
Easy Web API Development with SPARQL
Transformer

Pasquale Lisena1[0000−0003−3094−5585], Albert
Meroño-Peñuela2[0000−0003−4646−5842], Tobias Kuhn2[0000−0002−1267−0234], and

Raphaël Troncy1[0000−0003−0457−1436]

1 EURECOM, Sophia Antipolis, France
pasquale.lisena@eurecom.fr, raphael.troncy@eurecom.fr

2 Vrije Universiteit, Amsterdam, The Netherlands
t.kuhn@vu.nl, albert.merono@vu.nl

Abstract. In a document-based world as the one of Web APIs, the
triple-based output of SPARQL endpoints can be a barrier for developers
who want to integrate Linked Data in their applications. A different
JSON output can be obtained with SPARQL Transformer, which relies
on a single JSON object for defining which data should be extracted
from the endpoint and which shape should they assume. We propose a
new approach that amounts to merge SPARQL bindings on the base of
identifiers and the integration in the grlc API framework to create new
bridges between the Web of Data and the Web of applications.

Keywords: SPARQL · JSON · JSON-LD · API

1 Introduction

The Semantic Web is a valuable resource of data and technologies, which is hav-
ing a crucial role in realising the initial idea of Web. RDF can potentially repre-
sent any kind of knowledge, enabling reasoning, interlinking between datasets,
and graph-based artificial intelligence. Nevertheless, a structural gap exists that
is limiting a broader consumption of RDF data by the community of Web devel-
opers. Recent initiatives such as EasierRDF3 are strongly pushing the proposal
of new solutions for making Semantic data on the Web developer friendly [3, 10].

We focus here on the output format of SPARQL endpoints, and in particular,
query results in the JSON format [24]. This standard is part of the SPARQL
W3C recommendation [12], introduced with the purpose of easing the consump-
tion of the data by Web (and non-Web) applications. The format consists of a
set of all possible bindings (of the form <variable, value>) that satisfies the
query. This is not handy for efficient processing by clients, which would prefer
nested objects (document-based data structures) rather than this representa-
tion of triples (graph-oriented data structures). An example of this is shown in
Figure 1.
3 https://github.com/w3c/EasierRDF



2 P. Lisena et al.

{	
		"head":	{	
				"link":	[],	
				"vars":	[	"id",	"label",	"picture",	"region",	"region_label"	]	
		},	
		"results":	{	
				"distinct":	false,	
				"ordered":	true,	
				"bindings":	[{	
								"id":	{	
										"type":	"uri",	
										"value":	"http://dbpedia.org/resource/Siena"	
								},	
								"label":	{	
										"type":	"literal",	
										"xml:lang":	"it",	
										"value":	"Siena"	
								},	
								"picture":	{	
										"type":	"uri",	
										"value":	"./PiazzadelCampoSiena.jpg"	
								},	
								"region":	{	...	},	
								"region_label":	{	...	}	
						},	
						{	
								"id":	{	
										"type":	"uri",	
										"value":	"http://dbpedia.org/resource/Siena"	
								},	
								"label":	{	
										"type":	"literal",	
										"xml:lang":	"fr",	
										"value":	"Sienne"	
								},	
								"picture":	{	
										"type":	"uri",	
										"value":	"./PiazzadelCampoSiena.jpg"	
								},	
								"region":	{	...	},	
								"region_label":	{	...	}	
						},	
						{	
								"id":	{	
										"type":	"uri",	
										"value":	"http://dbpedia.org/resource/Milan"	
								},	
								"label":	{	
										"type":	"literal",	
										"xml:lang":	"en",	
										"value":	"Milan"	
								},	
								"picture":	{	
										"type":	"uri",	
										"value":	"./Flag_of_Milan.svg"	
								},	
								"region":	{	...	},	
								"region_label":	{	...	}	
						}]	
		}	
}

A

B

C

SELECT	DISTINCT	*	
WHERE	{	
				?city	a	dbo:City	;	
										dbo:country	dbr:Italy	;	
										rdfs:label	?label	.	

				OPTIONAL	{	?city	foaf:depiction	?pic	}.	
					
