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Abstract—Millimeter-Wave (mm-Wave) and very large mul-
tiple antenna systems (VLMAS) are two key technologies in
the deployment of Fifth Generation (5G) mobile communication
systems. In order to exploit all the benefits of VLMAS, spatial
and temporal (ST) features must be estimated and exploited to
compute the precoding/decoding matrices. In the literature, a
practical channel estimation approach is proposed by assuming
that the spatial features are completely unknown, leading to non-
parametric estimation in which antenna array calibration is not
required. Additionally, when the signal-to-noise ratio (SNR) is
not so high, a low-rank (LR) version of the estimated channel
is proposed that provides better performance than the full-rank
(FR) one in terms of bias-variance trade-off in the mean squared
error (MSE). However, previous work assumes that spatial and
temporal characteristics of the channel can be estimated sepa-
rately. Then, the performance is degraded in realistic channels. In
this paper, we propose an alternative way to characterize the FR
estimated channel using a joint ST covariance matrix, combined
with a low-complexity semi-parametric spatial response and delay
estimation technique. Moreover, we propose an automatic rank-
selector (ARS) based on the MSE in order to provide the best
LR channel estimation for each scenario. Numerical results show
that the proposed technique outperforms existing approaches in
the literature.

I. INTRODUCTION

The new Fifth Generation (5G) of mobile communications

is starting to be deployed. This new air interface will revo-

lutionize the speed of data links, enabling new applications

with a great data consumption. In order to accomplish this

goal, millimeter-Wave (mm-Wave) [1] frequency bands are

ideal for 5G due to the fact that an abundant spectrum is

available. However, the transmission at these bands suffer from

significantly higher path loss and susceptibility to blockage.

Hence, very large multiple antenna systems (VLMAS) [2]

are required in order to improve the reliability of the link.

Furthermore, in order to fully-exploit all the benefits of

VLMAS, coherent demodulation schemes are adopted where

the precoding/decoding matrices, for compensating the effects

of the channel and interference, are computed thanks to an

accurate knowledge of the channel in the spatial and temporal

(ST) domains.

In the literature, there are several efficient channel estima-

tion techniques for mm-Wave VLMAS, such as: compressive

sensing [3] and subspace methods [4]. However, a common

issue of all techniques consists in assuming a parametric

approach for the direction of arrival (DoA) of each tap of

the frequency-selective channel. This fact implies the need

of a calibration process of the system. Morever, previous

works does not adapt well to the different signal-to-noise ratio

(SNR) conditions that may affect the dynamic propagation

environment in mm-Wave. Even though the VLMAS will

compensate the large and changing path loss, the channel must

be estimated before this compensation is effective.

One of the most appealing proposal given in [5], where

it proposes a subspace method assuming that the spatial

features are completely unknown, leading to non-parametric

estimation in which antenna array calibration is not required.

Furthermore, it exploits a low-rank (LR) algebraic structure

of the channel by projecting the estimated channel on the ST

covariance matrices. When the signal-to-noise ratio (SNR) is

not so high, the LR version of the estimated channel provides

a better performance than the full-rank (FR) one in terms

of bias-variance trade-off in the mean squared error (MSE).

However, this method is not accurate enough due to the fact

that they assumed that there is no correlation between spatial

and temporal channel behavior. This assumption holds if and

only if the receiving signal of all taps of the multi-path

channel, with different time of arrival (ToA), have the same

DoA at the base station (BS), which is not true in realistic

scenarios.

In our work, we will improve [5], starting from the same

system model and assumptions, improving the performance of

the LR estimated channel. A multi-slot scenario is used, where

the slow-varying components of the channel response (angles

and delays) are estimated, while the fast-varying ones (fading

coefficients) are tracked at each slot. Unlike [5], we obtain

a joint ST covariance matrix, which is capable of obtaining

the full ST features of the VLMAS. Moreover, given the

computed joint ST covariance matrix and applying a subspace

method, we propose three estimation techniques of DoA and

ToA considering a semi-parametric spatial response and delay

estimation. The first method is based on one dimension (1D)

multiple signal classification (MUSIC) [6] algorithm, that it



is a low-complexity method that provides a very good perfor-

mance in high SNR scenarios. The second method is based

on iterative maximum likelihood estimation (MLE) [7], and it

provides a very good performance in any scenario. However,

its complexity is higher than the previous one. The third

method is the hybrid one, where it combines the previous two

methods and is capable of obtaining a good performance with

a reduced complexity. Finally, we also propose an automatic

rank selection (ARS) method which is able to select the best

LR channel for each scenario based on the computation of the

mean square error (MSE).

