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Abstract—We consider caching of VoD contents in a cellular
network in which each base station is equipped with a cache.
Videos are partitioned into chunks according to a layered coding
mechanism and the goal is to place chunks in caches such that
the expected utility is maximized. The utility depends on the
quality at which a user is requesting a file and the chunks that
are available. We impose alpha-fairness across files and qualities.
We develop a distributed asynchronous algorithm for deciding
which chunks to store in which cache.

I. INTRODUCTION

A promising means to increase the efficiency of Video-on-
Demand (VoD) services in a cellular network is to proactively
cache data in the base stations: part of the popular content will
be stored at the base stations and the backhaul will be used
only when the stored content is refreshed preferably at off-
peak hours. The challenge is then to optimally place content
in the base stations.

In this paper, we look at the problem from a utility
perspective and develop a low-complexity distributed and
asynchronous content placement algorithm for VoD systems.
More specifically, we consider a layered coding (LC) mech-
anism, enabling to serve videos at different qualities. Users
request content at a specified quality and the resulting utility
is inversely proportional to the number of bits that need to
be downloaded over the backhaul due to non-cached layers
for the requested quality. The rationale is that latency, and
therefore, quality of experience, is proportional to the size
of this download. We impose alpha-fairness across files and
qualities [12]. We provide an algorithm that optimizes the
content placement in caches while keeping the communication
between caches in the network to a minimum as the caches
need to exchange information only with their neighbours, i.e.,
with those whom they have overlapping coverage area with.

Next, we provide a brief discussion work that is most closely
related to the current paper. In [6], Dehghan et al. have
provided a utility-driven caching for a single cache, where
each content has been associated with a utility, which is a
function of the corresponding content hit probability. In [3]
we have developed a distributed asynchronous algorithm that
deals with the miss probability minimization by casting the
problem into the framework of potential games for general
networks, and showed that our algorithm converges to a Nash
equilibrium, and in fact to the best Nash equilibrium in

most practical scenarios. In [4] the developed algorithm has
been used for the residual bandwidth minimization of VoD
systems with several video partitioning mechanisms. In [1],
Applegate et al. have presented an approach for optimal
content placement for a large-scale VoD by formulating the
problem as a mixed integer problem. The main difference
between the present work; and [6] is the consideration of a
network with many caches instead of a single cache, and [3],
[4] is the considered performance measure, and [1] is the
concept of video partitioning and the heterogeneity of the
video popularities over the network. See [3], [10] for a more
exhaustive review of the existing caching work.

Our main contributions in this paper are as follows:
• We use layered coding (LC) mechanism to divide VoD

contents into chunks and consider alpha-fair utility func-
tions to represent a versatile notion of fairness for user
satisfaction throughout the whole network;

• We provide a distributed asynchronous algorithm which
can be interpreted as giving the best response dynamics
in a potential game.

• We provide the optimal solution to the best response
dynamics via Lagrangian;

• We evaluate our algorithm through numerical examples.
We study the optimal content placement probabilities for
different degrees of fairness.

Let us outline the organization of the paper. In Section II we
give the formal model and problem definitions. In Section III
we provide the game formulation of the problem, analyze the
structures of the best response dynamics and Nash equilibria.
In Section IV, we present practical implementations of our
low-complexity algorithm and show the resulting optimal
content placements for different notions of fairness of utility
in a real network.

II. MODEL AND PROBLEM DEFINITION

We consider a network of N base stations that are located in
the plane R2. We will use the notation [1 : N ] = {1, . . . , N}
and Θ = P ([1 : N ]) \ ∅, where P ([1 : N ]) is the power
set of [1 : N ]. We specify the geometric configuration of
the network through As, s ∈ Θ, which denotes the area of
the plane that is covered only by the caches in subset s,
namely As = (∩`∈sĀ`)∩(∩` 6∈sĀc`), where Ā` is the complete
coverage region of cache `.



As a special case we will consider the case that all base
stations have the same circular coverage region with radius r.
In this case we specify the location of each base station, with
xm for the location of base station m ∈ [1 : N ]. We then
obtain Ām as the disc of radius r around xm.

