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Abstract—We study the problem of user association in Ultra
Dense Networks (UDNs) for two network services; one requiring
QoS guarantees to VIP flows, and one best effort service. The
goal is to take advantage of statistical multiplexing in order
to optimize the use of resources, while ensuring that the VIP
flows enjoy active performance guarantees. We formulate this as
an optimization problem, show that the problem is convex, and
finally demonstrate that the optimum point can in fact be realized
by distributed user association rules. In this way, our framework
uses the fundamental problem of user association to show that
both isolation and statistical multiplexing can be achieved in the
context of UDNs, when different services or slices must share
BS resources, as envisioned in 5G networks. We demonstrate
no violations of the VIP flow constraint on real data traces for
mobile network traffic, while a baseline best effort distributed
policy applied to this setup inflicts up to 46.5% violations.

I. INTRODUCTION

In order to cope with the rapid growth of data traffic
demand, wireless operators move to ultra dense, heterogene-
ous deployments, also referred to as Ultra Dense Networks
(UDNs) [1]. These consist of many low-power small cells, to
maximize spatial reuse of the available bandwidth, overlaid
with macro-cells which ensure coverage. With ultra dense
deployment, the problem of user association becomes increa-
singly important, but also highly complex. Naive SINR-based
schemes [2], [3], like the ones commonly used in current wi-
reless networks, can be highly suboptimal, failing to properly
balance the load across the different base stations which is ne-
cessary to translate the denser Base Station (BS) deployment
into actual Quality of Service (QoS) improvement.

Furthermore, new applications and service types are emer-
ging that need to be carried over cellular networks with diverse
QoS requirements. These, intensify the need for efficient
resource utilization to cope with the conflicting demands of
reduced latency or increased throughput [4]. These prerequisi-
tes can be effectively treated by breaking the one-type-fits-all-
services scheme and considering application specific (flow)
traffic steering and prioritizing, as envisioned in 5G New
Radio (NR) [4]. However, it is far from clear how to optimally
allocate the common resources between different services.

Consider for example a scenario with a “VIP” and a “Best
Effort” (BE) service. The former requires low delay for its
applications, while the latter could correspond to standard data
and voice. Naively pre-allocating specific resources, e.g., part
of the bandwidth or Resource Blocks (in LTE) to each service
is suboptimal [5], as part of the resources might stay under-
utilized, while others might become congested. On the other

hand, while joint resource allocation leads to better statistical
multiplexing gains, a surge of BE traffic may endanger the
performance of the VIP service. To address the challenge
of isolation vs statistical multiplexing, this paper considers
the basic scenario with one VIP service and one Best Effort
(BE). We propose a few modifications on a simple and well-
established model for BS schedulers [6], and develop an
analytical optimization framework with the following goals:
1) Provide service isolation, i.e., Best Effort load should not

have an impact on VIP performance.
2) Provide performance guarantees to the VIP flows, in terms

of bounding the mean number of active VIP flows at
specific base stations (this readily translates to per flow
delay guarantees as well).

3) Provide statistical multiplexing gains to both services, by
optimally allocating the resources between VIP and BE
flows, subject to respecting the strict priority of the VIP.

4) Ensure that when all the above goals are satisfied, loads
across BSs are configured to provide optimal network-wide
performance (in terms of different tunable metrics).

As a final note, the proposed framework achieves the set
goals, while being minimally invasive to existing schedulers.
It introduces a second queue, but still applies the existing
scheduling policy on each queue. We believe our results offer
promise for a number of envisioned 5G developments. For
example, the framework can be extended to explicitly support
delay-sensitive 5G service classes (e.g. URLLC [7]), as well
as for resource allocation among multiple slices [5], [8], [9],
corresponding to different operators or services. To extend
our framework to multiple classes, a combination of priority
queuing and discriminatory processor sharing [10] could be
used. We defer this to future work.