The remainder of the paper is organized as follows. Section

II provides the model of the considered VLMAS. Section III

describes the estimation of the joint ST covariance matrix.

Section IV provide the different methods for the estimation of

DoA and ToA. Section V describes the ARS method. Section

VI presents some numerical results to verify our theoretical

analysis and provides a better understanding of the system

performance. Finally, in section VII, some conclusions are

pointed out.

Notation: matrices, vectors and scalar quantities are denoted

by boldface uppercase, boldface lowercase, and normal letters,

respectively. IM is the identity matrix of size (M ×M).
0M×N is the zero matrix of size (M ×N). tr {· } denotes

the matrix trace operation. The superscript (· )H denotes

Hermitian. ⊗ denotes the Kronecker product of two matrices.

⊙ denotes the Khatri-Rao product of two matrices. E {· }
represents the expected value. Var {· } denotes the variance.

CN (0, σ2) represents the circularly-symmetric and zero-mean

complex normal distribution with variance σ2. ||· ||2F denotes

the squared Frobenius norm. PA = A
(
AHA

)−1
AH is the

matrix projector of A and P⊥
A = IM − PA is its orthogonal

matrix projector.

II. SYSTEM MODEL

We consider a time-slotted wireless communication system

where a single-antenna user equipment (UE) transmits data to

a BS equipped with Nr antennas. The received signal at the

BS in the l-th pilot sequence Y (l) (Nr ×Ns) out of Nl pilot

sequences is given by

Y (l) = H (l)X (l) +N (l) , (1)

where H (l) (Nr ×Nt) is the block-fading frequency-selective

single-input multiple-output (SIMO) channel with temporal

support Nt, X (Nt ×Ns) denotes the training sequence of

length Ns organized in a form of Nt one sample-delayed repli-

cas and N (l) (Nr ×Ns) =
[
n1 (l) · · · nNr

(l)
]

denotes

the additive white Gaussian noise (AWGN), and we assume

that the noise is temporally and spatially uncorrelated. Hence,

E
{
ni (l)n

H
i+m (l)

}
= δ (m)σ2

nINr
, where we consider that

all antennas have the same noise power σ2
n.

According to [5], the channel H (l) can be modeled as

H (l) = AD (l)GT , (2)

where

D (l) (Np ×Np) = diag (d (l)) , (3)

and d (l) is a vector that contains the Np coefficients of the

multi-path channel distributed according to

d (l) (Np × 1) ∼ CN (0Np×1,Σd), (4)

Σd = E

{
d (l) (d (l))

H
}
= diag

([
σ2
1 , · · · , σ

2
Np

])
. (5)

Note that σ2
i denotes the average power of the i-th tap of the

power delay profile (PDP). Additionally,

A (Nr ×Np) =
[
a1 · · · aNp

]
, (6)

G (Nt ×Np) =
[
g1 · · · gNp

]
, (7)

where ai = a (θi) denotes the array response of the BS at

the i-th tap, and gi = g (τi) = [gα (τ − τi)]↓α represents the

convolution of the transmitter pulse and the matched filter at

the receiver side of the i-th tap, where α is the decimation

factor. Note that, we assume that the shape of gi is perfectly

known. However, τi and ai are completely unknown and they

must be estimated.

Given (1), where X (l) denotes a pilot sequence, the esti-

mated channel is given as

Ĥ (l) = Ryx (l)R
−1
xx = H (l) + ∆H (l) , (8)

Ryx (l) =
1

Ns

Y (l)XH (l) , (9)

Rxx =
1

Ns

X (l)XH (l) . (10)

The MSE of the channel estimation σ2
∆h can be derived as

σ2
∆h = E

{∥∥∥Ĥ (l)−H (l)
∥∥∥
2

F

}
=

= tr
(
E
{
∆h (l)∆hH (l)

})
=

Nrσ
2
n

Ns

tr
(
R−1

xx

)
,

(11)

where ∆h (l) = vec
(
Ĥ (l)−H (l)

)
.

