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Abstract

This industrial CIFRE PhD thesis addresses automatic speaker verification (ASV) issues
in the context of embedded applications. The first part of this thesis focuses on more
traditional problems and topics, which are introduced with a specific literature review.
The first work investigates the minimum enrolment data requirements for a practical, text-
dependent short-utterance ASV system. Results on the RSR2015 database and protocols
indicate that the need for up to 97% enrolment data can be eliminated with only a
negligible impact on performance.

Contributions in the first part of the thesis consist in a statistical analysis onto the
aforementioned RSR corpus. The objective is to isolate text-dependent factors and prove
they are consistent across different sets of speakers. Experiments suggest that, for very
short utterances, the influence of a specific text content on the system performance can
be considered a speaker-independent factor and is named spoken password strength. If the
user could be made aware of the strength of the chosen password, ASV reliability could
be improved with the judicious choice of a more secure password over a less secure one.

The second part of the thesis focuses on neural network-based approaches and is
accompanied by a second, specific literature review. While it was clear from the beginning
of the thesis that neural networks and deep learning were becoming state-of-the-art in
several machine learning domains, their use for embedded solutions was hindered by their
complexity.

Contributions described in the second part of the thesis comprise blue-sky, experimen-
tal research which tackles the substitution of hand-crafted, traditional speaker features
in favour of operating directly upon the raw audio waveform and the search for optimal
network architectures and weights by means of genetic algorithms. This work is the most
fundamental contribution of this thesis: neuro-evolved network structures consisting of
only a few hundred connections which are able to learn from the raw audio input. While
the approach is undoubtedly still in its infancy, it shows promising results for experiments
carried out for text-independent speaker verification (including a subset of the NIST 2016
SRE data) and anti-spoofing (on the official ASVspoof 2017 protocols).
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Chapter I
Introduction

The last decade has witnessed tremendous progress and growing interest in voice biomet-
rics, including the focus of several significant industrial players such as Google, Amazon
and Facebook. Smart assistants are now a reality thanks to speech being one of the most
convenient and natural biometric traits to collect, requiring little to no human-machine
interaction, as a result of almost all smart devices being equipped with at least one mi-
crophone.

Speech recognition is a standard feature in the operating system of any currently
manufactured personal computer, smartphone, television and middle-to-high range car.
Speaker verification is used increasingly by online banking services to authenticate account
holder. This is the age of automatic speech/voice technology. The Internet Of Things
(IoT) paradigm, embraced by many companies, foresees a near future in which every
piece of technology is connected and equipped with machine learning capabilities. In a
context where all the user’s domestic appliances, the front door lock, the car are connected
and voice-enabled to respond to commands and answer questions, making them report
exclusively to the target user(s) brings enormous value to IoT technology as a whole.

This industrial (CIFRE) PhD fits into this scenario as an academic collaboration
between EURECOM and NXP Semiconductors bringing speaker recognition to practical,
real use-case scenarios, namely those including smart devices often characterised by low
computation/memory resources and low consumption requirements. Speaker recognition
is way less common in smart devices than speech recognition because it is more difficult
to integrate it seamlessly: enrolling a speaker requires collaboration from the end user to
collect his/her voice data without feeling too forced. Since the resulting speaker model is
subject to privacy issues, the need to move as much processing as possible on the device
itself is a key aspect, which is also beneficial for security. This calls for user-friendly,
small-footprint secure speaker recognition, which puts many current approaches out of
the picture, as they often rely on large computation and storage resources.

NXP is the 5th largest semiconductor company in the world, with more than 30000
employees and 9000 patent families, founded in 2006 by the historical Dutch electronics
giant Philips. NXP customers are among the most recognised brands, including Apple,
Huawei, Hyundai, Panasonic and Samsung. While the primary focus and business of the
company is still hardware manufacturing, in recent years the trend of selling software
bundled with hardware, to provide a complete solution to clients, has proven increasingly
profitable.

1



2 Chapter I. Introduction

For what concerns audio-related software, NXP is in a process of expanding its signal
processing portfolio with machine learning approaches which can enhance already existing
solutions and, in that sense, bring speech and speaker recognition capabilities to their
software library. Activity in machine learning research development was already growing
at the start of this PhD, albeit not in speaker recognition.

Albeit an industrial PhD, the room for research and experimentation that was left to
the author during the PhD was considerable. None of the contributions of this thesis were
actually tied to a commercial product, but the author feels safe to assume that, from the
company perspective, it was a successful collaboration because it was renewed and he is
currently employed full-time in NXP as a research engineer, continuing some of the work
reported in this thesis.

I.1 Speaker recognition terminology

The focus of this thesis is speaker authentication, held closely aligned to the general
topic of of speaker recognition. This section serves to clarify some of the terminology
used in this thesis in the case the reader is not familiar with the research field. Speaker
recognition is intended as the broad field that encompasses all recognition tasks based on
voice biometrics, not to be confused with automatic speech recognition (ASR), whose aim
is to recognise what is being said, not who said it.

The field is broken down into sub-fields which differ in purpose and objectives:

• Speaker identification
Speaker identification is a closed-set classification task. During the training phase,
a system learns to distinguish between N speakers, each one representing a class.
At test time, trial utterances can only belong to one of the N speakers and the
identification system assigns the utterance to the closest-matching class.

• Speaker diarization
Speaker diarization is a segmentation and clustering task. Its purpose is to identify,
in recordings involving multiple speakers, those intervals in which each speaker is
active. Segmentation consists in splitting the recording in homogeneous speaker
segments, i.e supposed speaker changes, points or turns. Clustering aims to assign
each segment to the corresponding speaker.

• Speaker verification
Automatic speaker verification (ASV) is a binary classification task. While ASV
itself can be broken down into sub-categories, i.e. surveillance, in this thesis the
term ASV is used interchangeably with "speaker authentication". The difference
between authentication and surveillance stems upon the notion of cooperation.

While speaker identification and diarization operate in closed-set scenarios where the
number of speakers to identify or separate is finite, speaker verification faces the chal-
lenges of identifying what makes a target speaker different from —literally— anyone else.
A speaker verification scenario will always be open-set, and modelling the alternative
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hypothesis (all potential impostors) is as important as modelling the target speaker. Ver-
ification is therefore the task that truly makes use of speech as a biometric. This thesis
focuses solely on automatic speaker verification.

The modalities of speaker verification give birth to further sub-categories which prescind
all adopted technologies and chosen approaches, but are nevertheless relevant, at the
highest level, to all the blocks of the toolchain. The modality choice influences both the
way speaker data is collected and how tests are performed.

Text-dependent speaker verification can instead rely on a few seconds of speech,
hence its common association with short pass-phrases authentication scenarios. This is
possible because the speech content could be limited to a single short sentence, thus re-
quiring less data to train the model and only one utterance at test. The quantity of
training data is the main focus of chapter III. This scenario can be expanded by having
each user utter several sentences, and thus having multiple text-dependent models per
speaker. With this configuration, text mismatch comes into the picture: four combina-
tions are now possible, with the only true target trial being the one where both text and
speaker match. If the set of sentences is shared across the whole dataset, results can be
grouped per-sentence and give different levels of insights on the influence of text content
on system performance. This aspect is explored in chapter IV.

Text-independent speaker verification implies modelling a speaker and testing
without any constraint on the speech content. It is understandable that in such a con-
text, a solid speaker model should be versatile enough to authenticate the speaker with
any utterance at test time. This is why text-independent approaches usually require at
least 30 seconds of speaker data in order to be reliable [1]. Contributions in chapters VI
and VII adopt a text-independent approach.

Text-prompted speaker verification is a variation on text-dependent verification
which incorporates some text-independent aspects. Included in this category are the sce-
narios where the speaker is asked, at test, to utter a specific sentence which the system
was not necessarily trained for. This usually implies a text-independent speaker model
that was phonetically structured [2], meaning that it incorporated a broad knowledge
of how the target speaker utters specific phonetic patterns. This is usually achieved by
segmenting the training data with some form of speech recogniser or utterance verifica-
tion [3].

I.2 Issues with current ASV status
In many practical use-cases ASV technology is often seen by users as somewhat cum-
bersome and non-secure, making it not worth the effort. This is in contrast with the
non-intrusive nature of using speech as an interface, which is the main reason behind
the increasingly wider adoption of voice-driven smart assistants. Both Amazon Echo and
Google Home assistants have some speaker recognition capabilities but, as of today, they
are not enabled by default and their use is confined to automatic user preference setting
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Fig. I.1 An example structure of a deep neural network (DNN) with 26 units
and 105 connections. In reality, state-of-the-art DNNs are at least 3 orders of
magnitude more complex.

or to lowering the false acceptance rate for wake-up word detection 1. As a result, this
feature is left mostly unused. If ASV was as mature as speech recognition on these kinds
of devices, not only would its use be more publicised and widespread, but users would
use their voice as a means to seamless authentication in a secured environment.

The road to reach this goal follows two complementary directions: efficiency and
security. Efficiency refers to the perspectives of both the implementation and the end
user: in order that ASV be deployed successfully on embedded devices, computationally-
and memory-hungry approaches are incompatible; this is the case with complex deep
neural network structures which require hundred of thousands of multiplications (see
Fig. I.1) often on top of feature extraction. Also, to preserve convenience, an efficient
system should require very little user speech in order to operate reliably.

The meaning of security is application-dependent: the level of security for a ASV-
enabled parental control filter is different to that of an ASV system that is meant to
control access to bank accounts. Nevertheless, any ASV functionality would be rendered
useless if it could not distinguish between a real human and a recorded voice, a so-called
replay attack. Fig. I.2 2 illustrates how the error rate of an ASV system can be highly
impacted when using replay attacks instead of genuine impostors. This, and other types
of artificial voice attacks show the need for countermeasures, which in this domain are
referred to as anti-spoofing.

I.3 Contributions and publications
During the 3-year period of research, all of the author’s work was carried out while
employed at NXP Semiconductors. Contributions thus exhibit an industrial flavour. They

1https://machinelearning.apple.com/2017/10/01/hey-siri.html
2Reproduced from a publicly available overview of the ASVspoof 2017 challenge: http://www.

asvspoof.org/slides_ASVspoof2017_Interspeech.pdf

https://machinelearning.apple.com/2017/10/01/hey-siri.html
http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
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Fig. I.2 An example of the impact of replay attacks versus genuine (zero-effort)
impostors on the error rates of a GMM-UBM system 2.

are listed below:

• Improved usability for embedded ASV
This contribution aims to make an existing text-dependent system more user-friendly,
to bridge the gap between academic research and end-user experience. With an (al-
beit modest) modification, the enrolment time for any phrase and user is reduced
from approximately 5 minutes (which is deemed too much to ask to any end-user,
even if it’s required just once) to less than 10 seconds. The absence of notable
drops in performances when reducing data to such an extent also calls into question
the appropriateness of the training and testing protocol to assess performance. A
MATLAB demo was implemented to show the practical increased usability of the
system. The contribution is explained in Chapter III. Related work was published
in:
[4] Valenti, Giacomo; Daniel, Adrien; Evans, Nicholas
"A simplified 2-layer text-dependent talker authentication system"
143rd International AES Convention, 2017

• The concept of spoken password strength
This contribution is a statistical proof that, in the context of very short commands
(approximately 1 second of duration), speaker authentication performance is more
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influenced by the text content than intra-speaker variance, defining the speaker-
independent concept of spoken password strength.

With a thorough statistical analysis, it is proven that the authentication power of a
spoken password is not just limited to a closed set of speakers, but it transfers well
to an independent speaker set. This trait is thus assumed to be a characteristic of
the spoken sentence, regardless of the speaker, and is termed pass-phrase strength.
The related work is explained in Chapter IV and published in

[5] Valenti, Giacomo; Daniel, Adrien; Evans, Nicholas
"On the Influence of Text Content on Pass-Phrase Strength for Short-Duration Text-
Dependent Automatic Speaker Authentication"
INTERSPEECH, 2016

This contribution was also the basis of a patent for an automated warning of weak
spoken passwords, in the same fashion of written passwords in online account reg-
istration procedures:

[6] Valenti, Giacomo; Daniel, Adrien; Evans, Nicholas
"Spoken pass-phrase suitability determination"
Patent, 2016 (US 2018/0060557 A1)

• Speaker Verification and Anti-spoofing on raw audio and topology-evolving
neural networks

These contributions relate to very experimental and fundamental research, despite
the industrial flavour of this PhD. The potential of ASV and anti-spoofing solutions
operating directly on the raw audio waveform is investigated. This work represents
one of the first raw-audio-based ASV applications, as well as one of the first uses of
Topology and Weight Evolving Neural Networks (TWEANNs) for aural tasks, an
earlier example on sound event detection being [7].

The networks process input audio samples and output score samples at the same
rate of the input, making for a truly end-to-end approach. A gate is applied to the
output which, during training, learns to prune unreliable scores, akin to attention
mechanisms. In the case of anti-spoofing, a new progress-rewarding fitness function
is introduced and is shown to be beneficial for the task. This work was first reported
in two publications:

[8] Valenti, Giacomo; Daniel, Adrien; Evans, Nicholas
"End-to-end automatic speaker verification with evolving recurrent neural networks"
ODYSSEY, 2018

[9] Valenti, Giacomo; Delgado, Héctor; Todisco, Massimiliano; Evans, Nicholas;
Pilati, Laurent
"An end-to-end spoofing countermeasure for automatic speaker verification using
evolving recurrent neural networks"
ODYSSEY, 2018
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I.4 Thesis structure

The structure of this thesis in divided in 2 parts (A and B), each of which is composed
by a literature review followed by chapters which describe novel technical contributions.
Chapters II, III and IV comprise part A, which is related to the fundamental treatment of
traditional ASV and the first research activities and contributions of the author, specifi-
cally those involving short-utterance, text-dependent ASV.

Chapters V, VI and VII comprise part B, which focuses on more experimental and
fundamental research concerning the use of raw-audio as input to neural networks with
evolutionary topologies, in order to deliver a truly end-to-end pipeline. This raw-audio,
non-fixed topology approach is applied to both ASV and anti-spoofing. It represents the
very first work that applied evolutionary topologies and raw audio in either fields. The
aspects of efficiency and security are tackled in all the contributions of this thesis, parts
A and B (see Section I.3). The remainder of this thesis is organised as follows:

I.4.1 Part A

• Chapter II - A review of traditional speaker verification approaches
The first part of this chapter introduces text-independent, text-dependent and text-
prompted variations of speaker authentication and the challenges and peculiarities
involved in using speech as a biometric. The traditional front-end and back-end
approaches to ASV are then reviewed. "Traditional" infers the exclusion of neural
network and deep learning approaches, they are treated separately in Chapter V.
The front-end block of traditional ASV consists of preprocessing and feature extrac-
tion, with cepstral short-term features being the most widely used variant. Back-
end approaches that are relevant to the contributions of this thesis are given a
more detailed analysis, namely those based on Gaussian mixture models (GMM)
and hidden Markov Models (HMM). More recent approaches like linear discrimi-
nat analysis (LDA), supervectors and i-vector approaches are also described. The
HiLAM system (Hierarchical multi-Layer Acoustic Model), which is the basis system
for contributions in Chapters III and IV, is then introduced.
The second part of the chapter introduces the performance metrics used through
the remainder of the thesis. A brief overview of the NIST Speaker Recognition
Evaluations from 1996 to 2016 follows, with a focus on NIST SRE16 whose data
and protocols were used in Chapter VI. The text-dependent RSR2015 corpus is
described in detail, since it was used extensively used in experiments in Chapters III
and IV.

• Chapter III - Simplified HiLAM
This Chapter explains the re-implementation and simplification of the text-dependent,
short-utterance ASV system HiLAM. The objective is to adapt a system made for
offline experiments with stored data into a ready-to-use ASV system which re-
quires just a few seconds to enrol a new speaker. The first part focuses on the
re-implementation. Particular attention is given to the relevance factor, which
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plays an influencing role in the Maximum A Posteriori (MAP) adaptation algo-
rithm. Findings concerning the relevance factor lead to questioning the need for the
text-independent modelling stage of the HiLAM pipeline.

The second part concerns the modification of the system by removing the text-
independent model, simplifying it from a 3-layer to a 2-layer system which requires
way less speaker data at enrolling time. Experiments are carried out to assess
performance of the 3-layer versus the 2-layer variant as well as comparing to the
original work. A MATLAB demo for the 2-layer system is also implemented, as a
practical demonstration of the vastly reduced "cumbersome" aspect and increased
usability.

• Chapter IV - Spoken password strength
This chapter describes the study to prove the concept of spoken pass-phrase (or pass-
word) strength, which is inversely proportional to the probability of false positives
and false negatives when a speaker text-dependent model relies on said password.
The requirement to be able to quantify the strength of a spoken password is intro-
duced: to be truly deemed stronger (more secure) than others, the strength concept
has to be speaker-independent, ideally, as a property of the text content.

Preliminary observations of text-dependent shifts in score distributions (supposedly
linked to different pass-phrase strengths) are made on the short-commands protocols
of the RSR2015 corpus. This shows how performance is greatly influenced by the
text content when dealing with really short sentences.

A statistical analysis is then performed to show that strength rankings made with
respect to one set of speakers are coherent with a second, independent set of speak-
ers. Interpretation of the results follows, therefore proving the concept of "universal"
strength of a specific text content, independent of the speaker. A potential use case
is envisioned in which the known a priori low strength of a user-chosen password is
used to warn of the low security risk in choosing it.

I.4.2 Part B

During the first year and a half of this PhD, neural networks went from simply expe-
riencing a resurgence, enhancing some confined blocks of ASV pipelines to being om-
nipresent, often making the difference and surpassing state-of-the art approaches. From
a semiconductor company standpoint, neural networks are perceived as bulky and very
resource-intensive, especially when deep learning comes into the picture. After investigat-
ing the most important deep learning approaches in their own literature review (Chapter
V), instead of pursuing one of them, a radical departure in the direction of the highly-
experimental domain of evolutionary topologies was taken, with their very small footprint
being the main attraction. Hence the author decision to split this thesis into two main
parts. Chapters VI and VII are centred around the explanation and application of such
evolutionary topologies on raw-audio for ASV and anti-spoofing.
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• Chapter V - A review of deep learning speaker verification approaches

The first part of this chapter introduces the concept of deep learning and describes
several types of Deep Neural Networks (DNN) which are used in ASV (and neigh-
bouring research areas) such as Deep Belief Networks (DBN), Auto-encoders (AE),
Convolutional Neural Networks (CNN) and Long Short-Term Memory Recurrent
Neural Networks (LSTM RNNs).

The second part of this chapter explains the ASV approaches in which DNNs are
used to substitute a particular block of the traditional ASV pipeline. These ap-
proaches make use of DNNs as the front-end (i.e. as feature extractors) or as the
back-end (i.e. as classifiers).

The third and last part concerns end-to-end approaches. These apply deep learning
to the whole ASV pipeline and all components are jointly optimised. The thesis
then describes something of a misnomer as concerns end-to-end approaches in the
literature since, despite the moniker of "end-to-end", current approaches when this
work began tended to operate on spectral representations or even MFCCs, rather
than the raw signal and employed fixed topologies instead of optimising the structure
along with the weights.

• Chapter VI - Augmenting topologies applied to ASV

Non-fixed architecture neural networks are explained in this chapter as belonging
to the wider field of evolutionary strategies. Topology and Weight Evolving Neural
Networks (TWEANNs) are introduced, as they use genetic algorithms to indeed
optimise the structure along with the weights, and are at the basis of one of the
first applications of the technology to raw audio, which is the contribution and focus
of this chapter.

A specific TWEANN approach known as NEAT (Neuro Evolution of Augmenting
Topologies) is used as a basis and modified in order that it can be applied on raw
audio signals and speaker verifications. Key aspects like the fitness function and
the use of mini-batching are described, followed by non-conventional training and
evaluation procedures.

Experiments are performed on a proprietary NXP database and results are com-
pared with several baselines consisting of a GMM-UBM system and two more con-
ventional NN-based approaches. Particular attention is given to the learning pro-
cess of the end-to-end system, which is monitored across several iterations of the
evolutionary training algorithm: the overall decrease of the EER on training data
is observed to correspond to decreases on the test-set data, exposing increasing
generalisation capabilities. A first glimpse of "explicability" of neural network in-
ner mechanics is observed by monitoring the gate unit behaviour on the output of
tested networks. The end-to-end system is then also tested on a subset of the NIST
SRE16 data. Results are compared to the ICMC IV PLDA system developed in
EURECOM [10].
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• Chapter VII - Augmenting topologies applied to Anti-spoofing
This chapter describes the application of NEAT to the task of anti-spoofing. First,
the concept of anti-spoofing is introduced because, even though it is strictly related
to speaker authentication, as of today it is often treated as a separate task. Mod-
ifications to the NEAT-based system used for ASV are then explained, the most
important being a new fitness function, named Ease Of Classification (EOC).
The ASVspoof2017 database and protocols are then introduced along with the offi-
cial baseline system. Experiments are then carried out and results for four different
configurations of the end-to-end approach are examined. Particular attention is
reserved to the improvements brought by the EOC fitness function combined with
mini-batching.

• Chapter VIII - Conclusions
This chapter concludes the thesis with a summary of all contributions and findings
and a discussion of potential future work. It is highlighted how during the 3-year
span the scope of the contributions went from a simple modification of an existing
system to enhance usability, to detection of spoofed speech directly on raw-audio
waveforms. Efficiency and security are key aspects of the author’s work; they are
both necessary for ASV to truly enter the everyday life, from both the user and
the company points of view. The work in part A, focused on traditional ASV
systems, demonstrated that text-dependent system may require very little speech
to authenticate the user properly, but some sentences are more characterising than
others for any speaker. The most important contributions are found in part B,
where it is demonstrated that it is possible, however yet to be perfected, to perform
ASV and anti-spoofing on the raw-audio waveform.



Chapter II
A review of traditional speaker
verification approaches

This chapter explores the composing blocks that characterised decades of research in
Automatic Speaker Verification, from feature extraction to modelling approaches to per-
formance metrics (a high-level diagram of the traditional ASV pipeline is illustrated in
Fig. II.1). The presentation focuses on the background knowledge that is most relevant
to the contributions described in chapters III and IV of this thesis.

II.1 Speech as a biometric
The vast field of biometric science has the one goal of improving the reliability of tech-
nologies that discriminate and identify reliably different individuals by measuring their
physical and behavioural traits. In many of them the latter is not considered because it
is either non-conceivable (i.e. the behaviour of fingerprints) or the temporal dimension is
often not necessary (i.e. face recognition). In most biometrics, the data that supposedly

Feature
Extraction

Feature
Extraction

Scoring

Modelling

Enrolment

Test

Background 
Data

Reject

Accept>τ

<τ

Fig. II.1 Blocks of a traditional ASV pipeline, reproduced from [11]
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make an individual unique is captured, collected and studied directly on its natural do-
main: from finger prints to retinal scans, even DNA, the "serial number" of biometrics, is
coded with a series of proteins.

