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ABSTRACT
In modern large-scale distributed systems, analytics jobs submit-

ted by various users often share similar work. Instead of optimiz-

ing jobs independently, multi-query optimization techniques can

be employed to save a considerable amount of cluster resources.

In this work, we introduce a novel method combining in-

memory cache primitives and multi-query optimization, to im-

prove the efficiency of data-intensive, scalable computing frame-

works. By careful selection and exploitation of common (sub)

expressions, while satisfying memory constraints, our method

transforms a batch of queries into a new, more efficient one

which avoids unnecessary recomputations. To find feasible and

efficient execution plans, our method uses a cost-based optimiza-

tion formulation akin to the multiple-choice knapsack problem.

Experiments on a prototype implementation of our system show

significant benefits of worksharing for TPC-DS workloads.

1 INTRODUCTION
Modern technologies to analyze large amounts of data have flour-

ished in the past decade, with general-purpose cluster processing

frameworks such as MapReduce [1], Dryad [2] and Spark [3].

More recently, a lot of effort has been put in raising the level

of abstraction, and allow users to interact with such systems

with a relational API. SQL-like querying capabilities are not only

interesting to users for their simplicity, but also bring additional

benefits from a wide range of automatic query optimizations,

aiming at efficiency and performance.

Large-scale analytics systems are deployed in shared envi-

ronments, whereby multiple users submit queries concurrently.

In this context, concurrent queries often perform similar work,

such as scanning and processing the same set of input data. The

research in [4] on 25 production clusters, estimated that over

35,000 hours of redundant computation could be eliminated per

day by simply reusing intermediate query results (approximately

equivalent to shutting off 1500 machines daily). It is thus truly

desirable to study query optimization techniques that go beyond

optimizing the performance of a single query, but instead con-

sider multiple queries, for efficient resource utilization.

Multi-query optimization (MQO) amounts to find similarities

among a set of queries and uses a variety of techniques to avoid

redundant work during query execution. For traditional database

systems, MQO trades some small optimization overheads for

increased query performance, using techniques such as sharing

sub-expressions [5–7], materialized views selection [8, 9], and

pipelining [10]. Work sharing optimizations operating at query

runtime, for staged databases, have also been extensively studied

[11–14]. The idea of reusing intermediate data across queries

running in distributed systems has received significant attention:
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for MapReduce [15, 16], for SCOPE operating on top of Cosmos

[17] and for Massive Parallel Processing frameworks [18].

In this paper, we study MQO in the context of distributed

computing engines such as Apache Spark [3], with analytics

jobs written in SparkSQL [19], in which relational operators are

mapped to stages of computation and I/O. Following the tradi-

tion of RDBMSes, queries are first represented as (optimized)

logical plans, which are transformed into (optimized) physical

plans, and finally run as execution plans. Additionally, modern

parallel processing systems, such as Spark, include an operator to

materialize in RAM the content of a (distributed) relation, which

we use extensively. Our approach to MQO is that of traditional

database systems, as it operates on a batch of queries. However,

unlike traditional approaches, it blends pipelining and global

query planning with shared operators, using in-memory caching

to support worksharing. Our problem formulation amounts to

a cache admission problem, which we cast as a cost-based, con-

strained combinatorial optimization task, setting it apart from

previous works in the literature.

We present the design of a MQO component that, given a set

of concurrent queries, proceeds as follows. First, it analyzes query

plans to find sharing opportunities, using logical plan fingerprint-

ing and an efficient lookup procedure. Then it builds multiple

sharing plans, using shared relational operators and scans, which
subsume common work across the given query set. Sharing plans

materialize their output relation in RAM. A cost-based optimiza-

tion selects best sharing plans with dynamic programming, using

cardinality estimation and a knapsack formulation of the prob-

lem, that considers a memory budget given to the MQO problem.

The final step is a global query plan rewrite, including sharing

plans which pipeline their output to modified consumer queries.

We validate our system with a prototype built for SparkSQL,

using the standard TPC-DS benchmark for the experiments. Over-

all, our method achieves up to 80% reduction in query runtime,

when compared to a setup with no worksharing. Our main con-

tributions are as follows:

•We propose a general approach to MQO for distributed com-

puting frameworks. Our approach produces sharing plans, that
are materialized in RAM, aiming at eliminating redundant work.

•We cast the optimization problem of selecting the best sharing

plans as a Multiple-choice Knapsack problem, and solve it effi-

ciently through dynamic programming.

• Our ideas materialize into a system prototype based on Spark-

SQL, which we evaluated using standard benchmarks, obtaining

tangible improvements in aggregate query execution times.

2 RELATEDWORK
MQO in RDBMSes. Multi-query optimization has been studied

extensively [6, 7, 10, 20, 21]. More recently, similar subexpres-

sions sharing has been revisited by Zhou et al. in [5], who show

that reusable common subexpressions can improve query perfor-

mance. Their approach avoids some limitations of earlier work



[7, 20]. More recently, work sharing at the execution engine has

been studied [11–14]. The MQO problem is considered at query

runtime, and requires a staged database system. Techniques such

as pipelining [12] and multiple query plans [22, 23] have proven

extremely beneficial for OLAP workloads. Our work is rooted

on such previous literature, albeit the peculiarities of the dis-

tributed execution engine (which we also take into account in

our cost model), and the availability of an efficient mechanism

for distributed caching steer our problem statement apart from

the typical optimization objectives and constraints from the liter-

ature.

