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Abstract
ASVspoof, now in its third edition, is a series of

community-led challenges which promote the development
of countermeasures to protect automatic speaker verification
(ASV) from the threat of spoofing. Advances in the 2019 edi-
tion include: (i) a consideration of both logical access (LA)
and physical access (PA) scenarios and the three major forms
of spoofing attack, namely synthetic, converted and replayed
speech; (ii) spoofing attacks generated with state-of-the-art neu-
ral acoustic and waveform models; (iii) an improved, controlled
simulation of replay attacks; (iv) use of the tandem detection
cost function (t-DCF) that reflects the impact of both spoofing
and countermeasures upon ASV reliability. Even if ASV re-
mains the core focus, in retaining the equal error rate (EER)
as a secondary metric, ASVspoof also embraces the growing
importance of fake audio detection. ASVspoof 2019 attracted
the participation of 63 research teams, with more than half of
these reporting systems that improve upon the performance of
two baseline spoofing countermeasures. This paper describes
the 2019 database, protocols and challenge results. It also out-
lines major findings which demonstrate the real progress made
in protecting against the threat of spoofing and fake audio.
Index Terms: spoofing, automatic speaker verification,
ASVspoof, presentation attack detection, fake audio.

1. Introduction
The ASVspoof initiative1 [1, 2, 3] spearheads research in anti-
spoofing for automatic speaker verification (ASV). Previous
ASVspoof editions focused on the design of spoofing coun-
termeasures for synthetic and converted speech (2015) and re-
played speech (2017). ASVspoof 2019 [4], the first edition to
focus on all three major spoofing attack types, extends previous
challenges in several directions, not least in terms of adressing
two different use case scenarios: logical access (LA) and phys-
ical access (PA).

The LA scenario involves spoofing attacks that are injected
directly into the ASV system. Attacks in the LA scenario are
generated using the latest text-to-speech synthesis (TTS) and
voice conversion (VC) technologies. The best of these algo-
rithms produce speech which is perceptually indistinguishable
from bona fide speech. ASVspoof 2019 thus aims to deter-
mine whether the advances in TTS and VC technology pose
a greater threat to the reliability of ASV systems, as well as
spoofing countermeasures. For the PA scenario, speech data is
assumed to be captured by a microphone in a physical, rever-
berant space. Replay spoofing attacks are recordings of bona
fide speech which are assumed to be captured, possibly surrep-

titiously, and then re-presented to the microphone of an ASV

1http://www.asvspoof.org

system using a replay device. In contrast to the 2017 edition of
ASVspoof, the 2019 edition PA database is constructed from a
far more controlled simulation of replay spoofing attacks that is
also relevant to the study of fake audio detection in the case of,
e.g. smart home devices.

While the equal error rate (EER) metric of previous edi-
tions is retained as a secondary metric, ASVspoof 2019 mi-
grates to a new primary metric in the form of the ASV-centric
tandem decision cost function (t-DCF) [5]. While the challenge
is still a stand-alone spoofing detection task which does not re-
quire expertise in ASV, adoption of the t-DCF ensures that scor-
ing and ranking reflects the comparative impact of both spoofing
and countermeasures upon an ASV system.

This paper describes the ASVspoof 2019 challenge, the LA
and PA scenarios, the evaluation rules and protocols, the t-DCF
metric, the common ASV system, baseline countermeasures
and challenge results.

2. Database
The ASVspoof 2019 database2 encompasses two partitions for
the assessment of LA and PA scenarios. Both are derived
from the VCTK base corpus3 which includes speech data cap-
tured from 107 speakers (46 males, 61 females). Both LA
and PA databases are themselves partitioned into three datasets,
namely training, development and evaluation which comprise
the speech from 20 (8 male, 12 female), 10 (4 male, 6 female)
and 48 (21 male, 27 female) speakers respectively. The three
partitions are disjoint in terms of speakers and the recording
conditions for all source data are identical. While the training
and development sets contain spoofing attacks generated with
the same algorithms/conditions (designated as known attacks),
the evaluation set also contains attacks generated with differ-
ent algorithms/conditions (designated as unknown attacks). Re-
liable spoofing detection performance therefore calls for sys-
tems that generalise well to previously-unseen spoofing attacks.
With full descriptions available in the ASVspoof 2019 evalua-
tion plan [4], the following presents a summary of the specific
characteristics of the LA and PA databases.