Although the human vocal tract does exhibit individualising physical and behavioural
aspects, most of the difficulty comes from the fact that neither the physical traits of
the vocal tract, nor its movements are directly observable from an audio signal. The
latter is purely a product, a manifestation of these factors. In analogy, the recognition
of a speaker from their speech is akin to recognising a music band from their tracks (the
instrumentation is the vocal tract, the playing style is the behaviour) rather than from
a picture of the band members. Some questioned that speech is not enough unique to
recognise an individual [12].

On the other hand, by being purely aural as opposed to many visual-based biometric
sciences, speech presents itself as one of the least invasive biometrics to measure and easier
to collect. Nevertheless, in more than 30 years of ASV research, the identifying cues have
seldom been observed directly on the raw waveform representation, but through many
hand-crafted methods of speaker feature extraction which involve several transformations
of the original signal.

II.2 Front-end: speaker features
Recent trends in research, not strictly related to ASV, show the progressive abandoning
of traditional features, and the will to leave the burden to machine learning. This aspect
is of crucial focus for part of the work in this thesis (see chapters VI and VII) and
will be explored later. The focus of this section is on traditional hand-crafted features,
specifically those adopted in the work reported in Chapters III and IV. Regardless of
the representation on which features are observed, the ideal speaker feature properties
outlined by Nolan in 1983 [13] still apply. They are to:

1. show high between-speaker variability and low within-speaker variability;

2. be resistant to attempted disguise or mimicry;

3. have a high frequency of occurrence;

4. be robust in transmission;

5. be relatively easy to extract and measure;

Needless to say, the ideal feature does not exist. The speech signal also contains
non-individualising information to which features should not be sensitive to, and different
kinds of features can be extracted from the same data, depending on the application. Even
leaving aside limits in computational power and data availability, there is no passepartout
in feature selection [2].

The remainder of this section will go through the most widely used feature types,
with their degree of success usually dependent upon a given application or context. In
traditional ASV approaches, the feature extraction process remains the same for every
speaker even though some studies show that, for example, some type of feature is better
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Fig. II.2 MFCC features extraction steps, reproduced from [11]

at discriminating female than male [14]. With the recent advent of deep learning applied
to ASV, features are becoming less hand-crafted and more speaker-specific. This body of
work is reviewed later in Chapter V.

II.2.1 Short-term features

Short-term cepstral features were initially engineered in the early 80s for speech recog-
nition and with in mind the limitations of the modelling approaches of the time. They
describe traits of the human vocal tract that are assumed to be stationary inside very
short intervals. The low dimensionality of cepstral features brought not only less com-
putational efforts for subsequent demanding processing, but was once a necessity since
traditional statistical models could not handle high-dimensional data [2].

The first extraction step, common to all short-term approaches, is to segment the
source audio into overlapped frames of fixed length (usually 10 to 30 milliseconds), each
one is then processed independently. Since silence and pauses bring no relevant informa-
tion to identify the speaker, silence frames (or samples, in case the process is done before
framing) are discarded using voice activity detection (VAD) tools [11].

The most popular short-term features are cepstral in nature, with the most widely
used being the MFCC (Mel Frequency Cepstral Coefficient) variant. Invented in 1980 [15]
for speech recognition, MFCCs remained at the heart of speaker verification systems
until very recently [1]. During this period ASV approaches evolved considerably (see
Section II.5.1) but the vast majority of state-of-the-art solutions across decades adopted
MFCC extraction (or cepstral features in general) as the first step of the pipeline.

After calculating the logarithm of the Fourier power spectrum on each frame, a filter-
bank is applied to obtain energy coefficients of the frequency bands. In the MFCC case,
the bands are spaced according to the Mel scale to better mimic the frequency resolution
of the human ear. Cepstrum coefficients are then obtained by applying the discrete
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Fig. II.3 Spectrogram of 2 seconds of speech, sampled at 16 kHz. Brighter colour
indicates higher energy.

cosine transform (DCT) to the filter-bank energies [16], as illustrated in Fig. II.2. The
DCT step has the important property of creating highly decorrelated coefficients. This
i) makes easier modelling their behaviour statistically and ii) results in a cepstrum with
regions representing the energy, the filter and the excitation (pitch) of the vocal tract.
Usually only the dominant, filter-related coefficients are kept. The energy coefficient (C0)
is usually discarded as features should be energy-invariant. Pitch information is discarded
as well, often deemed more harmful than useful as plenty of speakers can share the same
pitch. Moreover, the fundamental frequency (F0) of male speakers is often below the
lower limit of the telephony spectrum.

Each of the above steps comes with a reduction in dimensionality (and loss of in-
formation), and the whole process goes from a mono-dimensional highly correlated time
signal to a 2-dimensional compact representation whose elements are assumed to be in-
dependent across both dimensions. MFCCs are often enhanced by appending first and
second order time derivatives for each coefficient, known as deltas and double deltas [11].
These add some information about the dynamics of speech and can be calculated as sim-
ple differences with the previous frame, or weighted sums of several previous and future
frames.

II.2.2 Longer-term features

Although short-term features proved to be the most popular feature type, it is widely
known that useful speaker information resides in phenomena observable outside the 10-
30 millisecond interval. Some like voice source features, aim to describe parameters of
human vocal tract behaviour like the glottal pulse shape and F0 (the rate of the vocal
fold vibration) of voiced sounds [11].

Other longer-term features observable across 100-500 millisecond intervals are usually
derived from the spectrogram of the signal, hence the name spectro-temporal features.
The spectrogram representation is obtained as a simple concatenation of frame spectra
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and forms a 2-dimensional time-frequency representation, allowing extraction of speaker-
specific informations like the trajectory of formant frequencies and coarticulation [1].
This image-like (see Fig. II.3) but still highly-dimensional representation is what made
the spectrogram itself the low-level signal fed to deep learning systems which had their
research roots in image recognition. The topics of neural networks and deep learning will
be discussed in a dedicated literature review in chapter V.

Other non-segmental features like prosodic and idiolectal are statistic in nature and
aim to model both instantaneous and long-term information. F0 itself is a prosodic
feature when its variation is modelled over words or entire sentences, others like syllable
stress and speaking rate are useful descriptors of the speaker talking style. Occurrences
of certain words or patterns are called idiolectal features and characterise the speaker at
a higher, conversational level [2]. The higher the level of features, the longer the window
across which such features can be observed, the larger the amount of speaker data needed
to provide solid statistics.

II.3 Back end: models and classifiers
The term modelling has been used very loosely throughout this chapter to describe the
search for cues in the feature space, aiming to describe a speaker as "unique" as well as
different from the impostors. These two adjectives might seem to carry the same concept
but they are at the core of the two families of machine learning modelling techniques:
generative and discriminative models [11].

Generative modelling implies one model for the target class and one for the im-
postors (usually referred as background). Each model is built using only data from their
respective classes. At inference time, the trial utterance is considered to belong to the
class it is estimated to be closer to. Generative models are often paired with supervised
training because, understandably, data must be labelled in order to use it to train the
appropriate model.

Discriminative modelling involves only one model. Its job is to separate the
two classes by learning what makes them different, akin to tracing a boundary between
features corresponding to each class. At testing, the model "places" the trial utterance on
the estimated correct side. Discriminative models can also be trained in an unsupervised
fashion: even with no ground truth available, the model can cluster data into classes by
exploiting the underlying differences.

II.3.1 Gaussian Mixture Models
Gaussian mixture models (GMMs) were used for the first time for speaker recognition
in [17] in 1995 and replaced Vector Quantization techniques as the state-of-the-art method
for speaker modelling. They since became the basis of several GMM-derived approaches
discuss later in this Section. A GMM models the speaker with a mixture of Gaussian
probability density functions (PDFs) calculated on the coefficients of the features. The
GMM approach belongs to the generative modeling category and uses the expectation-
maximization (EM) algorithm [18] to iteratively move the initially random parameters
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of the distributions closer to those of observed data. The probability of an observation
vector xt belonging to model λ is calculated as:

p(xt|λ) =
G∑
g=1

πgN (xt;µg,Σg) (II.1)

where the parameters are the mean vectors (µ) , covariance matrices (Σ) and weights (π)
of each of the G multivariate Gaussian components.

A probability score is obtained by calculating the likelihood of the test features with
respect to the target Gaussian mixture, which is a proximity measure of the test utterance
to the speaker model. Since feature frames are assumed to be statistically independent,
a test utterance can be treated as a sequence of independent observations X = {xt|t ∈
1...T}. Their likelihood is calculated as:

P (X|λ) =
T∏
t=1

P (xt|λ) (II.2)

When applied to speaker authentication, the score is obtained by the ratio of the
aforementioned model log-likelihood with the log-likelihood of the test features with a
Universal Background Model (UBM), obtaining the log-likelihood ratio (LLR). The UBM
is also a GMM, trained with a higher amount of data of a large number of speakers and
represents a generic model of any speaker except the target one [19]. By defining:

• X as the observation (the test trial features)

• λ as the target GMM

• β as the UBM

• H0 as the positive hypothesis (X was spoken by the target speaker)

• H1 as the alternative hypothesis (X was not spoken by the target speaker)

The log-likelihood ratio is obtained as:

LLR = log p(X|H0)
p(X|H1) = log p(X|λ)

p(X|β) (II.3)

where p(X|λ) and p(X|β) are calculated as in Eq. II.2. Neither GMM training nor test
utterances need to be constrained to a specific duration. The order of the features does
not matter. In fact, GMMs are not capable of modelling the time dimension. The latter
is a not a great issue for text-independent tasks, but can be a disadvantage when using
plain GMM models for text-dependent speaker authentication.
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II.3.2 GMM-UBM
In traditional GMM-based approaches both the speaker GMM and the UBM are trained
with the EM algorithm. In 2000, the advancement in performance achieved by the so-
called GMM-UBM method was obtained by using the UBM as a starting point to derive
the GMM, adapting the parameters of the former [20]. This way, the UBM acts more as
a well-trained speech or voice model, representing characteristics common to any human
speaker, which are then adapted to better resemble those of a target speaker. This is
achieved through maximum a posteriori (MAP) adaptation [21].

A fundamental parameter of the MAP algorithm which governs the degree of adapta-
tion is the so-called relevance factor, τ . Together with a probabilistic count of new data
ni for each Gaussian component i, it is used to determine an adaptation coefficient given
by:

αρi = ni
ni + τρ

(II.4)

where ρ ∈ {ω, µ, σ} indicates the relevance factor for the weight, mean or variance param-
eters of the GMM. The adaptation coefficients are then used to obtain the new weight,
mean and variance estimates according to:

ω̂i = [αωi ni/T + (1− αωi )ωi]γ (II.5)
µ̂i = αµi Ei(x) + (1− αµi )µi (II.6)

σ̂2
i = ασi Ei(x2) + (1− ασi )(σ2

i + µ2
i )− µ2

i (II.7)

where each equation gives a new estimate from a weighted combination of the respective
training data posterior statistics with weight α and prior data with weight (1−α). T is a
normalization factor for duration effects; γ is a scale factor which ensures the unity sum
of weights. Ei(x) and Ei(x2) are the first and second moments of posterior data whereas
µi and σ2

i are the mean and variance of prior data, respectively.
Adapted GMMs were found to be robust, with error rates reduced to 33% of those

using EM-trained GMMs [19], making the approach state of the art of the early 2000s.
Later systems (see Section II.3.4) used the GMM-UBM approach as a basis and/or as a
reference baseline [1, 11], cementing its legacy in the ASV community.

II.3.3 Hidden Markov Models
Hidden Markov models (HMMs) are well suited for temporal pattern recognition. They
have been used to model phoneme transition probabilities in speech recognition tasks [22],
and are also useful in ASV, especially in its text-dependent variant where the sequence
of observations is more important.

HMMs can enhance GMMs by adding sensitivity to the time domain, they can be
adapted from UBMs or speaker GMMs without necessarily going to the phoneme level or
adding speech recognition capabilities to the system, as in [3]. HMMs are of key impor-
tance for text-dependent systems (see Section II.3.5) and for the contribution described
in chapter IV. The feature frames which represent the observations X = xt, ..., xT are
segmented in N states along the time axis. The states can be modelled by N different
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GMMs with associated transition probabilities to form a temporal model of the speaker
and the given sentence. This way, the order of the features actually matters (i.e it would
not be possible to obtain high likelihoods at test by uttering the same sentence with words
in a different order, an aspect to which plain GMMs are just insensitive to). An N -state
HMM model is defined by:

• A state-transition probability matrix A = {aij}

• An observation PDF matrix B = {bi(xt)}

• An initial-state probability vector η = {ηi}

When used to model a known sentence, η is initialised to 1 for the first state and zero
for the rest, and A is limited to only allow transitions to the current or next state. Initially,
training examples are divided into N equally long chunks. The data in each chunk is used
to model the corresponding HMM state in the form of a GMM, with its µ, Σ and π
parameters (see II.3.1). Each HMM state, not being constrained to defined speech units
like phonemes, can encompass syllables or even words depending on their number and
the sentence duration. The initial equally-divided frame assignment is thus suboptimal
because of inter-utterance variations of the training examples. To assign feature frames
so that each state is trained only with frames pertaining to the same speech units across
all training utterances, unsupervised Viterbi realignment [23] can be iteratively applied.
Define P as the probability of observing X given state sequence s over all possible S state
sequences:

∑
S

P (X, s|γ) =
∑
S

T∏
t=1

ast−1,stbst(xt) (II.8)

The Viterbi path is the most likely sequence of hidden states s′ = {s′1, ..., s′T } for
observation X:

s′ = argmaxsP (X, s|γ) (II.9)

The realignment algorithm consists of two iterative steps:

1. For each training example, the Viterbi path for the HMM is calculated and frames
are re-assigned to the N states.

2. The µ, Σ and π parameters of each HMM state are then updated according to the
new state occupancies.

The algorithm can be set to stop after a predefined number of iterations or when the
frame assignments are unchanged with respect to the previous iteration. At test time,
the likelihood of the trial observation X given the trained HMM model γ is equal to the
probability of the Viterbi path s′, calculated as P (X, s′|γ) according to Eq. II.8.

In speaker verification, HMMs have been used to model entire sentences [24] as well
as single words [25]. HMM sensitivity to the time domain has been proven to be an
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advantage, especially when there is text mismatch between the model and the test trial:
the study in [26] shows a relative 14% decrease in error rates when using HMMs over
GMM-UBM to model single words.

II.3.4 Towards i-vectors

By concatenating the mean vectors of a MAP-adapted GMM speaker model (see Sec-
tion II.3.2), a fixed-dimensional representation of a variable-duration utterance is ob-
tained in the form of a GMM supervector [27]. Support Vector Machines (SVMs), which
were already successful as supervised binary classifiers in machine learning [28] found
their application in speaker verification tasks [29] by letting them operate in the super-
vector domain. The discriminative nature of SVMs allowed them to be trained with
GMM supervectors derived from (labeled) target and impostors utterances, using them
as features.

Several other techniques were applied to work in the supervector domain, most of them
belonging to the family of factor analysis approaches (FA). FA aims at giving insights to
the speaker-and-channel variabilities in the highly dimensional supervector space in a
more compact way with fewer hidden variables which can be estimated. All of the FA-
derived techniques describe GMM supervectors as statistical models consisting of linear
combinations of (i) speaker- and (ii) channel-dependent components, (iii) a channel-and-
speaker independent component and (iv) a residual. In fact, even the previously discussed
MAP adaptation (see II.3.2) can be interpreted as linear statistical modelling [11]. Most
notable FA approaches include joint FA and i-vectors.

Joint factor analysis (JFA) managed to model both speaker and channel variabil-
ity in one model through MAP adaptation, assuming these variabilities lie in distinct
lower-dimensional subspaces and takes into account all four previously mentioned linear
components [30]. When JFA is used in conjunction with a SVM classifier, the estimated
speaker and channel factors are used as features and referred to as i-vectors [31]. I-vectors
are therefore related to both speaker and channel variability without distinction like the
initial GMM supervector. With their reduced dimensionality they allow for compensa-
tions techniques to be easily applied.

Probabilistic Linear Discriminant Analysis (PLDA) [32] is to i-vectors what JFA is
to supervectors. At the risk of oversimplifying, they both aim to model speaker- and
channel-dependent variations in a lower-dimensional subspace. The reduced numbers
of PLDA parameters compared to JFA, less demanding computational efforts and the
possibility to train the i-vector extractor on unlabeled data sets made the i-vector/PLDA
method appealing and the approach raised to state-of-the-art, reporting error rates as low
as 1.27% for the core condition of the NIST Speaker Recognition Evaluation of 2010 (see
Section II.5.1).

While developed for text-independent tasks, i-vector/PLDA systems have been shown
to benefit from lexical information during training [33]. Their inability to model the tem-
poral structure of the utterances, however, makes them ill-suited for text-dependent tasks,
especially when dealing with short utterances [34]. The work in [35] reports comparative
experiments between the HMM-based system HiLAM (explained in the next section) and
an i-vector system: on the matched-text condition of RSR2015 corpus (often deemed the
most difficult, see II.5.2.b) i-vector were always outperformed by HiLAM, with the closest
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Fig. II.4 The original HiLAM system architecture reproduced from [37].

gap being a 30% relative error difference on male speakers of part II of the database.

II.3.5 The HiLAM system

HiLAM (Hierarchical multi-Layer Acoustic Model) [35], is a text-dependent ASV system
which is here given particular attention since it forms the basis for contributions explained
in chapters III and IV.

After its introduction in 2014, the system quickly became the state of the art for
short-utterance text-dependent speaker authentication (similar systems were previously
proposed by the same author [24,36] with the first mention of "HiLAM" actually appearing
in [37]. None of the block of its pipeline made use of current cutting-edge or experimen-
tal technologies, it was indeed the judicious combination of traditional components like
MFCCs GMM-UBM and HMMs that, when used on a sub-field of ASV (namely short-
utterance text-dependent speaker authentication) made the approach outperform other
current approaches (see section II.3.4).

The HiLAM system is a flexible, efficient and competitive approach to text-dependent
automatic speaker verification which made it a perfect starting point for the research on
embedded applications which is reported in this thesis. The architecture is illustrated in
Fig. II.4 and is composed of three distinct layers. They represent (i) a gender-dependent
UBM, (ii) a text-independent GMM speaker model and (iii) a text-dependent HMM
speaker model.

The UBM is trained according to a conventional maximum likelihood / expectation
maximization algorithm [38]. The second-layer text-independent speaker model is derived
from the UBM via MAP adaptation (see II.3.2). Different third-layer text-dependent
speaker models are then learned for each sentence or pass-phrase. These take the form of
5-state, left-to-right HMMs. Each state of the HMM is also MAP-adapted from the second



II.4 Performance Metrics 21

layer text-independent GMM of the corresponding speaker and then learned with several
iterations of Viterbi realignment and retraining (see Section II.3.3). Each HMM therefore
captures both speaker characteristics in addition to the time-sequence information which
characterizes the sentence or pass-phrase.

Given the 3-layer structure, to obtain a single text-dependent model MAP adaptation
needs to be performed twice: once for the adaptation of the UBM to the GMM and a
second time for the adaptation of the GMM to the HMM. Two distinct relevance factors
are therefore applied during the process, τ1 and τ2. The first relevance factor, τ1, acts
to balance the contribution of the UBM and speaker-specific adaptation data to the
parameters of the new speaker model. The second, τ2, controls adaptation between the
text-independent and text-dependent speaker models. Of course, since the same text-
independent model can be used to adapt several sentences, the first adaptation step is
performed just once per speaker while the second is performed for each speaker and pass-
phrase.

II.4 Performance Metrics

This section describes the metrics that are used (directly or as a basis) for performance
assessment in the remainder of this thesis. Fig. II.6 illustrates an example of Gaussian
distributions of impostor and target scores. To calculate any performance a decision
threshold must be set, which represents the minimum score a trial must obtain to be
considered a target.

In practice, some overlap between the distributions will always be present, which
implies that any threshold would cause at least one of two types of errors: false positives
and false negatives. The former is generated from impostor trials with scores above the
threshold and the latter, conversely, from target trials with scores below the threshold.
In real case scenarios, the threshold is set a priori and should be fixed. Threshold tuning
is a matter of compromise between more false positives or negatives, the value is set
in function of their estimated probabilities or based on the type of application for the
system. When a system is in its development stage, performance metrics are reported as
a function of the decision threshold, or the threshold can be set a posteriori.

II.4.1 Receiver Operating Characteristic (ROC)
The ROC is explained here instead of the more widely used (in ASV) detection error
tradeoff (DET) curve, because it is of fundamental importance for contributions in chap-
ters VI and VII.

By defining the true positive rate (TPR) as:

TPR = #{true positives}
#{actually positives} = #{true positives}

#{true positives} + #{false negatives} (II.10)

and the false positive rate (FPR) as:

FPR = #{false positives}
#{actually negatives} = #{false positives}

#{false positives} + #{true negatives} (II.11)
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Fig. II.5 An example of a ROC curve: the profile can be interpreted as the
loss in TPR correspondent to a lower FPR and vice-versa. Better performance
corresponds to curves with faster acceleration, pushed to the upper-left corner of
the graph.

The ROC curve (see Fig. II.5) is depicted by plotting the FPR versus the TPR vari-
ations as a function of the decision threshold of a binary classifier. It conveys the same
type of information as DET graph, albeit with linearly-scaled axes and the use of the
false negative rate in lieu of the TPR.

PDF of impostor and target scores

score values

-2 -1 0 1 2 3 4

Fig. II.6 Example of impostor (left) and target (right) scores probability density
functions (PDF). The decision threshold is depicted as the green vertical line.
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II.4.2 Equal Error Rate (EER)

The equal error rate is the point on ROC or DET curves for which both error rates (false
positive and false negative) are equal, identified by one threshold value. As a consequence,
the EER threshold falls roughly in the middle of the overlap area of score distributions,
as exemplified by the green line in Fig. II.6.

While in real-case scenarios the two error types are rarely considered equally severe
or equally probable (and therefore systems are tuned to achieve often distinct error rates)
the EER remains a compact and balanced descriptor of a system overall performance
and it is often used as an optimization objective [39]. In all this thesis contributions
performance is reported in the form of EER.

II.4.3 Score normalisation

Studies like [40] demonstrated that different speakers exhibited different target and im-
postor score distributions, which penalized performance assessed using a single decision
threshold over all trials. Score normalisation techniques were developed as a remedy, the
most notable being Z-norm (Zero normalisation) and T-norm (Test normalisation) [2].
Z-norm compensates inter-speaker variation by testing a target model against an external
cohort of impostor trials and using its mean and variance to normalise the actual scores,
approximating a common impostor distribution to all speakers. T-norm compensates
inter-session variations by testing the trial utterance against a fixed set of impostor mod-
els, and using the trial-dependent statistics to normalise the score in an online fashion,
achieving better separation between the speakers target and impostor distributions. The
two normalisation techniques can be used jointly, the practice is known as ZT-norm.

II.5 Challenges and Databases
Performance measures and error rates would not be meaningful if different systems are not
compared using the same dataset and the same experimental protocols. This is why since
the birth of ASV great effort has been put in creating standard databases and protocols.