Materialized views can be used in conjunction with MQO to

reduce query response times [8, 9, 24]. A broad range of works

addressed the problem of materialized view selection and main-

tenance, including both deterministic [7, 25, 26] and randomized

[27–29] strategies. In this paper, we focus on analytics queries

in which data can be assumed to be static. Workloads consist

mostly of ad-hoc, long running, scan-heavy queries over data

periodically loaded in a distributed file system. Problems related

to view maintenance do not manifest in our setup. Moreover, our

approach considers storing intermediate relations in RAM.

MQO in Cloud and Massively Parallel Processing (MPP).
Building upon MQO techniques in RDBMSes, Silva et al. [17]

proposed an extension to the SCOPE query optimizer which

optimizes cloud scripts containing common expressions while

reconciling physical requirements. In MPP databases, the work in

[18] presents a comprehensive framework for the optimization

of Common Table Expressions (CTEs) implemented for Orca.

Compared to our method, we consider not only CTEs but also

similar subexpressions to augment sharing opportunities.

MQO inMapReduce.The idea of makingMapReduce jobs share

some intermediate results was studied in [15–17, 30–34]. The

common denominator of such works is that they operate at a

lower level of abstraction than we do.

More recently, [35] formulates the MQO problem as a cost-

based, binary optimization task, which is addressed with an exter-

nal optimizer. Nevertheless, this work does not exploit caching as

a mechanism to re-use work. The work in [36] presents a method

to estimate the benefit associated to materializing intermediate

results of past queries, and this method is orthogonal to ours.

Additionally, views are materialized on disk, instead of memory.

The work in [37] addresses the problem of work sharing by cast-

ing it as an exact query subgraph matches. As such, it tackles

the MQO problem from a different angle, and it does not exploit

caching. The work in [38] cast the MQO task as an integer lin-

ear programming problem. However, the induced cost model is

simplistic, and does not exploit in-memory caching.

Caching to recycle work. Previous works [39–43] that address
the problem of reusing intermediate query results, cast it as a

general caching problem. Our work substantially differs from

those approaches in that they mainly focus on cache eviction,
where past queries are used to decide what to keep in memory, in

an on-line fashion. Instead, in this work we focus on the off-line

constrained optimization problem of cache admission: the goal
is to decide the best content to store in the cache, rather than

selecting which to evict if space is needed. The only work that

considers the reuse of intermediate results when analyzing the

overall execution plan of multiple queries is [40]. Nevertheless,
they focus on small problem instances which do not require the

general, cost-based approach we present in this work.

3 PROBLEM STATEMENT
We introduce a simple running example, that is rich enough to

illustrate the gist of the MQO problem. Consider the following

three concurrent queries:

QUERY 1:
SELECT name, dept_name, salary
FROM employees, departments, salaries
WHERE dep = dept_id

AND id = emp_id
AND gender = 'F'
AND location = 'us'
AND salary > 20000

ORDER BY salary DESC

QUERY 2:
SELECT name, dept_name, title,

to as title_expired_on
FROM departments, employees, titles
WHERE dep = dept_id

AND id = emp_id
AND gender = 'F'
AND location = 'us'
AND from >= 2010

QUERY 3:
SELECT id, name, salary, from_date
FROM employees, salaries
WHERE id = emp_id

AND age > 30
AND SALARY > 30000

Figure 1 illustrates the optimized operator trees (logical plans)

of the queries in the above example. The leaf nodes represent the

base relations. Each intermediate node is a relational operator (Se-
lection, Projection, Join, etc.). The arrows between nodes indicate

data flow. Our MQO strategy uses such optimized logical plans

to produce new plans – whose aim is to exploit sharing oppor-

tunities by caching distributed relations – which are translated

into physical plans for execution.

First, we see that the three queries can share the scan of the

employees, departments and salaries relations. Hence, a sim-

ple approach to work sharing would be to inject a cache operator

in Query 1, which would steer the system to serve input relations

from RAM instead of reading them from disk, when executing

Query 2 and 3. A more refined approach could be to find common

work (not only common I/O), in the form of similar subexpressions
(SE) among the queries from the example, such as filtering and

projecting records, and materialize intermediate results in RAM,

so that to re-use such intermediate relations.

Figure 1 illustrates four examples of similar SEs, which are

labelled asψi , i = 1, 2, 3, 4 (we explain the meaning of this label

in the next section). For example, consider the subexpression la-

belled asψ2: all three queries share the same sub-tree structure, in

the form Projectp (Filterf (employees)), but use different filtering
predicates and projections. In principle, it is thus possible to save

reading, parsing, filtering and projecting costs on the employees
relation: by caching the intermediate output of a general form

of subexpression, which subsumes the three similar sub-trees

in each query. Such costs would be payed once, and the cached

intermediate relation could serve three consumer queries. To this
aim, we need to build a covering expression (CE) that combines

the variants of the predicates appearing in the operators, e.g.,

consideringψ2 the corresponding CE could be:

Project
id, name, dep, age

(Filter
gender=F∨ age>30(employees))

Similarly, the SEs labelled as ψ3 and ψ4 share the projection
and filtering on department and salaries relations.