Each base station is equipped with a cache that can be used
to store videos from a content library Cv = {c1, . . . , cJ},
where J < ∞. Each element cj represents a video, where
j is the file (video) index. The size of video cj is denoted by
wj .

Next, videos are partitioned into chunks. We assume
that video cj is partitioned into Q chunks and conse-
quently, the chunk library consists of video chunks Cc =
{c1,1, . . . , c1,Q, . . . , cJ,1, . . . , cJ,Q}, where J,Q < ∞. Each
element cj,q represents a video chunk, where j is the file
(video) index and q is the chunk index. The chunk size for
the element cj,q is denoted by wj,q .

The motivation behind partitioning videos into chunks is as
follows. In this work we will consider LC mechanism [14]. If
the video is partitioned by using LC mechanisms (e.g., MPEG-
2, MPEG-4, etc.), the video chunks represent either the base
layer or one of the enhancement layers. The base layer is
necessary for the media stream to be decoded. Accordingly, the
further enhancement layers are applied to improve the video
quality. Hence, for the layered coding mechanism, the element
cj,1 represents the base layer for video j, and cj,2 is the first
enhancement layer required to obtain a better video quality,
and so forth. For the LC mechanism, the chunk size wj,q will
then depend on the average base size of the different video
qualities, and the total size of the video j with the highest
video quality is equal to

wj =

Q∑
q=1

wj,q. (1)

Our interest is in users located in the plane over the area that
is covered by the base stations, i.e., uniformly distributed in
Acov = ∪s∈ΘAs. The probability of a user in the plane being
covered by caches s ∈ Θ (and is not covered by additional
caches) is denoted by ps = |As|/|Acov|. A user located in As,
s ∈ Θ can connect to all caches in subset s, and has access
to all video chunks stored in these caches.

We assume that there are R video quality levels. The
probability that video j is requested with video quality ρ by
a user at xu ∈ s is denoted by aj,ρ,s. Here ρ = 1 refers
to the video with the lowest quality and ρ = R refers to
the case where the video has the highest quality. There is an
obvious relation between the required chunks and the desired
video quality. For the LC mechanism, files can be divided
into Q = R layers with the proper size selections (wj,q) and
receiving all layers gives the video with the highest quality.

We assume that the distribution for the requested video’s
quality depends on the user’s location, and the requested video
quality for a user located in s ∈ Θ follows a known and fixed
probability mass function (pmf) f (s)(ρ).

For the file popularities, we assume that a1 ≥ a2 ≥
· · · ≥ aJ . We assume that video popularities do not vary as
ρ changes. Even though any popularity distribution can be
used, most of our numerical results will be based on the Zipf
distribution for the video popularities for any video quality ρ.
In that case, for any video quality indicator ρ, the probability
that a user will ask for content j is equal to

aj =
j−γ∑J
j=1 j

−γ
, (2)

where γ > 0 is the Zipf parameter.
Since aj and f (s)(ρ) represent statistically independent

random variables, we conclude that the probability that video
j is requested by a user located at xu ∈ s with video quality
ρ is equal to

aj,ρ,s =
j−γ∑J
j=1 j

−γ
f (s)(ρ). (3)

Content is placed in caches using knowledge of the request
statistics aj,ρ,s, but without knowing the actual request made
by the user. We denote the placement policy for cache m as

b
(m)
j,q :=

{
1, if cj,q is stored in cache m,
0, if cj,q is not stored in cache m, (4)

and the overall placement strategy for cache m as

B(m) =


b
(m)
1,1 . . . b

(m)
J,1

...
. . .

...
b
(m)
1,Q . . . b

(m)
J,Q


as a Q × J matrix. The overall placement strategy for the
network is denoted by B =

[
B(1); . . . ; B(N)

]
as an Q×J×N

three-dimensional matrix.
Caches have capacity K, i.e.,

J∑
j=1

Q∑
q=1

wj,qb
(m)
j,q ≤ K,∀m.