II.5.1 NIST Speaker Recognition Evaluations

Text-independent ASV research has largely been driven by the Speaker Recognition Eval-
uations (SREs) administered by the US National Institute of Standards and Technology
(NIST)1. Since 1996, there have been 16 evaluations (the 17th is planned for 2019 at the
time of writing). With each SRE, an evaluation plan is presented, which describes the
rules and challenges for the current evaluation, and is often accompanied by an appro-
priate corpus. An overview of more than two decades of NIST evaluations can give an
idea of the challenges that ASV technologies faced over the years, which approaches went
from experimental to state-of-the-art to obsolete, what rules and conditions were added in
newer evaluations to add realistic difficulties to the tasks or embrace specific scenarios [1].
This section will focus on the most notable challenges introduced in the ASV community
by the NIST evaluations.

1https://www.nist.gov/itl/iad/mig/speaker-recognition

https://www.nist.gov/itl/iad/mig/speaker-recognition
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II.5.1.a The early years

NIST SREs up to the early 2000s involved speaker authentication over telephone conver-
sations. These were extracted from the Switchboard corpus and had an average length of
5 minutes. The number of conversations and speakers were in the order of thousands and
hundreds, respectively. Training data usually consisted in one or two sessions. The state-
of-the-art approach of the time were GMM and GMM-UBM based systems which worked
on short-time cepstral features like MFCCs. The main weaknesses for those systems were
the high sensitivity to channel variations (mainly due to different telephone microphones)
and the inability to benefit from test trials with more than one minute duration (con-
versely, strong degradation occurred with very short durations) [41]. It was also in this
period that score normalisation techniques (see Section II.4.3) were introduced.

II.5.1.b Broader scope and higher dimensionality

The mid-2000s saw expansions in every aspect of previous evaluations: the number of
speakers, sessions, languages, microphone types, conditions and tasks were all increased.
Most notably, up to 16 sessions were available to train each speaker, totalling 40 minutes
of data, with training conditions starting from 10 seconds to the full session set. The
Mixer corpora consisted of bilingual speakers fluent in a second language (the first always
being English) to allow for language matched and mismatched trials.

The increase in amount of data available came with systems that could benefit from it.
Peculiar to this period is the attention given to longer-term, non-cepstral features, namely
phone-sequences, prosodic, lexical and conversational features, which all exploit traits of
speech that cannot be captured by frames that are a few of milliseconds in duration.
Describing the systems that employed these features is outside of the scope of this thesis,
but it is worth noting that they achieved performances equal to the reference GMM-
UBM, when classifier fusion was applied. Standard short-term cepstral features found
new application in high-dimensional spaces with discriminative GMM-SVM approaches
(see Section II.3.4), yielding significant improvements in handling channel variability.

II.5.1.c Bi-annual big data challenges

Each of the four NIST evaluations from 2006 to 2012 introduced new challenges, rules
and tasks, as well as copious amounts of new data to exploit. Speakers were now in the
order of thousands, generating hundreds of thousands of trials. Systems were trained with
several hours of speech. SRE08 saw the introduction of the interview scenario, bringing
high-quality and overall different kind of conversational speech to the table. In 2010 new
telephone data was recorded and divided in high and low vocal effort; the same year
also saw the introduction of the new detection cost function. 2012 was the year of the
perhaps biggest departure: the amount of speech to train a given model was no longer
limited by the protocols: any combination of previous evaluation files could now be used.
New challenges were added in the form of environmental and additive noise, and the
unavailability of speech-recognition word transcripts.

Focus was shifted back to cepstral-only systems, with JFA-based systems obtaining
excellent results in several SREs only to be overthrown by the i-vector/PLDA approach
in 2012 (see Section II.3.4.)
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Table II.1: Statistics for the NIST SRE16 development labelled data

# Speakers 20
# Models 80
# Calls 200
# Target trials 4828
# Impostor trials 19312

Languages Cebuano
Mandarin

II.5.1.d SRE16

The recent NIST SRE162 is given special attention here since it is used for experiments
reported in Chapter VI. The main focus of this evaluation is telephone speech, with more
duration variability compared to previous SREs. Data is collected from the Call My Net
Speech Collection and is comprised of speech samples in the Tagalog, Cantonese, Cebuano
and Mandarin languages.

The required fixed training condition poses limits to the data that can be used to
train the system which —apart from the corpus pertaining to the evaluation— can only
consist of previous SRE evaluations, Switchboard (only files with transcriptions) and
Fisher corpora datasets. This, along with the aforementioned language choices, makes
background-garbage modelling particularly challenging, as most of the speech from these
corpora is in English. The enrolment data for a given speaker model can be either one
or three segments of telephone conversations (same handset), each segment containing
approximately 60 seconds of speech. Test segments durations range from 0.5 to 60 seconds,
recorded from several handsets including the enrolment one. Durations measurements
refer to detected speech counting both sides, not the actual recording length.

Data for the development set is collected in a way that aims at mirroring the evaluation
set conditions. The statistics for the labelled part are described in Table II.1.

Each of the 20 speakers is featured in 10 calls with an average recording duration of
approximately 8 minutes. As can be seen in Table II.1, speakers enrol multiple models
following the 1- and 3-segments conditions described above. The testing protocol involves
segments by the same 20 speakers (non overlapping with enrolment data), with an average
of 75 and 225 target and impostor trials per model, respectively.

While most SREs have included conditions for training and testing durations as short as
10 seconds, optimisation efforts were always towards better results in standard conditions.
This often resulted in state-of-the-art systems having sharp degradations in performance
on short duration tasks [42, 43]. In [44] experiments on NIST 2008 and 2010 databases
with truncated data showed that, for durations below 10 seconds, state-of-the-art i-vector
systems had no significant advantage over GMM-UBM systems. Notably, the latter even
performed better with both training and testing truncated to 2 seconds, a desirable con-
dition in IoT scenarios (see Section II.3.5 and Chapter III).

2https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016

https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016
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Fig. II.7 RSR2015 database partition for male speakers. The partition is iden-
tical for female speakers but with only 43 speakers in the evaluation set.

II.5.2 RSR2015 corpus

The RSR2015 corpus [37] is a short-utterance, text-dependent database. Its male gen-
der partition and related protocols described below were used extensively for the work
reported in Chapters III and IV. RSR2015 was released almost in tandem with the
HiLAM system presented in Section II.3.5; in fact, most of the experimental work in-
volving HiLAM was performed on this corpus [35, 45] which is nonetheless distributed
with protocols suited to the assessment of HiLAM-based text-dependent speaker verifi-
cation systems. The RSR2015 database is one of the most versatile and comprehensive
databases for such research. The particular speaker/part/session all-combinations struc-
ture illustrated in Fig. II.7 is what made RSR well suited to the work reported in Chapters
III and IV. The more recent RedDots [46] corpus does not reflect this structure.

RSR2015 contains speech data collected from both male and female speakers and
is partitioned into 3 evenly-sized subsets whose usual purpose is for background mod-
elling, experimental development and evaluation. Each subset is comprised of 3 parts:
phonetically-balanced sentences (part I), short commands (part II) and random digits
(part III). Each part contains data collected in one of nine sessions. Three of these ses-
sions are reserved for training while the remaining six are set aside for testing. The three
training sessions are recorded using the same smart device whereas the six testing sessions
are recorded using two different smart devices (i.e. the user kept the same mobile phone
or tablet for the training sessions while two other were used for the testing sessions, but
the devices themselves differ between users).

II.5.2.a Training

When used in conjunction with the HiLAM system, the background speakers are used
solely to build the UBM. Not all the data is used, though: in order to have no speaker
nor text content overlap, the UBM should be built avoiding data from the part which
would be used to train the other layers. For example, consider the end goal is to test
speaker recognition accuracy on phonetically balanced pass-phrases (part I). First, the
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Table II.2: The four different trial types used to assess the performance of a text-
dependent speaker verification system. They involve different combinations of matching
speakers and text. A trial should be accepted only when both match.

Trial Type Speaker
Match

Text
Match

Target-Correct (TC) Yes Yes
Target-Wrong (TW) Yes No
Impostor-Correct (IC) No Yes
Impostor-Wrong (IW) No No

Table II.3: Number of trials for Part I of the RSR2015 database for each of the four trial
types illustrated in Table II.2 and for development (Dev) and evaluation (Eval) subsets.

Speaker-Text Dev Eval
Target-Correct (TC) 8,931 10,244
Target-Wrong (TW) 259,001 297,076
Impostor-Correct (IC) 437,631 573,664
Impostor-Wrong (IW) 6,342,019 8,318,132

UBM should be built using background speakers only from part II [37]. Then, the training
sessions from part I would be used to adapt the middle-layer GMMs of non-background
speakers. The text-and-speaker dependent data used to adapt each HMM model is a
subset of the training sessions used for the upper layer.

II.5.2.b Testing

Being a text-dependent corpus, there are actually four possible trial types, these are il-
lustrated in Table II.2. To be a target trial, both the speaker and the text content
must match the ones of the claimed model, dubbed a target-correct trial. The remaining
three trial types (target-wrong, impostor-correct, impostor-wrong) are considered impos-
tor trials. Performance is usually assessed separately for the three impostor conditions,
combining target-correct (TC) trials with trials of one mismatching combination: target-
wrong (TW), impostor-correct (IC) or impostor-wrong (IW). The number of trials for
each type in the standard RSR2015 protocols is illustrated in Table II.3 for development
and evaluation sets. The number of trials for each testing condition is TC+TW, TC+IC
and TC+IW respectively.

II.6 Summary
This chapter presented an overview of Automatic Speaker Verification as a research field,
describing its variants and its traditional front-end back-end pipeline. Historically im-
portant ASV approaches were reviewed, most of which are still relevant today and are at
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the basis of current systems. Neural-network based approaches deserve their own litera-
ture and will be explored in Chapter V. Evaluations (and their evolution) and databases
for both text-independent and text-dependent tasks were analysed. These ASV topics
formed the starting point for the author’s research activity and acts as a basic knowledge
on which the contributions in the following chapters III and IV are built upon.



Chapter III
Simplified HiLAM

This chapter is concerned with increasing the usability of the HiLAM system, this is
achieved by studying the effect of progressively pruned training data on final performance.
The goal is to obtain a system that requires less data (and therefore less time) to enrol a
speaker, to the point where it is acceptable for an end-user in a real case scenario.

During the last decade, text-dependent speaker authentication became known to the
general public as it slowly entered everyday life [47]. Voice commands in general are
perceived as quick, non-intrusive and efficient. Online banking services started to em-
ploy fixed-text speaker authentication and several companies are selling voice assistants.
Though most of the latter only perform speech recognition, embedding speaker authen-
tication seamlessly in the sentence used to "wake up" the device (i.e. "Hello Google" or
"Alexa?") is a highly desirable feature.

As introduced in previous chapter, the NIST SREs have been strong driving forces of
ASV research during the last 20 years. Their main focus being security and surveillance,
NIST challenges often involve text-independent, relatively long telephone conversations.
Text-dependent speaker authentication scenarios usually calls for very short test trials.
This is possible, due to the fact that locking the system to a fixed sentence greatly
decreases the amount of variability in training examples and allows the system to know
"what to expect" at test time, in terms of phonetic content. Nevertheless, significant
reductions in speaker-specific data (both at enrolment and at test time) pose several
challenges to state-of-the-art ASV technologies [42–44]. State-of-the-art i-Vector and
probabilistic linear discriminant analysis (PLDA) techniques are difficult to apply in text-
dependent tasks [35,48,49] unless training data is plentiful [50] and unless impostor trials
involve matching text [51]. Studies reported in [52–55] demonstrate that joint factor
analysis (JFA) systems can work well with little enrolment data, however, even under
those conditions, both JFA and PLDA still rely on prior knowledge of the text content.

The HiLAM system described in II.3.5 represents a good candidate for such IoT-
related scenarios, as it allows the user to train any short command or pass-phrase (within
seconds length), all of which will embed speaker authentication as the final model is
content-and-speaker specific. HiLAM involves two speaker training stages: one to train
the text-independent model, and a second to train the text-dependent model. The only
problem here is that, in its presented form, the standard pipeline requires roughly 5
minutes of users’ speech to train the text-independent model, prior to modelling a specific
pass-phrase. Pass-phrase can be modelled with only three utterances. Five minutes is a

29
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Fig. III.1 The original HiLAM system architecture reproduced from [37].
This graph is the same used in previous chapter, Fig. II.4; it is again reproduced
here to ease the reading of this chapter.

rather long time to ask as a preparatory step, even if it’s only required once per speaker.
It would be perceived as very inconvenient and most people will probably not bother to
do the effort. Moreover, the text-independent models are not even needed at test time.

How much can those 5 minutes be reduced? Is there a good compromise between
usability and performance? The work reported in this chapter demonstrates that, by
sacrificing a little in performance, great improvements can be obtained in terms of in
usability and efficiency. The modifications introduced to HiLAM eliminate the need for
the intermediate text-independent speaker model.

Albeit a modest modification to the original work, the simplified 2-layer approach
leads to significant reductions in the demand for enrolment data making the system
more efficient, supporting speaker authentication for smart device and Internet of Things
applications. The contributions derived from this work were originally published in [4].

III.1 HiLAM baseline implementation
This section describes our implementation of the HiLAM system that forms the baseline
for the work reported here. The system architecture is illustrated in Fig. III.1. Also
presented are results for our specific implementation assessed using the RSR2015 database.

III.1.1 Preprocessing and feature extraction
Silence removal is first applied to raw speech signals sampled at 16 kHz. This is performed
according to ITU-T recommendation P.561 which specifies an active speech level of 15.9

1http://www.itu.int/rec/T-REC-P.56-201112-I/en

http://www.itu.int/rec/T-REC-P.56-201112-I/en
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dB. In our implementation this results in the removal of approximately 36% of the original
data. The remaining 64% is then framed in blocks of 20ms with 10ms overlap. The
feature extraction process is standard and results in 19 static Mel frequency cepstral
coefficients (MFCC) without energy (C0). These are appended with delta and double-
delta coefficients resulting in feature vectors of 57 dimensions.

III.1.2 GMM optimisation

The number of Gaussian components is empirically optimised. The literature shows
that higher values (512-2048) are often used for text-independent tasks [20, 56] or with
systems based on i-Vector and PLDA techniques [51, 57]. In contrast, lower values (128-
256) are typically used in text-dependent tasks and techniques such as HiLAM [24, 37].
We obtained the best performance with 64 Gaussian components.

III.1.3 Relevance factor optimisation

Concerning the relevance factor of MAP adaptation (see Section II.3.2 and Eq. II.4),
the best performance is delivered with comparatively higher and lower values of τ1 and
τ2 respectively. More precisely, τ1 was set to 19, still inside what is considered to be
the "insensitive" interval (8-20) according to the literature [20]; τ2 was set to 3, as lower
values are usually better suited for text-dependent tasks [58]. This means that during
both adaptation stages, the middle layer model/data are given less weight. At each MAP
adaptation stage, the new weight, mean and variance estimates share the same relevance
factor (see Equations II.5, II.6 and II.7).

Scoring can be obtained by calculating the probability of the observation given the
HMM model as explained in II.3.3, but the best results were obtained by averaging the
log-likelihood ratios (between the claimed text-dependent speaker model and the UBM)
across the five states.

III.1.4 Baseline performance

Results for our implementation of the HiLAM baseline are presented in Table III.2 along-
side those presented in the original work [59]. Results are presented for male speakers
only, for the three different test conditions, namely impostor-correct, target-wrong and
impostor-wrong (see Section II.5.2.b).

In the literature the IC condition is considered to be both the most difficult and the
most crucial. The latter is quite obvious, as a speaker authentication system should be
robust even if the impostor is somehow aware of the expected text content; not without
reason this type of trial is sometimes called sly imposture. TW trials often prove to be
less difficult than IC ones; TW impostures are usually considered the least severe menace
since they essentially represent the user not remembering the text content or mismatched
commands in an IoT environment at worst (a weakness that could be easily remedied by
adding speech recognition capabilities to the system [3], which is outside of our research
scope). Lastly, IW trials usually exhibit very low error rates, being different in both
aspects to the claim model, and therefore considered to be just naive impostures, as they
are sometimes referred to.
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While results for our system are worse than those in the original work, performance
is still respectable on IC and IW conditions with respective EERs of less than 2% and
1%, for both development and evaluation subsets. The TW condition showed abnormally
high EER values which do not follow the aforementioned trends. Considerable time has
been spent to investigate the reason for this difference, one factor was found to stem from
the use of delta features. Since deltas and double-deltas represent 38 of the 57 MFCC
coefficients, during the MAP adaptation step from the second to the third layer they are
believed to introduce noise which degrades the text-dependent modelling capability of the
HMMs. Since TW trials are anyway uttered by the target speaker, this causes more false
positives. This is confirmed by the fact that, without deltas, TW EERs lie in between
those of IC and IW values as expected, but the results are overall much worse. Despite
experiments to tune and optimise the MFCC extraction and normalisation parameters,
no compromise was found that allowed good TW results without affecting too much the
other conditions. This problem however does not at all influence the final goal of this
work, as the final simplified system is inherently immune to delta-caused noise.

III.2 Protocols

Since our target application relates to short-duration pass-phrases, all the experiments
in this chapter were performed using part I data of the RSR2015 corpus consisting of
phonetically-balanced sentences (see section II.5.2). These are the same 30 Harvard sen-
tences used in the collection of the better-known TIMIT database [35] which were designed
to give a broad coverage of phonemes in the English language.

As previously explained in II.5.2.a, data reserved for background modelling is disjoint
from training and testing data: when the development and evaluation sets of part I are
used for training the models, the background set of part II is used to train the UBM
(see Fig. II.7); therefore there is no overlap in terms of speakers or sentences. Second-
layer HiLAM models (GMMs) are trained with data from all three training sessions and
all 30 sentences, totalling 90 utterances. These models are speaker-specific and text-
independent, totalling 50 models for the development set and 57 for the evaluation set.
Third-layer HiLAM models (HMMs) are trained with the three training utterances corre-
sponding to each specific sentence, for a total of 30× 50 = 1500 and 30× 57 = 1710 pass-
phrase-and-speaker specific models for the development and evaluation set, respectively.
Second-layer models are MAP-adapted from the UBM, and, in turn, third-layer models
are adapted from the respective speaker model from layer 2. The standard protocols were
used to implement, optimise and test the HiLAM baseline described in section III.1.

In order to study the usefulness of the training data reserved for the speaker-dependent
middle layer, standard protocols are subsampled reducing the number of pass-phrases. In
all of the subsampled-protocol experiments, the data required to build the UBM (first
layer) and to adapt the HMM pass-phrase models (third layer) is left unchanged as de-
scribed in the previous paragraph; subsampling is only applied to the data needed to
adapt the middle layer models. Those models are indeed just an intermediate step since,
once used to adapt third-layer models, they are never used again anywhere in the whole
pipeline.

In terms of quantity, it was decided to experiment with 60 and 30 pass-phrases out of
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Table III.1: Performance for different durations of middle layer training. The last row
shows results for the simplified HiLAM system with no middle layer at all. Results shown
for the RSR2015 development set and for the IC condition.

Number of utterances EER

3-Layer

90 1.63%
60 1.66% (a) 1.64% (b)
30 1.62% (a) 1.63% (b)
3 2.33%

2-Layer 3 1.84%

the original 90. This was done in two ways:

a) Session subsampling: Select the first 2 sessions or only the first one out of the 3
reserved for training (same phonetic richness, less session variation)

b) Pass-phrase subsampling: Select the first 20 or 10 pass-phrases in each training
session (same session variation, less phonetic richness)

Testing protocols used for all experiments are the standard part I testing protocols
distributed with the RSR2015 database. Finally, performance is expressed in terms of
the equal error rate (EER).

III.3 Simplified HiLAM
Described in this section are experiments which assess the necessity of text-independent
enrolment and a number of modifications to the original HiLAM baseline system which
enable competitive performance with greatly reduced durations of speaker enrolment data.
Among these modifications is the reduction of the 3-layer approach to only two layers and
associated re-optimization. The new system learns text-dependent speaker models using
only three training utterances.

III.3.1 Middle-layer training reduction
In order to assess the necessity of text-independent enrolment, a first sequence of exper-
iments was conducted where the number of text-independent utterances used for layer-
two training was successively subsampled according to the configurations explained in
Section III.2. Secondly, the middle layer was trained with the exact same data that
would be later used to adapt the third layer (with this configuration the middle layer
is text-dependent and the number of middle-layer models is the same as the third layer
HMM models); while a somewhat questionable choice, this configuration allows for just
three repetitions of the desired pass-phrase at enrolment time while keeping the 3-layer
structure and acts as an intermediate step towards the complete removal of the middle
layer.
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Fig. III.2 The simplified 2-layer architecture: text-dependent speaker models are
adapted directly from the UBM.

Results are illustrated in Table III.1 for the development set and IC condition only.
The first row corresponds to full-protocol training (90 utterances are roughly equivalent to
5 minutes of speech). This result is the same presented in the second row of Table III.2 and
acts as the starting point. The number of utterances for the 3-layer system only refers to
what is needed to train the middle layer. As the number of training utterance decreases
EER values show that performance is fundamentally insensitive to great reductions in
the amount of data used for training, whether session subsampling (a) or pass-phrase
subsampling (b) is adopted, with one subsampled result yielding an EER even lower than
the baseline. Although this last claim is not statistically significant, it is clear at least
that the third layer HMM models do not benefit from the increased session variability
or phonetic richness of the upper layer. This finding suggests that text-independent
enrolment may be unnecessary or perhaps even noisy to some extent, when the recognition
task is ultimately text-dependent.

Moreover, the findings relative to the best values for the relevance factor parameters
(see Section III.1) indicate that only modest adaptation is applied between layers 1 and 2,
whereas more significant adaptation is applied between layers 2 and 3. This calls even
more into question the real need for text-independent enrolment or, in other words, the
real need for the middle layer.

III.3.2 Middle layer removal

Given the observations reported above, it was decided to assess performance when the
middle layer, text-independent enrollment is dispensed with entirely. Speaker enroll-
ment is then performed in text-dependent fashion exclusively as illustrated in Fig. III.2.
Each state of the HMM speaker model is now initialized using the UBM instead of the
speaker-specific text-independent GMM. Adaptation is otherwise the same as before and
performed using the same three utterances of the same sentence. The number of Gaus-
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sian components (64) is left unchanged from the 3-layer implementation and the single
remaining relevance factor τ (3) is set to the same value of τ2 (see Section III.1). These
parameters were found to be optimal in the case of the simplified system.

Results are illustrated in the last row of Table III.1. Performance degrades from an
EER of 1.6% for the baseline 3-layer system to 2.3% when enrolment is performed with
only 3 speaker-specific utterances. The exact same data of the latter configuration is used
for the 2-layer system, whose performance improves to 1.8% EER. Despite a reduction
in enrolment data in the order of 97% with regards to the baseline, the increase in error
rate is only 0.2%. Such a compromise between performance and usability would be quite
acceptable in many practical scenarios.