We anticipate that, in the context of our work, it is possible to

rank some SEs according to the benefits they bring, in terms of

reducing redundant work.



employees departments salaries 

Filter 
[gender = F] 

Project 
[id, name, dep] 

Filter 
[location= us] 

Project 
[dept_id, dept_name] 

Join 
[dep = dept_id] 

Project 
[id, name, dept_name] 

Filter 
[salary > 20000] 

Project 
[emp_id, salary] 

Join 
[id = emp_id] 

Project 
[name, dept_name, salary] 

Sort 
[salary, DESC] 

Query 1 

ψ4 

ψ1 

ψ2 ψ3 

employees departments titles 

Filter 
[gender = F] 

Project 
[id, name, dep] 

Filter 
[location= us] 

Project 
[dept_id, dept_name] 

Join 
[dep = dept_id] 

Project 
[id, name, dept_name] 

Filter 
[from>= 2010] 

Project 
[emp_id, title, to] 

Join 
[id = emp_id] 

Project 
[name, dept_name, title, to] 

Query 2 

ψ1 

ψ2 ψ3 

employees salaries 

Filter 
[age > 30] 

Project 
[id, name, age] 

Filter 
[salary > 30000] 

Project 
[emp_id, salary, 

from_date 

Join 
[id= emp_id] 

Project 
[id, name, salary, 

from_date] 

Query 3 

ψ2 ψ4 

ψ1	

ψ2	

ψ3	

ψ4	

Figure 1: Logical plans for the queries in our running example. Similar subexpressions (SE) are emphasized by dashed
boxes surrounding the corresponding sub-tree of each query. Boxes with the same border color denote the same SE.

For instance, the SE Projectp (Filterf (employees)) leads to ad-

ditional savings when compared to the SE Filterf (employees),
and caching the intermediate relation of the corresponding CE

results in a smaller memory footprint because of its selectivity.

More to the point, we now consider the SE labelled asψ1 in Fig-

ure 1: Query 1 and 2 share a common sub-tree in their respective

logical plans, that involves selections, projections and joins. In

this case, selecting this SE as a candidate to build a CE between

Query 1 and 2 contributes to decreased scanning, computation

and communication costs. However, since caching a relation in

RAM bears its own costs and must satisfy capacity constraints,

materializing in RAM the output of the CE might reveal not

beneficial after all: a join operator could potentially produce an

intermediate relation too big to fit in RAM.

Overall, given an input query set, our problem amounts to

explore a potentially very large search space, to identify SEs, to

build the corresponding CEs – which we also call sharing plans,
and to decide which CEs to include in the optimized output

plan. Our MQO strategy aims at reducing the search space to

build CEs by appropriately pruning SEs according to their rank.

Furthermore, a cost-based selection of candidate CEs must ensure

memory budget constraints to be met.

4 CACHE-BASEDWORK SHARING
We consider a set of concurrent queries submitted by multiple

users to be parsed, analyzed and individually optimized by a

query optimizer. Our MQO method operates on a set of opti-

mized logical plans corresponding to the set of input queries,

that we call the input set. We approach the MQO problem with

the following steps:

§4.1: Similar subexpressions identification. The goal is to

identify all common subexpressions in the input set. Two (or

more) operators sharing similar subexpressions constitute a SE,

which are candidates for building covering expressions (CEs).

§4.2: Building sharing plans. The goal is to construct one or

more groups of covering expressions CEs for a set of SEs.

§4.3: Sharing plan selection. The goal is to select the best com-

bination of CEs, using estimated costs and memory constraints.

We model this step as a Multiple-Choice Knapsack problem, and

use dynamic programming to solve it.

§4.4: Query rewriting. The last step to achieve MQO is to

rewrite the input query set such as to use selected sharing plans.

4.1 Similar Subexpression Identification
Finding similar subexpressions, given an input set of logical plans,

has received considerable attention in the literature. What sets

our approach apart from previous works lies behind the very

nature of the resource we use to achieve work sharing: memory

is limited, and the overall MQO process we present is seen as a

constrained optimization problem, which strives to use caching

with parsimony. Thus, we use a general rule of thumb that prefers

a large number of CEs (built from the corresponding SEs) with

small memory footprints instead of a small number of CEs with

largememory requirements. This is in line with low-level systems

considerations: data materialization in RAM is not cost-free, and
current parallel processing frameworks are sometimes fragile,

when it comes to memory management under pressure.

Armed with the above considerations, we first consider the

input to our task: we search SEs given a set of “locally optimized”

query plans, which are represented in a tree form. Such input

plans have been optimized by applying common rules such as

early filtering, predicate push-down, plan simplification and col-

lapsing [19]. The natural hierarchy of optimized logical plans

implies that the higher in the tree an operator is, the less the data

flowing from its edges. Hence, similar subexpressions that are

found higher in the plan are preferred because they potentially

exhibit smaller memory footprints.