				?city	dbo:region	?region	.	
				?region	rdfs:label	?region_label	.					
				FILTER(lang(?region_label)	=	'it')	

}	LIMIT	100

[{	
				"id":	"http://dbpedia.org/resource/Siena",	
				"name":	[{	
								"language":	"fr",	
								"value":	"Sienne"	
						},	
						{	
								"language":	"it",	
								"value":	"Siena"	
						},	
				],	
				"image":	"./PiazzadelCampoSiena.jpg",	
				"region":	{	
						"id":	"http://dbpedia.org/resource/Tuscany",	
						"name":	{	
								"language":	"it",	
								"value":	"Toscana"	
						}	
				}	
		},	
		{	
				"id":	"http://dbpedia.org/resource/Milan",	
				"name":	{	
						"language":	"en",	
						"value":	"Milan"	
				},	
				"image":	"./Flag_of_Milan.svg",	
				"region":	{	
						"id":	"http://dbpedia.org/resource/Lombardy",	
						"name":	{	
								"language":	"it",	
								"value":	"Lombardia"	
						}	
				}	
		}]	

(a)

(b) (c)

Fig. 1. A SPARQL query (a) extracting a list of Italian cities with picture, label and
belonging region, of which the URI and the Italian name are also requested. In the
standard output of the endpoint (c), the city of Sienna is represented by both object
A and B, while the transformed output (b) offers a more compact structure.

Given this situation, we identify four tasks that developers have to fulfil:
1. Skip irrelevant metadata. A typical SPARQL output contains a lot of
metadata that are often not useful for Web developers. This is the case of the
head field, which contains the list of variables that one might find in the results.
In practice, developers may ignore completely this part and check for the avail-
ability of a certain property directly in the JSON tree.
2. Reducing and parsing. The value of a property is always wrapped in an
object with at least the attributes type (URI or literal) and value, containing the



Easy Web API Development with SPARQL Transformer 3

information. As a consequence, this information is bounded at a deeper level in
the JSON structure than the one the developer expects. In addition, each literal
is expressed as a string value with a datatype, so that numbers and booleans
need to be casted.
3. Merging. As the query results represent all the valid solutions of the query,
it is possible that two bindings differ only by a single field. When the number
of properties that have multiple values grows (i.e. multilingual names, multilin-
gual descriptions, a set of images), the endpoint returns even more results, one
for each combination of values. The consumption of such data requires often to
identify all the bindings which represent a given entity, merging the objects on
the URI. The presence of more variables on which the merging can be performed
can further complicate the merging process.
4. Mapping. The Web developer may want to map the results to another struc-
ture – i.e. for using them as input to a library – or vocabulary such as schema.org.

In addition to this, the support for curating and reusing SPARQL queries is
sub-optimal, these queries typically end up being hard-written in the applica-
tion code. A specifically unsettling case of these Linked Data APIs, which refer
to those APIs that just wrap underlying SPARQL functionality. To solve this
problem, various works have provided bridges between the Web of Data and
the developers. grlc is a software for the automatic generation of Web APIs
from SPARQL queries contained in GitHub repositories [16]. SPARQL Trans-
former4 is a library that gives a chosen structure to the SPARQL output. The
library is able to perform all the above mentioned tasks, helping Web developers
in the manipulation of data from the Web.

This paper largely extends [15] with a more organic description of the module,
a set of new features, the integration of SPARQL Transformer in grlc and Tapas,
a playground application for testing the query outcome and an evaluation on
performance and usability. The remainder of this paper is structured as follow:
we propose a thorough review of other works which aim to ease the consumption
of RDF data and their limitations in Section 2. We introduce the new JSON
format for queries in Section 3, which feeds the SPARQL Transformer library
detailed in Section 4. The work is finally evaluated in Section 5, while some
conclusions and future work are presented in Section 6.

2 Related Work

The need for overcoming the issues about the usage of SPARQL output in real-
life applications has inspired different works. One of the first proposed solutions
consists in a strategy for representing the SPARQL output in a tabular structure,
to address the creation of HTML reports [1].

4 SPARQL Transformer is available at https://github.com/D2KLab/
sparql-transformer as a JavaScript library, while a Python implementation is
available at https://github.com/D2KLab/py-sparql-transformer.



4 P. Lisena et al.

Wikidata SDK [14] takes care of the reduction and parsing tasks through a
precise function5 that transforms the JSON output to a simplified version by
reading the variable names. However this implementation does not address the
problem of merging.

The conversion of RDF data can rely on the SPARQL Template Transfor-
mation Language (STTL) [4]. Those transformation templates (as strings) are
exploited for shaping the results of the SPARQL query. Moreover, STTL exposes
a significant number of functions, especially when combined with LDScript [5].
Among the limits of this approach is the absence of any support for converting
the results to JSON-LD. No merging strategy is also studied in this approach.

The W3C RDFJS Community Group6 is heavily contributing to the effort of
offering a tool to JavaScript developers for using RDF data. The major outcome
of the initiative is a low-level interface specification for the interoperability of
RDF data in JavaScript environments [2]. RDFJS brings the graph-oriented
model of RDF into the browser, allowing developers to directly manipulate
triples.