2.1. Logical access
The LA database contains bona fide speech and spoofed speech
data generated using 17 different TTS and VC systems. Data
used for the training of TTS and VC systems also comes from
the VCTK database but there is no overlap with the data con-
tained in the 2019 database. Six of these systems are desig-
nated as known attacks, with the other 11 being designated

2http://dx.doi.org/10.7488/ds/2555
3http://dx.doi.org/10.7488/ds/1994
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known and 11 unknown spoofing attacks. Among the 6 known
attacks there are 2 VC systems and 4 TTS systems. VC sys-
tems use a neural-network-based and spectral-filtering-based
approaches [6]. TTS systems use either waveform concatena-
tion or neural-network-based speech synthesis using a conven-
tional source-filter vocoder [7] or a WaveNet-based vocoder [8].
The 11 unknown systems comprise 2 VC, 6 TTS and 3 hybrid
TTS-VC systems and were implemented with various wave-
form generation methods including classical vocoding, Griffin-
Lim [9], generative adversarial networks [10], neural wave-
form models [8, 11], waveform concatenation, waveform fil-
tering [12], spectral filtering, and their combination.

2.2. Physical access
Inspired by work to analyse and improve ASV reliability in re-
verberant conditions [13, 14] and a similar approach used in the
study of replay reported in [15], both bona fide data and spoofed
data contained in the PA database are generated according to a
simulation [16, 17, 18] of their presentation to the microphone
of an ASV system within a reverberant acoustic environment.
Replayed speech is assumed first to be captured with a recording
device before being replayed using a non-linear replay device.
Training and development data is created according to 27 differ-
ent acoustic and 9 different replay configurations. Acoustic con-
figurations comprise an exhaustive combination of 3 categories
of room sizes, 3 categories of reverberation and 3 categories
of speaker/talker4-to-ASV microphone distances. Replay con-
figurations comprise 3 categories of attacker-to-talker record-
ing distances, and 3 categories of loudspeaker quality. Replay
attacks are simulated with a random attacker-to-talker record-
ing distance and a random loudspeaker quality corresponding
to the given configuration category. Both bona fide and replay
spoofing access attempts are made with a random room size,
reverberation level and talker-to-ASV microphone distance.

Evaluation data is generated in the same manner as train-
ing and development data, albeit with different, random acous-
tic and replay configurations. The set of room sizes, levels
of reverberation, talker-to-ASV microphone distances, attacker-
to-talker recording distances and loudspeaker qualities, while
drawn from the same configuration categories, are different to
those for the training and development set. Accordingly, while
the categories are the same and known a priori, the specific im-
pulse responses and replay devices used to simulate bona fide
and replay spoofing access attempts are different or unknown.
It is expected that reliable performance will only be obtained
by countermeasures that generalise well to these conditions, i.e.
countermeasures that are not over-fitted to the specific acoustic
and replay configurations observed in training and development
data.

3. Performance measures and baselines
ASVspoof 2019 focuses on assessment of tandem systems con-
sisting of both a spoofing countermeasure (CM) (designed by
the participant) and an ASV system (provided by the organis-
ers). The performance of the two combined systems is evaluated
via the minimum normalized tandem detection cost function
(t-DCF, for the sake of easier tractability) [5] of the form:

t-DCFmin
norm = min

s
{βP cm

miss(s) + P cm
fa (s) } , (1)

4From hereon we refer to talkers in order to avoid potential confu-
sion with loudspeakers used to mount replay spoofing attacks.

where β depends on application parameters (priors, costs) and
ASV performance (miss, false alarm, and spoof miss rates),
whileP cm

miss(s) andP cm
fa (s) are the CM miss and false alarm rates

at threshold s. The minimum in (1) is taken over all thresholds
on given data (development or evaluation) with a known key,
corresponding to oracle calibration. While the challenge rank-
ings are based on pooled performance in either scenario (LA or
PA), results are also presented when decomposed by attack. In
this case, β depends on the effectiveness of each attack. In par-
ticular, with everything else being constant, β is inversely pro-
portional to the ASV false accept rate for a specific attack: the
penalty when a CM falsely rejects bona fide speech is higher in
the case of less effective attacks. Likewise, the relative penalty
when a CM falsely accepts spoofs is higher for more effective
attacks. Thus, while (1) appears to be deceptively similar to
the NIST DCF, β (hence, the cost function itself) is automati-
cally adjusted according to the effectiveness of each attack. Full
details of the t-DCF metric and specific configuration parame-
ters as concerns ASVspoof 2019 are presented in [4]. The EER
serves as a secondary metric. The EER corresponds to a CM
operating point with equal miss and false alarm rates and was
the primary metric for previous editions of ASVspoof. Without
an explicit link to the impact of CMs upon the reliability of an
ASV system, the EER may be more appropriate as a metric for
fake audio detection, i.e. where there is no ASV system.