A. Related Work and our Contribution

A number of more advanced schemes, beyond simple
SINR-based, have been proposed to take advantage of the
dense deployment of base stations and utilize all available
resources [11]–[13]. These schemes aim to optimally balance
different, often conflicting goals such as: giving each user a
high enough rate, minimizing the average network-wide delay,
and ensuring that no base station is congested. A seminal
work in this direction is the framework of [12] that utilizes
the α-optimal function to balance these goals, and derives
optimal and distributed user association rules, assuming best
effort flows. This work has since been extended to jointly



Fig. 1. Simplified example for different association policies

optimize uplink and downlink traffic [14], consider backhaul
constraints [15], energy efficiency [16], and a number of
other directions. In the context of slicing, the authors in [17]
propose dynamic sharing of radio access network resources
between (virtual) operators; while the aforementioned appro-
ach achieves capacity savings for the tenants, it cannot give
performance guarantees for a class of applications (VIP).

Consider Fig.1 as a motivating example. A baseline asso-
ciation approach that does not considers flow differentiation
(no priorities and no VIP constraints) will lead to high load
for VIP flows in Fig.1a for BS 1 and low quality wireless
service. Enhancing the network with a scheme that explicitly
differentiates between VIP and BE flows and uses a scheduler
that prioritizes VIP flows (as in Fig.1b), temporarily fixes the
performance guarantee for VIP flows with no impact on total
load. When, as shown in Fig.1c a 3rd VIP flow is added to
BS 1 though, the QoS for BS 1 cannot be met due to the high
concentration of VIP load. In this configuration, our proposed
algorithm will switch one VIP flow to BS 2, achieving the VIP
QoS for both base stations, with a trade-off cost of reduced
SINR or instantaneous rate for the switched flow.

In our work we extend the user association framework of
[12] and make the following contributions: (i) Different from
[12], to ensure isolation we assume a priority-based MAC
scheduler at each BS, where VIP flows are always served
before BE flows. We show that such a BS scheduler can be
modeled as a Processor Sharing (PS) queue with 2 priorities.
(ii) We introduce a constraint on the VIP load at each base
station, that is used to provide appropriate VIP performance
guarantees. (iii) We derive novel distributed user association
rules for both the VIP and BE services, that provably converge
to optimize an α-optimal function of the total base station
load, thus maximizing the statistical multiplexing gains within
the feasible region. (iv) We show that our association policy
outperforms both the original best effort policy of [12], and an
improved version of the latter, adapted for the 2-class setup,
using the original association rule but also giving priority to
VIP flows, using telecom traces from the area of Milano [18].

II. ARCHITECTURE

A. System Model

Spatial traffic. We consider a region L ∈ R2 with coverage
from B (heterogeneous) base stations. At each point x ∈ L,
users generate flow requests according to an inhomogeneous
Poisson point process with spatial intensity λ(x) and have
independently distributed file sizes with mean 1

µ(x) .
Service Rate. If users at point x ∈ L are associated to

base station i ∈ B, then their flows are served with rate
Ci(x). In our paper, Ci(x) will be a location-dependent metric
that depicts the wireless signal degradation due to distance.
One might be tempted to include in Ci(x) channel fading
and dynamic interference, which depends on user association
decisions and power control, however not considering these
phenomena is common in user association literature [12]–[14],
[19], next we give a short justification. Fast fading is averaged
out due to the time scale of association being large compared
to the time of channel coherence. Furthermore, since we are
considering a low mobility environment the result of slow
fading or shadowing can be captured from SINR. Finally, if
SINR is measured based on reference pilot signals emitted by
all base stations simultaneously the measurement produces
approximately equivalent results with the assumption that
nearby base stations are saturated. This assumption is common
in most related work [6], [12]–[15].

Here we give a specific model for Ci(x), with the un-
derstanding that other models that are location-dependent are
admissible in our work:1

Ci(x) = W log(1 + (SINRi(x))), (1)
where W is the available frequency band, and SINRi(x) is
given by:

SINRi(x) =
PiGi(x)∑

j 6=i PjGj(x) +N0
.

Above, Pi denotes the transmission power of base station i,
N0 denotes noise power and Gi(x) is the path loss between
the antenna and the UE. In our analysis, powers are static.

Flow Differentiation. Depending on service requirements
the flows are classified into VIP (V) and Best Effort (B). The
overarching goal is to provide VIP flows with better service
quality, which we will achieve via a two step scheme: (i)
the service of VIP flows is strictly prioritized over Best Effort
(thus they only compete for service with other VIP flows), and
(ii) the load of VIP flows is regulated at each base station.