The CONSTRUCT query format – included in the W3C SPARQL Specifica-
tion [12] – can be seen as a way for mapping the SPARQL results into a
chosen structure, following one of the standard SPARQL output formats, in-
cluding JSON-LD. An attempt has been realised by the command-line library
sparql-to-jsonld [17]. The need for three different inputs – a SELECT query, a
CONSTRUCT or DESCRIBE query, and a JSON-LD frame – indirectly proves that a
sole CONSTRUCT for shaping JSON with non predefined structure is not sufficient.
The complexity of writing a CONSTRUCT query – i.e. with respect to a SELECT
one – can be an additional deterrent for its usage. Furthermore, literals are not
parsed and they are always represented as objects, and aggregate functions are
not supported.

JSON Schema is a format for defining the structure of a JSON object. Al-
though it is a powerful tool for validation – for example – of forms and APIs,
there are no evident benefits for JSON reshaping purposes [28].

There is abundant work in SPARQL query repositories, which are typically
used to study the efficiency and reusability of querying. For example, in [21] au-
thors use SPARQL query logs to study differences between human and machine
executed queries; in [13], these logs are used to understand the semantic relations
between queried entities. Saleem et al. [23] propose to “create a Linked Dataset
describing the SPARQL queries issued to various public SPARQL endpoints”.

There is also a large body of Semantic Web literature on Linked Data and
Web Services [9, 20]. In [25] and the smartAPI [29], the authors propose to expose
REST APIs as Linked Data, and enumerate the advantages of using Linked Data
technology on top of Web services. In the opposite direction, the Linked Data
API specification7 and the W3C Linked Data Platform 1.0 specification, describe

5 https://github.com/maxlath/wikidata-sdk/blob/master/docs/simplify_sparql_
results.md

6 https://www.w3.org/community/rdfjs/
7 https://github.com/UKGovLD/linked-data-api



Easy Web API Development with SPARQL Transformer 5

“the use of HTTP for accessing, updating, creating and deleting resources from
servers that expose their resources as Linked Data”8. Our work follows this
direction, and is more related to providing APIs that facilitate Linked Data
access and query results consumption. The OpenPHACTS Discovery Platform
for pharmacological data [11], LDtogo [19] and the BASIL server [6] use SPARQL
as an underlying mechanism to implement APIs and provide Linked Data query
results. Influenced by these works, grlc [16], a technology we extend in this
paper, decouples query storage from API implementations by leveraging queries
uniquely and globally identified by stable and de-referenceable URIs, automating
the query construction process.

Recent works realised an interoperability between the GraphQL language9
and RDF, performing in this way a conversion in JSON of the data in an end-
point [27]. The same syntax of GraphQL allows to produce a JSON object with
different levels of nested nodes. Some of these solutions rely on automatic map-
pings of variables to property names (Stardog10), while others rely on a schema
(HyperGraphQL11) or a context (GraphQL-LD [26]) which the developer is in
charge to provide. None of those approaches implements any strategy for detect-
ing and merging bindings referring to the same entity.

3 The JSON query syntax

As seen in the experiences reported in Section 2, the natural choice of format for
defining and developing a transformation template involves JSON or its JSON-
LD serialisation, which is usually added to the SPARQL query. The names of
the variables used should match between the template and the query, making
the developing process error-prone.

Our proposal is to use a single JSON object, called JSON query, with the
double role of declaring how to find the information (query) and which structure
is expected in its output (template). These properties put the JSON query at
a certain distance also from SPARQL CONSTRUCT, in which the query and the
final structure are two distinct parts of the query.

The syntax of JSON queries consists of two main parts (Listing 1.1):
– the prototype definition, which describes the output structure, expressed as

an object and introduced by the proto property;
– a set of rules to be included in the SPARQL query, defined through a set of

properties starting with the $ sign, e.g. $where and $limit.

JSON queries can be expressed in two different formats: plain JSON and
JSON-LD. The latter foresees a slightly different syntax (see Listing 1.2) in order
to return an output compliant with the JSON-LD specification. This version of
the query allows to specify a JSON-LD context, and can be used for mapping
8 https://www.w3.org/TR/2015/REC-ldp-20150226/
9 https://graphql.github.io/

10 https://www.stardog.com/
11 https://www.hypergraphql.org



6 P. Lisena et al.

1 {
2 "proto": {
3 "id" : "?id",
4 "name": "$rdfs:label$required",
5 "image": "$foaf:depiction",
6 "region": {
7 "id" : "$dbo:region$required$var:region",
8 "name": "$rdfs:label$lang:it"
9 }

10 },
11 "$where": [
12 "?id a dbo:City",
13 "?id dbo:country dbr:Italy"
14 ],
15 "$limit": 100
16 }

Listing 1.1. The JSON version of the SPARQL query in Figure 1

the results into a chosen vocabulary. We refer to the documentation 12 for more
details.

