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Abstract

Face synthesis from thermal to visible spectrum is fun-
damental to perform cross-spectrum face recognition as it
simplifies its integration in existing commercial face recog-
nition systems and enables manual face verification. In this
paper, a new solution based on cascaded refinement net-
works is proposed. This method generates visible-like col-
ored images of high visual quality without requiring large
amounts of training data. By employing a contextual loss
function during training, the proposed network is inherently
scale and rotation invariant. We discuss the visual percep-
tion of the generated visible-like faces in comparison with
recent works. We also provide an objective evaluation in
terms of cross-spectrum face recognition, where the gener-
ated faces were compared against a gallery in visible spec-
trum using two state-of-the-art deep learning based face
recognition systems. When compared to the recently pub-
lished TV-GAN solution, the performance of the face recog-
nition systems, OpenFace and LightCNN, was improved by
a 42.48% (i.e. from 10.76% to 15.37%) and a 71.43% (i.e.
from 33.606% to 57.612%), respectively.

1. Introduction

Predominantly, law enforcement and security systems
have been focused in the visible spectrum. This pertains to
a large number of applications from biometrics, access con-
trol systems to video surveillance. Particularly, face recog-
nition, one of the most important tasks in these aforemen-
tioned applications, has achieved remarkable performances
due to the uprise of deep learning and the abundant amount
of available data. However, face recognition systems are
prone to fail when employed in unconstrained conditions.
Among the main challenges in visible spectrum-based se-
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curity systems, variable or low illumination conditions have
proven to be some of the major weaknesses of such systems,
particularly that most of the security breaches occur during
night time. A promising approach for detecting potential
threats in total darkness is using thermal imagery. Thermal
imagery detects electromagnetic radiations in the medium
wave MWIR (3 - 8µm) and long wave infrared spectrum
LWIR (8 - 15µm) in which most of the heat energy is emit-
ted by any object [17]. Therefore, it is possible to acquire
a crisp image without any external source of illumination,
based on subtle differences in temperature.

Thermal imaging technology has drastically advanced
during the last couple of decades, while thermal cameras
have evolved to become affordable and user friendly. Even
though thermal imaging solutions are significantly advanc-
ing, they still suffer from poor performances due to low im-
age resolution, lack of color, and poor texture and geomet-
ric information. Inasmuch as exploring thermal imagery is
considerably new, only a few public databases are available,
thus it cannot profit from deep learning technologies to de-
velop reliable face recognition systems operating in ther-
mal spectrum. Particular studies of face recognition have
thoroughly focused on bringing visible and thermal spectra
together to benefit from the advantages of each. This disci-
pline, referred to as cross-spectrum face recognition, aims
in our case of study to identify a person imaged in thermal
spectrum from a gallery containing face images acquired in
the visible spectrum.

In this work, we focus on image synthesis strategy
for cross-spectrum face recognition, consisting in generat-
ing visible-like images from thermal captures that will be
matched against a gallery of visible faces. Opting for this
strategy is essential to enable its integration in existing face
recognition systems as well as manual face verification by
human examiners. We propose using cascaded refinement
networks coupled with contextual loss to synthesize high
quality colored visible images from thermal acquisitions.



The proposed solution is computationally-efficient and in-
herently scale and rotation invariant, thus it does not require
large aligned training sets. Using the VIS-TH database [13]
of simultaneous face acquisition in both visible and ther-
mal spectra, we validate our face synthesis system in dif-
ferent poses and occlusion scenarios. An evaluation of the
generated faces in cross-spectrum face recognition applica-
tion is performed using two different state-of-the-art sys-
tems OpenFace [2] and LightCNN [23].

2. Related work
First attempts to investigate face synthesis from thermal

to visible were conducted by Li et al. [12]. Their work
presents a learning-based framework that takes advantage of
the local linearity in the spatial domain of the image as well
as in the image manifolds. Then, they apply Markov ran-
dom field to organize the image patches and improve the es-
timated visible-like face images. Dou et al. [7] used Canon-
ical Correlation Analysis (CCA) to extract the features in
order to find one-to-one mapping between thermal and visi-
ble faces. The relationship of the two feature spaces is then
learnt using Locally Linear Regression. Finally, Locally
Linear Embedding is utilized to reconstruct the visible-like
face from the converted thermal features.