Association Rules. Let πVi (x) = {0, 1} and πBi (x) =
{0, 1} be the association rules, indicating if point x flow of
type V,B is associated with base station i. At each time
instance we enforce the constraint that points are uniquely
associated to one base station, hence

∑
i∈B π

T
i (x) = 1, where

T = V,B. The association variables πBi (x), πVi (x),∀x ∈ L
will be the means to control the performance of the system.

1We clarify that despite the particular modeling of Ci(x), the association
decisions remain coupled through the base station loads that affect the
performance received at each point.



Base Station Load. The fraction of time required to deliver
the traffic load destined to location x ∈ L by base station i is
defined as the load density for i in x:

%Ti (x) =
λT (x)

µT (x)Ci(x)
, T = V,B.

The fraction of time a base station i is busy, called the load
ρi, due to a specific type of traffic V or B is given by:

ρTi =

∫
L
%Ti (x)πTi (x)dx, T = V,B. (2)

The total load of base station i is then
ρi = ρVi + ρBi .

The base station load vector ρ = (ρi) is an important
performance metric of the system. In subsection Sect.II-C
we will explain how we can choose association rules
πBi (x), πVi (x),∀x ∈ L to control ρ and ultimately provide
differentiated levels of service to different user flow types.

B. Queue Delay Model

Even though the exact dynamics of the LTE schedulers
are not standardized, it is generally accepted that in practice
a proportional-fair scheduling policy (α ≈ 1) is used [2],
[13], [20]. In this case and most general case of temporal
fair schedulers, the dynamics of the base station queues are
captured by a multi-class M/G/1 processor sharing system
[6]. A well known result for Processor Sharing [21] is that
the stationary distribution of the number of customers is
insensitive to the distribution of service times, hence assuming
ρi < 1 we have the following: The stationary distribution for
the total number of flows in base station i is:

qi(n) = ρni (1− ρi).
By the above equation we can show that the mean number of
active flows in BS i is:

E[Ni] =
ρi

1− ρi
.

By Little’s Law the Expected Delay (Response time) in Queue
i is:

E[Di] =
1

λi
E[Ni] =

1

λi

ρi
1− ρi

.

where the incoming arrivals at the queue are

λi =

∫
L

(λV (x)πVi (x) + λB(x)πBi (x))dx.

Proposition 1 (Isolation and Performance Guarantee). By
considering that the base stations also follow a preemptive
priority scheduling policy in favor of the VIP flows, all of the
above equations can be rewritten for ρVi . By limiting the VIP
load ρVi ≤ ci we get the upper bounds:

E[NV
i ] ≤ 1

1− ci
− 1,

E[DV
i ] ≤ 1

λi
(

1

1− ci
− 1).

Therefore, in order to guarantee a certain average delay
performance, below we optimize ρ subject to ensuring the
constraint ρVi ≤ ci at each base station.

C. Dual Service Problem Formulation

First, we relax the integrality requirement of the associa-
tion decisions. In practice, a fractional association could be
interpreted as a time sharing of different integral associati-
ons, hence different jobs may be handled by different base
stations. With this relaxation, a feasible association vector
π = {πV ,πB} assigns each layer of flows at location in
x ∈ L with a probability πi(x) ∈ [0, 1] at base station i ∈ B
such that all the flow requests are served and ensures that all
the base stations are stable (ρi < 1, ∀i ∈ B). Since we are
also targeting performance guarantees for the service of VIP
flows, we impose a threshold on the load of VIP flows per
base station ρVi ≤ ci (Proposition 1).

Definition 1. F is the convex set of flow differentiated feasible
load vectors ρB ,ρV :

F = {ρ | ρi =

∫
L

(
%Vi (x)πVi (x) + %Bi (x)πBi (x)

)
dx

0 ≤ ρi ≤ 1− ε, ∀i ∈ B
0 ≤ ρVi ≤ ci, ∀i ∈ B∑
i∈B

πTi (x) = 1, ∀x ∈ L, T = V,B

0 ≤ πTi (x) ≤ 1, ∀i ∈ B, ∀x ∈ L, T = V,B},
where ci is the VIP load threshold for base station i.