III.4 Evaluation Results

Results presented in section III.3 relate to the development set and the IC condition only.
Presented in this section is a full performance comparison of the original HiLAM ap-
proach in [59] to the simpler 2-layer system presented in this work using the full RSR2015
development and evaluation sets.

Final results for the three impostor conditions now reflect the literature trends de-
scribed in section III.1 and are illustrated in Table III.2. The first row indicates the
specific test condition for development (dev) and evaluation (eval) sets. Results pre-
sented in the original work [59] are illustrated in the second row whereas those for the
new 2-layer system are presented in the third row. They correspond respectively to the full
enrolment condition (90 text-independent utterances for layer 2 and three text-dependent
utterances for layer 3) and the reduced enrolment condition (3 text-dependent utterances
only). These results confirm the findings presented above, namely that significant im-
provements to usability can be delivered by reducing the demand for enrolment data with
only modest increases in error rates. Both systems achieve better performance for the
evaluation set than for the development set. While this finding is counter-intuitive, it is
consistent with other results in the literature, e.g. [35,37,59], one possible explanation for
which is differences in the distributions of recording devices across the two subsets.

The TW condition results do not exhibit the anomalous behaviour that plagued the
baseline system (see Section III.1, last paragraph) and now follow the same trend as the
original work. This has probably to do with the fact that, while keeping the same MFCC
dimensions, deltas are not adapted from the text-independent model but instead directly
from the UBM, which is built from different sentences and more variate speakers.

Compared to the original work, performance for the 2-layer system deteriorates for
the development set. In contrast, performance for the evaluation set improves. This
result is particularly encouraging. The drop from 1.33% to 1.24% corresponds to a 7%
relative reduction in the EER and comes with the same 97% reduction in demand for en-
rolment data. This is a significant improvement to usability in the case of text-dependent
recognition.
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Table III.2: Comparison of results for our implementation of the HiLAM system (3L) with
original results reported in [59] and those obtained with the simplified system (2L) reported
in this section. Results shown for male speakers in part I of the RSR2015 database.
(Results for each condition correspond to their combination with TC trials.)

System IC-Dev TW-Dev IW-Dev IC-Eval TW-Eval IW-Eval
Larcher 3L [59] 1.43% 1.00% 0.20% 1.33% 0.66% 0.09%
Valenti 3L 1.63% 8.34% 0.78% 1.81% 7.54% 0.83%
Valenti 2L 1.84% 1.09% 0.32% 1.24% 0.52% 0.05%

Fig. III.3 Matlab demo interface in Test Mode: scores are labelled with regards
to the threshold, which here is left at its default value of 2. The user can graph-
ically place the scores on the bar by forcing the ground truth symbol of either
impostor (red crosses) or target (blue circles)
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III.5 The Matlab demo
Given the increased usability, a demo was developed to show the practical aspects of the
above work, in an online fashion. Developed in Matlab and running on standard PCs, the
demo was not tailored to any particular scenario, its focus was to demonstrate how easily
and quickly multiple users could model several pass-phrases of their choice. The UBM
was built with data from either RSR or TIMIT, both databases gave similar results. The
training procedure goes as follows:

1. Launch the demo in Train Mode

2. Select one slot for a given user and pass-phrase

3. Record 3 repetitions of the same pass-phrase (each recording can be listened to and
saved or re-recorded), the model is now created

4. Create another model in a free slot or switch to Test Mode

Once at least one model has been trained, in test mode the user can record and test
target-correct or target-wrong trials and —of course— with help from another person,
impostor-correct and impostor-wrong trials (see Section II.5.2.b). The interface for testing
is pictured in Fig. III.3 and is used as follows:

1. Select the slot correspondent to the claimed model

2. Record one utterance

3. Select "test" to obtain a score and a label

4. Select "add as target" or "add as impostor" depending on the ground truth, the
appropriate symbol will be displayed on the score bar

Albeit far from a finished product, the usability and efficiency aspects of the 2-layer
system were immediately obvious when, in all of the occasions the demo was shown,
groups of people shown active interest in trying to fool the system (with little success) or
see how close one’s impostor scores were to the target scores of the other.

When testing offline like in the experiments reported above as well as in [59], the
threshold for the EER is chosen a posteriori, a thing which is not at all possible when
testing online. Although it is suggested to tune the threshold on the development set and
use it on the evaluation set [37], this works well when the latter set exhibits similar if not
identical recording conditions to the former set, which is the case with RSR2015 but not
in real life. After a few experiments involving scores from RSR2015 data and recordings
done internally at NXP, a fixed threshold value was empirically set to a log likelihood
ratio of 2. Although this value was then confirmed to be optimal in several occasion in
which the demo was presented (including noisy and reverberant environments such as
poster sessions halls and corridors), it is clear to the author that the tuning process for
the threshold was far from accurate. Therefore, it was left as a user-tunable parameter
on the interface with a slider (see Fig. III.3).
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It was eventually envisioned to automatically set the threshold as a function of the
scores of the enrolment utterances against the model itself (autoscores), but no efficient
solution was found. Said scores are, however, still displayed when a model is selected in
test mode, as they might be interesting to compare with all four kinds of trial scores (TC,
TW, IC, IW) at inference time (as can be seen in Fig. III.3, autoscores are predictably
very high even when compared to the TC trial score, pictured as the first circle).

III.6 Conclusions
Short-utterance text-dependent speaker verification is the closest sub-field of ASV with
the most potential to real commercial applications because of its reduced time and re-
sources demands at inference time. Usability for the end user means non-intrusive in-
teraction and plug-and-play setup, systems which demand minutes of the user speech to
build a speaker model are not user-friendly. In automatic speaker verification for smart
device/home applications and in the Internet of Things (IoT) domain, the collection of
enrolment data is one of the most invasive and inconvenient tasks from the end user
perspective. The objective of this work was to improve on the text-dependent HiLAM
system usability by questioning the need for several minutes of the user’s speech.

The experiments conducted with progressively subsampled protocols prove the non-
necessity of the full text-independent enrolment used in the conventional HiLAM sys-
tem, in the case that the ultimate recognition task is text-dependent in nature. It was
found that reductions up to 66% of enrolment data do not influence the system perfor-
mance. Results produced using a publicly available, standard database and protocols
show that text-independent, middle-layer enrolment, while in some cases improving ro-
bustness slightly, unnecessarily impacts on usability. A simplified 2-layer system was
implemented, speaker enrolment is then performed using only three repetitions of a given
sentence or pass-phrase, reducing the training procedure asked of the user to just a few
seconds. The proposed approach, admittedly a modest modification of the original sys-
tem, delivers largely comparable levels of automatic speaker verification performance with
a 97% reduction in enrolment data. The work shows that the middle layer of the HiLAM
system and, hence, text-independent enrolment can be dispensed with entirely.

The resulting system relies on a few examples of the user’s voice. As a short sentence
is obviously phonetically scarce, its choice is understandably crucial. Even considering
the standard HiLAM version, or any short-utterance text-dependent system, the question
still holds: how much the choice of a given pass-phrase can influence the performance of
such systems? Are there "strong" and "weak" pass-phrases? Can these trends be observed
and generalised to everyone or are they impossible to meaningfully isolate from other
factor like inter- and intra-speaker and session variations? These are all issues that any
company that would like to set up a text-dependent authentication inevitably has to face.
The chosen sentence, whether "my voice is my passport" or "ok Google", has to be the
one-size-fits-all of automatic speaker verification. A study mostly concurrent with the
one of this chapter, was carried out using the HiLAM system and the RSR2015 corpus
and is the focus of the following chapter.



Chapter IV
Spoken password strength

In this chapter, a statistical analysis on the influence of the actual text content on the
global performance of a text-dependent system is carried out; the objective is to identify
trends related to the phonetic content of very short sentences and verify if those trends
are consistent between different sets of speakers.

Our baseline was once again the standard 3-Layer HiLAM system described in Sec-
tion II.3.5. The 2-layer variant implemented in the previous chapter was not used for
this work because the starting point should be a standard system. Moreover, the lack
of a text-independent speaker model in the simplified 2-layer system would undoubtedly
increase the reliance on the text content, and result in observed behaviours may be just
caused by our own modifications to the system.

The RSR2015 corpus is rather exhaustive in matter of combinations, as every speaker
utters every sentence in the whole database, for the same amount of sessions. This fully-
combined nature allowed for this study, done almost in parallel to the one in chapter III, in
which the protocol was subsampled to (i) observe the isolated effect of the single sentences
on the global performance of the system and (ii) find if such effect is consistent across
different sets of speakers, in order to find universally strong or weak spoken passwords.

With a thorough statistical analysis, the work shows how significant reductions in error
rates can be achieved by preventing the use of weak passwords and that improvements
in performance are consistent across disjoint speaker subsets. The work this chapter is
concerned with was first published in [5]. The ultimate goal is to develop an automated
means of enforcing the use of stronger or more discriminant spoken passwords; a patent
for this concept was filed and published [6].

IV.1 The concept of spoken password strength

Text-independent systems which adopt minute-long utterances as test trials usually as-
sume the audio to be inherently normalised at the phoneme level. However, when the
duration is within seconds length a good representation of all the phonemes in any lan-
guage is just impossible. In this case, phonetic variation can have a significant impact
on recognition performance [43, 60]. It is known that different speech units offer differ-
ent levels of speaker discrimination: the work in [61], later extended in [62] analysed
the idiosyncratic information contained in French vowels. While perhaps offering greater

39
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insights relevant to the forensic branch of speaker recognition in terms of explaining re-
sults, the work points towards a mechanism for the selection or weighting of the most
discriminant speech components for speaker modelling and recognition [63]. It is thus
safe to assume that, just as is the case with written passwords, some spoken passwords
or pass-phrases are more secure than others.

In an ASV system accept and reject decisions are made according to a global threshold.
Whether this threshold is set a priori (see III.5) or a posteriori as in the case of a global
EER, it always represents an inevitable compromise between the "inner" scores distribu-
tions related to an array of different factors, e.g. speaker-dependency, device-dependency
and, in this case, text-dependency.

IV.2 Preliminary observations

Example target and impostor distributions with the global EER threshold depicted as
a vertical green line are illustrated in the top row of Fig. IV.1: the threshold is set to
give the same error rates for false positives and false negatives, whose value is directly
proportional to the amount of overlap between the two distributions. In the case of the
IC condition, the influence of text is quantifiable from the target and impostor score
distributions for subsets of same-text trials. These distributions are referred to as text-
dependent distributions. As illustrated in Fig. IV.1 for commands 35, 51 and 54 of the
RSR2015 database there is thus a text-dependent EER obtained with a text-dependent
threshold for each command. The text-dependent distributions are inner distributions
to the global one; we can identify two factors that influence the global EER and are
responsible for how big of a compromise the global threshold is.

IV.2.1 The text-dependent shift

The first factor is the relative "placement" of the scores: if both target and impostor
score distributions for a given command are shifted higher or lower compared to most
of the other text-dependent distributions, this will negatively affect global performance.
This factor is not at all an index of strength or weakness for a given password because
it is relative to other text-dependent scores; in fact, if there was just one sentence in
the whole protocol the issue would be non-existent, regardless of the text content. This
factor can eventually be mitigated with score normalisation techniques, in this case it
would require cohorts of speakers uttering exactly the needed sentence, which is likely to
be impracticable.

IV.2.2 The text-dependent overlap

The second factor is the overlap between text-dependent target and impostor score dis-
tributions, which is directly proportional to the text-dependent EER. Text-dependent
distributions for the commands illustrated in Fig. IV.1 show 3 different scenarios when
compared to the global distributions of the first row: command 35 has higher overlap
and a higher threshold value; command 51 exhibits little overlap and a lower threshold
value; finally, command 54, while having the closest threshold to the global one, shows a
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Fig. IV.1 Impostor (solid) and target (dashed) score distributions and EER
thresholds (vertical lines) from the male development set of the RSR2015 corpus.
Plots illustrated separately for all commands trials (top) and for 3 command-
specific trials

considerable overlap between distributions which corresponds to the highest EER of the
three.

These two factors contribute together to the global performance: to yield good results,
each of the command-dependent score distributions must have a small target-impostor
overlap area, and in addition the text-dependent thresholds must not be too far from
one another, to make the global threshold less of a compromise. Nevertheless, only the
overlap factor can considered as a measure of password strength: the corresponding text-
dependent EER is the only insight to how difficult it is for the system to model and
identify a speaker with respect to the chosen sentence. Some sentences are undoubtedly
more user-representative than others across the whole set: the lower the text-dependent
EER, the strongest the password.
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IV.3 Database and protocols

This work was performed on part II of the RSR2015 corpus (male speakers only), namely
short commands (see Fig. II.7). With an average recording duration of less than 1 second,
it is the shortest-duration subset of the database [37], where the different phonetic content
of each sentence supposedly matters more than in part I, which was used in the previous
chapter. In order to assess variations in performance depending on the text content,
experiments for this study concern only the IC (impostor-correct) condition, in which
test trials and the claimed text-dependent model always share the same text content
(see II.5.2.b).

When experimenting on Part II, Part I data is only used for the learning of background
information and there is no overlap between speakers or phrases between the data used
for background modelling and that used for training and testing. The sly impostor subset
of Part II of the RSR2015 corpus contains 8990 TC (target) and 440510 IC (impostor)
trials for the development set and 10250 TC and 574000 IC trials for the evaluation set.
These numbers differ slightly from those reported in [35]1.

The baseline HiLAM system is, for the most, unchanged from the implementation
described in chapter III. The only difference in the pipeline is in feature extraction. They
are comprised of 18 coefficients (C0 removed) appended with deltas and double deltas for a
total of 54 coefficients, compared to the 57 of previous chapter. This causes slightly worse
performances for the IC condition, with EERs of 1.74% and 1.93% on the development
and evaluation set, respectively (compare with Table VII.3). This is due to the fact that
at the time when this work was done —and published— the HiLAM optimisation was
still in progress. Since the conclusions derived from this study concern text-dependent
variations in EER, a slight difference in performance of the baseline does not put this
chapter findings into question.

IV.4 Statistical analysis
The following sections describe a statistical analysis that illustrates the potential to im-
prove ASV performance through the selection of strong spoken sentences. It furthermore
demonstrates that the notion of password strength is consistent across disjoint sets of
speakers.

IV.4.1 Variable strength command groups
On the previously made assumption that a strong password is characterised by a relatively
small text-dependent overlap, commands are first ranked by decreasing text-dependent
EER. This ranking by strength is needed in order to simulate an eventual text-dependent
ASV system that would include password strength recommendation.

This process is performed separately for the development and evaluation sets thus
yielding two rankings for the same 30 commands. This step already showed similarities
in ranking positions across the 2 sets and it is promising but not enough statistically
significant to prove the concept of universal password strength.

1The authors became aware of the standard protocols for RSR 2015 Part II only after most of the work
reported in this chapter was already completed.



IV.4 Statistical analysis 43

From each of these rankings, groups of commands are formed by selecting 10 with the
closest strength starting at every rank position, thereby producing 21 groups in total. The
first group is comprised of the 10 weakest commands ranked #1 to #10, the second group
is comprised of those ranked #2 to #11 and so on until the last group which contains the
10 strongest commands ranked #21 to #30.

IV.4.2 Sampling distribution of the EER

The significance of the difference in recognition performance obtained for each group is
measured with the following bootstrapping procedure: for each of the 21 groups, 1000
populations2 of 30 commands each are generated by picking at random from the 10
commands in the group, it is therefore very likely that a given command will be picked
more than once (i.e. on a lower scale, a possible population of five resampled from a group
two commands a and b can be [a,b,a,a,b]). This procedure is known as resampling with
replacement [64]. This produces a total of 21 × 1000 = 21000 different testing protocols
of progressively stronger passwords (according to the rank), whose size in terms of the
number of trials is the same as that of the full RSR2015 protocols.

The random resampling of 10 commands to 30 is key to ensure statistical significance:
instead of a single EER value per group of commands we now have a sampling distribution
of 1000 EERs per group. From each of these distributions we derived a mean EER and
a confidence interval. The sampling distributions were visually inspected for normality,
allowing for 95% confidence intervals of 1.96 times the standard deviation of the distri-
bution, thereby removing 2.5% of the observations at each end of the distribution. This
interval around the mean EER of the distribution has a high probability of encompassing
the true value of the EER for each group. Differences in performance obtained for groups
with non-overlapping confidence intervals can hence be considered as being statistically
significant.

Solid symbols in Fig. IV.2 represent mean EERs and confidence intervals of all the 21
groups for the development (a) and evaluation (b) sets. Another important goal was to see
how well assumptions of password strength made for one set of speakers translated to the
other. As explained in IV.4.1, two rankings were made according to the text-dependent
EERs of each set. The unfilled symbols in Fig. IV.2 (a) and (b) correspond to EERs and
confidence intervals obtained from groups of commands ranked according to a disjoint set
of speakers, namely the evaluation-set-derived rank applied to development set trials and
vice-versa. This is necessary in order to illustrate whether or not command strength is
consistent across both sets.

IV.4.3 Isolating the influence of overlap

It is worth noting that, similarly to the original protocols which involved 30 —unique—
commands, every population EER is a global EER which is still influenced by text-
dependent shift and overlap factors explained in sections IV.2.1 and IV.2.2. This is why in
Fig. IV.2(a) and (b) solid-symbol curves are not strictly monotonic, despite resulting from

2The term population can be misleading in this context, since it does not refer to speakers but instead
to commands. The number of speakers is constant in all experiments and comprises the full development
or evaluation set.
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Fig. IV.2 ASV performance with (c,d) and without (a,b) text-dependent thresh-
old adjustment. Each point represents the mean EER over 1000 resamplings
of 30 commands chosen with replacement among the 10 commands of each sub
group. The horizontal lines in (a,b) represent the baseline performance of the
system for both sets with all 30 commands.
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progressively stronger command trials. As the measure of a spoken password strength
should not be influenced by scores unrelated to it, we can isolate the text-dependent
overlap to observe only its influence on the system performance. To illustrate the de-
pendence on overlap in isolation from threshold effects, the experiments described above
are repeated with all trial scores normalised by subtracting the text-dependent threshold.
The global EER for each command is then obtained with a score threshold of zero. This
is equivalent to calculating the mean of all text-dependent EERs, each weighted by the
number of trials concerning its command.

It is stressed that while this procedure obviously requires some "unfair" a posteri-
ori knowledge, it was applied solely for the sake of observation of text-dependent be-
haviours and not to achieve lower error rates. Results for this experiment are reported
in Fig. IV.2(c) and (d). As expected, the threshold adjustment renders the curves with
ranking from the their own set strictly monotonic and confidence intervals smaller, since
now they are just influenced by differences in resampling between populations.

IV.5 Results interpretation

When using their own ranking, EER results for both the development and evaluation
sets show significant decreases as the group contains increasingly stronger commands
– solid-symbol plots in Fig. IV.2(a) and IV.2(b). When using threshold-adjusted scores
(solid-symbol plots in Fig. IV.2(c) and IV.2(d), decreases are strictly monotonic. This ob-
servation confirms that the spread of text-dependent thresholds also affects performance.

Other observations concern results for cross-set rankings – unfilled-symbol plots in
Fig. IV.2(c) and IV.2(d). Rankings made on the development set translate well to the
evaluation set and vice-versa. For the evaluation set, results illustrated in Fig. IV.2(a)
show that only 6 groups have an EER which is not significantly different to the overall EER
(4.89%). For the development set, results illustrated in Fig. IV.2(b) show only 4 groups
with a non-significantly different overall EER (5.83%). The significant global decrease
in EER (albeit non-monotonic) shows that, with negligible differences in ranking, some
commands are consistently ‘weak’ across different speakers. According to these results,
a system including a password strength acceptance criterion could halve the error rate
by choosing (multiple) stronger sentences over weaker ones (from 5.34% to 2.67% on the
development set, and from 6.28% to 3.32% on the evaluation set). Finally, we note that
the visible offset of the evaluation set EERs is inherent to the RSR2015 database and
consistent with results presented by others [35,59].

Although in this study it was not possible to track exactly which specific phonetic
content was responsible for a weak or a strong password, some intuitive, high-level ob-
servations are nonetheless offered. Consistent to both development and evaluation sets
is the higher ranking of longer duration sentences. This is not surprising. Other obser-
vations are more intriguing. While commands such as ‘Turn on light’, ‘Watch Cartoon’
and ‘Volume Down’, all of similar duration, all perform well across both subsets, others of
similar length such as ‘Door Open’, ‘Volume up’ and ‘Aircon off’ performed poorly across
both subsets. Given the similar duration, it is assumed that the first three commands
have more discriminative phonetic content. ‘Volume up’ and ‘Volume down’ vary only
by the last two phonemes but are ranked among the weakest and strongest commands
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respectively. These observations are consistent with the discriminative power of nasal
sounds studied in [63]. Clearly these factors warrant further attention in future work.

IV.6 Conclusions
When dealing with short pass-phrases or passwords a few seconds length, the text-content
influence matters as much as inter-speaker or inter-handset variations. In this context,
the authentication strength of a text-dependent model very much depends on the uttered
sentence. The work in this chapter investigates the influence of text content on password
strength with a thorough statistical analysis. Two independent sets of speakers were tested
on very short commands trials, yielding considerable differences in text-dependent EERs.
It was demonstrated that the ranking of commands from weak to strong according to their
impact on system performance can be assumed from one set of speakers and applied to
another within statistical significance, proving the concept of spoken password strength
is consistent.

After the findings of this work were published in [5], research continued in order
to investigate the exact speech patterns that caused a spoken password to be universally
weak. The ultimate goal was to develop automatic means of identifying weaker passwords
to give the user immediate feedback on unsafe choices. This a priori knowledge could have
also been used by companies while choosing the branded wake-up pass-phrase that offers
higher level of discrimination among different speakers. However, due to the scarcity of
phoneme-level labelled data, no significant progress was made in the implementation of
an actual system. Nevertheless, a concept design of the system itself, with a detailed
action flow was described and published in a patent [6].



Chapter V
A review of deep learning speaker
verification approaches

The literature review in chapter II covers the most popular system and techniques used
in "traditional" ASV prior to the deep learning revolution, often built upon previous
approaches, and some core elements —such as MFCC extraction— remained standard for
decades. This chapter describes the neural network "takeover" in the speaker verification
domain that has been under way for some years. This has today come to the point where
some of the underlying assumptions and core techniques common to all ASV systems
seem sub-optimal in the face of deep learning approaches.

Deep neural networks were first applied to image recognition [65] and their first appli-
cations to ASV often concerned only a block of the entire pipeline, either in the front- or
back-end. Later, ASV approaches became entirely DNN-based, and completely rewrote
the ASV paradigm in so-called end-to-end approaches. Understanding the direction in
which the latest ASV research is going, its current limits and assumptions is of key impor-
tance to the contributions in Chapters VI and VII, as they push the boundary of machine
learning beyond hand-crafted features and fixed, layered network architectures.