An interactive Web application called SPARQL Transformer playground13

has been developed in order to quickly test JSON queries. The application is live
converting the JSON into a corresponding SPARQL query, so that the user can
appreciate every single change. In addition, it is possible to execute the query
against a given endpoint, and the user interface offers the possibility of compar-
ing the transformed output with the original one (Figure 2).

3.1 The prototype definition

By prototype, we mean the common structure each object in output should
respect. It is designed as an ordinary JSON object, in which the leaf nodes will
be replaced by incoming data according to specific rules. In particular:
1. variable nodes, which start with a question mark "?" (like ?id or ?city),

are replaced by the value of the homonym SPARQL variable;
2. predicate nodes, which starts with a "$" sign, are replaced by the object

of a specific RDF triple;
3. literal nodes, which cover all the other contents, are not replaced and will

be present as is in the output, regardless of the query results.

In the transforming process, SPARQL triples will be automatically generated
from the prototype. Referring to case 2, the following syntax is used:

$<SPARQL PREDICATE>[$modifier[:option]...]
12 https://github.com/D2KLab/sparql-transformer
13 https://d2klab.github.io/sparql-transformer/



Easy Web API Development with SPARQL Transformer 7

1 {
2 "@context": "http:// schema.org/",
3 "@graph": [{
4 "@type": "City",
5 "@id": "?id",
6 "name": "$rdfs:label$required$bestlang",
7 "image": "$foaf:depiction$required",
8 "containedInPlace": {
9 "id" : "$dbo:region$required$var:region",

10 "name": "$rdfs:label$lang:it"
11 }
12 }],
13 "$where": [
14 "?id a dbo:City",
15 "?id dbo:country dbr:Italy"
16 ],
17 "$lang": "en;q=1, it;q=0.7 *;q=0.1",
18 "$limit": 10
19 }

Listing 1.2. The JSON-LD version of the SPARQL query in Figure 1

The first parameter is the SPARQL predicate, which can be a property or a
property path, e.g. rdfs:label, foaf:depiction, etc. This kind of node will be
replaced by the object of an RDF triple having as predicate the one given inline.
As subject, the variable of the sibling merging anchor is selected if it exists;
otherwise, the closer merging anchor among the parent nodes. The merging
anchors are all the fields in the JSON introduced with the id property. If this
variable does not exist, it is set to ?id by default. In other words, each level in
the JSON tree may declare a specific subject through the merging anchor, which
will be the subject of all the predicates in the scope. Listing 1.1 includes two
merging anchors at line 3 and 7: the former acts as subject of the name, image,
and region; while the region name refers to the latter.

The role of the merging anchor is crucial for the following steps. In fact, two
result objects having the same id will be considered as the same item and their
properties will be merged. This will happen at each level of the JSON tree. This
controlled way of aggregating SPARQL results ensures a more compact while
not less informative output, ready to be used by Web developers.

Both variable and predicate nodes can accept some modifiers appended at the
end of the string, separated by the $ sign. These elements are taken in account
when writing the SPARQL query. For example, $required avoids the predicate
to be considered optional (the default behaviour), while $var assigns a specific
SPARQL variable as object (e.g. $var:?myVar), so that it can be addressed in
other modifiers. Other possibilities include filtering by language ($lang:it or
$bestlang:en;q=1, it;q=0.7 *;q=0.1) or sample those values ($sample).



8 P. Lisena et al.

Fig. 2. User interface of SPARQL Transformer playground

3.2 The root $-properties

A set of $-properties give access to the SPARQL features indicated by their name
($limit, $groupby, etc). These properties are directly assigned to the root of
the JSON query object, and will not appear in the final output. Among them,
some additional WHERE clauses – in the triple format – can be declared in the
$where field. The $lang modifiers set the language chosen for all the $bestlang
in the prototype. An exhaustive list of implemented $-properties is reported in
Table 1.

4 Implementation

The implementation of SPARQL Transformer relies on three main blocks, each
one having a specific function (Figure 3).

The Parser reads the input JSON query and parses its content. The proto-
type is extracted and a SPARQL variable – which here acts as a placeholder –
is assigned to all the predicate nodes. Contextually, the SPARQL SELECT query



Easy Web API Development with SPARQL Transformer 9

Table 1. Supported root $-properties

PROPERTY INPUT DESCRIPTION
$where string, array Add where clause in the triple format.
$values object Set VALUES for specified variables as a map.
$limit number LIMIT the SPARQL results
$distinct boolean Set the DISTINCT in the select (default true)
$offset number OFFSET applied to the SPARQL results
$orderby string, array Build an ORDER BY on the variables in the input.
$groupby string, array Build an ORDER BY on the variables in the input.
$having string, array Allows to declare the content of HAVING.
$filter string, array Add the content as a FILTER.
$prefixes object Set the prefixes in the format "prefix": "uri".
$lang string Default language in the Accept-Language standard. [8]

is generated: the predicate nodes are translated into WHERE clauses according to
the rules defined in Section 3.1 and taking into account the modifiers. The root
$-properties are parsed and inserted in the query, which is then passed to the
Query Performer. This module – which can be replaced by the user with a
custom one – is in charge of performing the request to the SPARQL endpoint
and returning the results in the SPARQL JSON output format.