The common ASV system uses x-vector speaker embed-
dings [14] together with a probabilistic linear discriminant
analysis (PLDA) [19] backend. The x-vector model used to
compute ASV scores required to compute the t-DCF is pre-
trained5 with the Kaldi [20] VoxCeleb [21] recipe. The original
recipe is modified to include PLDA adaptation using disjoint,
bona fide, in-domain data. Adaptation was performed sepa-
rately for LA and PA scenarios since bona fide recordings for
the latter contain additional simulated acoustic and recording
effects. The ASV operating point, needed in computing β in
(1), is set to the EER point based on target and nontarget scores.

ASVspoof 2019 adopted two CM baseline systems. They
use a common Gaussian mixture model (GMM) back-end clas-
sifier with either constant Q cepstral coefficient (CQCC) fea-
tures [22, 23] (B01) or linear frequency cepstral coefficient
(LFCC) features [24] (B02).

4. Challenge results
Table 1 shows results6 in terms of the t-DCF and EER for pri-
mary systems, pooled over all attacks. For the LA scenario,
27 of the 48 participating teams produced systems that outper-
formed the best baseline B02. For the PA scenario, the per-
formance of B01 was bettered by 32 of the 50 participating
teams. There is substantial variation in minimum t-DCF and
EER for both LA and PA scenarios. The top-performing sys-
tem for the LA scenario, T05, achieved a t-DCF of 0.0069 and
EER of 0.22%. The top-performing system for the PA scenario,
T28, achieved a t-DCF of 0.0096 and EER of 0.39%. Confirm-
ing observations reported in [5], monotonic increases in the t-
DCF that are not always mirrored by monotonic increases in the
EER show the importance of considering the performance of the
ASV and CM systems in tandem. Table 1 also shows that the
top 7 (LA) and 6 (PA) systems used neural networks whereas 9
(LA) and 10 (PA) systems used an ensemble of classifiers.

5http://kaldi-asr.org/models/m7
6As for previous editions of ASVspoof, results are anonymised, with

individual teams being able to identify their position in the evaluation
rankings via an identifier communicated separately to each of them.

as unknown attacks. The training and development sets con-
tain known attacks only whereas the evaluation set contains 2
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Table 1: Primary system results. Results shown in terms of min-
imum t-DCF and the CM EER [%]. IDs highlighted in grey
signify systems that used neural networks in either the front- or
back-end. IDs highlighted in bold font signify systems that use
an ensemble of classifiers.

ASVspoof 2019 LA scenario
# ID t-DCF EER # ID t-DCF EER
1 T05 0.0069 0.22 26 T57 0.2059 10.65
2 T45 0.0510 1.86 27 T42 0.2080 8.01
3 T60 0.0755 2.64 28 B02 0.2116 8.09
4 T24 0.0953 3.45 29 T17 0.2129 7.63
5 T50 0.1118 3.56 30 T23 0.2180 8.27
6 T41 0.1131 4.50 31 T53 0.2252 8.20
7 T39 0.1203 7.42 32 T59 0.2298 7.95
8 T32 0.1239 4.92 33 B01 0.2366 9.57
9 T58 0.1333 6.14 34 T52 0.2366 9.25
10 T04 0.1404 5.74 35 T40 0.2417 8.82
11 T01 0.1409 6.01 36 T55 0.2681 10.88
12 T22 0.1545 6.20 37 T43 0.2720 13.35
13 T02 0.1552 6.34 38 T31 0.2788 15.11
14 T44 0.1554 6.70 39 T25 0.3025 23.21
15 T16 0.1569 6.02 40 T26 0.3036 15.09
16 T08 0.1583 6.38 41 T47 0.3049 18.34
17 T62 0.1628 6.74 42 T46 0.3214 12.59
18 T27 0.1648 6.84 43 T21 0.3393 19.01
19 T29 0.1677 6.76 44 T61 0.3437 15.66
20 T13 0.1778 6.57 45 T11 0.3742 18.15
21 T48 0.1791 9.08 46 T56 0.3856 15.32
22 T10 0.1829 6.81 47 T12 0.4088 18.27
23 T54 0.1852 7.71 48 T14 0.4143 20.60
24 T38 0.1940 7.51 49 T20 1.0000 92.36
25 T33 0.1960 8.93 50 T30 1.0000 49.60