V.1 Neural networks and deep learning

This section briefly introduces the main neural network families, most of which first
succeeded in domains other than ASV and audio in general. The terms deep neural
network (DNN) and deep learning (DL) are often treated as inseparable, but one does
not necessarily imply the other. It is a common acceptation that, to be called "deep", a
neural network must have two or more hidden layers. Deep learning (although it can be
applied to non-NN approaches, termed as unconventional deep learning [66]), can be seen
as the ensemble of algorithms, techniques and approaches that made deep neural network
training possible at first and wide-spread later.

Regular feed-forward networks (no recurrent paths) with one hidden layer are referred
to as shallow networks. The universal approximation theorem [67] states that a shallow
network is, in principle, capable of representing any continuous function. Nevertheless
it was observed empirically that deeper networks led to better performance in many
applications [68]. The reasons for the correlation between depth and performance are
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Fig. V.1 A deep belief network, characterised by multiple hidden layers with no
lateral connections.

believed to be several: from the fact that a shallow network would need a considerably
higher number of neurons compared to a deep network to achieve the same results, to the
inherent hierarchical nature of the tasks. Empirical evidence shows that deep networks
perform better than shallow networks in real world tasks, where hierarchical knowledge
is often involved (i.e. pixels, edges, shapes and objects for image recognition) [69]. As
a result, state-of-the art NNs became increasingly deeper and, even if studies questioned
the real need for such depth [70,71] as of today, there is no clear answer on "what makes
them work", with very deep networks being the norm. What was clear since the late
80s was that training DNNs with the then-standard back propagation algorithm was not
feasible [65], with one of the most hindering factors being the vanishing or exploding
gradient problem.

The first milestone responsible for deep learning resurgence in the last decade was the
introduction of unsupervised pre-training in 2006 [72], which started a chain of innova-
tions, from Hessian-free optimisation [73] to enhancing stochastic gradient descent [74], to
dropout [75] to residual networks [76]. While explaining those contributions is far beyond
the scope of this thesis, they really show how progress in this field is still very rooted in
trial and error as opposed to truly understanding the reason of each improvement.

V.1.1 Deep Belief Networks

Deep Belief Networks (DBN), introduced in [72] are generative models composed of mul-
tiple interconnected "isolated" hidden layers, as the units from one layer are only con-
nected to units belonging to the previous and next layers, with no lateral connections
(see Fig. V.1). The weights of the connections are optimised via "greedy" layer-by-layer
training: it starts with the first layer as the (observable) training set, used as input for
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Fig. V.2 Structure of an auto-encoder. Deep auto-encoders usually present more
encoding and decoding layers.

the first hidden layer, which in turn feeds its output as the input to the subsequent layer,
allowing for fast unsupervised training. This step can be followed by a fine-tuning super-
vised step, in which labelled data is fed to the network and the error derivatives are then
back-propagated.

The DBN hidden units are stochastic latent variables with their output being a
weighted sum of the inputs passed through an activation function, often of the sigmoid or
rectified linear type. DBNs can be seen as a stack of NNs with a single hidden layer, each
of which "sees" the output of the previous layer as observable data and learns to output
features that represent higher-order correlations in the data [77]. The breaking-down of
bigger problems into simpler, smaller ones is what made deep learning on DNNs with
millions of parameters actually feasible.

In general for DNN approaches, the computational effort at inference time is consider-
ably lower than at training. Nevertheless, if the goal is to test the network with almost no
latency on an embedded DSP chip, things such as the number of connections in the order
of hundreds of thousands, units connected with non-linear activations and high bit-depth
signals are still prohibitive.

V.1.2 Deep Auto-encoders

The principle behind auto-encoders (AEs) is to map the input patterns to themselves by
passing through a simpler representation, in terms of parameters. This is achieved by
having one hidden bottleneck layer, narrower than the preceding ones. This forces the
network to learn a compact representation of the input (often referred to as bottleneck
features), which is then followed by decoding layers which "decompress" the representation
to be as close as possible to the input, in an analogy to data compression algorithms (see
Fig. V.2).

Deep auto-encoders (DAEs), also referred as auto-encoder stacks are (as the name
suggests) composed by several stacked AE networks, with the bottleneck layer of one AE
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Fig. V.3 A typical CNN architecture: convolutional layers are interleaved with
max-pooling layers, the former capture information (i.e. edges), the latter prune
the information to keep what is most relevant

acting as the input layer for the next (narrower) encoding layer, followed by a symmetrical
decoding structure. These are trained in a similar way to DBNs, with a first pass of
unsupervised pre-training followed by supervised tuning via back-propagation [65].

V.1.3 Convolutional Neural Networks

Convolutional Neural Networks, (CNNs) are feed-forward networks that are able to ex-
tract progressively higher level features from the input, such as 2-dimensional arrays of
pixels, hence their popularity in image recognition [65]. The output of a convolutional
layer is calculated by applying (one or more) convolution filter(s) on the input and shifting
it with a fixed step across either a section (receptive field) or the whole input array (fully
connected). The resulting output retains the same dimensionality of the input and is fed
to the next layer.

To reduce the dimensionality and capture different orders of spatial variations the
filter stride (the size of the shift step) can be incremented, eventually compensating with
a larger receptive field (which will bring additional computations). Some layers have
the explicit purpose of dimensionality reduction: subsampling layers reduce the input
of neighbouring neurons to a single output, either via averaging or max pooling (see
Fig. V.3). CNNs are among the most resource-demanding deep learning approaches even
at inference, making them the least preferred candidate for embedded solutions. They
have greatly benefited from their implementation on graphic processing units (GPUs),
which considerably speed up the whole training process and allow for human-competitive
performance in image classification [78].

V.1.4 Long short-term Memory Recurrent Neural Networks

Any kind of NN architecture that exhibits a cyclical path is classified as a recurrent
neural network (RNN). RNNs are inherently capable of retaining past information and
are therefore well suited to tasks involving the modelling or classification of dynamic
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Fig. V.4 An LSTM architecture unrolled in time. Each unit contains 4 inter-
active layers, depicted as yellow rectangles. These are responsible for which past
values are forgot, kept, updated and output

or time-variable data. Nevertheless, deep RNNs have proved difficult to train with back-
propagation through more than a few time steps, plagued by the aforementioned exploding
gradient issue. The solution and now state-of-the art architecture for RNNs came in the
form of long short-term memory (LSTM), introduced in [79].

LSTMs are capable of learning long-term dependencies; they are immune from van-
ishing or exploding gradients and do not need unsupervised pre-training. This is achieved
through memory units which include constant error carousels whose error derivatives
of 1.0 cannot explode nor vanish. Other non-linear units are responsible for keeping or
discarding current and past information: they are called forget-, keep-, update- and output-
gate, pictured in this order in Fig. V.4. LSTMs can easily take into account information
that occurred thousands of time steps prior. Most successful RNN approaches are based
on LSTMs.

Recurrence is costly to implement on very limited-resource hardware. In the case of
feed-forward architectures, to save memory, the unit values of a given layer are usually
discarded after one or a few steps, because they are only needed to calculate the unit
values of the subsequent layer and their memory locations can be reused right after. A
fully connected network could take up just around twice the storage space of the unit
values of the largest layer, but with every recurrent connection an additional value must
be stored, considerably increasing memory usage.

V.2 Deep learning in ASV
In recent years, deep learning has entered the ASV field in various ways. The neural
network architectures described above are often used to replace specific elements of the
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speaker verification toolchain explained in Chapter II. This section describes the ways
in which different blocks of the ASV pipeline have benefited from being "enhanced" with
deep learning techniques.

V.2.1 Feature extraction

As highlighted in sections V.1.2 and V.1.3, deep neural networks can be applied to di-
mensionality reduction, opening up the possibilities of using them for speaker feature
extraction. While traditional acoustic features rely on human knowledge, leaving the
task to machine learning is undoubtedly a step forward, because different features could
be extracted for different tasks, or even different speakers. The potential was first proved
in speech recognition tasks [80].

The DNN architecture used in [81] works on stacked Mel-filterbank energies and uses
the activations of the last DNN hidden layer as speaker-specific frame-level features for
text-dependent ASV. Utterance-level representations are obtained by averaging frame-
level features thereby giving so-called d-vectors. At test time, the score is simply com-
puted as the cosine distance between the enrolment and test utterance d-vectors. Recent
work [82] on text-independent ASV achieved feature learning with less dependence on the
back-end (the focus was on learning truly discriminative features that work well with any
back-end). The solution adopted a convolutional time-delay DNN with a bottleneck layer
(see Section V.1.2) which achieved remarkable performance on extremely short durations:
with just 3 seconds of speech for enrolment and 0.3-second test utterances, the proposed
system achieved EERs as low as 14% on the Fisher dataset, whereas none of the baseline
i-vector system configurations achieved EERs of below 33%.

V.2.2 Applications to i-vector frameworks

The use of DNNs for the estimation of hidden Markov model state posterior probabili-
ties [83,84] in speech recognition led to their use for the estimation of phonetically-aware
frame posteriors, replacing the UBM i-vector frameworks, for both text-dependent [85]
and independent [86] systems. In these cases deep learning techniques are applied to ex-
tract i-vectors, as well as to add temporal sensitivity and perform frame alignment. The
DNN architectures used for these works were in fact trained for speech recognition.

DNNs also influenced i-vector-based systems from another angle: in [87] DNN embed-
dings were used as an alternative to i-vectors within a probabilistic linear discriminant
analysis (PLDA) framework. The fixed-dimension speaker embeddings were computed
from one of the last hidden layers of a feed-forward DNN trained in a text-dependent
manner. At test time, pairs of embeddings are scored using a PLDA-based backend
as in a conventional i-vector approach (see Section II.3.4). Experiments for the system
in [87] on NIST SRE16 data (see II.5.1.d) reported lower language-pooled EERs for an
embeddings-based system (11.9%) versus i-vectors (13.6%).

V.2.3 Back-ends and classifiers

The conventional classifier architecture of a DNN is trained on stacks of short-term fea-
tures with a temporal context of several preceding and following frames. The output
units of the DNN are the prediction of the posterior probabilities for each class, whether
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phonemes or closed-set speaker IDs [88]. With speaker verification being a binary clas-
sification task, the network is trained to recognise only one target speaker, with the
possible outputs being only the positive and the alternative (background/impostor) hy-
pothesis [81].

In a somewhat peculiar example of the use of deep learning in a speaker verification
back-end [89], an auto-encoder is trained to "mimic" the discriminant analysis procedure
and then is effectively used in lieu of PLDA scoring (see Section II.3.4) in the system
pipeline. When compared with "regular" PLDA scoring on the same i-vector framework,
the proposed approach yields 36% relative improvement on NIST SRE10 data.

V.3 End-to-end
Up until recently, feature extraction, modelling and classification have been considered
separate, standalone blocks of the ASV pipeline. The advent of deep learning and neural
networks allowed for approaches where the parameters of each block of the whole system
are adjusted in one joint effort. These jointly-optimised systems are referred to as end-
to-end (E2E) systems. As deep learning "invaded" the ASV field, the last two years saw
the end-to-end paradigm applied to speaker recognition [90–92].

Traditionally, certain feature extraction aspects (i.e. the assumption of frame inde-
pendence) were tailored to specific modelling techniques such as GMM and, in turn, the
model was built with the classifier in mind. It could be assumed that any E2E system
leaves all previously hand-crafted parameter optimisation to the machine learning algo-
rithm. However, there are two aspects often both present in most current end-to-end
approaches that still rely on pre-determined and engineered choices: middle-level repre-
sentations (i.e spectrum, cepstrum) and fixed topologies, which are explained below.

V.3.1 Middle-level representations VS raw audio

Spectrograms and other middle-level representations are still the input signal of most ASV
deep learning approaches and even end-to-end systems. In the latter cases this clashes with
the end-to-end name because the input is somehow still hand-crafted, making the pipeline
not truly end-to-end. Feature-learning focused work in [81] uses 40 mel filterbanks as they
were found to be better suited to NN acoustic modelling than MFCCs [93]. Nevertheless,
the work in [91], which bears the "end-to-end" moniker in its title, still feeds the system
with traditional MFCC features.

The 2-d spectrogram (see Section II.2.2) seems to be a common choice for end-to-end
systems [92, 94]. Treating audio sources as images is indeed handy, considering the first
successful uses of deep architectures belong to the image recognition domain [65], allowing
for an easier adaptation of an image recognition system to audio classification. Never-
theless, while an image is a raw (albeit discrete) representation of light, spectrograms are
used as a form of pre-processing. Spectral representations stem from a linear transforma-
tion of the raw waveform, but they still rely upon the frame-blocking of speech signals
into fixed-length windows. Even when the neural architecture is tailored to exploit speech
dynamics [95], the input is often a reduced-dimensionality representation of spectral mag-
nitude information. Usually, phase information is discarded entirely and assumptions of
short-term stationarity and pseudo-independence between adjacent frames are made. In
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doing so, the choice of what information to discard is not left to the system but instead
predetermined.

The shift from cepstral features to filterbanks to spectrograms depicts a trends that
goes towards less hand-crafted, less processed input data, at the end of which there is
the raw audio waveform. Applying deep learning directly on the raw audio waveform
is not infeasible nor inconvenient, as is testified by related work in areas neighbouring
speaker verification i.e. speech [96] and emotion [97] recognition, in addition to spoofing
detection [98].

A couple of examples of raw-audio speech recognition show how traditional, engineered
speech processing aspects can be confirmed and/or refined. In [99], where the NN is
fed raw audio, it was observed that the first layer hidden units learn impulse responses
very similar to those of gammatone filters. When sorted by the fundamental frequency
to which they responded, higher-frequency units corresponded to higher bandwidths,
somewhat confirming the principle behind the Mel scale. Another speech recognition
system, described in [100,101] utilises time convolution to learn a so-called brainogram, a
2-d representation which gave better performance than the hand-crafted Mel-filterbanks,
although with the same dimensionality.

The raw waveform has also been used to train speech synthesisers for text-to-speech:
the work in [102] makes use of raw audio as input to learn cepstrum coefficients and
then inverse-filters them to obtain the output speech. The speech synthesiser in [103]
applies dilated causal convolution directly on audio samples to learn a generative model
of speech. Avoiding dependence on hand-crafted features is clearly among the interests
of DNN-related research.

Until recently, there was no end-to-end system trained directly on raw audio waveforms
for automatic speaker verification. Only in the last year has the raw audio signal paradigm
made its debut in ASV. Among the publications [104, 105] there is the author’s own
work [8] which is the focus of Chapter VI.

One other, recent example is SINCNET [106], which, while in fact limiting the first
convolutional layer of a CNN to learn only the bandwidth of sinc filters, actually helps
the network to transform raw audio into a representation which is meaningful to both
humans and the back-end. While the concept of band-pass filters is clearly more human-
friendly than a large number of filter parameters, its helpfulness on the back-end side is
proven by the fact that SINCNET outperforms other CNNs architectures (fed with raw
audio or mel-filterbanks) and DNNs fed with MFCCs. Experiments on the Librispeech
datasets show that the EER loss brought using sinc filters for raw audio (-0.04%) is more
significant than the loss brought by using raw audio versus mel-filterbanks (-0.01%).

V.3.2 Fixed topologies

Although having jointly optimised blocks inside a large neural structure, end-to-end archi-
tectures still exhibit fixed topologies with given-purpose modules responsible for different
tasks. The networks present a layered, hierarchical structure [90,107] in which the number
of layers, their connectivity (local or full), the number of units per layer and their acti-
vation function (linear, rectified, etc.) are all predetermined. These choices preventively
limit the search space which will be explored during the training phase, with no way of
knowing if the topology is optimal for the task.
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As with hand-crafted features, the will to leave the choice of the structure to the learn-
ing algorithm is present in the literature, although beyond the field of speech processing:
one notable example pertaining to image recognition is [108], in which reinforcement
learning is used to learn parameters of the network that relate to its structure such as the
number of layers of a certain type (convolutional, fully connected, pooling), their width
in terms of units, the number and size of receptive fields (see Section V.1.3), etc. Albeit
considerably more versatile and allowing for thousands of possible architectures, these are
still organised in a hierarchical fashion and connections are shared only between adjacent
layers.

Residual networks (ResNets) [76] were introduced to compensate for training degra-
dation caused by the addition of more layers. The key aspect of a ResNet is the use of
shortcut connections to pass the information (often with an identity function) between
non-adjacent layers. This hierarchy-breaking technique can be interpreted as a sign that
conventional deep architectures may be sub-optimal.

Less-constrained solutions to design network architectures were proposed decades prior
to the aforementioned work [109]. These often rely on genetic algorithms and evolutionary
strategies, the focus of Chapter VI.

V.4 Summary
This Chapter describes the main neural network based approaches that are relevant to
deep learning in ASV. While the domain of the first successes of deep learning and neural
networks in general was image recognition, it is shown how, at first, deep neural networks
were used to enhance one or more independent parts of the traditional ASV pipeline,
to the point where every block of the toolchain employed deep-learning; the latest trend
being jointly optimised, end-to-end approaches. Weaknesses in the current E2E paradigm
are then criticised, because of the reliance on hand-crafted representations of the source
audio and its use of complex, hierarchically layered fixed structures.

An ideal end-to-end system would have raw speech input on one end and the tar-
get/impostor decision outputs or scores at the other end. The entire structure should
be interconnected with no explicit task tied to a specific part of the network. If such a
system could provide reliable speaker authentication as well as more rather clear insights
into how the network arrives to the decisions/scores it produces, that would truly be the
ultimate end-to-end system. An experimental end-to-end ASV system working on raw
audio with a non-fixed topology (first published in [8]) is presented in Chapter VI.
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Chapter VI
Augmenting topologies applied to ASV

Neural networks are nowadays at the forefront of ASV research. Their complex structures
make them resource-intensive even at inference, which in turns makes these approaches
difficult to run on embedded devices, often requiring to downgrade the architecture. Chap-
ter V describes the trend of deep learning approaches to leave progressively more freedom
to machine learning, i.e. moving away from engineered MFCC features towards more de-
scriptive inputs such as spectrograms. 2018 saw the introduction of raw audio as an input
for ASV systems [8,104–106]. It is highly likely that, in the near future, all systems that
bear the "end-to-end" moniker will operate on raw audio inputs.

As explained in Chapter I, companies which already sell voice-enabled services usually
run the whole process in the cloud, sending the recording from the device and receiving
the feedback from a more powerful, distributed computational architecture. NXP, as a
semiconductor company and embedded software developer, has interest in offering low-
latency, lightweight processing operating directly on smart devices. Keeping users’ private
data on the device brings added value to products, especially after the recent introduction
of the European general data protection regulation (GDPR), which limits the ways in
which biometric data can be collected, transmitted and exploited.

With the progressive interest in raw audio by the research community and the prob-
lems posed by complex hierarchical structures, the research path of this thesis took a very
experimental turn as the author started investigating evolutionary approaches. At the
time of writing, evolutionary strategies have been around for more than two decades and
rely on genetic algorithms: when applied to neural networks, instead of just one structure,
a whole population of networks is evolved through several generations. Of major interest
are the evolutionary approaches that include among the evolution parameters the archi-
tecture of the network; they have the potential to reach the performance of competing
deep learning approaches with a network architecture that is tailored to the task and is
often less complex in terms of the number of connections.

This chapter describes work (published in [8]) concerning the first application of raw
audio and evolutionary, small-footprint topologies to ASV, and is organised as follows:
Section VI.1 introduces the general topic of evolutionary strategies, and then goes pro-
gressively more into detail (and sub-categories) by diving into NeuroEvolution, Topology
and Weight Evolving Neural Networks (TWEANNs) VI.1.1 and the NeuroEvolution of
Augmenting Topologies (NEAT) algorithm VI.1.2. The latter is the basis of NXP work
on raw audio classification, described in section VI.2, as well as for the contribution of
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this Chapter, the application of NEAT to ASV, explained in Section VI.3.
Experiments for the proposed and baseline systems on the proprietary NXP database

are described in Section VI.4, additional experiments on a subset of the NIST SRE16
dataset are described in Section VI.5, where the proposed approach is also compared with
a system submitted to the 2016 NIST SRE. Conclusions are reported in Section VI.6.

VI.1 Evolutionary strategies
The core aspect of any evolutionary-based technique, and one which sets it apart from
every other machine learning approach discussed in this thesis, is its reliance on genetic
algorithms to search the solution space. Evolutionary strategies do not modify parameters
of the system by back-propagating the error derivatives, as is the case with conventional
neural network architectures and gradient descent-based optimisation. Instead of a single
architecture, a population of potential solutions is adopted, each individual being defined
by a unique set of parameters. The population is then evaluated by means of a fitness
function, and the fittest individuals act as the basis to generate a new population, in a
biological analogy to natural selection [110]. The way in which the new generation "in-
herits" aspects from the previous generation can be probabilistic, for example in genetic
algorithms such as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [111],
the new population is sampled from a multivariate Gaussian Distribution. At each gen-
eration, the means of the distribution are updated according to the fitness of the best
individuals.

NeuroEvolution [112] is a form of evolutionary strategy that goes even closer to natural
evolution when it comes to generating new individuals: parameter values of the next
generation are obtained through biological analogies of mutations and crossovers between
networks. These occur randomly (within set boundaries) during the evolutionary process.
In what is called conventional NeuroEvolution (CNE), weights are evolved while the
architecture remains fixed. Approaches which evolve the architecture along with the
weights are explained in the next section.

VI.1.1 TWEANNs

One researching alternative to large neural architectures explained in Section V.3.2 is
structure-evolving approaches known as Topology and Weight Evolving Neural Networks
(TWEANNs). TWEANNs evolve the structure of networks along with the weights, by
changing, adding or removing nodes and connections. Being a NeuroEvolution approach,
TWEANNs produce new individuals by making networks "mate". An illustrative example
of a single generation cycle is depicted in Fig VI.1. The process goes as follows: (i) the
whole population is evaluated with a fitness function on the training data; (ii) the fittest
individuals are selected (iii); the selected individuals generate a new population by either
mutating or mating and producing offspring. The cycle is repeated until one individual of
the current population either resolves the task, yields sufficient fitness or until any other
suitable stopping condition is met.

One of the key aspects shared by NeuroEvolution approaches is the search for novelty
through diversity. The optimisation process is not based on gradient descent and back-
propagation, but instead consists in evaluating each network in the population on the
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Fig. VI.1 An illustration of one iteration of evolution: the performance of each
network in a population is assessed by the means of a fitness function. The best
individuals are selected to form a new generation of networks.

training data according to a fitness function, in the same manner as would be done
during inference. New connections can be created within any pair of nodes; this not only
allows for recurrent paths, but completely abandons the notion of hierarchical layers. This
also means that TWEANNs are not affected by the vanishing/exploding gradient problem
mentioned in Section V.1 which is caused by the error derivatives being propagated too
many times from one layer to the next, to the point where they either disappear or
become too large. In architectures such as ResNet [113] this issue is mitigated by creating
connections between non-adjacent layers; in TWEANNs there is no need to apply patches,
as these connections are created automatically, by design.