III. ESTIMATION OF THE JOINT ST COVARIANCE MATRIX

Given (2), the vectored version of it is given by

h (l) (Nh × 1) = vec (H (l)) = (G⊙A)d (l) = Sd (l) ,
(12)

where Nh = NrNt and

S (Nh ×Np) =
[
g1 ⊗ a1 . . . gNp

⊗ aNp

]
. (13)

The joint ST covariance matrix of ĥ (l) = h (l) + ∆h (l)
can be defined as

Σ
ĥ
= E

{
ĥ (l) ĥH (l)

}
= Σh +Σ∆h, (14)

where

Σh = E
{
h (l)hH (l)

}
= SΣdS

H = VΛVH =

=

Nh∑

i=1

λiviv
H
i =

Np∑

i=1

λiviv
H
i = VSΛSV

H
S ,

(15)



where V and Λ denote the matrices of eigen-vectors and

eigen-values, respectively. Note that, only Np out of Nh eigen-

values are different from zero. This fact enables the reduction

of the noise by using a subspace technique.

Applying VHV = INh
, (14) can be developed as

Σ
ĥ
= VΛVH +

σ2
∆h

Nh

INh
= V

(
Λ+

σ2
∆h

Nh

INh

)
VH . (16)

Regarding (15), V =
[
VS V∆

]
and

Λ+
σ2
∆h

Nh

INh
=

[
ΛS 0Np×(Nh−Np)

0(Nh−Np)×Np
0(Nh−Np)×(Nh−Np)

]
+

+
σ2
∆h

Nh

[
INp

0Np×(Nh−Np)

0(Nh−Np)×Np
I(Nh−Np)

]
.

(17)

Therefore, (16) can be derived as

Σ
ĥ
= VS

(
ΛS +

σ2
∆h

Nh

INp

)
VH

S +
σ2
∆h

Nh

V∆V
H
∆ =

= VSΛ
′
SV

H
S +

σ2
∆h

Nh

V∆V
H
∆ .

(18)

Inspecting (12) and (18), we can see that S and VS belong

to the same subspace, due to the fact that both of them contain

the full information of all DoA and ToA of each tap.

However, in a realistic scenario, we do not have as many

slots as needed in order to compute (16). Hence, given Nl

slots, the estimated version of (16) is given by

Σ̂
ĥ
=

1

Nl

Nl∑

l=1

ĥ (l) ĥH (l) = V̂Λ̂′V̂H =

= V̂SΛ̂
′
SV̂

H
S + V̂∆Λ̂∆V̂

H
∆ .

(19)

IV. ESTIMATION OF DOA AND TOA

In order to obtain the DoA and the ToA of each tap, we must

obtain Ŝ, which requires to solve the following Least-Square

(LS) minimization problem

min
ai,τi,d(l)

Nl∑

l=1

∣∣∣
∣∣∣ĥ (l)− Sd (l)

∣∣∣
∣∣∣
2

F
. (20)

Placing d̂ (l) =
(
SHS

)−1
SH ĥ (l) in (20), the argument of

the minimization problem can be transformed as

Nl∑

l=1

∣∣∣
∣∣∣ĥ (l)−PSĥ (l)

∣∣∣
∣∣∣
2

F
=

Nl∑

l=1

∣∣∣
∣∣∣P⊥

S ĥ (l)
∣∣∣
∣∣∣
2

F
=

=

Nl∑

l=1

tr
(
ĥH (l)P⊥

S ĥ (l)
)
.

(21)

Using (21) and the property tr (AB) = tr (BA), (20) can be

simplified as

min
ai,τi

tr

(
P⊥

S

Nl∑

l=1

ĥ (l) ĥH (l)

)
= min

aj ,τj
tr
(
P⊥

S Σ̂ĥ

)
. (22)

Inspecting (22), we can see that the true S will guarantee

that projecting the estimated joint ST covariance matrix Σ̂
ĥ

in the orthogonal projector of S (P⊥
S ) will produce a global

minimum.

A. MUSIC-1D method

Given (22), we realize that it is very complicated to optimize

it in terms of S. Hence, as we mentioned before, using the

property that S and V̂S belong to the same subspace, an

equivalent minimization problem to (22) can be formulated

as

min
ai,τi

∣∣∣
∣∣∣S−P

V̂S
S

∣∣∣
∣∣∣
2

F
, s.t. ||ai|| = 1. (23)

Note that we added a constraint to our minimization problem

in order to avoid the trivial solution.