Lemma 1. The feasible set F is convex.

Proof. Consider vectors ρ1,ρ2 ∈ F and ρ1 6= ρ2. Let ρ =
θρ1 + (1 − θ)ρ2 with θ = [0, 1]. We will show that ρ ∈ F .
The elements of vector ρ are ρi = θρ1i + (1− θ)ρ2i and thus

ρi = θ

∫
x∈L

(%Vi (x)π1V
i (x) + %Bi (x)π1N

i (x))dx

+ (1− θ)
∫
x∈L

(%Vi (x)π2V
i (x) + %Bi (x)π2N

i (x))dx

, ρi =

∫
x∈L

%Vi (x)(θπ1V
i (x) + (1− θ)π2V

i (x))dx

+

∫
x∈L

%Bi (x)(θπ1N
i (x) + (1− θ)π2N

i (x))dx.

Considering πVi (x) = θπ1V
i (x)+(1−θ)π2V

i (x) and πBi (x) =
θπ1B

i (x)+(1−θ)π2B
i (x), we may check that vector ρ satisfies

all the equations in F , thus ρ is feasible and F is convex.

In the optimization scope of the user association problem,
the objective is to select from the feasible vectors F the vector
that optimizes a selected network performance. As we have
defined in section II-B, we would like to optimize for some
metric defined by ρ, the load vector of the base station queues.
For this purpose we select the α-optimal objective functions.

Definition 2. The α-optimal functions, for α ∈ [0,∞) are:

φα(ρ) =

{∑
i
(1−ρi)1−α

α−1 α 6= 1∑
i log( 1

1−ρi ) α = 1

The optimization of φα(ρ) shares some analogies with the
commonly used in resource allocation optimization family
of α-fair functions. It is shown in [12] that selecting: (i)



α = 0 maximizes the throughput of the system, (ii) α = 1
maximizes the geometric mean of base station’s idle time (1-
ρi), (iii) α = 2 minimizes the average number of flows in the
base station queues, and (iv) α → ∞ leads to max-min load
fairness described in [22]. We can now formulate our primal
problem.

Problem 1 (P1: The Service Differentiation User Association
Problem).

minimize
ρ∈F

φα(ρ) =
∑
i∈B

(1− ρi)1−α

α− 1
. (3)

Since φα(ρ) is a convex function and F is a convex set,
P1 is a convex optimization problem. Below we exploit the
convexity of P1 to design an algorithm that finds the optimal
solution ρ? in a distributed manner. We will show that our
algorithm yields integral association rules that converge to
the optimal solution of P1, hence it also solves the integral
counterpart of P1.

III. DISTRIBUTED CONSTRAINED USER ASSOCIATION

In this section we will solve P1 in a distributed fashion
by using the theory of Lagrangian relaxation for constrained
convex optimization. Initially, we relax the box VIP load
constraint allowing its violation at a price γi. This will allow
us to derive the optimal association rules for given user class,
x ∈ L, γ prices and ρ vector of loads. The derived rules
can be used to iteratively solve the user association problem
for fixed γ. We will then show how to update price vector γ
in order to converge to the optimal solution of P1. The full
algorithm in steps is presented in subsection III-D.

A. Partial Lagrangian Relaxation

After relaxing the load constraint the feasible load vectors
are ρ ∈ F ′, where F ′ allows ρV ∈ [0, 1) and the objective
function is the partially relaxed Lagrangian:

Φα(ρ,γ) =
∑
i∈B

(1− ρi)1−α

α− 1
+
∑
i∈B

γi(ρ
V
i − ci). (4)

Problem 2 (P2: Relaxed User Association Problem).

maximize
γ≥0

{
minimize

ρ∈F ′
{Φα(ρ,γ)}

}
. (5)

We will prove that the solutions of the relaxed problem (P2)
will be primal optimal and primal feasible.

B. Optimal User Association Rules

Lemma 2. If P2 is feasible, the optimal association decision
for each user is given by the following rule, depending on
user type:

π?Vi (x) = 1

{
iV (x) = argmax

j∈B

{
Cj(x)(1− ρ?j )α

1 + γ?j (1− ρ?j )α

}}
, (6)

π?Bi (x) = 1

{
iB(x) = argmax

j∈B

{
Cj(x)(1− ρ?j )α

}}
, (7)

where ρ?j and γ?j are an optimal load and price vector of the
problem above.