Including the topology in the roster of optimisation parameters augments the space of
solutions considerably. The key aspects of genetic algorithms, and in turn natural genetics,
are what makes TWEANNs fascinating: pursuing novelty instead of pure improvement,
conceiving randomness and diversity as tools to "cut corners" and to eventually find a
better, simpler solution. Nevertheless, dealing with an evolving population of networks
raises several questions:

• What is the structure of the first generation of networks?
In many TWEANN approaches, "generation zero" is made of randomly generated
architectures [114]. However, while as a genetic principle, diversity in the pool of
individuals is highly desirable, initialising the population with random parameters
often results in networks which have ineffective connections or that are just overall
inefficient but that will nonetheless "survive" for several generations.

• How should units and connections without layers be described to ensure unique net-
works?
With another biological analogy, evolving networks have a genotype and a phenotype:
the former is akin to DNA and contains all the information about the network
(including what could be needed when mating); the latter is the network graph,
literally "what it looks like". The genotype can be indirectly or directly encoded.
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Fig. VI.2 Mutation of weight (here symbolized by connection thickness), node
adding and crossover: the three forms of network evolution.

Indirect encoding involves high level rules on how a given network could grow or
mutate, similarly to a decision tree. Without explicitly coding every node and
connection, the genotype has to be derived from the phenotype, this could bias the
evolution in unpredictable ways [114]. Direct encoding, on the other hand, while
being less compact, maps every gene to a particular aspect of a given architecture
(e.g. connection from unit a to unit b with weight c), with the phenotype being the
visual counterpart of these instructions.

• When two networks mate, what are the rules governing the generation of offspring?
A known issue with TWEANNs is the permutations problem [115]: at one point in
evolution, two networks which exhibit a part of their structures which is responsible
for a given function may loose that functionality when mating and be left with
redundant parts. If the genotype does not contain any indication of what are —
allowing another biological metaphor — the eyes or the hands of a network, damaged
offspring may be the result [114].

VI.1.2 NEAT

NeuroEvolution of Aumenting Topologies (NEAT) is a take on TWEANNs that not only
fulfills the requirements for low-footprint networks, but also addresses in an elegant way
the aforementioned issues involved with their use, e.g. the permutations problem. When
NEAT was introduced in 2002 [114], neural networks and deep learning were a few years
away from the resurgence the field experienced in the 2010s that is described in Chapter V.

One crucial aspect of the NEAT algorithm centres around the incremental evolution
of structure: the first generation is populated by bare-bone, minimal structures. Topolo-
gies are augmented iteratively through the addition of new nodes and connections thereby
following a complexifying principle. Even if the algorithm does not incorporate an explicit
measure of complexity, networks tend to remain comparatively simple in structure com-
pared to typical deep neural network solutions. Possible mutations range from a simple
weight change to the creation of new connections and nodes, to a crossover between two
parent structures; these are illustrated in Fig. VI.2.

NEAT is remarkable for having provided elegant solutions to several problems that
affected research in the field for a decade prior to its introduction:
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Fig. VI.3 A NEAT genotype is a direct and self-contained textual representa-
tion of a unique network, which contains (as in nature) more information than
that which can be observed in the resulting structure. Figure reproduced with
permission from [114].

• Direct encoding
Taking another page out of natural genetics, NEAT makes uses of genotype direct
encoding (see Fig. VI.3). A NEAT genotype specifies all nodes and connections of
the network (each described in its specific gene) and contains all the information
needed to uniquely identify a network. The visual representation of the architecture
(the phenotype) can be inferred from the genotype but only the latter is necessary
and sufficient during the whole evolutionary process.

• Historical markings
Continuing the analogy with natural genetics, the genotype contains crucial infor-
mation which cannot be "seen" from the phenotype. One of these is the embedding
of historical markings in the genotype. Every time a new connection occurs, it rep-
resents a new branch of evolution: a global innovation number is then increased and
assigned to the new genes, so that all branches that started from the same root share
the same series of historical markings. Genes with the same innovation number are
considered to be of the same trait (i.e. the eye colour in human DNA). This is of
critical importance when two networks crossover: genes align with respect to their
innovation numbers, the choice of inheriting gene x from one parent network, or y
from the other, is possible only if both genes belong to the same trait as illustrated
in Fig. VI.4.

• Speciation
A direct consequence of having to perform gene alignment is that at some point in
evolution, a pair of networks could have several genes which do not align because the
corresponding traits are not present in both. These are called disjoint genes. The
number of disjoint genes is used as a measure of distance between two networks: over
a certain threshold, the networks are deemed incompatible and they are classified
as belonging to different species. Speciation is what ensures diversity among the
structures in the population, and allows networks to compete within niches instead
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of one global pool (i.e. by selecting the fittest networks within the same species).
This fuels innovation, as structural mutations that might lead to better performing
networks in later generations are not dismissed immediately due to an initial lower
fitness.

One fundamental consequence of using genetic algorithms is integrating into the opti-
misation process the concept that most of the core changes that defined life as we know it
occurred at random. Moreover, many scientific discoveries are due to serendipity (reach-
ing a goal, but not the one intended or not by the means that were thought to be the
right ones) and many paths to certain inventions are made of steps whose objectives had
nothing to do with the invention itself (i.e. vacuum tubes were invented in 1904 and made
possible cathode ray tube monitors almost 30 years later). Had the invention been the
objective in the first place, the goal may not have been reached .

An apparently logical way to solve a problem might turn out to be illogical or sub-
optimal. An example is choosing the distance to the exit as the fitness function to solve
a maze. It is very likely to be stuck in a corner. It might seem obvious in that con-
text, but choosing a fitness function then becomes difficult when dealing with biometrics.
"Perturbing" your exploration of the solution space with the randomness and novelty
brought by NeuroEvolution is akin to injecting the fitness function with the notion of
local minima [116].

Since its conception, NEAT has been applied successfully to a multitude of tasks such
as maze solving [117] and bipedal locomotion [118]; the latter shows how the evolutionary
progress leads to a more "natural" walking cycle and it is closer to the human way of
learning. Biometric modelling is different at the core as the task is not to solve the maze,
but to solve any maze, as the target test example would obviously differ from the training
one. NEAT has however been successful in more open-set tasks as automated videogame
playing [119]. Although that work focused on rather primitive Atari games from the late
70s and early 80s where the degree of freedom in the input — and the number of possible
outcomes — is rather limited, NEAT still managed to outperform other evolution-based
systems. It also learnt higher-level gameplay concepts rather than simple input-output
relations. In all aforementioned NEAT applications, augmented topologies always have
the advantage of being considerably less complex than competing solutions, with the
number of connections often being orders of magnitude less than solutions resulting from
other deep learning approaches.

VI.2 Application to raw audio classification

NeuroEvolution is attracting significant attention [120]. Concurrently to the author’s work
on speaker verification and anti-spoofing (the latter being the topic of Chapter VII), he
became aware of recent, successful attempts to utilize NEAT for audio-related tasks such
as audio effect creation [121] and sound event detection [122]. In view of the computational
demands for the training process, however, in the former work NEAT was applied using
a variety of classic spectral/cepstral frame-based features instead of raw audio, while the
latter used wavelet representations.

As explained in Section V.3.1 the use of some form of frame-blocked spectral or filter-
bank representation is common in ASV deep learning approaches, with all of the excep-
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Fig. VI.4 Gene alignment and generated offspring after crossover, reproduced
from [114]: parent genes are aligned according to their innovation number, off-
spring genes are selected from either of the parents. More disjoint genes indicates
less compatibility, excess genes (innovation numbers higher than the highest of
the other parent) are usually kept, following the augmenting principle.
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Fig. VI.5 End-to-end setup and propagation scheme for audio classification.
There is one activation step per input sample; the output rate is the same as that
of the input.

tions being very recent work [104–106]. Former NXP employee Daniel [123] reported the
first application of NEAT to audio classification which operates directly on time-domain
inputs.

In the approach proposed in [123], NEAT is applied with networks constrained to a
specific input/output setup and propagation scheme. As illustrated in Fig. VI.5, inputs
consist of one or more streams of raw audio. Each stream is mapped to an input unit and
is propagated through the network sample-by-sample with one activation step for every
sample. An additional bias unit is set and held to unity. Network outputs consist of one
or more score units whose outputs yd are multiplied by the output of a binary gate unit yr.
Except for the score and gate output units, which have identity and binary step activations
respectively, all units have rectified linear activation functions. Connections can be made
freely between any pair of units. As a result, evolved networks may contain cyclical unit
connections (e.g. units connected to themselves or to other units which influence their
input). This means that NEAT structures are inherently recurrent.

The rate of the output is identical to the sample rate of the input. In fact, the
score output can be viewed as a new audio signal, the result of the network learning and
applying to the input a transformation defined by the class to which the input belongs.

The gate will thus evolve to discard output scores which are deemed to be unreliable,
so that the network places emphasis on samples that are most helpful to discriminate
between different audio classes. Alternatively, the gate can be replaced by a reliability
output yielding a non-negative, non-binary weighting factor yr. The operation of the
gate/reliability output is similar in principle to that of attention mechanisms [124] which
have been applied previously to speech recognition [125]. For each time sample i, the
weighted mean over K samples of the product of yd and yr yields the final weighted
score yw:
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yw[i] =
∑K−1
j=0 yd[i− j]× yr[i− j]∑K−1

j=0 yr[i− j]
(VI.1)

The behavior of each network is assessed according to a generic squared-error-based
fitness function F :

F (yw, g) = 1/
[
1 +

N−1∑
i=0

(g[i]− yw[i])2
]

(VI.2)

which reflects the distance between N weighted scores yw and a ground truth signal g of
classification labels, e.g. 0 or 1, making for a supervised approach.

VI.3 Truly end-to-end automatic speaker verification

With the potential for raw audio classification and evolved small-footprint topologies, this
section reports the application of NEAT to conceive a truly end-to-end ASV system. As in
the work of [123], all networks are constrained to share the common setup and propagation
scheme illustrated in Fig. VI.5: there is one input stream, one bias, one output stream
and a binary gate. The process described in Section VI.2 is applied to generate networks
which distinguish between a given target speaker and a set of background speakers. Each
iteration of the algorithm corresponds to one independent evolutionary process applied
in speaker-dependent fashion. This process will produce a population of increasingly
discriminative, speaker-dependent networks.

The evolutionary process is driven according to a new fitness function which is intro-
duced below. Also described in this section is a mini-batch procedure which was found
to be beneficial to the evolutionary process. Specific training and testing procedures are
also presented.

VI.3.1 Fitness function

The fitness function in Eq. VI.2 does not necessarily reward separation between class
distributions, but rather proximity to ground truth scores (e.g. 0 and 1). This behaviour
becomes a problem when, after several generations, the two classes have only a minimal
degree of overlap: a distance-based fitness function would reward a network that pushes
the bulk of the distributions farther apart, without necessarily correcting previous classifi-
cation errors (dashed-line PDFs in Fig. VI.6); conversely, a network which fully separates
classes but which produces noisier or wider distributions (solid-line PDFs in Fig. VI.6)
would be attributed less reward than another network which produces pure Gaussian, but
slightly overlapped distributions.

An early search for an alternative, better suited to classification tasks such as ASV,
investigated a fitness function based on the equal error rate (EER). The EER, though,
only reflects the reliability of a classifier at a single operating point, i.e., a fixed threshold.
The area under the receiver operating characteristic curve (AUROC), in contrast, gives
a measure of reliability which is independent from the operating point; it reflects the
probability that the network will give a randomly chosen target sample a higher score
than a randomly chosen impostor sample [126].
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Fig. VI.6 Example of two pairs of impostor and target scores distributions: by
following the fitness function in Eq. VI.2, the solid-line distributions could have
equal or even worse fitness than the dashed-line distributions, while it is clear
that the latter would yield a better EER as they do not overlap. The shape of
the curves does not stem from actual data distribution and is just for illustrative
purposes.

With notably better results, all work reported in this chapter was performed by replac-
ing Eq. VI.2 with an AUROC function calculated using the trapezoid rule [127]. Although
AUROC does not explicitly reward novelty [116], the concept is nevertheless present be-
cause of speciation (see section VI.1.2) and the use of mini-batching.

VI.3.2 Mini-batching

Inspired by a similar approach used in the stochastic gradient descent algorithm [128]
to avoid over-fitting and convergence to local-optima, training is performed with a mini-
batch process. The mini-batch process ensures that each generation of networks is trained
using a different subset of data. This strategy promotes novelty during evolution since
the training objective is shifted slightly upon every iteration. The same strategy also
encourages generalization, namely networks which perform well across inter-session data.
Finally, mini-batching also helps to reduce computational demands.

Each mini-batch consists of a fraction Mt of total target data and a fraction Mi of
total impostor data. By way of example, with Mt=Mi=100%, every training iteration is
performed using the same data; there is no mini-batching. With Mt=Mi=50%, training
data is randomly shuffled and partitioned into two mini-batches. They are used in two
subsequent iterations after which shuffling and partitioning is performed again before the
next iterations of training.

VI.3.3 Training

The size of each population is fixed across generations and set to 150 networks. The
algorithm is initialised (generation zero) with 150 minimal perceptron-like networks, all of
which share the common setup described in Section VI.2. All input signals are normalised
to within a range of [-1,1]. The choice of rectified linear unit activation functions results
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Fig. VI.7 An illustration of 2 subsequent training iterations

in faster processing (while giving similar performance), but also increases the chances of
saturation. The random initialisation of weights within a [−4, 4] range, combined with
input normalisation was found to be effective in mitigating saturation. Every network in
a given population is trained with the same mini-batch of data. Data containing either
target or impostor speech is presented to each network in the form of overlapping segments
of K samples. The system assigns to each segment a weighted mean score corresponding
to yw[K − 1] in Eq. VI.1. Networks are reset after the processing of each segment.

The fitness of each network is then determined according to the AUROC metric de-
scribed in Section VI.3.1. The fittest networks of the population are then used to produce
the next generation according to the procedure outlined in Section VI.1.2. The evolution-
ary process (illustrated in Fig. VI.7) is applied iteratively until the fitness converges.

Fig. VI.8 illustrates the evolution in fitness over 200 generations for an arbitrary
target speaker. Each point on the graph corresponds to the population’s fittest network
for that generation. The solid blue profile illustrates evolution for the training procedure
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Fig. VI.8 An illustration of evolution measured in terms of fitness (AUROC)
for the fittest network of each generation. The solid blue profile illustrates the
AUROC with mini-batch training whereas the monotonic dashed red profile shows
the AUROC without mini-batch training.

described above. Its non-monotonic nature is due to mini-batching; the data used at
each iteration is different. The dashed red profile shows evolution with no mini-batching
(Mt=Mi=100%); data used at each iteration is the same, hence the monotonic profile.
While reducing processing time, mini-batching also results in faster learning.

VI.3.4 Network selection for evaluation

Once training is complete, it is necessary to select and evaluate the single best network.
First, the 10 best networks of each generation are identified according to the AUROC
fitness function. Second, the performance of each of the 10 best networks from each
generation is reassessed using the full training set. Since it gives a more intuitive in-
terpretation of performance in a practical application, selection is performed using the
application-neutral EER metric. The network which produces the lowest EER among the
10 is designated as the generation champion. Finally, the generation champion associated
with the lowest EER is designated as the grand champion, and selected for evaluation.
Evaluation is performed using an independent test set.

VI.4 Experiments

This section describes experiments which aim to test the potential of the end-to-end ASV
system described in Section VI.3. Text-independent experiments are performed on a non-
standard corpus recorded internally at NXP, comprising of 10 male speakers. 3 baseline
systems are proposed as a comparison: a traditional GMM-UBM system and two neural
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network solutions.
The GMM-UBM system was used as a baseline in the earlier stages of this work; it

was readily available from the experiments described in Chapters III and IV. The use a
well-established Gaussian generative approach as a baseline, which was also familiar to
the author, made it easier to design protocols for the experimental end-to-end system.
Comparing the behaviour of the two systems guided the author on how to present the
data in a way that allowed the E2E system to learn, avoid overfitting, and presenting an
overall challenge.

The GMM-UBM system is the only baseline presented in the original publication of
the work described in this chapter [8]. The two NN-based baseline systems previously
unpublished and reported for the first time here, serve as a comparison to competing
approaches belonging to the family of neural network and deep learning solutions, specif-
ically those focused on small-footprint topologies.

VI.4.1 Baseline systems

The first baseline system is a standard 64-component GMM-UBM system [20]. Features
are standard 19th order MFCCs. These are appended with delta and double-delta pa-
rameters thereby giving features of 57 coefficients.

Speaker models are derived from the maximum a posteriori adaptation of the UBM
(see Section II.3.2). Scores are log-likelihood ratios given the speaker model and the
UBM.

The neural network solutions consist of (i) a CNN system based on the ’cnn-trad-
fpool3’ model in [129] and (ii) a DNN based on the rank-constrained (RC) topology
network in [130]. The author acknowledges that the NN-based baseline systems are not
state-of-the-art implementations of deep learning ASV approaches, but are to be intended
as comparisons closer in terms of technology to the end-to-end approach than the conven-
tional GMM system. The NN approaches chosen for this work also place a strong focus
on low-resource, small-footprint network architectures.

In [129] and [130] these architectures are employed for keyword spotting, which is
a multi-class word recognition task. They are here adapted to speaker verification by
reducing the possible output classes to encompass the target speaker and the back-
ground/garbage model only. Both publications report models to have in the order of
hundreds of thousands of connections (244k and 102k respectively). The RC-DNN topol-
ogy was developed with limited inference resources in mind; computational effort at test
time is approximatively 0,001% of the CNN system. The principle behind the parameter
reduction resides in approximating the weight matrix of the 2-dimensional input with a
product of two separate weight vectors for time and frequency.

Input for each network typology is 40-dimensional MFCCs or 40 log-mel filterbank
energy features, totalling 4 different NN-based configurations. The temporal dimension
is fixed to 1 second (100 frames) for both training and testing trials. The actual number
of parameters for the proposed implementation is 940k for the CNN and 750k for the
RC-DNN.
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Table VI.1: Results for the baseline systems and end-to-end system in terms of EER for
the training and test set for the two target speakers.

Speaker #1 Speaker #2
Training Test Training Test

GMM-UBM 0% 9.5% 0% 6.9%
CNNMFCC 0.8% 6.8% 0% 2.5%
CNNlogmel 0.4% 5.8% 0% 1.0%
RC-DNNMFCC 0.6% 9.0% 0.2% 1.7%
RC-DNNlogmel 0.8% 6.5% 0.2% 1.2%
End-to-end 0.8% 5.3% 1.0% 9.4%

VI.4.2 NXP database and experimental protocols

Experimentation with standard NIST Speaker Recognition Evaluation datasets [131],
RSR [37] or RedDots [46] are currently impracticable on account of the prohibitive train-
ing time given the current implementation of the end-to-end system. Being consistent
with the objective to evaluate the potential of the algorithm, this section reports a set of
proof-of-concept experiments using a non-standard, proprietary database of speech signals
collected from 10 male speakers. Text content consists of 10 of the 30 Harvard sentences
which comprise the TIMIT database [132]. Each speaker provides approximately 5-6 min-
utes of speech which is recorded in 9 sessions over the course of one month. Recordings
were collected in a quiet office with a laptop at a sampling rate of 16 kHz and 16-bit
precision. Utterances were normalized by the active speech level estimated according to
the ITU-T P.56 standard [133].

Among the 10 speakers, 2 are enrolled as targets. The training set consists of 6 of the
10 sentences uttered by the target speaker and the first 5 impostors. The test set consists
of the other 4 sentences uttered by the target speaker and the remaining 3 impostors,
thus achieving considerable phonetic separation between sets. The split between training
and testing sentences is the same for both target speakers. Total target training data
amounts to approximately 3.5 minutes of speech per speaker. Total impostor training
data is in the order of 14 minutes duration.

For the end-to-end system, target data is partitioned into two mini-batches (Mt=50%).
Since impostor data is more plentiful, it is partitioned into five mini-batches (Mi=20%)
and used as background data for the baseline system. The average duration of training
utterances is 3.25 seconds. For the assessment and testing of all systems, one trial corre-
sponds to one entire recording. Accordingly, K (see Section VI.3.3) is set to 3.25×16000 =
52000 samples for training, and to the number of samples in each trial for testing. Audio
files used by the baseline systems are preprocessed with silence removal. This step is not
performed for the end-to-end system.
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Fig. VI.9 Number of connections (green dashed profiles) and equal error rate
(EER) of the first 500 generation champions for target speakers 1 (top) and 2
(bottom). EER profiles are shown for training data (magenta/dark) and test-
ing data (yellow/light profiles). Black dots signify the grand champion, chosen
according to the lowest-EER on the full training set.

VI.4.3 End-to-end system: augmentation and generalisation

The evolutionary process and network evaluation and selection procedure described in
Section VI.3.4 are depicted in Fig. VI.9. Two processes are performed and illustrated
independently for the two target speakers and for 500 generations. The solid magenta
(dark) profile in each plot shows the EER obtained by each generation champion assessed
using the training data. EER profiles exhibit the expected evolution trend, namely a
steady decrease from above 30% to less than 5% within 150 generations. The lowest
EERs obtained by grand champion networks are 0.8% for speaker 1 (generation 329) and
1.0% for speaker 2 (generation 464) marked by black dots. Solid yellow (light) profiles
show EERs for generation champions assessed on test data. As expected, performance
on independent data is worse. Nonetheless, the selected grand champions are among the
best performing networks when assessed using test data.

A summary of performance for baseline systems and the end-to-end system is presented
in Table VI.1. For the latter, results for both train and test datasets concern the grand
champion network selected for each speaker. For the test set, grand champions yield
EERs of 5.3% and 9.4%, whereas the GMM system delivers EERs of 9.5% and 6.9%. As
expected, CNN models perform overall better compared to less complex RC-DNNs, with
the exception of speaker #2 for the MFCC configurations. Feature-wise, log-mel energies
seem to bring consistently better performances to both types of architectures. The end-
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to-end system does not follow the general trend of lower EERs for speaker #2 versus
speaker #1: while on training data the EER is kept below 1%, on test data speaker #2
proves to be more difficult, as is clearly depicted by the higher yellow profile on Fig VI.9.
This situation is almost mirrored with the GMM system, suggesting that very different
cues are learnt while operating in the time domain. The end-to-end system, albeit in an
early stage of development, delivers the lowest EER for speaker #1 compared to all other
systems.

The upper green dashed profiles in Fig. VI.9 show the number of connections of each
generation champion. As evolution proceeds, networks are steadily augmented with new
nodes and connections. In general, network augmentations cause decreases in EERs for
the training set, with 112 and 138 connections for speaker 1 and 2 grand champions,
respectively. These networks are orders of magnitude less complex than usual, deep
layered structures (c.f. ∼ 200k connections for the most compact model reported in [107]).
Networks with such a reduced parameter space are inherently less prone to over-fitting
since they do not have the capacity to learn a direct input-output correspondence.