In the wake of the recent advances in deep learning, sev-
eral works were based on Generative Adversarial Neural
network (GAN) to synthesize visible not only from ther-
mal inputs [26, 22], but also from near-infrared [21, 10],
and polarimetric data [28, 27]. GANs, first introduced by
I. Goodefellow in [9], can learn to generate from any dis-
tribution of data through a contest of two neural networks:
generator and discriminator. The generator aims to maxi-
mize the probability of making the discriminator classify its
output as real. While the discriminator pushes the generator
to generate more realistic data.

Different models can also be used for similar conver-
sion. For examples, deep convolutional Generative Adver-
sarial network (DCGAN)[16] and Boundary Equilibrium
Generative Adversarial Networks (BEGAN) [3]. DCGAN
introduced the Convolution Neural Network (CNN) into
the discriminator and the generator. BEGAN introduced
equilibrium factor that controls the model training by bal-
ancing the discriminator and generator. These GAN mod-
els significantly improved the training stability, but they
did not improve the generated images quality. However,
some GAN approaches such as Cycle-Consistent Adversar-
ial Networks (CycleGAN) [29] and Image-to-Image Trans-
lation with Conditional Adversarial Nets (Pix2Pix) [11]
were able to achieve higher resolution images, but it ends
with adding more complexity to the model. CycleGAN
consists of four neural networks (two generators and two
discriminators). Training such a big model is computation-
ally costly and requires large databases, that are unavailable

for an application like the one dealt with in this paper, to
achieve satisfactory results.

Zhang et al. [28] considered synthesizing colored faces
from thermal images with various head poses and occlu-
sion with eyeglasses. This work used Conditional GANs
inspired from pix2pix system [11] coupled with a closed-set
face recognition loss that led to preserve the face identity in-
formation. A cross-spectrum face recognition evaluation is
performed, using the pre-trained MatConvNet VGG-based
model, and reported a performance improvement of 14.88%
compared to pix2pix system. A recent work by Wang et
al. [22] derived from CycleGAN model [29] incorporates
facial landmark detector loss that depicts face identity pre-
serving features. This system was evaluated using FaceNet
pretrained on public available visible datasets, and has im-
proved cross-spectrum face recognition performance by 3%
compared to CycleGAN system. However, this work is dif-
ferent from our framework since its aim is to generate visi-
ble face images in gray scale and discarded face generation
under challenging conditions such as head pose and occlu-
sion.

3. Proposed method
To generate images, we propose to base our approach

on the cascaded refinement network (CRN) [4]. We chose
the CRN as the basic block for our image generation as it
considers multi-scale information and based on training a
limited number of parameters. This allows for a higher res-
olution generation and less data size dependency in com-
parison to solutions based on GAN. CRN is a convolutional
neural network that consists of inter-connected refinement
modules. Each module consists of only three layers, input,
intermediate, and output layer. The first module considers
the lowest resolution space (4x4 in our case). This reso-
lution is duplicated in the successor modules until the last
module (128x128 in our case), matching the target image
resolution. For more detailed description of the CRN, one
can refer to [4]. An illustration of the image synthesis ap-
proach using CRN is shown in Figure 1. The input thermal
images are processed at different scales and fed into the next
level in the cascade along with the thermal image at the next
scale. Finally, the targeted image (visible in this case) is
synthesized.

To control the training of our CRN network, we used the
contextual loss function (CL) [14]. This choice is based on
our need for: a) a loss function that is robust to not well
aligned data (as in our use-case where input face images are
not uniformly aligned), and b) neglect outliers on the pixel
level (in comparison to pixel level loss [11, 24]). Gramm
loss [8] can satisfy the two aforementioned conditions, how-
ever, unlike CL, it does not constrain the content of the gen-
erated image as it describes the image globally.

The CL function can be calculated between the source



Figure 1: The CRN-based multi-scale approach to transform the thermal image into a visible-like image. Here only three con-
secutive modules are shown as an example. These cascaded modules can be repeated until reaching the targeted destination
resolution.

(thermal image) and the generated images, or between the
target (visible ground-truth image) and the generated im-
ages. The source-generated loss aims at saving the details
of the source image such as detailed boundaries. The target-
generated loss maintains the properties of the target image
in the generated image, e.g. target image style. In our case,
as will be presented in the next section, the source and tar-
get training image pairs are of identical faces. Therefore,
the target-generated loss also maintains the detailed proper-
ties of the object in the source image.

