥ VHf ) < HHH > (f ′ + Vf f⊥)

− < α > ‖f⊥‖2 + cf ,

ln qh(h) = hH<FH>y+yH<F>h−hH<FHF>h
σ2 − < β > hHh.

(13)
Here, Ny refers to the number of elements in y and c is a con-
stant. Here cp, cf represents the normalization constants for the
respective pdfs. We shall assume here that the noise variance
σ2 is known (or estimated in a separate training procedure).
It is now straightforward to see that proceeding as in (12),
α, β would have a Gamma distribution and a complex normal
distribution for f ∼ CN (f̂ ,Cf̃ f̃ ) and h ∼ CN (ĥ,Ch̃h̃). The
detailed expressions are summarized in Algorithm 1. When
G = M , Cf̃ f̃ and Ch̃h̃ are diagonal and < FH(f̃)F(f̃) >,
< HH(h̃)H(h̃) > can be computed easily (diagonal). How-
ever, when G < M , these matrices are block diagonal.

Algorithm 1 VB Estimation of calibration parameters
1: Initialization: Initialize f̂ using existing calibration meth-

ods. Use f̂ to determine ĥ, <α>,<β>, with g = e1.
2: repeat
3: <HHH>= HH (ĥ)H)(ĥ)+ <HH (h̃)H(h̃)>.
4: f̂⊥ = (VHf (< HHH > +σ2 < α > I)Vf )−1VHf (< HH > y−< HHH >

f′)
5: C

f̃ f̃
= Vf (VHf ( 1

σ2
< HHH > + < α > I)Vf )−1VHf

6: <FHF>= FH (f̂)F(f̂)+ <FH (f̃)F(f̃)>

7: ĥ = (< FHF > +σ2 < β > I)−1FHy, C
h̃h̃

= ( 1
σ2

< FHF > + < β >

I)−1 , <α>= M
<
∥∥f⊥∥∥2> , <

∥∥f⊥∥∥2>= f̂H⊥ f̂⊥ + tr{C
f̃⊥f̃⊥

} .

8: <β>=
Nh+1

<‖h‖2>
, <‖h‖2>= ĥH ĥ + tr{C

h̃h̃
}.

9: until convergence.

An approximate version of Algorithm 1, EC-VB (Expectation
Consistent [11] VB) [4] where the error covariance matrix
are approximated to be multiple of identity is also considered
in the simulations. Note here that by forcing the matrices
Cf̃ f̃ , Ch̃h̃ to zero and α, β to zero, this algorithm reduces to
the Alternating Maximum Likelihood (AML) algorithm [5],
[6] which iteratively maximizes the likelihood by alternating
between the desired parameters f and the nuisance parameters
h for the formulation (8). The penalized ML method used
in [14] uses quadratic regularization terms for both f and h
which can be interpreted as Gaussian priors and which may
improve estimation in ill-conditioned cases. In our case, we
arrive at a similar solution from the VB perspective and more
importantly, the regularization terms are optimally tuned.

III. MISMATCHED CRB’S

As can be seen in Fig. 2, VB allows to attain lower MSE
than the CRB (for deterministic parameters). One possibility
to evaluate the performance is to consider the Bayesian CRB.
However, VB is an approximate Bayesian estimation tech-
nique. Also, a Bayesian CRB is valid only if the (Gaussian)
priors for f and h are the correct priors. However, the interest
of the VB technique is that it will converge to the most
appropriate priors even if in fact the parameters f and h are
deterministic! This requires Mismatched CRBs. In this paper,
we explore the Bayesian mCRB exposed in [12], [13].