Additional considerations are in order. Some operators pro-

duce output relations that are not easy to materialize in RAM: for

example, binary operators such as join, generally produce large

outputs that would deplete memory resources if cached. When

searching for SEs, we recognize “cache unfriendly” operators and

preempt them for being considered as valid candidates, either by

selecting SEs that appear lower in the logical plan hierarchy (e.g.,

which could imply caching the input relations of a join), or by



selecting SEs that subsume them (e.g., which could imply caching

a relation resulting from filtering a join output). Currently, we

treat the join, Cartesian product and Union as “cache unfriendly”

operators. This means that our method does not produce SEs

rooted at cache unfriendly operators; moreover, cache unfriendly

operators can be shared inside a common SE only when they are

syntactically equal.
1
Next, we provide the necessary definitions

that are then used to describe the identification of SEs.

Definition 4.1 (Sub-tree). Given a logical plan of a query Q ,
represented as a tree τQ where leaf nodes are base relations and

each intermediate node is a relational algebra operator, a sub-

tree τ
Q
s of τQ is a continuous portion of the logical plan of Q

containing an intermediate node of τQ and all its descendant in

τQ . In other words, a sub-tree includes all the base relations and

operators that are necessary to build its root.

If the context is clear, we denote a sub-trees simply as τ , with-
out indicating from which query it has been derived. Given any

two sub-trees, we need to determine if they have the same struc-
ture in terms of base relations and operators. To this aim, we

define a similarity function based on a modified Merkle Tree

(also known as hash tree)[44], whereby each internal node identi-

fier is the combination of identifiers of its children. In particular,

given an operator u, its identifier, denoted by ID(u), is given by:

ID(u) =

{
(u .label) u ∈ {filter, project,input rel.}

(u .label,u .attributes) otherwise.

Notice that this definition makes a distinction between loose and

strict identifier. A loose identifier, such that used for projections

and selections, allows the construction of a shared operator that
subsumes the individual attributes withmore general ones, which

allows sharing computation among SEs. Instead, a strict identifier,

such that used for all other operators (including joins and unions),

imposes strict equality for two sub-graphs to be considered SEs.

In principle, this restricts the applicability of a shared operator.

However, given the above considerations about cache unfriendly

operators, our approach still shares both I/O and computation.

Definition 4.2 (Fingerprint). Given a sub-tree τ , its fingerprint
is computed as

F (τ ) =


h(ID(τroot)) τroot = leaf

h(ID(τroot)|F (τchild)) τroot = unary

h(ID(τroot)|F (τl.child)|F (τr.child)) τroot = binary

where h() is a robust cryptographic hash function, and the oper-

ation | indicates concatenation.

The fingerprint F (τ ) is computed recursively starting from

the root of the sub-tree (τroot), down to the leaves (that is, in-

put relations). If the root is a unary operator, we compute the

fingerprint of its child sub-tree (τ
child

), conversely in case of a

binary operator, we consider the left and right sub-trees (τ
l.child

and τ
r.child). For the sake of clarity, we omit an additional sort-

ing which ensures the isomorphic property for binary operators:

for example, TableA join TableB and TableB join TableA are two

isomorphic expressions, and have the same fingerprint.

We are now ready to define what a similar subexpression is.

1
Our method can be easily extended for sharing similar join operators, for example

by applying the “equivalence classes” approach used in [5]. Despite technical sim-

plicity, our current optimization problem formulation would end-up discarding such

potential SEs, due to their large memory footprints. Hence, we currently preempt

such SEs from being considered.

Algorithm 1 Similar subexpressions identification

Input: Array of logical plans (trees), threshold k
Output: Set S of SEs ωi
1: procedure IdentifySEs([τQ1 , τQ2 , ...τQN ])

2: FT← ∅

3: foreach τ ∈ [τQ1 , τQ2 , ...τQN ] do
4: nodeToVisit← Add(τ )
5: while nodeToVisit not empty do
6: τ curr ← Pop(nodeToVisit)

7: ψ ← F(τ curr)
8: if CacheFriendly(τ curr

root
) then

9: FT.AddValueSet(ψ , τ curr)
10: end if
11: if (!CacheFriendly(τ curr

root
) ∨

12: ContainsUnfriendly(τ curr)) then
13: nodeToVisit← Add(τ curr

children
)

14: end if
15: end while
16: end for
17: S ← ∅
18: foreach ψ ∈ FT.Keys do
19: if |FT.GetValue(ψ )| ≥ k then
20: S ← S ∪ FT.GetValue(ψ )

21: end if
22: end for
23: return S
24: end procedure

Definition 4.3 (Similar subexpression). A similar subexpression

(SE) ω is a set of sub-trees that have the same fingerprintψ , i.e.
ω = {τi | F (τi ) = ψ }.

Algorithm 1 provides a pseudo-code of our procedure to find,

given a set of input queries, the SEs according to Definition 4.3

that will be the input of the next phase, the search for covering

expressions. The underlying idea is to avoid a brute-force search

of fingerprints, which would produce a large number of SEs.