ASVspoof 2019 PA scenario
# ID t-DCF EER # ID t-DCF EER
1 T28 0.0096 0.39 27 T29 0.2129 8.48
2 T45 0.0122 0.54 28 T01 0.2129 9.07
3 T44 0.0161 0.59 29 T54 0.2130 11.93
4 T10 0.0168 0.66 30 T35 0.2286 7.77
5 T24 0.0215 0.77 31 T46 0.2372 8.82
6 T53 0.0219 0.88 32 T34 0.2402 10.35
7 T17 0.0266 0.96 33 B01 0.2454 11.04
8 T50 0.0350 1.16 34 T38 0.2460 9.12
9 T42 0.0372 1.51 35 T59 0.2490 10.53
10 T07 0.0570 2.45 36 T03 0.2593 11.26
11 T02 0.0614 2.23 37 T51 0.2617 11.92
12 T05 0.0672 2.66 38 T08 0.2635 10.97
13 T25 0.0749 3.01 39 T58 0.2767 11.28
14 T48 0.1133 4.48 40 T47 0.2785 10.60
15 T57 0.1297 4.57 41 T09 0.2793 12.09
16 T31 0.1299 5.20 42 T32 0.2810 12.20
17 T56 0.1309 4.87 43 T61 0.2958 12.53
18 T49 0.1351 5.74 44 B02 0.3017 13.54
19 T40 0.1381 5.95 45 T62 0.3641 13.85
20 T60 0.1492 6.11 46 T19 0.4269 21.25
21 T14 0.1712 6.50 47 T36 0.4537 18.99
22 T23 0.1728 7.19 48 T41 0.5452 28.98
23 T13 0.1765 7.61 49 T21 0.6368 27.50
24 T27 0.1819 7.98 50 T15 0.9948 42.28
25 T22 0.1859 7.44 51 T30 0.9998 50.19
26 T55 0.1979 8.19 52 T20 1.0000 92.64

4.1. CM analysis
Corresponding CM detection error trade-off (DET) plots (no
combination with ASV) are illustrated for LA and PA scenar-
ios in Fig. 1. Highlighted in both plots are profiles for the two
baseline systems B01 and B02, the best performing primary
systems for teams T05 and T28, and the same teams’ single
systems. Also shown are profiles for the overall best perform-
ing single system for the LA and PA scenarios submitted by
teams T45 and, again, T28 respectively. For the LA scenario,
very few systems deliver EERs below 5%. A dense concentra-
tion of systems deliver EERs between 5% and 10%. Of interest
is the especially low EER delivered by the primary T05 system,
which delivers a substantial improvement over the same team’s
best performing single system. Even the overall best performing
single system of T45 is some way behind, suggesting that reli-

(a)

(b)

Figure 1: CM DET profiles for (a) LA and (b) PA scenarios.

able performance for the LA scenario depends upon the fusion
of complementary sub-systems. This is likely due to the diver-
sity in attack families, namely TTS, VC and hybrid TTS-VC
systems. Observations are different for the PA scenario. There
is a greater spread in EERs and the difference between the best
performing primary and single systems (both from T28) is much
narrower. That a low EER can be obtained with a single system
suggests that reliable performance is less dependent upon effec-
tive fusion strategies. This might be due to lesser variability (as
compared to that for the LA) in replay spoofing attacks; there is
only one family of attack which exhibits differences only in the
level of convolutional channel noise.

4.2. Tandem analysis
Fig. 2 illustrates boxplots of the t-DCF when pooled (left-most)
and when decomposed separately for each of the spoofing at-
tacks in the evaluation set. Results are shown individually
for the best performing baseline, primary and single systems
whereas the boxes illustrate the variation in performance for the
top-10 performing systems. Illustrated to the top of each box-
plot are the EER of the common ASV system (when subjected
to each attack) and the median CM EER across all primary sys-
tems. The ASV system delivers baseline EERs (without spoof-
ing attacks) of 2.48% and 6.47% for LA and PA scenarios re-
spectively.

As shown in Fig. 2(a) for the LA scenario, attacks A10, A13
and, to a lesser extent, A18, degrade ASV performance while
being challenging to detect. They are end-to-end TTS with Wa-
veRNN and a speaker encoder pretrained for ASV [25], VC
using moment matching networks [26] and waveform filtering
[12], and i-vector/PLDA based VC [27] using a DNN glottal
vocoder [28], respectively. Although A08, A12, and A15 also
use neural waveform models and threaten ASV, they are easier
to detect than A10. One reason may be that A08, A12, A15
are pipeline TTS and VC systems while A10 is optimized in an
end-to-end manner. Another reason may be that A10 transfers
ASV knowledge into TTS, implying that advances in ASV also
improve the LA attacks. A17, a VAE-based VC [29] with wave-
form filtering, poses little threat to the ASV system, but it is the
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Figure 2: Boxplots of the top-10 performing LA (a) and PA (b) ASVspoof 2019 submissions. Results illustrated in terms of t-DCF
decomposed for the 13 (LA) and 9 (PA) attacks in the evaluation partion. ASV under attack and the median CM EER [%] of all the
submitted systems are shown above the boxplots. A16 and A19 are known attacks.

most difficult to detect and lead to the highest t-DCF. All the
above attacks are new attacks not included in ASVspoof 2015.