For clarity of presentation, we assume homogeneous capacity
for the caches. However, our work can immediately be ex-
tended to the network topologies where caches have different
capacities (i.e., for the case where cache m ∈ [1 : N ] has
capacity Km).

Next,we are interested in designing a cache placement strat-
egy that optimizes the sum of utilities over all files throughout
the network for LC mechanism.

We will use α-fair utility functions, each yielding different
notions of fairness [13]. Then, the sum of utilities over all files
throughout the network is given by

U(B) =
∑
s∈Θ

J∑
j=1

Q∑
ρ=1

psaj,ρ,s
h

1−αρ,s
j,ρ,s

1− αρ,s
, (5)

where αρ,s is the fairness parameter for the videos requested
with quality ρ by the users located in subregion s ∈ Θ, and

hj,ρ,s =

∑ρ
q=1 wj,q

[
1−

∏
`∈s

(
1− b(`)j,q

)]
∑ρ
q=1 wj,q

. (6)



Here hj,ρ,s defines the portion of the requested video j with
video quality ρ that is available to the user located in s ∈ Θ.
Since the data available at the cache do not give rise to any
load in the backhaul, the transmission rate has a direct relation
with this parameter and the content stored in caches will be
transmitted to the user with lower latency.

Our goal is to find the optimal placement strategy maximiz-
ing the sum of utilities of the contents throughout the overall
network as follows:

Problem 1.

max U(B)

s.t.

J∑
j=1

Q∑
q=1

wj,qb
(m)
j,q ≤ K, ∀m, (7)

b
(m)
j,q ∈ [0, 1], ∀j, q,m. (8)

It is easy to verify that Problem 1 is not concave. We
will provide a distributed asynchronous algorithm to address
Problem 1 in which we iteratively update the placement policy
at each cache. In [3], [4] we have showed that we can define
an algorithm that can be viewed as the best response dynamics
in a potential game for similar non-concave problems. We will
present a similar algorithm here. We make use of the following
notation. Denote by B(−m) the placement policies of all
caches except cache m. We will write U(B(m),B(−m)) to
denote U (B). Also, for the sake of simplicity for the potential
game formulation that will be presented in the following
section, let U (m) denote the sum of utilities of the users within
coverage region of cache m, i.e.,

U (m)
(
B(m),B(−m)

)
=
∑
s∈Θ
m∈s

J∑
j=1

R∑
ρ=1

psaj,ρ,s
h

1−αρ,s
j,ρ,s

1− αρ,s

=
∑
s∈Θ
m∈s

J∑
j=1

R∑
ρ=1

psaj,ρ,s

(∑ρ
q=1wj,q

[
1−
(

1−b(m)
j,q

)
ζ(m)(j,q)

]
∑ρ
q=1 wj,q

)1−αρ,s

1− αρ,s
,

=

J∑
j=1

Q∑
q=1

∑
s∈Θ
m∈s

psaj,q,s

(∑q
t=1 wj,t

[
1−
(

1−b(m)
j,t

)
ζ(m)(j,t)

]
∑q
t=1 wj,t

)1−αρ,s

1− αρ,s

=

J∑
j=1

Q∑
q=1

∑
s∈Θ
m∈s

psaj,q,s
η

1−αρ,s
j,q,s

1− αρ,s
(9)

where

ηj,q,s =

∑q
t=1 wj,t

[
1−

(
1− b(m)

j,t

)
ζ(m) (j, t)

]
∑q
t=1 wj,t

, (10)

and

ζ(m) (j, q) =
∏

`∈s\{m}

(
1− b(`)j,q

)
. (11)

III. POTENTIAL GAME FORMULATION

In this section we provide a distributed asynchronous al-
gorithm to address Problem 1 in which we iteratively update
the placement policy at each cache. We will show that this
algorithm can be formulated as providing the best response
dynamics in a potential game.

In our algorithm, each cache tries selfishly to maximize the
utilities of the users within its coverage region U (m) defined
in (9). Given a placement B(−m) by the other caches, cache
m solves for B(m) in

Problem 2.

max U (m)
(
B(m),B(−m)

)
s.t.