Instead, by proceeding in a top-down manner when exploring

logical plans, we produce fewer SEs candidates, by interrupting

the lookup procedure as early and as “high” as possible.

The procedure uses a fingerprint table FT (line 2) to track

SEs: this is a HashMap, where the key is a fingerprintψ , and the

value is a set of subtrees. Each logical plan from the input set of

queries is examined in a depth-first manner. We first consider the

whole query tree (line 4) and check if its root is a cache-friendly

operator: in this case, we add the tree to the SEs identified by its

fingerprint. The method AddValueSet(ψ , τ ) retrieves the value
(which is a set) from the HashMap FT given the key ψ (line 9),

and adds the subtree τ to such a set – if the key does not exists,

it adds it and create a value with a set containing the subtree τ .
If the root is not a cache-friendly operator, or the logical plan

contains a cache-unfriendly operator, then we need to explore

the subtrees (line 13), i.e. we consider the root’s child (if the the

operator at the root is unary) or children (otherwise).

At the end, we extract the set of SEs from the HashMap FT:

we consider the SEs bigger than a threshold k in order to focus

on SEs that offer potential work sharing opportunities.

Going back to our running example, Algorithm 1 outputs a

set of SEs as follows {ω1,ω2,ω3,ω4} – in Figure 1 the sub-trees

corresponding to them are labelledψ1,ψ2,ψ3 andψ4, whereψi is
the fingerprint of SE ωi . For instance, ω1 contains two sub-trees

(one from Query 1, and one from Query 2), while ω2 contains

three sub-trees, one from each query.



employees 

Filter 
[gender = F] 

Project 
[id, name, dep] 

employees 

Filter 
[age > 30] 

Project 
[id, name, age] 

… … 

employees 

Filter 
[gender = F   OR  age > 30] 

Project 
[id, name, dep, age] 

… 

ψ2 ψ2 

Query 1 and 2 Query 3 

Figure 2: Building covering expression example. The first
and second trees are two similar subexpressions. The third
tree is the covering subexpression.

4.2 Building Sharing Plans
Given a list of candidate SEs, this phase aims at building cover-

ing subexpressions (CEs) corresponding to identified SEs, and

generate a set of candidate groups of CEs for their final selection.

Covering subexpressions. For each similar sub-query in the

same SE ωi , the goal is to produce a new plan to “cover” all

operations of each individual sub-query. Recall that all sub-trees

τj within a SE ωi share the same sub-query plan fingerprint: that

is, they operate on the same input relation(s) and apply the same

relational operators to generate intermediate output relations. If

the operator attributes are exactly the same across all τj , then
the CE will be identical to any of the τj . In general, however,

operators can have different attributes or predicates. In this case,

the CE construction is slightly more involved.

First, we note that, by construction, the only shared opera-

tors we consider are projections and selections. Indeed, for cache
unfriendly operators, the SE identification phase omits their fin-

gerprint from the lookup procedure (see Algorithm 1, lines 8-9).

Nevertheless, they could be included within a subtree, but they

are in any case “surrounded” by cache-friendly operators (see for

instance in Figure 1, the SE labeled as ψ1). As a consequence, a
CE can be constructed in a top-down manner, by “OR-ing” the

filtering predicates and by “unioning” the projection columns of

the corresponding operators in the SE. The CE thus produces and

materializes all output records that are needed for its consumer

queries. Figure 2 illustrates an example of CE for a simple SE

of two sub-queries taken from the running example shown in

Figure 1. In particular, we consider the SE labeled asψ2.
The resulting CE contains the same operators as the subtrees

τj ∈ ωi , but with modified predicates or attribute lists.

In general, we can build a CE, which we denote with Ωi , from a

SE ωi , by applying a transformation function f (), [τ1, ...τm ]
f ()
−−→

τ ∗i , which trasforms a collection of similar sub-trees to a single,

covering sub-tree τ ∗i . Note that the resulting covering sub-tree

has the fingerprint of the sub-trees in ωi .

Definition 4.4 (Covering subexpression). A Covering subexpres-

sion (CE) Ωi = f (ωi ) is a sub-tree τ
∗
i derived from the SE ωi by

applying the transformation f (), with F (τ ∗i ) = F (τj ) ∀τj ∈ ωi ,
such that all τj ∈ ωi can be derived from τ ∗i .

In summary, the query plan τ ∗i that composes Ωi contains

the same nodes as any subtree τj ∈ ωi , changing the predicates
of the selections (OR of all the predicates in τj ) and projections

(union of all the predicates in τj ).
Once the set of CEs, Ω = {Ω1,Ω2, . . . }, has been derived from

the corresponding set of SEs, ω = {ω1,ω2, . . . }, we need to face

the problem of CE selection. Themain question we need to answer

is: among the CEs contained in the set Ω, which ones should be

cached? Each CE covers different portions of the query logical

plans, therefore a CE may include another CE. Looking at the

running example shown in Figure 1, we have that Ω1 (derived

from ω1, in the figure labeled withψ1) contains Ω3 (derived from

ω3 and labeled in the figure withψ3). If we decide to store Ω1 in

the cache, it becomes questionable to store Ω3 as well.