Under a mismatched distribution model, it is important to
define the convergence point θ (also called as pseudo true
parameter) which is used to evaluate the effectiveness of the
estimator, since no true parameter vector may exists under
the assumed distribution q. The VB convergence point (of
complete θ) is the MAP of Ep(

∑
i ln(qθi(θi))) (assuming

large amount of data), so ln of product of q’s = sum of ln of
q’s and converges to it’s expected value according to actual pdf
p (law of large numbers). Similar to [12] (misspecified CRBs)
which considers deterministic case, we do it also for random θ,
but not neglecting priors in the asymptotic regime (considering
some fictitious asymptotic regime in which prior information
scales similarly as information in data, so that both continue
to count, but get a Gaussian concentration around convergence
point).
A. mCRB Bilinear Model

CRB corresponds to Laplace approximation of MAP or
VB. Laplace approximation [10] refers to the evaluation of
marginal likelihood or free energy using Laplace’s method.
This is equivalent to a Gaussian approximation of the posterior
q around a maximum a posteriori (MAP) estimate, motivated
by the fact that in the asymptotic limit (large amount of data
or high SNR), the posterior approaches a Gaussian around
the MAP point [12]. Gradients of ln q can be taken from
the recursions for ln q (12), so it’s the gradients of ln p as
usual, except with averaging over qi for gradient and Hessian
as we will show here. But the final error covariance matrix
of Laplace approximation (2nd order Taylor) is expectation
with p. Let θ̂ be an estimator of θ based on the approximate
posterior q and the assumed prior. Let ζ = θ̂ − θ, where the
estimator mean is evaluated at the point θ. First, we need
to find θ. This corresponds to the peak of the posterior pdf
in an asymptotic scenario of large amount of data or high
SNR, computation of which is derived in III-B. Throughout the
paper, the vector θi represents a subset of θ and θi represents
a scalar parameter in θ. In this section θ (a column vector)
contains the parameters h, f and ψ the precision parameters,
α, β and θ0 denotes the true value of θ. θ (or ψ) can be
evaluated as,

θi = arg max
θi

E p(y,θ0) ln q(θi)

= arg max
θi

E p(y|θ0) ln < p(y,θ) >i .
(14)

Even though the parameters are modeled as random for
estimation, but we assume that in reality they are deterministic.
So the expectation over p(θ) disappears in (14). Also, we
define θ̃ = θ − θ, θ̃ = θ̂ − θ0 = ζ + θ̃. For any choice of
score function η using a matrix generalization of the Cauchy
Schwartz inequality [3], [13], the error correlation matrix can
be written as,

mCRB = Rθ̃θ̃ = E pθ̃ θ̃
H ≥ RζηR

−1
ηηRηζ + θ̃ θ̃

H

, (15)

where Rζη = E (ζηH) and Rζζ = E (ζζH).
The score function can be written as,

η = ∂
∂θ∗ ln q(θ) |θ −E p(y|θ0)

∂
∂θ∗ ln q(θ) |θ

= ∂
∂θ∗ ln q(θ) |θ −E p(y|θ0)(

∂
∂θ∗ ln q(θ) |θ).

(16)



The choice of the score function is motivated by the require-
ments for the tightness of the CRB detailed in [3] that it
should be zero mean and depends on the sufficient statistic for
estimating θ. So the score function here is the score function
for the deterministic CRB minus its possibly non zero-mean
under the true model p(y,θ0). Also, the particular choice
score function (16) results in E p(y|θo)(

∂
∂θ∗ ln q(θ) |θ) = 0,

due to the Laplace approximation of θ around the asymp-
totic estimate θ. Further under concentration conditions (data
asymptotics or SNR asymptotics, or perhaps prior asymptotics
(becoming very precise)), we can do a 2nd order Taylor series
of misspecified posterior. The Taylor series expansion of the
data likelihood around θ is given by,

log q(y,θ + ∆θ) = log q(y,θ) + ∆θH ∂ log q(y,θ)
∂θ∗ |θ +

∆θH ∂2 log q(y,θ)
∂θ∗θT

|θ ∆θ + o(‖∆θ‖2).
(17)

Further neglecting the higher order terms and equating the
derivative w.r.t ∆θ∗ to be zero yields an approximation of the
error term ζ as,

ζ = −(
∂2 log q(y,θ)

∂θ∗θT
|θ)−1

∂ log q(y,θ)

∂θ∗
|θ . (18)

Note that we can replace the Hessian and ∂ log q(y,θ)
∂θ∗ in (18)

by E p(y|θ)(
∂2 log q(y,θ)
∂θ∗θT

) and E p(y|θ)(
∂ log q(y,θ)