The argument of (23) can be simplified as

∣∣∣
∣∣∣S−P

V̂S
S

∣∣∣
∣∣∣
2

F
=

∣∣∣
∣∣∣P

V̂∆
S

∣∣∣
∣∣∣
2

F
= tr

(
SHP

V̂∆
S
)
=

= tr
(
P

V̂∆
SSH

)
,

(24)

where we use that

P⊥

V̂S
= INh

− V̂SV̂
H
S = V̂∆V̂

H
∆ = P

V̂∆
. (25)

Inspecting in (24), we can clearly see that it is quadratic

in S, reducing the complexity of the minimization problem.

Moreover, the trace operator decouples (24) into the sum of

Np cost functions as

Np∑

i=1

f (ai, τi) = tr
(
SHP

V̂∆
S
)
=

Np∑

i=1

sHi P
V̂∆

si. (26)

Using the definition given in (13), f (ai, τi) can be manipu-

lated as

f (ai, τi) =
(
gH
i ⊗ aHi

)
P

V̂∆
(gi ⊗ ai) =

= aHi
(
gH
i ⊗ INr

)
P

V̂∆
(gi ⊗ INr

)ai = aHi F (τi)ai.
(27)

Hence, (23) can be simplified as

min
ai,τi

Np∑

i=1

aHi F (τi)ai, s.t. ||ai|| = 1. (28)

As we mentioned before, we assume that the ai is com-

pletely generic. Hence, (24) can be solved by the eigen-value

and eigen-vector decomposition as

F (τi)VF = VFΛF , (29)

ΛF = diag
([
λF
1 · · · λF

Nr

])
, VF =

[
vF
1 · · · vF

Nr

]
,

(30)

where the optimum vector for ai is given by the eigen-vector

of F (τi) which corresponds to the lowest eigen-value as

a
opt
i = vF

u , u = argmin
1<u<Nr

[
λF
1 · · · λF

Nr

]
. (31)

Substituting a
opt
i in (28), we can estimate all the values of

τ̂i performing one dimensional search as

τ̂i = min
τi

f
(
a
opt
i , τi

)
= min

τi
f (τi) , ∀i ∈ {1, . . . , Np} .

(32)

Once we have obtained all values of τ̂i, we can compute its

corresponding vector â
opt
i and the matrix Ŝ.



B. Iterative MLE method

In order to obtain the best performance of the estimated

channel, we propose an iterative method based on MLE. The

argument of (22) can be manipulated as

tr
(
P⊥

S Σ̂ĥ

)
= tr

(
Σ̂

ĥ

)
− tr

(
PSΣ̂ĥ

)
. (33)

Hence, (22) can be transformed into

max
ai,τi

tr
(
PSΣ̂ĥ

)
, s.t. ||ai|| = 1. (34)

We propose an alternative way of defining PS as

PS = PSī
+Ppi

, (35)

where Sī (Nh ×Np − 1) is S deleting its i-th column and Ppi

denotes the matrix projector of pi (Nh × 1) = P⊥
Sī
si.

This alternative way of defining PS is forcing us to se-

quentially compute each column of Ŝ and at the same time

canceling the effects of the other taps for each iteration. Hence,

the argument of (34) for each iteration and the i-th column of

Ŝ is transformed into

tr

(
P⊥

Sī
sis

H
i P⊥

Sī

sHi P⊥
Sī
si

Σ̂
ĥ

)
=

sHi P⊥
Sī
Σ̂

ĥ
P⊥

Sī
si

sHi P⊥
Sī
si

. (36)

Note that, this method implies that we have to execute the

minimization problem (36) Np times for each iteration, and

in each iteration we improve the estimation of S. Hence, if

we compare the complexity of this method with the previous

one, the complexity is increased by Np ×Ni times where Ni

denotes the number of iterations.