The next step of our process is then to identify the potential

combinations of mutually exclusive CEs that will be the input of
the optimization problem: each combination will have a value
and weight, where the value provides a measure of the work

sharing opportunities, and the weight indicates the amount of

space required to cache the CE in RAM. We start considering

how to compute such values and weights, and we proceed with

the algorithm to identify the potential combination of CEs.

CE value and weight: a cost-basedmodel.We use cardinality

estimation and cost modeling to reason about the benefit of using

CEs. The objective is to estimate if a given CE, that could serve

multiple consumer queries, yields lower costs than executing

individually the original queries it subsumes.

The cardinality estimator component analyzes relational op-

erators to estimate their output size. To do so, it first produces

statistics about input relations. At relation level, it obtains the

number of records and average record size. At column level, it col-

lects the min and max values, approximates column cardinality

and produces an equi-width histogram for each column.

The cost estimator component uses the results from cardinality

estimation to approximate a (sub) query execution cost.Wemodel

the total execution cost of a (sub) query as a combination of CPU,

disk and network I/O costs. Hence, given a sub-tree τj , we denote
by CE (τj ) the execution cost of sub-tree τj . This component re-

cursively analyzes, starting from the root of sub-tree τj , relational
operators to determine their cost (and their selectivity), which is

the multiplication between predefined constants (representative

of the compute cluster running the parallel processing frame-

work) and the estimated number of input and output records.

Given a SE ω = {τ1, τ2, . . . , τm }, the total execution cost C(ωi )
related to the execution of all similar sub-trees τj ∈ ωi without
the work-sharing optimization is given by

C(ωi ) =
m∑
j=1
CE (τj ). (1)

Instead, the cost of using the corresponding CE Ωi must account

for both the execution cost of the common sub-tree τ ∗i , and mate-

rialization (CW ) and retrieving (CR ) costs associated to the cache
operator we use in our approach, which accounts for write and

read operations:

C(Ωi ) = CE (τ
∗
i ) + CW (|τ

∗
i |) +m · CR (|τ

∗
i |), (2)

where both CW (|τ
∗
i |) and CR (|τ

∗
i |) are functions of the cardinality

|τ ∗i | of the intermediate output relation obtained by executing τ ∗i .
Eq. 2 indicates that retrieving costs are “payed” by each of them
consumer queries from the SE ωi that can use the CE Ωi .

Then, we can derive the value of a CE Ωi , denoted byv(Ωi ), as

the difference between the cost of an unoptimized set of sub-trees

(execution of ωi ) and the cost of the CE Ωi :

v(Ωi ) = C(ωi ) − C(Ωi ). (3)

From Equations 1 and 2, we note that v(Ωi ) is an increasing

function in m. Indeed, the more similar sub-queries a CE can

serve, the higher its value.

Along with the value, we need to associate to a CE also a

weight, since the memory is limited and we need to take into



Algorithm 2 Algorithm to generate CE candidates.

Input: Set Ω of CEs

Output: Set of Knapsack items (potential CEs)

1: procedure GenerateKPitems(Ω = {Ω1, Ω2, . . . })

2: Ωexp ← ∅

3: while Ω not empty do
4: Ωi ← PopLargest(Ω)
5: DescSet← FindDescendant(Ωi , Ω)
6: Groupi ← [Ωi ] ∪Expand(DescSet)
7: Ωexp ← Ωexp ∪ {Groupi }

8: Remove(DescSet, Ω)
9: end while
10: return Ωexp

11: end procedure

account if a CE can fit in the cache. The weight, denoted by

w(Ωi ) is the size required to cache in RAM the output of Ωi , i.e.

w(Ωi ) = |τ
∗
i |

∆
= |Ωi |.

Having defined the CE value and weight, we describe next the

algorithm to identify the potential combination of CE.

Generating the candidate set of CEs. Next, we focus on the

problem of generating a combinatorial set of CEs, with their asso-

ciated value andweight, to be given as an input to themulti-query

optimization solver we have designed. Given the complexity of

the optimization task, our goal is to produce a small set of valu-

able alternative options, which we call the candidate set of CEs.

We present an algorithm to produce such a set, but first illustrate

the challenges it addresses using the example shown in Fig. 1.

Let’s focus on CE Ω1 (corresponding to the sub-trees labeled as

ψ1). A naive enumeration of all possible choices of candidate CE

to be cached leads to the following,mutually exclusive options: (i)
Ω1, (ii) Ω2, (iii) Ω3, (iv) both (Ω2,Ω3), (v) both (Ω1,Ω2), and (vi)

both (Ω1,Ω3). Intuitively, however, it is easy to discern valuable

from wasteful options. For example, the compound CE (Ω1,Ω2)

could be a good choice, since Ω2 can be cached to serve query

1 and 2 – and of course used to build Ω1 – and for query 3.

Conversely, caching the compound (Ω1,Ω3) brings less value,

since it only benefits query 1 and query 2, but costs more than

simply caching Ω1, which also serves both query 1 and 2.