Both losses were calculated between image embeddings
extracted by a pre-trained VGG19 [20] network trained on
the ImageNet database [6]. The total loss is calculated as
given in [14] and formulated as:

LCX(s, t, g, ls, lt) =λ1(−log(CX(Φls
1 (g),Φls(s))))+

λ2(−log(CX(Φlt
2 (g),Φlt(t)))),

(1)

where s, t, and g are the are the source, target, and gen-
erated images respectively. CX is the rotation and scale
invariant contextual similarity [14]. Φ is a perceptual net-
work, VGG19 in our work. Φls(x), Φlt(x) are the embed-
dings vectors extracted from the image x at layer ls and
lt of the perceptual network respectively. Here ls is the
conv4_2 and lt is the conv3_2 and conv4_2 layers,
as motivated in [14]. In our implementation, λ1 = 0.01
and λ2 = 0.99 by checking the resulting generated image
visually. Moreover, as mentioned earlier, because the pairs
of source and target images are of identical faces, and thus
the loss weighted by λ2 maintains the structural details of
the source image. The training was run for 40 epochs, batch
size of one, and 1e-4 learning rate.

4. Experiments and results

In this section, we describe the database used for the
development and the evaluation of our proposed solution.
Then, we detail the evaluation protocol used to assess the

generated data in cross-spectrum face recognition task. Fi-
nally, we present the baselines followed by an analysis of
the obtained results.

4.1. Database

We used the VIS-TH face database [13] for the devel-
opment and the evaluation of our solution. The database
is publicly available and contains face images in both visi-
ble spectrum with pixel resolution of 1920×1080 and ther-
mal spectrum of pixel resolution 160×120 with a spectral
response range of 7.5 - 13.5µm. Unlike the few existing
databases of visible and thermal face, this database is ac-
quired simultaneously using the dual sensor camera Flir
DUO R [1] considering a wide range of facial variations.
The database contains in total 2100 images collected from
50 subjects of different ages, gender, and ethnicities. For
the evaluation, we have considered 5 subsets of the database
split per facial variation as follow:

• Neutral: One single capture acquired with neutral ex-
pression, frontal pose and standard illumination.

• Expression: 6 captures acquired with different face
expressions: smiling, angry, sad, surprised, blinking,
yawning.

• Head pose: 4 captures acquired with different head
poses: up, down, right at 30°, left at 30°.

• Occlusion: 5 captures acquired with varying occlu-
sions: eyeglasses, sunglasses, cap, mouth occluded by
hand, eye occluded by hand.

• Illumination: 5 captures acquired with different illu-
minations: room light, rim light, key light, fill light, all
lights on, all lights off.



4.2. Evaluation protocol

Images, from both visible and thermal spectrum, were
normalized and sampled to 128 × 128. Enabling an eval-
uation of our solution in hands-on scenarios, and consider-
ing that face alignment in thermal spectrum still remains a
challenge itself, the face images were not aligned, thus they
contained slight variable shifts.

Face images from 45 subjects, except for the ones ac-
quired in total darkness, were used for training the face syn-
thesis network. The thermal face images from the remain-
ing 5 subjects were fed to the trained model to synthesis
the visible-like images. This experiment was performed 10
times in order to synthesis all the images contained in the
database without overlapping the test and train images or
identities.

For evaluating the synthesized faces when used in cross-
spectrum face recognition task, we measured the recogni-
tion accuracy of two selected state-of-the-art face recogni-
tion systems:

OpenFace [2] is an implementation of face recogni-
tion system using deep neural networks based on Google’s
FaceNet [19] architecture. The OpenFace network is
trained using the combination of the two largest public
face databases CASIA-WebFace [25] and FaceScrub [15].
The evaluation of OpenFace model provided competitive
performances compared to private state-of-the-art systems.
We use the OpenFace pretrained model to map faces into
128-dimension embeddings. Then, nearest neighbors algo-
rithm is performed using Euclidean distance to discriminate
matching samples.

LightCNN [23] is a new implementation of CNN for
face recognition designed to have fewer trainable param-
eters and to handle noisy labels. This network intro-
duces a new concept of maxout activation in each convo-
lutional layer, called Max-Feature-Map, for feature filter
selection. This network has achieved better performance
than CNNs while reducing computational costs and storage
space. When evaluated on the LFW database, LightCNN
achieved face recognition accuracy of 99.33% outperform-
ing OpenFace that obtained 92.92% of accuracy. We used
the learned network with 29-layers to obtain embeddings
of 256-dimension from face images. Embeddings extracted
from gallery and probe templates are compared using cosine
similarity.