Given (36), using again the definition of (13), we obtain

that

max
ai,τi

fi (ai, τi) s.t. ||ai|| = 1, (37)

where

fi (ai, τi) =
aHi Fn

i (τi)ai
aHi Fd

i (τi)ai
, (38)

Fn
i (τi) =

(
gH
i ⊗ INr

)
P⊥

Sī
Σ̂

ĥ
P⊥

Sī
(gi ⊗ INr

) , (39)

Fd
i (τi) =

(
gH
i ⊗ INr

)
P⊥

Sī
(gi ⊗ INr

) , (40)

Finally, we assume again that ai is generic, therefore, (36)

can be solved by the generalized eigen-value and eigen-vector

decomposition as

Fn
i (τi)VF = Fd

i (τi)VFΛF , (41)

where the optimum vector for ai is given by the eigen-vector

which corresponds to the highest eigen-value as

a
opt
i = vF

u , u = argmax
1<u<Nr

[
λF
1 · · · λF

Nr

]
. (42)

Substituting a
opt
i in (38), we can estimate only one τ̂i

searching in fi (τi). Hence, the expression is given as

τ̂i = max
τi

fi
(
a
opt
i , τi

)
= max

τi
fi (τi) . (43)

The estimation of {âi, τ̂i} ∀1 ≤ i ≤ Np must be improved

in the following iterations.

C. Hybrid method

The two previous methods have their own strengths and

weaknesses. MUSIC-1D is a low-complexity method which

only has a great performance in high SNRs. Iterative MLE

provides a great performance in any scenario with a consider-

able complexity. Therefore, we propose the hybrid one which

consists in the combination of both of them in order to trade-

off performance and complexity.

Firstly, we use the MUSIC-1D method in order to compute

a preliminary Ŝ. Then, we use the iteration MLE method in

order to improve the estimation. Note that, Ŝ provided by

MUSIC-1D method may have N ′
p 6= Np columns. If N ′

p > Np

we keep only the best Np ones which corresponds to the lowest

values of f (τ̂i). However, if N ′
p < Np, the iterative MLE

method will compute first the missing columns of it, and then,

it will improve the estimation in the following iterations. As

we can see later in the numerical results, only one additional

iteration of MLE is needed in order to achieve the convergence

of Ŝ.

V. AUTOMATIC RANK SELECTION (ARS)

Once we have Ŝ, we propose an ARS algorithm based on

the selection of the best columns of Ŝ in order to minimize

the MSE. Note that the number of selected columns (rank) is

denoted by Nk, where 1 ≤ Nk < Np. Therefore, (12) can be

decomposed as

h (l) = Sd (l) =
[
Sk Sk̄

] [dk (l)
dk̄ (l)

]
, (44)

where Sk (Nh ×Nk) and dk (l) (Nk × 1) denote the LR ver-

sion of S and d (l), respectively; and Sk̄ (Nh ×Np −Nk)
and dk̄ (l) (Np −Nk × 1) are the complementary ones. Note

that, the Nk columns of Sk correspond with the strongest

coefficients of Σd (see (5)).

In order to reduce the complexity of the algorithm, we

analyze the MSE to obtain some insight on the best rank to

use. For the ease of the analysis, we assume that Ŝ = S.

Hence, the MSE of the FR projected version of the estimated

channel is given by

σ2
S∆h = E

{∣∣∣
∣∣∣PSĥ− h

∣∣∣
∣∣∣
2

F

}
= E

{
||PS∆h||2F

}
=

Np

Nh

σ2
∆h,

(45)

and the MSE of the LR projected version can be expressed as

σ2
Sk∆h = E

{∣∣∣
∣∣∣PSk

ĥ− h

∣∣∣
∣∣∣
2

F

}
, (46)

where its argument can be derived as

PSk
ĥ− h = − (Skdk (l) + Sk̄dk̄ (l))+

+ (Skdk (l) +PSk
Sk̄dk̄ (l) +PSk

∆h) =

= −P⊥
Sk
Sk̄dk̄ (l) +PSk

∆h.

(47)



Assuming that the channel estimation error (noise) is indepen-

dent of the channel itself, (46) can be derived as

σ2
Sk∆h = E

{∣∣∣∣P⊥
Sk
Sk̄dk̄ (l)

∣∣∣∣2
F

}
+

Nk

Nh

σ2
∆h =

= E {fbias (Nk, l)}+
Nk

Nh

σ2
∆h.

(48)

Inspecting (48), its second term can be easily computed

given the SNR. However, the first term involves an expectation

operator and it will cause a negative impact in the system

in terms of latency. Therefore, we propose to use directly

fbias (Nk, l) for each iteration and each rank, instead of com-

puting its expected value.

VI. NUMERICAL RESULTS

In this section, we show several simulation results in order

to provide a better understanding of our proposals.