Proof. (Optimality of π?V ,π?B given ρ?,γ?). We have by
using Eq.(2) and Eq.(4):
〈∇ρΦα(ρ?) ·∆ρ?〉 =

=
∑
i∈B

(
∂Φα
∂ρVi

∆ρ?Vi +
∂Φα
∂ρBi

∆ρ?Bi

)
=

=
∑
i∈B

(
1

(1− ρ?i )α
+ γ?i

)
(ρVi − ρ?Vi )

+
∑
i∈B

(
1

(1− ρ?i )α

)
(ρBi − ρ?Bi ) =

=

∫
L
%V (x)

∑
i∈B

1 + γ?i (1− ρ?i )α

Ci(x)(1− ρ?i )α
(
πVi (x)− π?Vi (x)

)
dx

+

∫
L
%B(x)

∑
i∈B

1

Ci(x)(1− ρ?i )α
(
πBi (x)− π?Bi (x)

)
dx,

since π?Ti (x) satisfy Eq.(6) and Eq.(7):∑
i∈B

1 + γ?i (1− ρ?i )α

Ci(x)(1− ρ?i )α
πVi (x) ≥

∑
i∈B

1 + γ?i (1− ρ?i )α

Ci(x)(1− ρ?i )α
π?Vi (x),

∑
i∈B

πBi (x)

Ci(x)(1− ρ?i )α
≥
∑
i∈B

π?Bi (x)

Ci(x)(1− ρ?i )α
.

Hence, the first order convex optimality criterion is met [23]:
〈∇ρΦα(ρ?) ·∆ρ?〉 ≥ 0,

and π?V ,π?B are optimal association vectors.

The association rules produce two association maps2, one
for each service, where a user at location x ∈ L is associated
to base station i ∈ B if this is prescribed by the corresponding
map. The aggregate of all the assigned load densities to the
serving Base Station is equivalent to the optimal ρ?i . Moreover,
the optimal association rules Eq.(6) and (7) are deterministic,
which proves that the optimal values for πi(x) are integral
and that there is no loss of accuracy due to the continuous
relaxation. More intuition about the proof is given in [12].

Starting from an initial load vector ρ(0) we can iteratively
find the ρ that minimizes Φ for fixed γ, by using the
association rules we derived. The process is described in steps
in III-D. In the following subsection we will show how to
update the prices γ to reach the primal optimal ρ?.

C. Maximization Method

The maximization step of P2 depends on the selection of
the α-objective. By selecting α > 0 the partially relaxed
Lagrangian is differentiable and we can solve the master
problem by gradient method. When α = 0, then we use a
subgradient method for the maximization.

1) Gradient Ascent for α > 0: The Hessian matrix of our
α-optimal cost function Eq.(2) for α > 0 is positive definite,
thus is strictly convex. By Proposition 6.1.1 and Appendix
B of Nonlinear Programming [24], since the load constraint

2An optimal map at a time instance assigns the total traffic of a location of
the grid L to the optimal serving base station i. Since, we differentiate how
we assign locations based on flow class, we have two Association Maps, one
for BE traffic and one for VIP. The maps are direct represenations of their
respective association vectors πB?(x),πV ?(x) .



function is linear, the set F is convex and compact (closed,
bounded and subset of Rn) and φ is strictly convex, the
minimized partial Lagrangian function is differentiable and

∇γΦα(ρ?,γ) = ρ?V − c.
The gradient ascent algorithm will update the prices γ of the
outer problem iteratively:

γ(k+1) = γ(k) + s(k)∇γΦα(ρ(k),γ),

with a constant step size s(k) = c.
2) Subgradient Method for α = 0: The α-optimal cost

function Eq.(2) is affine (non-strictly convex):
φ0(ρ) =

∑
i∈B

ρi.