Finally, the Shaper accesses the results, discarding the side information in-
cluded in the head field and directly accessing the bindings. The latter ones
are applied to the prototype in sequence, matching the SPARQL variables to
the placeholders separately for each binding. In this phase, the data-type of the
binding is checked, eventually parsing the value to Boolean, integer or float.
When a result binding does not contain a certain value – which happens when
the variable is OPTIONAL –, the property is removed from the instance. Then,
the instances which have a common value for the merging anchor are identified
and their properties are compared, in order to keep all the distinct values with-
out repetition. Recursively, the same merging strategy is applied to the nested
objects. Finally, they are serialised in JSON and returned as output.

The SPARQL Transformer library is available in two different implementa-
tions in JavaScript and Python, published respectively on the NPM Package
Manager14 and the Python Package Index15 (PyPI). The JavaScript version has
been recently converted in an ECMAScript Module [7] and it is designed to both
work in Node.js and in the browser. The Python version return a dict object,
which can be directly manipulated by a script or serialised in JSON.

Since version 1.3, SPARQL Transformer is included in the grlc16 framework,
which is now able to generate Web APIs from the JSON queries contained in a
given GitHub repository. The integration involved the Parser and the Shaper:
the former is executed before each access to the SPARQL query, keeping in

14 https://www.npmjs.com/package/sparql-transformer
15 https://pypi.org/project/SPARQLTransformer/
16 http://grlc.io/



10 P. Lisena et al.

JSON Query

PARSER

QUERY
PERFORMER

SHAPER

JSON output

PROTOTYPE
SPARQL
endpoint

SPARQL query

SPARQL results
(JSON)

Fig. 3. The application schema of SPARQL Transformer

memory the prototype for being shaped once SPARQL results are back. The
JSON query file can include the configuration options for grlc in an homonym
field. For maximising the compatibility, the options can be specified as a YAML
string or in JSON. The support to JSON queries includes all the features of
grlc, such as the pagination and the selection of query parameters. In addition,
a lang query parameter can change the value of the $lang property of the query,
allowing the development of multi-language APIs. Further development involved
the upgrade of grlc to the latest Python version.

Moreover, SPARQL Transformer queries are now also supported by Tapas17.
Tapas is a small interface module implemented in HTML and JavaScript that
reads the specification of an instance of a grlc API and turns it into a nice
and simple HTML interface. The elements of the API specification are in a
straightforward manner transformed into HTML form elements, which the user
can fill in to access the service by pressing the submit button. Tapas asyn-
chronously calls the API via grlc and shows the results at the bottom part of
the same page using the YASR component of the YASGUI interface [22] to dis-
play the SPARQL query results in a user-friendly manner. We extended Tapas to
also support SPARQL Transformer queries and display the results in an equally
user-friendly manner. Unlike the flat tables produced by YASR for the common
kind of SPARQL results, the nested results of a SPARQL Transformer query
are shown as nested tables in Tapas. An example of this can be seen in Figure
4, showing a screenshot of the query interface and its results for an exemplary

17 https://github.com/peta-pico/tapas



Easy Web API Development with SPARQL Transformer 11

Fig. 4. Screenshot of the Tapas interface

SPARQL Transformer query about music bands, with the nested tables derived
from the nested structure of the SPARQL Transformer results. Tapas together
with grlc thereby allow us to automatically generate an intuitive interface for
technically-minded end users just from the query file in a completely general and
generic manner.

5 Evaluation

To assess our approach, we carried out two kinds of evaluations:
– an experiment for measuring the compactness of the results and the execu-

tion time of SPARQL Transformer;
– a user survey on the preference of users on using a system that presents

Linked Data query results through SPARQL Transformer, versus another
that does so through traditional SPARQL results rendering.

5.1 Quantitative evaluation

We test the Python implementation of SPARQL Transformer on a set of five
queries detailed in the DBpedia wiki18 in order to ensure a certain generality. The
set involves different SPARQL features (filters, ORDER BY, language filtering,
optional triples). Those SELECT queries have been manually converted into
JSON queries — with 1 or 2 levels of objects in the JSON tree —, making sure
that the transformed query was equal to the original one (variable names apart).