A. Simulation parameters

In Table I we provide the numeric values to our de-

fined parameters. The selected multi-path channel model

is given in Table II. The SNR is defined as SNR =

E

{
||H (l)||2F

}
/(Nrσ

2
n).

TABLE I
SIMULATION PARAMETERS

Nr 10 antennas α ∆f 10× 60KHz

Nl 20 slots Constellation QPSK

Ns 100 symbols Np 5 taps

Tx-Rx pulse shape Raised cosine filter roll-off 0.25

TABLE II
PDP

i 1 2 3 4 5

σ
2

i
[dB] -1 0 -3 -5 -7

τi[ms] 0 0.5 1.7 2.4 5

According to [5], the antenna array response is given by

[a (θi)]r = ad (θi, r) am (θi, r) , 1 ≤ i ≤ Np, 1 ≤ r ≤ Nr,
(49)

where ad (θi, r) and am (θi, r) are the directivity and the array

mainfold, respectively. We assume that the structure of the

antenna array at the BS is circular, hence, the directivity and

mainfold are detailed as

ad (θ, r) = 1.8 cos1.6
(
θ −

2π

Nr

(r − 1)

)
, (50)

am (θ, r) = exp

(
j
drNr

λ

(
1− cos

(
θ −

2π

Nr

(r − 1)

)))
,

(51)

where λ denotes the wavelength and dr = λ/2 is the distance

between two contiguous elements. The carrier frequency is

fc = 28GHz and DoA is modeled as θ ∼ U [−π/3, π/3].
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Fig. 1. MSE of MUSIC-1D algorithm.

B. Results and discussion

In Fig. 1, we plot the channel estimation error σ2
∆h and

the idealistic FR channel estimation error σ2
S∆h (Ŝ = S) as

reference and the MSE performance of the algorithm MUSIC-

1D. We can see that the projected version of the estimated

channel using the theoretical S significantly outperforms the

non-projected one thanks to the subspace method. Moreover,

regarding the MUSIC-1D performance, it clearly shows that

the performance at low SNR regimes is compromised, obliging

us to find other alternatives.
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Fig. 2. MSE of iterative MLE algorithm.

In Fig. 2, we show the performance of the iterative MLE

algorithm. We can see that this method can achieve a very

good performance at the expense of iterating up to four times.

Additionally, we can see that there is a small gap error between

the fourth iteration of MLE and the σ2
S∆h, which is due to the

estimation error in Ŝ.

In Fig. 3, we provide the performance of the hybrid solution.

It shows that the first iteration is better than the regular

MUSIC-1D we mentioned before, MUSIC-1D may provide

N ′
p 6= Np and, when N ′

p < Np the iterative MLE may compute

the missing columns of Ŝ. Furthermore, the hybrid method
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Fig. 3. MSE of hybrid algorithm.
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Fig. 4. Comparison of the MSE between our proposal and [5].

only requires an additional iteration in order to saturate the

performance, showing the superiority of this method which is

capable of trading-off the performance and complexity.

For the hybrid method with two iterations, in Fig. 4, we plot

a performance comparison of our proposed scheme against

the proposed in [5]. Note that in order to implement [5] and

make a fair comparison, we have considered the absence of any

interference source, so we have removed its whitening part. We

can see that our proposed scheme significantly outperforms [5]

in extremely low SNR scenarios and for moderate SNR, our

FR also outperforms the referenced one. Additionally, for our

proposed hybrid method, the gap of all LR estimated channels

between using S (idealistic case), as a benchmark, and Ŝ

(realistic case) is negligible. We omit the simulation results

for the sake of space.

Finally, we provide the performance of the ARS algorithm.

We can see that using the instantaneous error fbias (Nk, l), that

involves the error estimation in d̂k (l), is good enough to select

always the best LR estimated channel.

VII. CONCLUSIONS

In the present work, we have proposed a novel method

to perform the channel estimation in VLMAS. Our method

-30 -25 -20 -15 -10 -5 0

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

101

M
S

E

Fig. 5. MSE of the ARS algorithm.

is based on the estimation of a joint ST covariance matrix;

and then, applying a subspace method to obtain the DoA

and ToA of each tap using an effective searching method.

We have shown that our proposal outperforms the existing

techniques, either FR and LR ones and we also provided

a novel ARS which is capable of selecting the best LR

channel for each scenario providing the lowest MSE. Thus,

the proposed schemes are suitable for the dynamic SNR

environment in mmWaves.
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