4.3. Baselines

The performance of our image synthesis solution in
cross-spectrum face recognition is compared to the follow-
ing baselines:

Visible We perform face recognition in the visible spec-
trum, by considering the neutral face image as gallery and
the rest of the facial variations as probe images. This will
report the performance of the face recognition systems used

in this paper for the evaluation of the generated images. Be-
sides, this baseline will depict the utility of thermal to visi-
ble face synthesis in hands-on scenarios, in particular when
the face is acquired in poorly lit environment.

Thermal Here, we conduct cross-spectrum face recogni-
tion without any modifications applied to the thermal data.
Simply put, we consider as gallery set the neutral face im-
age acquired in visible spectrum and as probe set all the
other face variations in acquired in thermal spectrum. This
baseline will quantify the gap between the two spectra.

Isola et al. [11], referred to as Pix2Pix, learns the map-
ping from one domain to another, by training a Condi-
tional GAN using Least Absolute Deviations (L1) loss func-
tion. The generator is based on U-Net [18] architecture, an
encoder-decoder with skip connections between mirrored
layers in the encoder and decoder stacks. Whilst the dis-
criminator aims to classify real images from generated ones.
The training was run for 85 epochs, batch size of one, and
2e-4 learning rate.

Zhang et al. [26], have designed a network, called TV-
GAN, notably to generate visible-like face images from
thermal captures. This work is inspired from Pix2Pix, as
it uses the same exact network for the generator. However,
the authors proposed a multi-task discriminator, that doesn’t
only classify real from generated images, but also performs
a closed-set face recognition to obtain identity loss. This
aims to generate visible-like images while preserving iden-
tity information from the thermal inputs. The training was
run for 65 epochs, batch size of one, and 2e-4 learning rate.

4.4. Results

The images in Fig. 2 illustrate, in each row, a sample
from different facial variations of synthesized visible-like
images from thermal captures. The first column shows
the source thermal faces. From the second to the fourth
column, we present visible-like faces synthesized using
pix2pix model by Isola et al. [11], TV-GAN model by
Zhang et al. [26] and finally our model based on cascaded
refinement network, respectively. A detailed analyses of the
generated image quality is presented in [5]. The last column
shows the ground truth visible faces.

The different face images with frontal face pose were
synthesized with satisfying visual quality. Although we
note that our proposed model has succeeded in generating
more informative details (e.g. eyes, mouth) compared to the
pix2pix and TV-GAN results, it does not always generate
the correct attributes such as race and gender. We can ob-
serve that all generated visible-like faces differ in skin color
from the ground-truth images, and this applies to all synthe-
sis models. This is due to the fact that thermal images do not
contain texture and color information, thus, it is difficult to
infer the skin color tone from the thermal prints. Another vi-
sual distortion can be noted on the visible-like samples gen-



erated by our proposed model in the second and the fourth
row of Figure 2. These samples show some added facial-
hair around the mouth and the jaws area. This observation
can be reasoned by the unbalanced distribution of gender
representation within the training data. Third and sixth row
display samples from different head poses, where we can
remark major artifacts in the synthesized visible-like faces
when compared to the frontal head pose. As for images ac-
quired with occlusion, illustrated in the fourth and seventh
row, they were synthesized in relative good quality. How-
ever, we perceive some confusion in generating faces with
eyeglasses. This can be justified by the fact that the train-
ing data contains samples with eyeglasses and others with
sunglasses that both have similar thermal print. Overall,
it is noteworthy that our proposed model provides visible-
like faces that are the most visually pleasing compared to
pix2pix and TV-GAN models.

Thermal Isola et al.[11] Zhang et al.[26] Ours Ground truth

Figure 2: Selected samples of synthesized face images un-
der challenging scenarios

In order to evaluate the generated visible-like face im-
ages, we have performed cross-spectrum face recognition

Thermal Isola et al.[11] Zhang et al.[26] Ours Ground truth

Figure 3: Samples of generated images acquired in total
darkness

using two different systems. The evaluation experiment
consists in comparing, in the first place, the generated neu-
tral face against the ground truth and then matching the gen-
erated faces from each of the facial variation subsets against
the visible neutral face. We report, in table 1 and table 2,
the recognition accuracy of the OpenFace and LightCNN,
respectively. To get a deeper understanding of the perfor-
mance of the two face recongition systems used to evaluate
the results obtained, we plot the receiver operating charac-
teristic (ROC) curves, in Fig. 4 and Fig. 5, corresponding to
some selected samples from different face variations.