J∑
j=1

Q∑
q=1

wj,qb
(m)
j,q ≤ K, (12)

b
(m)
j,q ∈ [0, 1], ∀j, q. (13)

Each cache continues to optimize its placement strategy
until no further improvements can be made. At this point B is
a Nash equilibrium strategy that maximizes the overall utility
satisfying

U (m)(B(m),B(−m)) ≥ U (m)(B̄(m), B̄(−m)), ∀m,B(m).
(14)

We will refer to this game as the content placement game
and demonstrate in the next subsections that this game is a
potential game [9] with many nice properties.

A. Convergence analysis

In this section, we will prove for that if the caches repeatedly
update their placement strategies it is guaranteed to converge
to a Nash equilibrium in finite time. Note that the order of the
updates is not important as long as all caches are scheduled
infinitely often.

Theorem 1. The content placement game defined by payoff
function (9) is a potential game with the potential function
given in (5). If we schedule each cache infinitely often, the
best response dynamics converges to a Nash equilibrium in
finite time.

Proof. In order to show that the game is a potential with the
potential function U (B), it is easy to verify that

U (m)
(
B̄(m),B(−m)

)
− U (m)

(
B(m),B(−m)

)
= U

(
B̄(m),B(−m)

)
− U

(
B(m),B(−m)

)
,

which completes the proof of the first statement. The proof
states that the improvement in the utility by the best response
after each update is equal to the improvement in the utility in
the overall network. The detailed analysis is trivial and skipped
due to space constraints.

Now, since there exists only a finite number of placement
strategies, none of the caches will be missed in the long-run.
Moreover, each non-trivial best response provides a positive



improvement in the potential function in a potential game.
Hence, we are guaranteed to converge to a Nash equilibrium
in finite time for both games.

B. Structure of the best response dynamics

In this subsection we will analyze the structure of the best
response dynamics. We will show that solution to Problem 2
can be obtained by solving a concave optimization problem
and we provide the general solution for different fairness
parameters αρ,s via Lagrangian duality.

Since the feasible solution set to Problem 2 is convex and
the objective function is strictly concave and continuous, the
optimal solution exists and this optimal solution is a unique
maximizer of the function. We can write the Lagrangian
function as

L(B, λ,M,N) = U (m)
(
B(m),B(−m)

)
− λ

 J∑
j=1

Q∑
q=1

wj,qb
(m)
j,q −K

+

J∑
j=1

Q∑
q=1

µj,qb
(m)
j,q

−
J∑
j=1

Q∑
q=1

νj,q

(
b
(m)
j,q − 1

)
,

where B(m),M,N ∈ RJ×Q+ , and λ ∈ R.
In order to achieve the maximum in L(B, λ,M,N), B(m)

must satisfy

∂U (m)
(
B(m),B(−m)

)
∂b

(m)
j,q

− λwj,q + µj,q − νj,q = 0, (15)

which is easy to solve since the Lagrangian is separable with
respect to b(m)

j,q .

From the nature of the problem, b(m)
j,q ’s can take values

between 0 and 1; which yields to a probabilistic placement in
caches. This yields to the conclusion that one way of possibly
storing chunks in the caches is by using the obtained optimal
probabilities based on the optimal solution at the off-peak
hours [2], [5], [11]. Another strategy is to use time-to-live
(TTL) caches [7], [6] by setting timers to control the storage
probabilities of different chunks.

C. Structure of Nash equilibria

In this subsection we provide insight into the structure of the
Nash equilibria of the content placement game. We know from
the previous subsection that the games is a potential game.
Hence, the Nash equilibria for the game corresponds to the
optimal placement strategies satisfy the solutions of the dual
problem of Problem 1.

Corollary 1. Let B̄ denote a placement strategy at a Nash
equilibrium of the content placement game. Then, B̄ satisfies
the solution obtained via (15) for any αρ,s and ∀m =
1, . . . , N .