∂θ∗ ) respectively
in the asymptotic limit. Taking the derivative of the data log-
likelihood gives,

∂ log q(θ)
∂θ∗ = − 1

σ2

[
0

VHf < HHH > f − VHf < H > y+ < α > f⊥
< FHF > h− < FH > y+ < β > h

]
,

E p(y|θ)
∂2 log q(θ)

∂θ∗θT
= −VHQV, Q = 1

σ2 blkdiag (0,
VHf < HHH > Vf+ < α > I, < FHF > + < β > I).

(19)
where blkdiag (·) represents the block diagonal matrix formed
by the respective matrix elements in the block. The eval-
uation of Q at the asymptotic limit, θ, be denoted as Q.
Let E (∂ log q(y,θ)

∂θ∗ ) |θ= f(θ). The error term ζ can then
be expressed as, ζ = V(VHQV)−1VHf(y,θ). Note that
V = [0 I]. The cross correlation matrix between ζ and η
becomes,

Rζη = −V(VHQV)−1VHf(y,θ)f(y,θ)H =
−(V(VHQV)−1VHf(y,θ)f(y,θ)H).

(20)

Here f(θ)f(θ)H = Jq . Finally substituting (20) in (15), we
obtain (define MFIM to be the corresponding mismatched
FIM),

mCRB = V(VHQV)−1VHJqV(VHQV)−1VH + θ̃ θ̃
H

.
(21)

Further we derive the mCRB for VB (mCRBV B) with the
posteriors of h, f being factorized.
Lemma 1. If the parameter partitioning in VB is such that
the different parameter blocks are decoupled at the level of
Fisher Information Matrix, then VB is not suboptimal in terms
of (mismatched) Cramer-Rao Bound. If a finer partitioning
granularity is used (such as up to scalar level as in mean
field), then VB becomes quite suboptimal.

So in the too fine partitioning case, the VB partitioning is
applied to the MFIM, taking a too fine blockdiagonal part, and

since that partitioning is finer than the blockdiagonal MFIM
structure, then the inverse of the too fine blockdiagonal part
of the FIM does not give the correct CRB. So mCRBV B =
(blockdiag(MFIM))−1 6= mCRB.

mCRBV B = Vf (VHf (Af ,f )−1Vf )−1VHf + θ̃ θ̃
H

A = V(VHQV)−1VHJqV(VHQV)−1VH ,
(22)

A evaluated at θ, Aff = (f , f) block of A (here it is the
product of block diagonal of 3 factors), mCRB above for given
θo. Some remarks which follow from our mCRB analysis are
stated below.
• mCRB in this paper are along the lines of [3] and it is

applicable to all estimators with same bias and cross-
correlation matrix.

• This mCRB, is mismatched because we introduce an
artificial prior. Asymptotically (i.e. at high SNR), the
MSE of either alternating MAP (AMAP) or VB or EC-
VB should match this mCRB.

• Asymptotically, the suboptimality of VB is not in its
mean, it’s only in the approximation of the error co-
variance, which should underestimate the actual error
covariance: [(Jq)

−1]1,1 > ((Jq)1,1)−1.
• Our view point of first working for given θ is compatible

with the view that actually the θ may be be deterministic
(prior for θ = δ(θ−θ0), dirac delta function at true value)
and the idea of doing Bayesian or VB is just to create a
bias so that the biased estimator would reach lower MSE,
in particular below the CRB. James-Stein estimator [15]
was the first instance of this. In case of James-Stein, they
are able to show that the deterministic MSE is lowered
by adding the prior (with optimized/estimated variance
hyperparameter). Then VB (with estimated = optimized
hyperparameters) is a way of making sure that this bias is
useful, optimizes MSE in some sense, within the class of
estimators determined by the stucture of the prior chosen.
In other words, these Bayesian estimators provide a way
to introduce a useful bias (shrinkage) that allows to lower
MSE (from the point of view of deterministic parameters,
with a single true value).