Each query has been resolved against a local instance of the English DB-
pedia19, with a traditional SPARQL client for the SPARQL queries and with
18 https://wiki.dbpedia.org/onlineaccess, Section 1.5
19 The setup of the endpoint on a local machine relied on Dockerized-DBpedia, available

at https://github.com/dbpedia/Dockerized-DBpedia



12 P. Lisena et al.

SPARQL Transformer for the JSON queries. Each execution has been repeated
100 times, with a waiting time of 5 seconds between consecutive executions,
in order to obtain an average result as much as possible not correlated to any
workload of the machine.

The results in Table 2 shows that the average execution time of SPARQL
Transformer is slightly higher with respect to normal SPARQL queries, never
surpassing 0.1 seconds (limit of the instantaneous feeling according to [18]). The
time increment is not regular, but some patterns suggest that it depends on the
number of results and variables for each result. The same dimensions seem to
impact also the gap in number of results, smaller in the JSON query responses
because of the merging strategy. It is interesting to point out that such difference
exists between all valid combinations of values for requested variables and the
number of real-world object described. This is evident in the first query, about
people born in Berlin, in which the combinations of names in different languages
and birth or death date in different formats almost double the number of results.
As a consequence, the Prince Adalbert of Prussia20 appears in 8 distinct (and
even non-consecutive) bindings because of its four names and two versions of
its death date, correctly merged in the more compact transformed version. The
experiment is further detailed in the GitHub repository21.

Table 2. Differences in number of results and execution time between SPARQL and
JSON queries. For each query, is also reported the number of requested variables.

N. RESULTS TIME (ms)
QUERY NAME N. VAR json sparql diff % json sparql diff diff %
1. Born in Berlin 4 573 1132 49% 1684 1014 670 50%
2. German musicians 4 257 290 11% 615 495 120 22%
3. Musicians born in Berlin 4 109 172 37% 595 516 78 14%
4. Soccer players 5 70 78 10% 2102 2026 76 3.7%
5. Games 2 981 1020 4% 1207 695 51 54%

5.2 User Survey

In order to evaluate the usefulness of the query results as presented by SPARQL
Transformer to potential (technically-minded) end-users and developers and to
compare them to a more traditional, table-centric provision of SPARQL query
results, we conducted a user survey. We hypothesized that the level of nesting
would play an important role, as classical SPARQL results are flat tables whereas
the JSON structure of SPARQL Transformer allows for nesting.

We therefore constructed a pair of queries in SPARQL Transformer syntax
and its corresponding plain SPARQL version for each of three levels of nesting:
20 http://dbpedia.org/resource/Prince_Adalbert_of_Prussia_(1811-1873)
21 A notebook is available at https://github.com/D2KLab/py-sparql-transformer/

blob/master/evaluation/test.ipynb



Easy Web API Development with SPARQL Transformer 13

Table 3. The results of the user survey

preference
for our system

Type Level −2 −1 0 1 2 avg. p-value
JSON results 0 (no nesting) 6 6 4 13 26 0.85 0.0001980 *

1 (one nesting) 5 5 3 21 21 0.87 0.000009063 *
2 (two nestings) 3 9 5 17 21 0.80 0.0003059 *

Tapas interface 0 (no nesting) 4 8 3 19 21 0.82 0.0001275 *
1 (one nesting) 3 10 2 20 20 0.80 0.0002685 *
2 (two nestings) 4 7 3 16 25 0.93 0.00003589 *

no nesting (Level 0), one nested structure (Level 1), and two nested structures
(Level 2). These queries are all about bands and their albums and members, and
they can be run through the DBpedia SPARQL endpoint. An example of two
nested structures as found in Level 2 can be seen in Figure 4 (the two nested
structures being album and member). We then ran each of these six queries and
stored the resulting JSON files (i.e. the files generated by SPARQL Transformer
and the standard JSON files with the original SPARQL results, respectively).
Moreover, we also ran these on Tapas to compare the user interface aspects
that come with the different representations and nesting styles, and we made
screenshots of the result tables. All these files, including queries, their results,
and the Tapas screenshots, can be found online.22

Based on these query results and screenshots, we then created a question-
naire, where we asked the participants for each of the six cases (JSON files and
screenshots for each of the three nesting levels) whether they preferred SPARQL
Transformer (referred to as “System A”) or the classical SPARQL output (re-
ferred to as “System B”). The possible answers consisted of the five options
Strongly prefer B (value -2), Slightly prefer B (-1), Indifferent (0), Slightly pre-
fer A (1), and Strongly prefer A (2). We also asked the participants whether
they consider themselves primarily researchers, developers, or none of these two
categories, and we asked about their level of expertise with SPARQL and JSON.
The complete questionnaire can be found online.23

We then asked people to participate in this user survey via Linked Data re-
lated mailing lists, and internal group lists. In this way, we got responses from
55 participants (40 researchers, 9 developers, 6 others). Their level of expertise
on SPARQL and JSON was mixed, with average values of 2.44 and 2.87, respec-
tively, on a scale from 0 to 4. Eight participants had no knowledge of SPARQL
at all, while only one participant had no knowledge of JSON.