The gates of the grand champion networks prune an average of 46% of output data (in
both speech and non-speech intervals) — the average for speaker 1 is 40% whereas that
for speaker 2 is 53%. This percentage is consistently higher than for the baseline systems
for which silence removal prunes an average of 35% of data (obtained by calculating the
speech active level according to ITU-T P.561 thresholding at 15.9 dB). The behaviour of
the gate was observed for a small number of trials, and showed a periodic opening and
closing as opposed to an energy- or amplitude-related activation. An illustration of the
gate behaviour is shown in Fig. VI.10: as a purely empiric observation, it seems the gate
learnt to open on high output samples for targets and low output samples for impostors,
effectively rendering the output signal less periodic and more score-alike. The active
speech level used in the baseline systems usually results in cutting the low-amplitude
parts preceding and following the utterance. These findings show that the GMM and
end-to-end systems exploit data in a different way.

VI.5 Further experiments:
End-to-end system on NIST SRE16 data

The work published in [8] demonstrated a successful proof of concept with a small, non-
standard database. The work reported in this section aims to test the proposed end-to-end
system with a publicly available corpus, namely the NIST SRE dataset, whose various
"editions" during the years (see Section II.5.1) serve as standard databases within the
ASV research community.

All experiments reported here were performed on a subset of the NIST SRE16 devel-
opment set (see Section II.5.1.d). At the time when the experiments were carried out, the
SRE16 corpus was the most recent NIST dataset for which results had been published.
Being a very recent corpus, collected explicitly for the most important speaker recognition
evaluation poses a more difficult challenge to the proposed system compared to the NXP
database.

1http://www.itu.int/rec/T-REC-P.56-201112-I/en

http://www.itu.int/rec/T-REC-P.56-201112-I/en
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Fig. VI.10 The gate behaviour on a target (a) and an impostor (b) trial: darker
samples signify an open gate. Note how it seem to learn when to open in order
to give higher averaged scores to target trials and lower scores to impostor trials,
effectively "helping" the decision output.
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As illustrated in Table VI.2, the labelled data of the development set (see Sec-
tion II.5.1.d for a description of the NIST SRE16 corpus) is comprised of data belonging
to 20 speakers, which according to the official protocols is used to enrol 80 different
models. Even with such a modest number of speakers, a full-protocol experiment is com-
putationally prohibitive (see Section VI.4.2), therefore a subset of the data for 7 models
belonging to 7 of the 10 male speakers is selected. In order to have at least one minute
of training data per speaker, the models were selected among those enrolled with 3 tele-
phone conversations. The background data, complying with SRE16 guidelines2, consists
of SRE04, 05, 06, Switchboard and Fisher corpora datasets, comprising 3420 recordings
of male speakers. For the end-to-end system, the background protocol is also subsampled
by a factor of 10 to speed up the training and network selection process, as the algorithm
still requires to test on the full training set (which includes background data) to select
generation champion networks (see Section VI.3.4).

The setup for the end-to-end system is left unchanged from Section VI.3, except for
a few adjustments:

• The training segment lengthK is set to 3 seconds, equal to 3×8000 = 24000 samples.

• Since NIST SRE16 data involves one side of a telephone conversation, this results
in the presence of long periods of silence in each file. In order to avoid completely
silent segments, files are preprocessed with silence removal which leaves on average
2 minutes of training data per speaker and 10 hours 48 minutes of background data.
In order to approximately recreate the same silence-speech balance of the NXP
database, only silence periods longer than 500 milliseconds were cut.

• Mini-batch parameters are set to Mt = 66% and Mi = 0.3%

While the purpose of this experiments is to test the end-to-end system with data from
a standard corpus, the results are compared with the baseline system reported in [10]
as "ICMC IV PLDA" (henceforth referred as ICMC) developed at EURECOM. This was
done for two reasons: (i) individual scores for the system were made available to the
author, allowing a 1:1 comparison of the two systems with any subset of trials and (ii)
the ICMC system is a developed and optional sub-system which was used in the I4U
consortium submission to the NIST SRE16 evaluation.

The ICMC system is of the i-Vector PLDA type (see Section II.3.4) and uses con-
stant Q Mel-scaled cepstral coefficient (ICMC) [58] features. This system also utilises
additional SRE08 data to train the PLDA hyperparameters; see [10] for further detail.
Reported in Table VI.3 are the results for the male speakers of the development set. Com-
parative results in Table VI.4 are reported in the form of EER per speaker. There is no
global- or language-dependent EER because, as per with the NXP database experiments,
each speaker-specific network has very different score dynamics and calibration or score
normalisation methods for the end-to-end system have not been developed yet.

Individual scores for the ICMC system were made available to the author. This allows
to calculate the global EER for the whole SRE16 development set, group it by gender
and/or language, as well as by speaker. Comparisons corresponding to each model are
actually possible, in addition to comparing the ICMC speaker-dependent EERs with their
respective language-dependent EERs reported in Table VI.3.
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Table VI.2: Statistics for the NIST SRE16 development labelled data

# Speakers 20
# Models 80
# Calls 200
# Target trials 4828
# Impostor trials 19312
Languages Mandarin, Cebuano

Table VI.3: ICMC IV PLDA results for all the male speakers and models of the NIST
SRE16 development set, grouped by language. This table shows how each of the 7 models
in TableVI.4 is representative of the whole male set for the corresponding language.

Mandarin Cebuano Averaged
EER (%) 8.4% 32.2% 20.3%

Table VI.4: Results on NIST SRE16 development set data for the end-to-end system
and the ICMC IV PLDA system reported in [10]. Results between parentheses are for
networks chosen a posteriori (not following the grand champion selection policy) and are
just reported for observations

Model ID Language E2E ICMC
1008 Mandarin 46.5 (29.6)% 6.7%
1011 Mandarin 29.4 (15.2)% 0.3%
1036 Mandarin 23.0 (15.8)% 9.4%
1050 Mandarin 24.6 (18.0)% 8.1%
1039 Cebuano 16.4 (14.1)% 12.9%
1043 Cebuano 25.3 (15.4)% 16.9%
1078 Cebuano 21.6 (20.0)% 36.2%

Average 1 Mandarin 30.9 (19.7)% 6.1%
Average 2 Cebuano 21.1 (16.5)% 22.0%
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Results for the E2E system are reported in 2 forms: the first is the EER for the
grand champion, selected following the procedure explained in section VI.3.4; the second,
illustrated in parentheses in Table VI.4, is the EER obtained by selecting the best gen-
eration champion on the test set, therefore this can only be done a posteriori. Neither
network is trained with test data, but the way the latter is chosen is rightfully considered
cheating. Reporting this EER, though, brings some noteworthy information: in the pool
of generation champions (which is already a selection based on training data) there are
some networks that perform considerably better than grand champions, even if they are
not chosen as grand champions.

On the one hand this is encouraging, because it shows the learning power of E2E
networks (results are closer to or better than the ICMC system, especially on the Cebuano
language), but it also proves that the grand champion selection policy is less than optimal
for databases such as the NIST SRE16 data which exhibit a language mismatch with the
background data (all background data is in English) but not with impostors at testing
(the used protocol only involves language-matched trials).

With all of this considered, even by ignoring the chosen-a-posteriori champions, in one
instance the E2E approach outperforms the ICMC system, whose weakness seems to be
Cebuano speakers which are, conversely, the easier ones for the end-to-end system. This
once again reinforces the thesis that the E2E system is capable of learning information
that is complementary to that learnt by other approaches.

VI.6 Conclusions

Deep Neural Networks and deep learning are today at the state of the art in Automatic
Speaker Verification. The literature shows a trend to replace hand-crafted features with
alternatives learnt automatically with machine learning. Furthermore, the complexity of
deep network architectures, besides the associated computational efforts, makes explaining
or interpreting what makes them work considerably challenging. Jointly-optimised front-
end and back-end approaches, referred to as end-to-end approaches, rarely use raw audio
data as input and exhibit fixed or very constrained architectures.

This chapter reports an end-to-end approach to automatic speaker verification (ASV)
based on the NeuroEvolution of augmenting topologies (NEAT) algorithm. In contrast
to the existing state of the art, the proposed algorithm avoids the use of hand-crafted
features by processing raw audio and optimizes network weights and topologies in an
entirely end-to-end fashion. Less complex topologies with a low memory footprint are
well suited to embedded implementations.

The first set of experiments pertaining to the relatively small proprietary NXP database,
compares the E2E system with GMM- and NN-based systems. Results show that the
end-to-end system is at least competitive. A second set of experiments performed on
a subset of the standard NIST SRE16 corpus, a much more challenging task involving
cellphone-quality speech in non-English languages, while all the background data is in
English. Results on this dataset yield considerably worse results, but some a-posteriori
observations show that some networks in the population achieved better performances
than the chosen grand-champions, putting the "blame" on the selection procedure, which

2https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016

https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016
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needs further refinement. Nevertheless, on Cebuano speakers, the end-to-end approach
obtained results comparable to the ICMC system.

A particularly appealing feature of the end-to-end approach is the gate, which acts
as a form of built-in attention mechanism which serves to distinguish the most reliable
information in the network output. This aspect of the end-to-end solution requires further
investigation in order to interpret its behaviour with respect to information present in the
acoustic input.

These findings suggest that the end-to-end approach merits further attention. Exper-
imentation with unabridged, official protocols have to become feasible. This will require
improvement to computational efficiency; the current CPU-only implementation makes
larger-scale experimentation impracticable. Future work should investigate efficient im-
plementations which exploit hardware acceleration, non-binary gates for soft, rather than
hard weighting of output score samples, experimentation with longer duration training
and testing, and a scoring method taking into account the order of the outputs rather
than the plain average over a number of output samples.

The application of augmenting topologies to raw audio is still in its infancy, and
with the challenge being great and variate, the approach is understandably not up to
the performance of state-of-the-art systems. Nevertheless the room for improvement is
equally large in many aspects. This work may well bring improvements in end-to-end
system performance and/or expose application settings for which the proposed approach
may excel.
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Chapter VII

Augmenting topologies applied to
anti-spoofing

This chapter describes the adaptation of the NEAT approach to spoofing detection. De-
spite the progressive adoption of automatic speaker verification as a reliable authentica-
tion method, vulnerabilities to spoofing (also known as presentation attacks) give reason
for caution. Without adequate countermeasures, fraudsters can manipulate the normal
operation of an authentication system by masquerading as genuine users and hence gain
unauthorised access to protected resources or services. Vulnerabilities to presentation
attacks are clearly inadmissible. In addition to the immediate security concerns, they
undermine confidence in ASV technology.

With the end-to-end system described in Chapter VI, each end-to-end network is a
discriminative, binary classifier, learnt according to its own independent evolution pro-
cess. One of the issues in applying the proposed end-to-end approach to ASV in its
current CPU-only implementation relates to its extensive training time, which prohibits
large-scale experimentation involving a significant number of speakers (see Sections VI.4
and VI.5). With anti-spoofing however, the task is to discriminate between genuine
and spoofed speech, i.e. only a single model. Accordingly, NEAT can be applied to
anti-spoofing to recordings collected from multiple speakers by using just one classifier,
allowing for faster experimentation and optimisation with the current end-to-end pipeline.

This is not to say anti-spoofing is independent from ASV. On the contrary, it should be
complementary and seamlessly integrated in any ASV system, though it can be and it is
often treated as a separate task. Indeed, anti-spoofing is a relatively new field compared to
ASV and related research has advanced considerably in the last three years. Anti-spoofing
is a particularly difficult pattern classification problem since the characteristics of spoofed
speech vary considerably and can never be predicted with any certainty in the wild. The
design of features suited to the detection of unpredictable spoofing attacks is thus a
staple of current research. End-to-end approaches to spoofing detection which exploit
automatic feature learning have shown success and offer obvious appeal. Chapter VI saw
the application of augmenting topologies to raw-audio ASV, the objective of this chapter
is to investigate if the discriminative nature of the proposed end-to-end approach has
potential as a spoofed speech detector.

To adapt the end-to-end ASV system described in Chapter VI to spoofing detection,
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a new fitness function is introduced. While not explicitly developed for anti-spoofing, the
new fitness function has proven successful for the first time when applied to the task.
This fitness function is designed to exploit the temporal aspect of evolution: it stores
information about data that was correctly classified during past generations in order to
reward true progress instead of mere performance.

The speaker-independent approach to spoofing detection made it feasible to test the
end-to-end system using the official protocols and baseline system of the ASVspoof 2017
database of bona fide speech and replay spoofing attacks, which involve the (surreptitious)
capture and subsequent playback to the ASV system of a speech sample captured from a
genuine speaker/user.

VII.1 A brief overview of anti-spoofing

It is known that ASV systems can be vulnerable to spoofing attacks in the form of imper-
sonation, synthetic speech, converted voice and replay [134]. Impersonation (the imitation
of a target speaker by another person) requires a certain skill and is generally consid-
ered to pose only a modest risk [135]. While the threats posed by synthetic speech and
converted voice are potentially severe, given that their implementation requires specialist
expertise that only a few have, the actual risk may be relatively low. Replay attacks
arguably present the greatest threat as they can be mounted easily with widely available,
consumer-grade audio recording and playback devices (e.g. smart phones) and can be
especially difficult to distinguish from genuine, bona fide speech samples. The detection
of replay attacks is the focus of this chapter

Efforts to develop spoofing countermeasures, also known as presentation attack de-
tection (PAD) systems, are now well under way; the study of spoofing countermeasures
for ASV is today an established area of research [136]. The first competitive evaluation,
namely the ASV spoofing and countermeasures (ASVspoof) challenge [137], was held in
2015. It promoted the development of countermeasures to protect ASV from voice conver-
sion and speech synthesis attacks. The second edition of ASVspoof, held in 2017, switched
focus to the mitigation of replay attacks [138–140].

The many submissions to the ASVspoof 2017 challenge can be classified into one
of two different approaches. The first set of approaches involves the combination of
hand-crafted features with generative classifiers such as Gaussian mixture models (GMM)
and i-vectors/PLDA systems, e.g. [141–148]. The second of approaches explored the use
of discriminative classifiers such as support vector machines (SVMs) and deep neural
networks (DNNs) [113,143,146–150].

Deep learning techniques, in particular, proved to be especially successful, with five
of the top ten performing systems submitted to the ASVspoof 2017 challenge employing
some form of automatic feature learning and/or classification1. The work in [146] used
convolutional neural networks for the automatic learning of features from magnitude
spectrograms with a combination of convolutional and recurrent layers in an end-to-end
solution. This success serves as a motivation to further explore the potential of deep
learning, especially towards end-to-end solutions.

1A summary of top submissions is available at http://www.asvspoof.org/slides_ASVspoof2017_
Interspeech.pdf

http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
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End-to-end approaches to anti-spoofing have obvious appeal. As explained in sec-
tions V.2.1 and V.3.1, automatic approaches to feature learning are bringing advances
in performance and the quest for better-performing, hand-crafted features is a staple of
current research. Research in anti-spoofing is comparatively embryonic, as the history
of benchmarking evaluations spans less than four years. The natural variation in spoof-
ing attacks is so great that makes hand-crafted feature design especially difficult. In the
absence of an extensive body of background knowledge or proven features, and with the
availability of large datasets of spoofed speech, automatic feature learning and end-to-end
solutions present an opportunity to fast track progress.

VII.2 NEAT setup

The raw audio setup described in Sections VI.2 and VI.3.3 is applied for this task, with one
notable exception: the author’s work on ASV, as well as that in [123] adopted a flexible
streaming/segmental or file-based approach, where the segment length K is adjusted
accordingly (see Eq. VI.1). Conversely, all work on anti-spoofing relates solely to file-
based processing where K is always set to the number of samples in a file. Given the
focus of this section upon anti-spoofing rather than automatic speaker verification, mini-
batch notations Mt (target speaker) and Mi (impostor speakers) are replaced with Mb

(bona fide speech) and Ms (spoofed speech). This notation is adopted throughout the
remainder of this section. Other parameters are left unchanged, with the main, novel
contribution of this work being the new fitness function. This is explained below.

VII.2.1Ease of classification

Experiments to evaluate the performance of NEAT for anti-spoofing using the previously
reported fitness functions [8, 123] showed a tendency to oscillate around local optima,
namely networks in subsequent generations that correct previous classification errors while
introducing new ones. Such oscillations can be avoided by using an enhanced fitness
function which rewards progress rather than raw performance. Progress infers the learning
of better networks which correct previous classification errors without introducing new
ones.

An expression for fitness which rewards progress requires the definition of a measure
of segment classification ease. Given the file-based approach adopted for the work in this
chapter, a segment always corresponds to one trial or file. Intuitively, this is proportional
to how high or how low is the score for segment s compared to the average impostor
(spoofed) or target (bona fide) scores respectively; For every network n and bona fide
segment s with score θs, the classification ease is given by:

ls,n ← 1− #{spoofed segments with score > θs}
#{spoofed segments} (VII.1)

where the right-most term is akin to the false acceptance rate for the given threshold.
Conversely, for every spoofed segment with score θs, the classification ease is given by:
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PDF of spoofed and bona fide segment scores

score values

-2 -1 0 1 2 3 4

Segments with high classification ease

Segments with low classification ease

Fig. VII.1 The position of segments with high or low classification ease depends
on how many segments of the other class were given higher or lower scores for
bona fide or spoofed segments, respectively.

ls,n ← 1− #{bona fide segments with score < θs}
#{bona fide segments} (VII.2)

where the right-most term is now akin to the false rejection rate for the given threshold.
An illustration of a few examples of segments with relatively low and high classification
ease is depicted in Fig VII.1.

A pooled measure of the classification ease may then be obtained by averaging the
classification ease over the number G of networks in the population:

ps ←
∑
n ls,n
G

(VII.3)

where ls,n is set according to Eqs. VII.1 or VII.2 depending on whether segment s cor-
responds to a bona fide or spoofed trial respectively. A measure of network fitness F is
then estimated across all segments according to:

F =
∑
s ls,n(1− ps)∑
s(1− ps)

(VII.4)

where (1−ps) acts to weight the contribution of the classification ease for segment s, and
network n.

This approach to fitness estimation is from here on referred to as the ease of classifica-
tion (EOC). The EOC fitness function was developed in collaboration with Adrien Daniel
while he was employed at NXP Semiconductors.

According to Eq. VII.4, the correct classification of segments that were already cor-
rectly classified by networks in an earlier generation thus contributes little to the estima-
tion of fitness for networks in the subsequent generation; there is little reward for learning
what was already known by an earlier generation. The EOC approach to fitness estima-
tion steers evolution to classify correctly a diminishing number of difficult segments. It is
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Fig. VII.2 An illustration of fitness evolution for the fittest network of each
generation when using AUROC (top) and EOC (bottom) fitness functions on
ASVspoof 2017 data. The dashed red profile illustrates the fitness evolution with
mini-batch training whereas the mostly-monotonic blue profiles show the fitness
without mini-batch training.

further stressed that, for the work described in this chapter, a segment always corresponds
to a file/trial.

VII.2.2Training
Experiments were conducted with both AUROC (Section VI.2) and EOC (Section VII.2.1)
fitness functions, with and without mini-batching. Audio signals containing either bona
fide or spoofed speech are fed to each network segment-by-segment (file-by-file) and the
network is trained in order to distinguish between the two. The fitness function is eval-
uated with K in Eq. VI.1 set to the number of samples in each file. All networks are
reset/flushed after the processing of each file.

At each iteration (generation), a subset of the fittest (best performing) networks
among each species is determined and used to evolve the next generation of networks
according to the procedure outlined in Section VI.1.2. Evolution proceeds either until the
fitness converges or until a pre-determined maximum number of generations is reached.

Fig. VII.2 depicts the improvement in network fitness (vertical axis) over 200 gener-
ations (horizontal axis). Illustrated is the evolution in fitness for four different configu-
rations: the two fitness metrics AUROC and EOC, both with and without mini-batch
training (Mb = 25% and Ms = 33%). Each point on each profile shows the fitness of the
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single, fittest network among the 150 in the population. In both graphs the dashed red
curves relate to mini-batch training. Neither profile is monotonic since the data changes
at each generation. Conversely, solid blue curves show fitness without mini-batch training
(Mb = Ms = 100%), hence the largely monotonic profiles (the fitness of EOC optimised
networks is not strictly monotonic on account of the different weights applied to each
segment during fitness estimation, as described in Section VII.2.1).

Profiles in Fig. VII.2 show that mini-batching is of more benefit when used with
the EOC fitness function. Changes in training data can be interpreted as optimisation
towards a moving target. This fuels novelty instead of over-fitting to a fixed training set.
These observations would suggest a potential for better generalised spoofing detection. It
should be noted, however, that the final objective is not higher fitness for training data,
but the classification reliability assessed using test data.

VII.2.3Testing

Networks with high measures of fitness may not necessarily be those which give the best
performance in terms of the spoofing detection EER. This is especially true when using
mini-batch since one random subset of training data could be fortuitously easier than
another subset (or indeed the full set). In addition, measures of fitness derived using the
EOC fitness function may not be especially well correlated with classification performance;
increases in EOC reflect the learning of new information rather than raw performance.
Moreover, while the AUROC and EER can both be obtained for any given set of trials,
EOC cannot be correctly calculated at test time because there is no pooled classification
ease (see Eq. VII.3), since there is no previous classification history regarding test trial
files.

These reasons make even more crucial the selection procedure of generation champions
and grand champion described in section VI.3.4, which is here applied following the same
steps. The grand champion network selected for testing/evaluation is then used without
further modification.

VII.3 Experimental setup
This section describes the database, protocol and metric used for all experiments reported
in the remainder of this chapter. Also described is the baseline system and specific
configuration details for the end-to-end approach to anti-spoofing.

VII.3.1Database, protocol and metric

Experiments were performed using Version 2.02 of the ASVspoof 2017 database [151].
The database originates from the RedDots database3 which was collected by volunteers
from across the globe using mobile devices, in the form of smartphones and tablet com-
puters. While the RedDots database was collected to support research in text-dependent
automatic speaker verification, the ASVspoof 2017 database was adapted from it in order
to support research in anti-spoofing. It contains sets of bona fide (genuine) and replayed

2http://dx.doi.org/10.7488/ds/2301
3https://sites.google.com/site/thereddotsproject/

http://dx.doi.org/10.7488/ds/2301
https://sites.google.com/site/thereddotsproject/
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Table VII.1: Statistics of the ASVspoof 2017 database version 2.

Subset
# # replay # replay # utterances

spk sessions configs bona fide replay

Training 10 6 3 1507 1507

Devel. 8 10 10 760 950

Eval. 24 161 57 1298 12008

Total 42 177 61 3566 14466

speech [139, 152, 153]. In order to simulate replay spoofing attacks, the bona fide parti-
tion of the ASVspoof 2017 database was replayed and then recaptured using a variety of
different loudspeakers and recording devices in heterogeneous acoustic environments.

The standard protocol relates to a partition of the database into training, development
and evaluation subsets, details of which are presented in Table VII.1. The three subsets are
mutually disjoint in terms of speakers and of data collection sites. Experiments reported
in Section VII.4 were performed with the extended protocol whereby both training and de-
velopment were performed with pooled training and development partitions (train+dev).
The evaluation subset contains data collected using 57 replay configurations, 49 of which
differ to those used in the collection of the training and development subsets. Differences
in replay detection performance between the training/development and evaluation subsets
serve to gauge the generalisation of spoofing countermeasure solutions.