More consistent trends can be observed for the PA sce-
nario. Fig. 2(b) shows the t-DCF when pooled and decom-
posed for each of the 9 replay configurations. Each attack
is a combination of different attacker-to-talker recording dis-
tances {A,B,C}X, and replay device qualities X{A,B,C} [4].
When subjected to replay attacks, the EER of the ASV sys-
tem increases more when the attacker-to-talker distance is low
(near-field effect) and when the attack is performed with higher
quality replay devices (fewer channel effects). There are similar
observations for CM performance and the t-DCF; lower quality
replay attacks can be detected reliably whereas higher quality
replay attacks present more of a challenge.

5. Discussion
Care must be exercised in order that t-DCF results are inter-
preted correctly. The reader may find it curious, for instance,
that LA attack A17 corresponds to the highest t-DCF while,
with an ASV EER of 3.92%, the attack is the least effective.
Conversely, attack A16 provokes an ASV EER of almost 65%7,
yet the median t-DCF is among the lowest. So, does A17 —
a weak attack — really pose a problem? The answer is affir-
mative: A17 is problematic, as far as the t-DCF is concerned.
Further insight can be obtained from the attack-specific weights
β of (1). For A17, a value of β ≈ 26, indicates that the in-
duced cost function provides 26 times higher penalty for reject-
ing bona fide users, than it does for missed spoofing attacks
passed to the ASV system. The behavior of primary system
T05 in Fig. 1(a), with an aggressively tilted slope towards the
low false alarm region, may explain why the t-DCF is near an
order of magnitude better than the second best system.

6. Conclusions
ASVspoof 2019 addressed two different spoofing scenarios,
namely LA and PA, and also the three major forms of spoofing
attack: synthetic, converted and replayed speech. The LA sce-
nario aimed to determine whether advances in countermeasure
design have kept pace with progress in TTS and VC technolo-
gies and whether, as result, today’s state-of-the-art systems pose
a threat to the reliability of ASV. While findings show that the
most recent techniques, e.g. those using neural waveform mod-
els and waveform filtering, in addition to those resulting from
transfer learning (TTS and VC systems borrowing ASV tech-
niques) do indeed provoke greater degradations in ASV perfor-
mance, there is potential for their detection using countermea-

7Scores produced by spoofing attacks are higher than those of gen-
uine trials.

sures that combine multiple classifiers. The PA scenario aimed
to assess the spoofing threat and countermeasure performance

via simulation with which factors influencing replay spoofing
attacks could be carefully controlled and studied. Simulations
consider variation in room size and reverberation time, replay
device quality and the physical separation between both talkers
and attackers (making surreptitious recordings) and talkers and
the ASV system microphone. Irrespective of the replay config-
uration, all replay attacks degrade ASV performance, yet, reas-
suringly, there is promising potential for their detection.

Also new to ASVspoof 2019 and with the objective of as-
sessing the impact of both spoofing and countermeasures upon
ASV reliability, is adoption of the ASV-centric t-DCF metric.
This strategy marks a departure from the independent assess-
ment of countermeasure performance in isolation from ASV
and a shift towards cost-based evaluation. Much of the spoofing
attack research across different biometric modalities revolves
around the premise that spoofing attacks are harmful and should
be detected at any cost. That spoofing attacks have potential for
harm is not in dispute. It does not necessarily follow, however,
that every attack must be detected. Depending on the appli-
cation, spoofing attempts could be extremely rare or, in some
cases, ineffective. Preparing for a worst case scenario, when
that worst case is unlikely in practice, incurs costs of its own, i.e.
degraded user convenience. The t-DCF framework enables one
to encode explicitly the relevant statistical assumptions in terms
of a well-defined cost function that generalises the classic NIST
DCF. A key benefit is that the t-DCF disentangles the roles of
ASV and CM developers as the error rates of the two systems
are still treated independently. As a result, ASVspoof 2019 fol-
lowed the same, familiar format as previous editions, involving
a low entry barrier — participation still requires no ASV exper-
tise and participants need submit countermeasures scores only
— the ASV system is provided by the organisers and is common
to the assessment of all submissions. With the highest number
of submissions in ASVspoof’s history, this strategy appears to
have been a resounding success.
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