Algorithm 1: Random Order Best Response (ROBR)

initialize B(m) = 0Q,J , ∀m ∈ [1 : N ];
set imp(m) = 1, ∀m ∈ [1 : N ] ;
set imp = [imp(1), . . . , imp(N)];
while imp 6= 0 do

m = Uniform(N);
Set imp(m) = 0;
Solve Problem 2 for cache m and find B̄(m) using
the information coming from neighbours;

Compute U (m)(B̄(m),B(−m));
if U (m)(B̄(m),B(−m))− U (m)(B(m),B(−m)) 6= 0

then
imp(m) = 1

end
end
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Fig. 1. Locations of Base Stations from OpenMobileNetwork dataset.

D. A real wireless network: Berlin network

In this section we will evaluate our theoretical results for
the topology of a real wireless network. We have taken the
positions of the base stations provided by the OpenMobileNet-
work project [15]. The base stations are located in the area
974×812 ms around the TU-Berlin campus. We will consider
these base stations as our caches with certain cache capacities.
The coverage radius of the base stations is equal to r = 700 m.
The locations of the base stations and their corresponding
coverage areas are shown in Figure 1.

IV. PERFORMANCE EVALUATION

In this section we will present practical implementations of
our algorithm for the content placement game and evaluate
our theoretical results according to a network of caches with
their geographical locations following a real wireless network.

A. The ROBR algorithm

We will use the Random Order Best Response (ROBR)
algorithm [3] for the content placement game to maximize the
user utilities. The basic idea of our algorithm is to repeatedly
perform best response dynamics presented in Section III-B.
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Fig. 2. The cached portions of the chunks for different notions of fairness.

TABLE I
VIDEO QUALITY SPECIFICATIONS

Video quality
(ρ)

Base Size
(MB/min)

Video Size
(GB)

1 (240p) 2.56 0.1024
2 (360p) 4.30 0.1720
3 (480p) 6.79 0.2716
4 (720p) 15.49 0.6196
5 (1080p) 32.70 1.3080

For ROBR algorithm, at each iteration step, a random cache
is chosen uniformly from the set [1 : N ] and updated by
applying best response dynamics. We assume that all caches
are initially empty (i.e., B(m) = 0Q,J , where 0Q,J represents a
Q×J zero matrix, ∀m ∈ [1 : N ].). The algorithm stops when
U (m)

(
B(m),B(−m)

)
converges. ROBR algorithm is shown in

Algorithm 1.
We consider the content library of size J = 200. We assume

a Zipf distribution for the video popularities, setting γ = 1 and
taking aj according to (2). We consider the case where videos
have R = 5 different video qualities. We use the video quality
bandwidth requirements and the base size data given in [8] for
the chunk sizes, where the base size is the average of the sizes
of a large set of tracked videos in certain video qualities given
in megabytes per minute (MB/min). We assume that videos in
the content library are all 40 minutes long. The corresponding
video quality specifications are shown in Table I. The first
column indicates the video quality index ρ, the second column
indicates the base sizes of the videos and the third column
indicates the sizes of the 40 minutes long videos.

The videos are partitioned into Q = 5 chunks by using LC
mechanism. From the third column of Table I, it immediately
follows that wj,1 = 102.4 MB, wj,2 = 69.6 MB, wj,3 = 99.6
MB, wj,4 = 348.0 MB, and wj,5 = 688.4 MB, ∀j ∈ [1, J ].
Finally, we set K = 6.54 GB, i.e., each cache can store five
1080p movies.

Throughout the network we use a uniform distribution
for the requested video qualities, i.e., f (s)(ρ) = 1/5, ρ ∈
1, 2, 3, 4, 5.

In Figure 2 the cached portions of the chunks throughout
the whole network is shown. For αρ,s = 0, the optimal
placement strategy is designed in order to minimize the

residual bandwidth. Therefore, both sizes of the chunks and
the file popularities are affecting the optimal placement. As
αρ,s increases, the effect of video popularities on the optimal
solution becomes less effective; in fact, when αρ,s → ∞,
the video popularities becomes completely ineffective and the
chunks for different videos at the same layer are all stored
with equal probability, yielding max-min fairness. Note that
in this case the chunk sizes are still taken into account since
the chunk sizes are already embedded in hj,ρ,s.
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