Table 3 shows the results of the survey (the full table can also be found
online24). We see that we got the full range of replies for all questions, but also
that a clear majority prefers our system slightly (1) or even strongly (2). The

22 https://github.com/tkuhn/stgt/
23 https://github.com/tkuhn/stgt/blob/master/eval/questionnaire-form.md
24 https://github.com/tkuhn/stgt/raw/master/eval-results/questionnaire-results.ods



14 P. Lisena et al.

average values for both types (JSON and Tapas) and all three nesting levels are
between 0.80 and 0.93, i.e. close to the value that stands for a slight preference
of our system (1) and clearly above the value that stands for an indifference
between the two (0).

To test whether the preference towards our system is statistically significant,
we used a sign test in the form of a binomial test on the answers that were pos-
itive (preference of our system) or negative (preference of the existing system),
excluding the zero cases (indifference). This test, therefore, does not take the
distinction between slight and strong preference into account, but only which
system was preferred. The final column of Table 3 lists the p-values of this test,
showing that the effect is highly significant for all six cases.

The results, however, do not support our hypothesis that the level of nesting
has an effect on the preference for our system. Throughout all nesting levels,
the users expressed clear and significant preference for our system, but this
preference did not increase with increased nesting levels.

6 Conclusion and Future Work

SPARQL Transformer offers to Web developers a different way of approaching
RDF datasets. The adoption of a novel JSON format for defining both the query
and the template makes it possible to realise self-contained files. When collected
in a GitHub repository, these files can be easily transformed into Web APIs with
grlc, completing the decoupling between query, post-processing and consump-
tion in the application, and query results can moreover be presented in a simple
and user-friendly manner via Tapas. The evaluation reveals that the restructur-
ing and merging pipeline of SPARQL Transformer has an important impact in
making the SPARQL results more usable and understandable by humans.

Further development can improve SPARQL Transformer in order to fulfil a
wider range of needs. The query support can be extended to other SPARQL op-
erations, like ASK, INSERT and DELETE, going towards the realisation of full
REST APIs on top of SPARQL endpoints. Aggregate functions (e.g. COUNT,
SUM) should join the set of available features in the near future.

Currently, the JSON syntax does not foresee any standard way for represent-
ing dates, which are therefore represented as plain strings. Alternative represen-
tations for dates should be found taking into account developer requirements,
even listening and involving them in the final decision. Possibly, the solution
should also involve other related data-types, like xsd:gYear or xsd:duration.

Finally, we are currently planning to offer more customisation possibilities
to users. Some examples include the choice of a different merging anchor (cur-
rently forced to id or @id); the possibility of ignoring language tags in the results
(avoiding the presence of a language-value object); and the chance of distinguish-
ing between IRIs (as resource references) and IRIs in lexical forms.



Easy Web API Development with SPARQL Transformer 15

Acknowledgements.

This work has been partially supported by the European Union’s Horizon 2020
research and innovation program within the SILKNOW (grant agreement No.
769504) and MeMAD (grant agreement No. 780069) projects, and by the CLAR-
IAH project of the Dutch Science Foundation (NWO).

References

1. Abburu, S., Babu, G.S.: Format SPARQL Query Results into HTML Report. In-
ternational Journal of Advanced Computer Science and Applications (IJACSA)
4(6), 144–148 (2013)

2. Bergwinkl, T., Luggen, M., elf Pavlik, Regalia, B., Savastano, P., Verborgh, R.:
Interface Specification: RDF Representation, Draft Report. Tech. rep., W3C (2017)

3. Booth, D., Chute, C.G., Glaser, H., Solbrig, H.: Toward Easier RDF. In: W3C
Workshop on Web Standardization for Graph Data. Berlin, Germany (2019)

4. Corby, O., Faron-Zucker, C., Gandon, F.: A generic RDF transformation software
and its application to an online translation service for common languages of linked
data. In: 14th International Semantic Web Conference (ISWC). pp. 150–165. Beth-
lehem, Pennsylvania, USA (2015)

5. Corby, O., Faron-Zucker, C., Gandon, F.: LDScript: a Linked Data Script Lan-
guage. In: 16th International Semantic Web Conference (ISWC). pp. 208–224. Vi-
enna, Austria (2017)

6. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar Approach for Building Web
APIs on top of SPARQL Endpoints. In: International Workhop on Services and
Applications over Linked APIs and Data (SALAD). vol. 1359. CEUR Workshop
Proceedings, Bethlehem, Pennsylvania, USA (2015)