We note from the reported results that all synthesis mod-
els outperformed the thermal, which proves the efficiency of
synthesizing visible-like in reducing spectral gap between
visible and thermal data. TV-GAN reports better perfor-
mances that pix2pix confirming the efficacy of the iden-
tity loss in preserving the subject identity when generating
visible-like images. Foremost, our proposed solution, based
on cascaded refinement networks, outperforms all the mod-
els by a large margin, particularly observed on LightCNN
results, and that applies to all facial variations. This is
mainly due to the limitations of GAN networks that are
known for being data hungry. However, our system suc-
ceeded in generating relatively high quality visible-like im-
ages despite the limited size of the training data. Further-
more, both pix2pix and TV-GAN models are based on L1
loss function making them very sensitive to image misalign-



Visible Thermal Isola et al. [11] Zhang et al. [26] Ours
Neutral 100 4 8 20 20
Expression 97.66 3.33 7.66 11 17.33
Head Pose 75.5 2.5 4 8 9.5
Occlusion 80 2 7.2 8.4 10
Illumination 80.8 3.2 10.4 11.6 20
Average 86.79 3.01 8.49 10.76 15.37

Table 1: Cross-spectrum face recognition accuracy across multiple facial variations using OpenFace system

(a) (b) (c)
Figure 4: ROC curves of cross-spectrum face recognition based on OpenFace system for selected samples from: (a) expres-
sion variation, (b) head pose variation, (c) occlusion variation.

ment. Whilst our proposed system uses contextual loss
which makes it inherently scale and rotation invariant.

To highlight the main motivation of this work, we dis-
play, in Fig. 3, samples that are acquired in operative scenar-
ios of thermal sensors usage, where face images were cap-
tured in total darkness. As we were expecting, the poor or
absent illumination does not impact the generated visible-
like images. In fact, we succeeded in synthesizing images
with informative facial attributes that are absent in the visi-
ble spectrum.

Table 3 reports the accuracy of OpenFace and LightCNN
face recognition systems. We plot also, in Fig. 6 the ROC
curves of the two evaluation systems in the absolute dark
condition. We can clearly observe that our proposed model
not only outperforms other face synthesis models but also it
provides significantly higher performance compared to the
visible spectrum. This affirms the efficacy of face synthesis
from thermal to visible in most of the challenging scenarios
such as poorly lit environments.

5. Conclusion

Although several efforts have been devoted lately for
face synthesis from thermal to visible spectrum, it is still
challenging considering the shortage of the available data
designed for this task. We present, in this paper, a
novel solution based on cascaded refinement networks, that
succeeded in generating high-quality color visible image,
trained on limited size database. The proposed network is

based on the use of contextual loss function, enabling it to
be inherently scale and rotation invariant. Despite the exis-
tence of challenging facial variations such as occlusions, ex-
pression, head pose and illumination, our solution has pro-
duced the most visually pleasing synthesized face images
when compared to existing work. We also performed ap-
plicability evaluation of our solution in cross-spectrum face
recognition task. The reported results have shown that our
system outperforms recent face synthesis systems. Under-
lining the motivation of face synthesis from thermal to vis-
ible spectrum, we have proved that face recognition perfor-
mance reported on the synthesized images is significantly
higher than the one reported on visible spectrum when op-
erated in poorly lit environments, as it was improved by
37.5% (i.e. from 16% to 22%) and 33.33% (i.e. from
42% to 56%) evaluated by OpenFace and LightCNN, re-
spectively.
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Visible Thermal Isola et al. [11] Zhang et al. [26] Ours
Neutral 100 32 48 54 82
Expression 99.66 23 37.33 38.33 67.66
Head Pose 80.5 12.5 14.5 15.5 30
Occlusion 98.8 14.4 16.4 25 44.8
Illumination 87.2 15.6 29.6 35.2 63.6
Average 95.232 19.5 29.166 33.606 57.612

Table 2: Cross-spectrum face recognition accuracy across multiple facial variations using LightCNN system

(a) (b) (c)
Figure 5: ROC curves of cross-spectrum face recognition based on LightCNN system for selected samples from: (a) expres-
sion variation, (b) head pose variation, (c) occlusion variation.

Visible Thermal Isola et al. [11] Zhang et al. [26] Ours
OpenFace 16 2 10 14 22
LightCNN 42 16 28 36 56

Table 3: Cross-spectrum face recognition accuracy in operative scenario where samples were acquired in total darkness

(a) (b)
Figure 6: ROC curves of cross-spectrum face recognition in dark environment: (a) OpenFace system (b) LightCNN system.
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