B. Computation of θ:
Starting from (14), the resulting (deterministic) θ is obtained

by running alternating MAP (initialized by the true θo). Or one
can also run the VB, by putting n = 0 in y, and considering
h̃ = 0, f̃ = 0,hence also Ch̃h̃ = 0, Cf̃ f̃ = 0. So, the VB
converges to θ. For computing f , substituting for y = H0f0 +
n in (14) (similarly for the computation of h, need to consider
the alternative representation of y (8)),

E p(y/θ) ln<p(y,θ,ψ) >i= −Ny lnσ2−
1
σ2 (<

∥∥H0f0 −Hf
∥∥2 > +σ2 ,0Ny) + (M − 1) < lnα >

− < α > ‖f⊥‖2 +Nh < lnβ > − < β >< ‖h‖2 > +c.
(23)

The derivative of (23) w.r.t f , α, β,h leads to Algorithm 2.
Note that the Algorithm 2 applies to any partitioning of the
variables in the approximate posterior q, where for VB (12),
there will only be one iteration with the initial values for
HHH =< HHH > or H =< H > (by the converged values
of VB).



Algorithm 2 Computation of Asymptotic Estimates, θ
1: Initialization: Initialize f using existing calibration methods (f = f ′ + Vf f⊥).
2: repeat
3: f⊥ = (VHf H

HHVf + σ2αI)−1(VHf H
HH0f0 − VHf H

HHf ′).
4: h = (FHF + σ2βI)−1(FHF0h0).

5: α = M

<‖f⊥‖2>
, β =

Nh+1

<‖h‖2> , σ2 = σ2 ,0 + 1
Ny

∥∥∥H0f0 −Hf
∥∥∥2 .

6: until convergence.
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Fig. 2. Convergence of the various iterative schemes for M = G = 16.

IV. SIMULATIONS

In this section, we assess numerically the performance of
various calibration algorithms and also compare them against
their CRBs. The Tx and Rx calibration parameters for the
BS antennas are assumed to have random phases uniformly
distributed over [−π, π] and amplitudes uniformly distributed
in the range [1− δ, 1 + δ]. SNR is defined as the ratio of the
average received signal power across channel realizations at
an antenna and the noise power at that antenna. In Fig. 2, it
is clear that VB MSE can go lower than the determinsitic
CRB and close to the mCRB. In Fig. 3, we compare the
MSE performance of various VB variants with mCRBV B
and deterministic CRB. It shows the performance improvement
of VB w.r.t deterministic CRB or AML at all SNR and also
the accurate behaviour of our derived mCRB expressions. We
consider transmit schemes that transmit from one antenna at
a time (G = M ) and compare their MSE performance with
the CRB. The MSE with FCC for Argos, Rogalin [16] and
the VB method in Algorithm 1 is plotted. The curves are
generated over one realization of an i.i.d. Rayleigh channel
and known first coefficient constraint is used. These curves
are compared with the CRB derived in II-A for the FCC case
and it can be seen that the AML curve overlaps with the CRB
at higher SNRs. Also plotted is the CRB as given in [14]
assuming the internal propagation channel is fully known (the
mean is known and the variance is negligible) and a (small)
underestimation of the MSE can be observed as expected.

V. CONCLUSIONS

In this paper, we came up with a simple and elegant
derivation of the mCRB for a general calibration framework
that includes as subsets all existing calibration techniques. For
the case of groups involving a single antenna, the conventional
CRB derivation assuming first coefficient known has also been
provided. An optimal estimation algorithm based on VB is also
introduced along with its variants. We further derived mis-
matched CRB to validate the performance improvement over
deterministic CRB. All these techniques have been compared

0 5 10 15 20 25 30 35 40

SNR(dB)

-40

-30

-20

-10

0

10

20

M
SE

 in
 d

B 

Deterministic CRB

VB

AML

Mismatched CRB (mCRB
VB

)

Fig. 3. Comparison of single antenna transmit schemes with the CRB (G =
M = 16, Li = 1, ∀i, δ = 0.5).

via simulations in terms of both MSE performance and speed
of convergence.
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