7. Ecma International: ECMAScript 2015 Language Specification. 6th Edition.
ECMA-262. Tech. rep., Ecma International (2015)

8. Fielding, R., Gettys, J., Mogul, J.C., Frystyk Nielsen, H., Masinter, L., Leach,
P.J., Berners-Lee, T.: Hypertext transfer protocol (HTTP/1.1): Header Field Def-
initions. RFC 2616. Tech. rep., Internet Engineering Task Force (2014)

9. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures (2000), PhD Thesis

10. Gandon, F., Michel, F., Corby, O., Buffa, M., Tettamanzi, A., Faron Zucker, C.,
Giboin, A., Cabrio, E., Villata, S.: Graph Data on the Web: extend the pivot don’t
reinvent the wheel. In: W3C Workshop on Web Standardization for Graph Data.
Berlin, Germany (2019)

11. Groth, P., Loizou, A., Gray, A.J., Goble, C., Harland, L., Pettifer, S.: API-centric
Linked Data integration: The Open PHACTS Discovery Platform case study. Web
Semantics: Science, Services and Agents on the World Wide Web 29(0), 12 – 18
(2014)

12. Harris, S., Seaborne, A.: SPARQL 1.1 query language – W3C recommendation.
Tech. rep., W3C (2013)

13. Huelss, J., Paulheim, H.: What SPARQL Query Logs Tell and Do Not Tell About
Semantic Relatedness in LOD. In: Workshop on Negative or Inconclusive Results
in Semantic Web (NoISE). pp. 297–308. Portoroz, Slovenia (2015)

14. Lathuilière, M.: Wikidata SDK. https://github.com/maxlath/wikidata-sdk (2015)



16 P. Lisena et al.

15. Lisena, P., Troncy, R.: Transforming the JSON Output of SPARQL Queries for
Linked Data Clients. In: WWW’18 Companion: The 2018 Web Conference Com-
panion. Lyon, France (2018)

16. Meroño-Peñuela, A., Hoekstra, R.: grlc Makes GitHub Taste Like Linked Data
APIs. In: The Semantic Web – ESWC 2016 Satellite Events. pp. 342–353. Herak-
lion, Greece (2016)

17. Mynarz, J.: sparql-to-jsonld. https://github.com/jindrichmynarz/
sparql-to-jsonld (2016)

18. Nielsen, J.: Usability engineering. Elsevier (1994)
19. Ockeloen, N., de Boer, V., Aroyo, L.: LDtogo: A Data Querying and Mapping

Framework for Linked Data Applications. In: The Semantic Web: ESWC 2013
Satellite Events. pp. 199–203. Montpellier, France (2013)

20. Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services
for the Web of Data. Journal of Universal Computer Science 16(13), 1694––1719
(2010)

21. Rietveld, L., Hoekstra, R.: Man vs. Machine: Differences in SPARQL Queries. In:
4th Workshop on Usage Analysis and the Web of Data (USEWOD). Anissaras,
Greece (2014)

22. Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients. Semantic Web
8(3), 373–383 (2017)

23. Saleem, M., Intizar Ali, M., Mehmood, Q., Hogan, A., Ngonga Ngomo, A.C.: LSQ:
Linked SPARQL Queries Dataset. In: 14th International Semantic Web Conference
(ISWC). pp. 261–269. Bethlehem, Pennsylvania, USA (2015)

24. Seaborne, A.: SPARQL 1.1 query results JSON format – W3C recommendation.
Tech. rep., W3C (2013)

25. Speiser, S., Harth, A.: Integrating Linked Data and Services with Linked Data
Services. In: 8th Extended Semantic Web Conference (ESWC). pp. 170––184. Her-
aklion, Greece (2011)

26. Taelman, R., Vander Sande, M., Verborgh, R.: GraphQLLD: Linked Data Querying
with GraphQL. In: 17th International Semantic Web Conference (ISWC), Poster
& Demo Track. Monterey, California, USA (2018)

27. Taelman, R., Vander Sande, M., Verborgh, R.: Bridges between GraphQL and
RDF. In: W3C Workshop on Web Standardization for Graph Data. Berlin, Ger-
many (2019)

28. Wright, A., Andrews, H.: JSON Schema: A Media Type for Describing JSON Doc-
uments. Tech. rep., Internet Engineering Task Force (2017), https://datatracker.
ietf.org/doc/draft-handrews-json-schema/

29. Zaveri, A., Dastgheib, S., Whetzel, T., Verborgh, R., Avillach, P., Korodi, G.,
Terryn, R., Jagodnik, K., Assis, P., Wu, C., Dumontier, M.: smartAPI: Towards a
more intelligent network of Web APIs. In: 14th Extended Semantic Web Conference
(ESWC). Portoroz, Slovenia (2017)