The minimized partial Lagrangian over ρ ∈ F ′ is non-
differentiable. The subgradient iteration is similar to the
gradient but since the gradient may not exist, a subgradient
g(k) is used instead. One of the subgradients of the minimized
over ρ Lagrangian function is the load constraint function at
a minimizer of the Lagrangian ρ?. By selecting a sufficiently
small step size it is shown that the subgradient method
minimizes the distance to the optimal solution and converges
to the optimal. The subgradient method will update the prices
γ of the outer problem according to the iteration:

γ(k+1) = γ(k) + s(k)g(k)

with a subgradient step s(k) = 1√
k

.

D. Distributed Constrained User Association Algorithm

Below, we present the Distributed Constrained User Asso-
ciation Algorithm (DCUAA) that solves P2 by combining the
optimal user association rules described in Sect.III-B and the
maximization methods described in Sect.III-C. The algorithm
is trigger based and will iterate until convergence is reached.
The output will be an optimal association map for both flow
types connecting location x ∈ L to serving base station i ∈ B.

Distributed Constrained
User Association Algorithm (DCUAA)

Iterate over t until convergence
Base Stations calculate γ(t+1)

i ←
[
γ
(t)
i + s(t)∇gΦα

]+
Broadcast γ(t+1)

i

Iterate over k until convergence
User at location x ∈ L calculates πi(x):

πVi (x) = 1

{
iV (x) = argmax

j∈B

{
Cj(x)(1−ρ(k)j )α

1+γ
(t+1)
j (1−ρ(k)j )α

}}

πBi (x) = 1

{
iB(x) = argmax

j∈B

{
Cj(x)(1− ρ(k)j )α

}}
Base Station i ∈ B measures utilization:
U

(k)
i = min

[∫
L(%Vi (x)πVi (x) + %Bi (x)πBi (x))dx, 1− ε

]
ρ
(k+1)
i = βρ

(k)
i + (1− β)U

(k)
i

Broadcast ρ(k+1)
i

(a) (b)
Fig. 2. Milano Data Set. (a) Overview of Milano City Grid and (b) Color
map of arrival intensity per square of the grid on a busy time instance

Lemma 3. For α > 0, the algorithm presented above will
converge on the optimal association maps for P1 (πV ?,πN?).

Proof. For α > 0, the objective in P2 is strictly convex over
π, the hessian matrix is positive definite (∇2

πΦ > 0). Hence,
there exist a unique solution (association maps) to the dual
problem, which is primal feasible and cost equivalent to the
primal [23]. This completes the proof.

IV. NUMERICAL EVALUATION

For the numerical evaluation of our algorithm we consider
a simulation scenario that verifies the performance guarantees
for the VIP flows achieved by the DCUAA for delay and also
the VIP isolation from BE traffic. We use telecommunication
traces from the Milano dataset [18], to confirm the results on
real traffic input.

A. Simulation Setup

We assume that the user receives data at Shannon Capacity
Eq.(1) and we model the propagation loss Gi(x) with a path
loss exponent 3:

Gi(x) =

(
1

dist(BSi to x)

)3

.

The LTE parameters for the transmission power of each base
station tier and the transmission rate approximation are taken
according to table I.

B. Validation of the results on the Milano dataset

To evaluate on algorithm on real telecommunication traffic
traces, we will use the publicly available Milano dataset [18].
The Milano dataset provides spatially aggregated data about
the telecommunication activity. The data are grouped on a
regular grid overlaying the territory of Milano with 100 ×
100 squares. Consequently, the grid designates the area L and
every square is a location x ∈ L to be associated with base

TABLE I
SIMULATION PARAMETERS [14]

Parameter Variable Value

Transmission Power Macro BS PM 43 dbm

Transmission Power Micro BS Pm 29 dbm

System Bandwidth W 10 MHz

Noise Density No -174dbm/Hz



(a) (b) (c)
Fig. 3. Constraint violation comparison between the algorithms, red means violation, yellow is tight, blue means below threshold. (a) MaxSINR Association
Map (b) DCUAA VIP Association Map (c) Kim et al VIP Association Map. (b) and (c) are calculated for α = 1.
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Fig. 4. Average Delay and Load metric comparison per base station

stations. For every square of this grid the data set contains
the aggregate per ten minutes telecommunication events in
the period of 01/11/13-01/01/14.