It is thus important to define how to compute the value and
weight of compound CE. In this work we only consider compound

CEs for which value and weight are additive in the values and

weights of their components. This is achieved with compounds

of disjoint CEs, i.e., those that have no common sub-trees.

For example, consider the two CEs Ω1 and Ω2, and the sub-

trees used to build them. The CE Ω2 is included in Ω1, but only

some of the originating sub-trees of Ω2 are included in the origi-

nating sub-trees of Ω1 (in particular, the ones in query 1 and 2, but

not in query 3). Given our definition of the value and the weight

of CEs, the value and the weight of the compound (Ω1,Ω2) may

not be equal to the sums of the values and of the weights of

each individual CE, since part of the CE need to be reused to

compute different sub-trees. Thus, we discard this option from

the candidate set.

Algorithm 2 generates the candidate input for the optimization

solver as a set of non-overlapping groups of CEs; then, the opti-

mization algorithm selects a single candidate for each group in

order to determine the best set of CEs to store in memory. Given

the full set of Ω of CEs as input, we consider CE Ωi starting from

the root of the logical plan and remove it from the set (line 4). We

then look for its descendants from the input set Ω, i.e. all the CEs

contained in Ωi (line 5). With a CE and its descendant, we build

a list of options that contains (i) the CE itself and its individual

descendants, and (ii) all the compounds of disjoint descendant
CEs (line 6 and 7). We then remove the descendant from Ω and

continue the search for other groups.

Considering our running example, we start from Ω = {Ω1,Ω2,

Ω3,Ω4}. The “largest” CE is Ω1, and its descendants are Ω2 and

Ω3, therefore the list of mutually exclusive options for this group

would be [Ω1,Ω2,Ω3, (Ω2,Ω3)]. The output of Alg. 2 then is:

{[Ω1,Ω2,Ω3, (Ω2,Ω3)] , [Ω4]} , (4)

where the notation (·, ·) indicates a compound CE, and [·, ·] indi-

cates a group of related CEs.

Note that a CEmay be part of more than one larger CE: to keep

the algorithm simple, we consider only the largest ancestor for

each CE. To each option, we associate the value and the weight

(in case of a compound, the sum of each component), that will

be used by the optimization solver.

4.3 Sharing Plan Selection
Next, we delve into our MQO problem formulation. In this work,

we model the process that selects which sharing plan to use as a

Multiple-choice Knapsack problem (MCKP) [45]. Essentially, the

knapsack contains items (that is, sharing plans or CEs) that have

a weight and a value. The knapsack capacity is constrained by a

constant c : this is representative of the memory constraints given

to the work sharing optimizer. Hence, the sum of the weights of

all items placed in the knapsack cannot exceed its capacity c .
Our problem is thus to select which set of CEs (single, or com-

pound) to include in the knapsack. The output of the previous

phase (and in particular, the output of Algorithm 2) is a set con-

tainingm groups of mutually exclusive options, or items. Each

groupGi , i = 1, 2, . . . ,д, contains |Gi | items, which can be single

CE or compounds of CEs. For instance, looking at our running

example, the output shown in Eq. (4) contains д = 2 groups: the

first group has 4 items, the second group just one item. Given a

group i , each item j has a value vi , j and a weightwi , j computed

as described in Sect. 4.2.

The MCKP solver needs to choose at most one item from

each group such that the total value is maximized, while the

corresponding total weight must not exceed the capacity c . More

formally, the problem can be cast as following:

Maximize

д∑
i=1

|Gi |∑
j=1

vi , jxi , j

subject to

д∑
i=1

|Gi |∑
j=1

wi , jxi , j ≤ c

|Gi |∑
j=1

xi , j ≤ 1,∀i = 1 . . .д

xi , j ∈ {0, 1},∀i = 1 . . .д, j = 1 . . . |Gi |

(5)

where the variable xi , j indicates if item j from group i has been
selected or not. The MCKP is a well-known NP-Hard problem:

in this work, we implement a dynamic programming technique

to solve it [46].

Note that alternative formulations exist, for which a provably

optimal greedy algorithm can be constructed: for example, we

could consider a fractional formulation of the knapsack problem.

This approach, however, would be feasible only if the underlying

query execution engine could support partial caching of a relation.



As it turns out, the system we target in our work does support

hierarchical storage levels for cached relations: what does not fit

in RAM, is automatically stored on disk. Although this represents

an interesting direction for future work (as it implies a linear

time greedy heuristic can be used), in this paper we limit our

attention to the 0/1 problem formulation.

4.4 Query Rewriting
The last step is to transform the original input queries to benefit

from the selected combination of cache plans.
Recall that the output of a cache plan is materialized in RAM

after its execution. Then, for each input query that is a consumer
for a given cache plan, we build an extraction plan which manipu-

lates the cached data to produce the output relation, as it would

be obtained by the original input query. In other words, in the

general case, we apply the original input query to the cached

relation instead of using the original input relation. In the case of

a CE subsuming identical SEs, the extraction plan is an identity:

the original query simply replaces the sub-tree containing the

CE by its cached intermediate relation. Instead, if shared opera-

tors are used – because of SEs having the same fingerprint but

different attributes – we build an extraction plan that applies the

original filter and projection predicates or attributes to “extract”

relevant tuples from the cached relation produced from the CE.