In the experiments we consider a weekday (Tuesday
3/12/2013) during peak traffic hour at midday. An overview
of the Milano Grid and the midday arrival intensity per square
of the grid can be see in Fig.2a and Fig.2b, respectively. Since
there is no priority differentiation for traffic in the dataset, we
arbitrarily select 2, out of the 6, 10 min samples in an hour as
VIP traffic. This is based on the fact that we expect VIP flow
requests to manifest in (smaller) proportion to the expected
total flow requests in an area.

We consider a two-tier Heterogeneous deployment of 40
Base Stations with fixed positions. The wireless network in the
Milano area is simulated by 8 eNBs and 32 microcells, which
are deployed with increased density in the area corresponding
to the city center. We specifically design this subset of base
stations, to accurately simulate a simplified environment of
a dense deployment in a city, bringing in the front all the
aspects of the user association problem.

We will show that our algorithm guarantees the perfor-
mance of VIP flows and we will use as baseline, our imple-
mentation of the algorithm described in [12]. The association
objective is set to maximize throughput (α = 1) and the
utilization cap for VIP flows is set to ci∈B = 30%. Each of the
plots in Fig.3 demonstrate location L, the Base Stations are
the white dots, squares are eNBs, circles are microcells, the
black lines are the borders for the area of service of each
corresponding base station and colors indicate whether an

area satisfies the performance constraint. Blue means below
threshold, yellow means utilization is at the threshold, red
means that utilization is above the requirement. In Fig.3a,
Fig.3c and Fig.3b we notice the areas of L that achieve the
ρVi < ci constraint, depending on the algorithm and user
association policy selected.

A short summary of the most important results of this
simulation can be found in table II. In table II we can see that
DCUAA achieves the set VIP performance guarantee, while
not greatly degrading the overall performance in average delay
of the total traffic. In contrast Kim et al. [12] best effort only
algorithm does not achieve the VIP constraints for up to 46.5%
of the incoming arrivals.

Finally, in Fig.4, we can see per base station, the average
delay and load performance of the two algorithms in compa-
rison. We can see that our algorithm effectively moves flows
from the crowded base stations to less congested ones, with
a trade off of reduced average delay on the congested base
stations but slightly increased load in average.

TABLE II
SIMULATION RESULTS ON THE MILANO DATASET

Algorithm Constr. Violation % Av. Delay Tot (s)

DCUAA α = 1 0 0.2575

Kim et al. α = 1 46.5 0.2471

DCUAA α = 2 0 0.2814

Kim et al. α = 2 38.9 0.2874

DCUAA α = 5 0 0.4404

Kim et al. α = 5 9.5 0.4368
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Fig. 5. Service Isolation. Increasing BE arrival intensity, while not changing
VIP arrival intensity, has no effect on VIP guaranteed performance inside the
Feasibility Region.

C. Service Isolation

In order to demonstrate that our algorithm provides service
isolation, which is an important aspect of future wireless
network slicing architecture, we successively scale up the
arrival intensity of Best Effort users, from 0 up to the point
that the average total incoming traffic exceeds the wireless
network’s capacity.

For each successive scaling of the BE input traffic we solve
the optimal network maps (user association maps for VIP and
BE flows) with the DCUAA. In Fig.5 we plot the best effort
arrival intensity scaling factor and over all the base stations
according to the optimal maps created by the DCUAA: (i) the
average VIP load, (ii) the maximum VIP load (which has to
be bellow the 0.3 load guarantee threshold), (iii) the total load
of the system and (iv) the average BE effort load. From the
Fig.5 it is clear that, the algorithm converges to configurations
that guarantee the performance of the VIP flows, as long as
the average total traffic is admissible.

V. CONCLUSION

In this paper we have proposed a framework for user
association based on distributed constrained optimization for
5G New Radio (NR) in the context of future Ultra Dense Net-
works (UDNs). We have derived distributed association rules,
that provably converge to the optimum point of operation. The
resulting association guarantees performance to the VIP flows
whilst balancing the load between both service types. The
method is based on non-invasive extensions to current wireless
networks, while it can be generalized in future work for
multiple class priorities and applications in wireless network
slicing. Initial Simulation results demonstrate the capabilities
of the framework in bounding the mean number of VIP flows
at the base stations and also the improved performance over
best effort only policies.
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