Considering our running example, assume that the output of

the MCKP solver is to store Ω2 and Ω3 in cache. Ω3 derives from

ω3, where the composing sub-trees (one from query 1, and one

from query 2) are the same, therefore the extraction plan will be

Ω3 itself. Instead, ω2 (from which Ω2 derives) contains sub-trees

with different filtering and projection predicates: when Ω2 is

materialized in the cache, we need to apply the correct filtering

(e.g., “gender = F”) and projection predicates to extract the actual

result when considering the different queries.

5 EXPERIMENTAL EVALUATION
We now present experimental results to evaluate the effectiveness

of our methodology, which we implement for the Apache Spark

and SparkSQL systems – the details of the implementation can

be found in our companion TR [48]

Experimental setup.We run our experiments on a cluster con-

sisting of 8 server-grade worker nodes, with 8 cores each and a

1 Gbps commodity interconnect. Each worker is granted 30 GB

of RAM each, of which half is dedicated to caching. We use the

queries in the TPC-DS benchmark library for Spark SQL devel-

oped by Databricks [47], and generate a CSV dataset with scaling

factor of 50. We use Apache Spark 2.0: for all test, we clear the

operating system’s buffer cache in all workers and master, and

disable the “data compression" feature of Spark.

Results.We select a subset of all queries available in the TPC-DS

benchmark, and focus on the 50 queries that can be successfully

executed without failures or parsing errors. We present results

for a setup in which we consider all the 50 queries and execute

them in the order of their identifiers. Figure 3 shows the empirical

Cumulative Distribution Function (CDF) of the runtime ratios

between a system absorbing the workload withMQO enabled and

disabled. Overall, we note that, for 60% of the queries, we obtain

a 80% decrease of the runtime. In total, our approach reduces

the runtime for 82% of the queries. On the other hand, 18% of

the queries experience a larger runtime, which is explained by

the overheads associated to caching. Overall, our optimizer has

identified 60 SEs, and it has built 45 CEs. The cache used to store
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Figure 3: CDF of the performance gains of worksharing
for a TCP-DS workload consisting of 50 selected queries.
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Figure 4: Execution time ratio and number of similar
subexpression within a group of queries (given by the size
of the window) as the window size increases.

the output is approximately 26 GB (out of 120 GB available). The

optimization process took less than 2 seconds, while the query

runtime are in the order of tens of minutes (individually) and

hours (all together).

Next, we consider an experimental setup in which we emulate

the presence of a queuing component that triggers the execution

of our worksharing optimization. In particular, since TPC-DS

queries have no associated submission timestamp, we take a ran-

domized approach (without replacement) to select which queries

are submitted to the queuing component, and parametrize the

latter with the number of queries – we call this parameter the

window size – to accumulate before triggering our MQO mech-

anism. For a given window size, we repeat the experiment, i.e.,
we randomly select queries from the full TPC-DS workload, 20

times, and we build the corresponding empirical CDF of the run-

time ratio, as defined above. We also measure the number of

SEs identified within the window size, and show the correspond-

ing empirical CDF. Given this setup, we consider all possible

combinations of queries to assess the benefits of worksharing.

Figure 4 shows the boxplots of the runtime ratio (top) and

number of similar subexpression identified (bottom) for different

window sizes. The boxplots indicate themain percentiles (5%, 25%,

50%, 75%, 95%) of the empirical CDF, along with the average (red

lines). The Figure shows a clear pattern: as the size of the window

increases, there are more chances of finding a high number of SE,

thus better sharing opportunities, which translates into reduced

aggregate runtime. We observe a 20% decrease of the aggregate



runtime (median) with a window size of only five queries, which

ramps up to 45% when the window size is set to 20 queries.

Note that a queuing mechanism can introduce an additional

delay for the execution of a query, because the system needs

to accumulate a sufficient number of queries in the window be-

fore triggering their optimization and execution. Investigating

the trade-off between efficiency and delay, as well as studying

scheduling policies to steer system behavior is part of our future

research agenda. Due to space contraints, we refer to [48] for

additional evaluations and discussion.

6 CONCLUSION
We presented a new approach to MQO that uses in-memory

caching to improve the efficiency of computing frameworks such

as Apache Spark. Our method takes a batch of input queries and

finds common (sub)expressions, leading to the construction of

covering expressions that subsume the individual work required

by each query. Tomake the search problem tractable, we used sev-

eral techniques: modified hash trees to quickly identify common

sub-graphs, and an algorithm to enumerate (and prune) feasible

common expressions. MQO was cast as a multiple-choice knap-

sack problem: each feasible common expression was associated

with a value (representative of how much work could be shared

among queries) and a weight (representative of the memory pres-

sure imposed by caching the common data), and the goal was to

fill a knapsack representative of memory constraints.

To quantify the benefit of our approach, we implemented

a prototype for Apache Spark SQL, and we used well-known

workloads. Our results indicated that worksharing opportunities

are frequent, and that our method brings substantial benefits in

terms of reduced query runtime, with up to an 80% reduction for

a large fraction of the submitted queries.
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