The ASVspoof 2017 evaluations assessed the performance of spoofing countermeasures
in isolation to automatic speaker verification. All results are reported in the form of the
EER%.

VII.3.2 Baseline systems

The ASVspoof 2017 Version 2.0 database was released in order to correct data anomalies
detected subsequent to the official evaluation. This new version of the corpus was first
presented in [154] along with a new baseline system, here referred as baseline 2.0. The
original ASVspoof baseline for Version 1.0 is included, since at the time when the work
reported in this chapter was carried out and published in [9], it was the only system for
which results relating to database Version 2.0 were available 4.

Baseline Version 1.0 uses a constant Q cepstral coefficient (CQCC) [155, 156] fron-
tend and a traditional Gaussian mixture model (GMM) back-end [157, 158]. Version 2.0
appends deltas, double-deltas and log-energy to the CQCC features (in lieu of C0), and
applies cepstral mean and variance normalisation. Classifier scores are computed as the
log-likelihood ratio for the test utterance given bona fide and replayed speech models.
This Chapter reports results only for the extended protocol baseline for which training
and development are performed using pooled training and development dataset, referred

4http://www.asvspoof.org/data2017/baseline_CM.zip

http://www.asvspoof.org/data2017/baseline_CM.zip
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Fig. VII.3 Evolution of 500 generations with an EOC fitness function with mini-
batch training (EOCm configuration). The upper blue profile shows the EOC-
derived fitness of the fittest network in each generation. The highest fitness is
obtained in generation 490. The green profile is the complexity (number of con-
nections) in each network.The lower magenta profile is the EER of generation
champions estimated using pooled training and development data. It reaches a
minimum value in generation 484 (marked by an orange dot). This is the grand
champion network that is chosen for testing on the evaluation set.

to as train+dev. Baseline results for the extended protocol are presented to the top
of Table VII.2.

VII.3.3End-to-end anti-spoofing

All networks are configured according to the common setup described in Section VI.2 and
as depicted in Fig. VI.5. Experiments were conducted with four different configurations
comprising AUROC (Section VI.3.1) and EOC (Section VII.2.1) fitness functions with
and without mini-batch training (Section VI.3.2). Configurations in which mini-batch is
adopted are labelled m (see Table VII.2). Each configuration was run for 500 generations.

When applied, mini-batch training is performed with bona fide speech partitioned
into four mini-batches of approximately 17 minutes each. Spoofed data is partitioned into
three mini-batches, approximately 21 minutes each (see Section VII.2.2). The discrepancy
between bona fide and spoofed speech is due to the greater variation in spoofed speech,
the reliable modelling of which requires greater quantities of data in each batch.

Once the training of a generation is complete, the performance of networks for that
generation is assessed according to the procedure described in Section VI.3.4, where the
whole training set for this work corresponds to the pooled training and development data
partitions (see Section VII.3.1).
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VII.4 Experimental results

This section describes experimental results, starting with an illustration of the evolution-
ary behaviour of the end-to-end approach to spoofing detection and then an assessment
of performance in terms of the EER. Also discussed here is the behaviour of the gate.

VII.4.1Evolutionary behaviour

An illustration of the evolutionary behaviour of the end-to-end approach to spoofing
detection is illustrated in Fig. VII.3. Two profiles show the evolution in EOC for the
current mini-batch (top blue profile) and the number of network node connections (green
dashed profile) of the highest-EOC network of the generation. The lower magenta profile
shows the EER for the champion of each generation (the generation champions) estimated
using train+dev data. The single network selected for the testing/evaluation is that which
produces the lowest EER for the train+dev data (orange dot). This network is designated
as the grand champion network.

The fitness is seen to increase gradually as the end-to-end approach to anti-spoofing
learns to discriminate between bona fide and spoofed speech, gradually increasing net-
work complexity as evolution proceeds. Improvements in fitness are largely accompanied
by decreases in EER. After approximately 350 iterations, the EER seems to converge,
with the best performing network being that from the 484th generation and having 198
connections.

VII.4.2 Spoofing detection performance

Results are presented in Table VII.2 for the baseline systems and the for the end-to-end
system with AUROC and EOC fitness functions, with and without mini-batching (denoted
by subscript m). Results for the EOC fitness function are either similar to or better than
those for the AUROC fitness function. Mini-batching appears to offer inconsistent results
for the AUROC fitness function; performance degrades for train+dev but improves for
evaluation. For the EOC fitness function, improvements are consistent across the two
data subsets.

Of particular interest is the stability or generalisation achieved by the end-to-end
system. Performance for the baseline systems is seen to degrade substantially between
the two sets (train+dev and evaluation). In contrast, the best results achieved with the
end-to-end approach using the EOC fitness function and mini-batch training is not only
substantially better, but also consistent across the two disjoint data sets (18%). Since
results for the improved baseline Version 2.0 were not available at the time this work
was carried out, the proposed end-to-end system (namely in its two EOC configurations)
represented a substantial improvement over the original baseline system.

As already introduced in section VI.2, the gate acts to identify salient information in
the network output, akin to an attention mechanism. It is stressed, though, that the gate
operates on the output stream rather than on the input stream. Coupled with the recur-
rent nature of the network which maps inputs to outputs, this impedes a straightforward
interpretation of its behaviour; it is difficult to interpret gate behaviour at the output with
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Table VII.2: End-to-end spoofing detection performance for the ASVspoof 2017 V2.0
database and extended protocol.

Train+Dev Eval
Baseline V 1.0 0.1% 23.4%
Baseline V 2.0 2.5% 12.2%
AUROC 20.9% 28.2%
AUROCm 27.4% 24.2%
EOC 20.3% 19.2%
EOCm 18.7% 18.2%

respect to the acoustic stream at the input by just looking at the signal. Nevertheless,
it is of interest to investigate its behaviour by observing some of the network outputs
for bona fide and spoofed files, in the same fashion as done for ASV and as reported in
Section VI.4.3.

Although observations made across only a handful of files are far from a statically-
sound approach, Fig. VII.4 shows alternating periods of activity only in the first part
of the output (although the scale of the picture makes them appear contiguous). In
this case, with the output signal being still close to the input, it is easy to see how the
first region corresponds to a very amplified or distorted transformation of the pre-speech
part, while speech itself begins at about 0.25 seconds. This would seem to indicate that
the network is learning something from non-speech intervals, e.g. perhaps information
relating to the acoustic path between the loudspeaker and microphone. What is not clear,
however, is exactly what the network is exploiting to produce higher scores for bona-fide
trials and lower scores for spoofed speech trials. Further analysis would involve a deeper
examination of how to link gate behaviour at the output to information at the input.

VII.5 Conclusions

This chapter reports the application of the end-to-end approach to the problem of spoofing
detection. End-to-end techniques that avoid a reliance upon hand-crafted features are
assumed to offer better potential for spoofing detection, and especially generalisation
when the cues indicative of spoofing can vary considerably and are largely unpredictable
in practice. Critical to performance is the proposed progress-rewarding fitness function
which steers the evolutionary process progressively towards the reliable classification of
a diminishing number of difficult trials. Coupled with a mini-batch training procedure,
this particular quality of the proposed solution preserves generalisation.

Results for the ASVspoof 2017 Version 2.0 database show improvements to both gen-
eralisation and raw performance. Equal error rates for the end-to-end approach represent
a 22% relative reduction compared to the baseline system Version 1.0, although current
Version 2.0 yields the overall best result. Performance was not, however, the main focus
of this work, which shows how the NeuroEvolution of augmenting topologies algorithm
can be applied successfully to anti-spoofing operating directly on the raw audio wave-
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Fig. VII.4 An example of network output from the grand champion of config-
uration EOCm. Dark and light coloured sections indicate gate-open and closed
samples, respectively. It is stressed that the gate-open section is not contiguous,
although it appears to be so given the high sample rate. Note how the output
signal still bears resemblance to the input, with the first region being a very am-
plified or distorted version of the pre-speech part. Speech begins at around 0.25
seconds. Since the gate is closed for the remainder of the output, the score is
only influenced by output samples non pertaining to speech. This opening-closing
behaviour is consistent for all the trials processed by this network.

form. The low footprint of the resulting grand champion network and the population in
general, coupled with the time-domain nature of inputs and outputs means that it would
be feasible to meaningfully interpret the output with respect to the acoustic stream at
the input, provided it is done on a bigger scale involving a statistically significant number
of networks and trials. This opens the doors for future findings that can actually explain
what makes it work by directly studying the outputs of the networks. The findings of
such a study, while left for further work, will help to determine precisely what information
helps most to differentiate between bona fide and replayed speech.
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Chapter VIII
Conclusions

This chapter reviews three years of research, summarising all the progress and contribu-
tions of the author during his PhD at NXP Semiconductors and setting the path for future
work. ASV technologies are today gaining traction in industry and finding its way into
everyday life. The contributions described in this thesis hopefully bring to attention how
user convenience and low complexity (Chapter III) as well as security (Chapter IV) are
important in real case scenarios. Work with highly experimental approaches (Chapters VI
and VII) also shows that the research activity in a company is not limited to off-the-shelf
component optimisation but also extends to blue-sky research.

This chapter summarises the achievements derived from the experiments carried out
in the aforementioned chapters, and then concludes the thesis with global conclusions and
views on future work.

VIII.1 From the laboratory into the wild

Work described in Chapter III is the least research-oriented and the most industrially
flavoured contribution of this thesis. This work aimed to overcome an issue with speaker
verification in a short-utterance recognition context. The need for several minutes of user
speech for enrolment is impractical in most scenarios. The demand for such volumes of
enrolment data is in stark contrast for the requirements of convenient, non-intrusive inter-
action and a plug-and-play setup, which are paramount in automatic speaker verification
for smart device/home applications and in the Internet of Things (IoT) domain.

Results reproduced in Table VIII.1 show that it is possible to reduce the requirements
in enrolment data of a text-dependent system thereby increasing usability, while intro-
ducting only modest degradation to performance. The proposed system is indeed a small
modification of the HiLAM system described in Chapter II, consisting in a simplified 2-
layer system. The baseline HiLAM system and the reduced 2-layer version are illustrated
in Fig. VIII.1. Speaker enrolment is reduced from approximately five minutes to only
three repetitions of a given sentence or pass-phrase, with the total training procedure
lasting just a few seconds (accounting for 97% reduction in enrolment data).

Regardless of the admitted modest modification, experiments with the official RSR2015
database protocols show little to no performance drop, in some instances even yielding
better results than the implemented HiLAM baseline as well as results in the litera-
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Fig. VIII.1 Top: The original HiLAM system architecture reproduced from [37],
first shown as Fig. II.4. Bottom: The simplified 2-layer architecture: text-
dependent speaker models are adapted directly from the UBM, reproduced from
Fig. III.2
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Table VIII.1: Comparison of results for our implementation of the HiLAM system (3L)
with original results reported in [59] and those obtained with the simplified system (2L).
Reproduced from Table III.2)

System IC-Dev TW-Dev IW-Dev IC-Eval TW-Eval IW-Eval
Larcher 3L [59] 1.43% 1.00% 0.20% 1.33% 0.66% 0.09%
Valenti 3L 1.63% 8.34% 0.78% 1.81% 7.54% 0.83%
Valenti 2L 1.84% 1.09% 0.32% 1.24% 0.52% 0.05%

ture [59]. This work demonstrated that reliable short-utterance text-dependent speaker
verification, with little effort required from the user, is actually feasible.

VIII.2 Not all sentences are created equal

As a short sentence is obviously phonetically unbalanced, its choice is understandably
crucial to the resulting ASV performance. Following the reduced-data work described in
Chapter III, Chapter IV studies the inner text-dependent factors that can cause significant
shifts in error rates when dealing with extremely short pass-phrases or commands in the
order of one second.

Experiments were carried out using the HiLAM system and RSR2015 data part II,
consisting of short commands designed for ASV systems used in smart home scenarios.
The goal of the study was not just to report EER shifts in the score distributions and
relate them to the text content; but also to universally classify a spoken password strong
or weak. In order to do it, is key to prove that the ranking done with respect to one set
of speakers still holds when applied to a second, independent set. The issue of spoken
password strength is speaker-independent.

Fig. VIII.2 (a) and (b) show how different groups of 10 commands out of the 30
available can cause relative drops in the EER of up to 50% from the strongest to the
weakest group; (c) and (d) show how well the ranking made with respect to one set of
speakers (pictured by solid symbols) translates to an independent set (hollow symbols):
the pertinence to the ranking is testified by the almost-monotonic trend of the hollow-
symbol curves. The impact of the text content on a text-dependent system performance
can be thus be assumed from one set of speakers and applied to another within the bounds
of statistical significance, proving the consistency of spoken password strength.

This statistical analysis can be exploited in two ways: from a company point of view,
it can help to choose the branded one-size-fits-all wake-up pass-phrase for services or
devices, selecting the single pass-phrase with the highest level of discrimination among
different speakers, i.e. "my voice is my passport" or "ok Google". From the user point of
view, knowing that a certain pass-phrase may expose his or her device to impostures, can
assist the user in avoiding weak, less secure pass-phrases, akin to warning mechanisms for
written passwords often found on websites.

While the actual warning algorithm was not developed, the concept was registered as a
patent [6]. This analytic study demonstrates that the text content has such a large impact
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Fig. VIII.2 ASV performance with (c,d) and without (a,b) text-dependent
threshold adjustment. Reproduced from Fig. IV.2.
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on ASV system performance that it can be isolated and defined the speaker-independent
metric of spoken password strength.

VIII.3 Truly end-to-end ASV

The contribution of Chapter VI represent one of the first attempts to design an approach
to ASV that operates on the raw audio stream with dynamically optimised neural net-
work topologies. The goal of this work was not to outperform existing approaches, but
rather prove the feasibility of speaker modelling while leaving the question of topology
optimisation to machine learning, i.e. without placing constraints on the features or on
the neural architecture. Less complex topologies with a low memory footprint are well
suited to embedded implementations, and also open the door to explain or interpret of
what makes them work.

Both trends of replacing hand-crafted features with raw audio (or less processed in-
puts) and optimising the structure to the task at hand are present in the recent literature
and are here applied for the first time in tandem for a truly end-to-end approach. The
NeuroEvolution of Augmenting topologies (NEAT) algorithm is for the first time applied
to ASV, which produces low-footprint text-independent speaker networks consisting of a
few hundreds connections. These networks exhibit a layer-free topology, and every con-
nection and weight was created or optimised through the evolutionary process depicted
in Fig. VIII.3.

Given the highly experimental nature of the approach, experiments were performed
on a relatively small scale. The downside of the approach is the very time-consuming
training procedure which involves several generations of a population of networks that
must be evolved separately for each speaker. The first set of experiments was performed
using a proprietary NXP database collected from 10 speakers. Testing was conducted
using the data of 2 speakers while the remaining data was used either as background
data during training or as impostor data at testing. Fig. VIII.4 shows the evolution of
the 2 speaker networks across 500 generations: decreases in EER values (right axis) for
the training data correspond to decreases for test data. Results for both speakers are
presented in Table VIII.2, along with comparisons to results for GMM- and NN-based
baseline systems.

A second set of experiments was performed on a subset of the standard NIST SRE16
corpus. The SRE16 data contains only non-English language speech which proved to be
a tough challenge for the end-to-end system, considering that all the background data
available for training is English only. Results for the reduced protocol of 7 male speakers
are reproduced in Table VIII.3 and are compared to those obtained for an i-vector baseline
(labelled ICMC). In both sets of experiments the potential of the end-to-end approach is
evident. Both sets of experiments depicted an approach which is still in its infancy. It is
undeniable, though, especially by observing the descent of the EER curves in Fig. VIII.4
and model ID 1078 in Table VIII.3 that the system is learning discriminative information
about the target speaker. It is therefore possible to perform speaker verification in the
time domain, on the raw audio signal. While the approach is promising, there is obvious
room for improvement in several aspects for it to be exploited to the full extent.
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Generation M

CROSSOVERS

Generation M+1

Fig. VIII.3 An illustration of 2 subsequent training iterations, reproduced from
Fig. VI.7

VIII.4 Truly end-to-end anti-spoofing

The end-to-end approach described in Chapter VI is discriminative in nature. Each
champion network, which required its own evolutionary process, was used to discriminate
between the target speaker and several impostors, with the latter class being way more
variate and data-plentiful than the former. Although not strictly the focus of this thesis,
anti-spoofing presented itself as a potentially ideal fit for the NEAT-based approach. First,
its binary discriminative nature could be put to use to separate genuine and spoofed speech
encompassing multiple speakers. Second, anti-spoofing is a relatively young domain and
the search for the appropriate features is still ongoing, implying that operation upon raw-
audio may offer rapid returns. Third, the learning would require just one evolutionary
process, making experimentation on official protocols computationally feasible.
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Fig. VIII.4 Number of connections (green dashed profiles) and equal error rate
(EER) of the first 500 generation champions for target speakers 1 (top) and 2
(bottom). EER profiles are shown for training data (magenta/dark) and test-
ing data (yellow/light profiles). Black dots signify the grand champion, chosen
according to the lowest-EER on the full training set. Reproduced from Fig. VI.9.

Table VIII.2: Results for the baseline systems and end-to-end system in terms of EER for
the training and test set for the two target speakers. Reproduced from Table VI.1

Speaker #1 Speaker #2
Training Test Training Test

GMM-UBM 0% 9.5% 0% 6.9%
CNNMFCC 0.8% 6.8% 0% 2.5%
CNNlogmel 0.4% 5.8% 0% 1.0%
RC-DNNMFCC 0.6% 9.0% 0.2% 1.7%
RC-DNNlogmel 0.8% 6.5% 0.2% 1.2%
End-to-end 0.8% 5.3% 1.0% 9.4%
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Table VIII.3: Results on NIST SRE16 development set data for the end-to-end system
and the ICMC system reported in [10]. Results between parentheses are for champion
networks chosen a posteriori and are just reported for observations. Reproduced from
Table VI.4.

Model ID Language E2E ICMC
1008 Mandarin 46.5 (29.6)% 6.7%
1011 Mandarin 29.4 (15.2)% 0.3%
1036 Mandarin 23.0 (15.8)% 9.4%
1050 Mandarin 24.6 (18.0)% 8.1%
1039 Cebuano 16.4 (14.1)% 12.9%
1043 Cebuano 25.3 (15.4)% 16.9%
1078 Cebuano 21.6 (20.0)% 36.2%

Average 1 Mandarin 30.9 (19.7)% 6.1%
Average 2 Cebuano 21.1 (16.5)% 22.0%

Table VIII.4: End-to-end spoofing detection performance for the ASVspoof 2017 V2.0
database and extended protocol. Reproduced from Table VII.2.

Train+Dev Eval
Baseline V 1.0 0.1% 23.4%
Baseline V 2.0 2.5% 12.2%
AUROC 20.9% 28.2%
AUROCm 27.4% 24.2%
EOC 20.3% 19.2%
EOCm 18.7% 18.2%

Chapter VII reported the application of the NEAT-based end-to-end approach to re-
play attack detection and its assessment using official ASVspoof 2017 database protocols.
For the task, the system was equipped with a new progress-rewarding fitness function
which steers the evolutionary process progressively towards the reliable classification of
a diminishing number of difficult trials. Although this fitness function, named ease of
classification (EOC), was initially developed for ASV, it has proven successful in the case
of anti-spoofing.

Results for the ASVspoof 2017 Version 2.0 database are reproduced in Table VIII.4
which shows EERs for the official ASVSpoof 2017 baseline versions 1.0 and 2.0 compared
to 4 different configurations of the E2E approach. The configurations are named after the
fitness function used, the subscript m indicating the use of mini-batch during training.
Although no configuration achieves better result than the current baseline system, equal
error rates for the end-to-end approach represent a 22% relative reduction compared to
version 1.0, which was the only baseline when the work in Chapter VII was carried out.
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Fig. VIII.5 Evolution of 500 generations with an EOC fitness function with
mini-batch training (EOCm configuration), reproduced from Fig. VII.3

The graph in Fig. VIII.5 clearly shows how the end-to-end system learns through
mini-batches of raw audio inputs: as the highest EOC value increases across generations,
the EER on the whole "train+dev" data decreases from 50% to the 18.7% reported in
Table VIII.4. Moreover, the performance obtained for the evaluation set is consistent
with the EER on the evaluation set. This confirms that it is possible to perform spoofing
detection on the raw audio waveform with dynamically optimised neural architectures.

VIII.5 Closing thoughts and future work

This 3 years of research allowed the author to contribute to efficiency and security for
ASV in embedded systems in different ways and through different means. Efficiency for
the user, which is freed from minute-long initialisation of his or her ASV-enabled device;
efficiency for the company, which is one step closer to embedding topology-optimised
small-footprint neural networks (that require no preprocessing of the input speech) in
low-resource devices.

In a world where "your voice is your password", security comes from knowledge of
which spoken passwords are the most secure, whether customised by the user or fixed
by the developer for everybody. In the speaker verification domain, security goes hand
in hand with spoofing countermeasures; while not the focus of this thesis, anti-spoofing
has proven to be a fitting terrain to experiment with NeuroEvolution of augmenting
topologies. The blue-sky research done within this alternative approach to deep, complex
neural network architectures occupied the latter half of the PhD, and resulted in one of the
first applications of augmenting topologies on raw audio for both ASV and anti-spoofing.

While filled with interesting findings, the author is aware that the work carried out
during his time as a PhD student left several questions unanswered. Concerning the
HiLAM simplification work of Chapter III, there is still an unresolved problem with
Target-Wrong trials for the 3-layer system (see Table VIII.1). It doesn’t affect the 2-layer
variant which is the focus of the work, but the issue should be nevertheless investigated
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since it is not present in the literature [59] and the implemented 3-layer system is the
basis for the 2-layer version. It would also be interesting to know if reducing the speaker-
dependent data actually leaves the proposed 2-layer system very weak to noise or spoofing
compared to the 3-layer variant.

Regarding the work on spoken password strength, an a priori warning system for
supposedly weak passwords could be implemented, as introduced in Section VIII.2. This
warning feature would require prior knowledge on the strength of any possible spoken pass-
phrase, which could be obtained by studying the strength of smaller linguistic blocks, such
as phonemes. By experimenting on large-scale phoneme-level labeled data, an effective
measurement of password strength could be given at choice time.

The blue-sky research work that led to the end-to-end system used for the work in
Chapters VI and VII and here resumed in Sections VIII.3 and VIII.4 has understandably
the largest room for improvement and future work.

The grand champion selection policy (see Section VI.3.4) needs to be improved.
Though the author was already aware of the issue when experimenting on the NXP
database, experiments with the NIST SRE16 corpus showed how suboptimal the grand
champion selection is, especially when the training data presents some global shift in its
characteristics (language mismatch, in this case). The selection policy could be improved
at first with simple requirements for the selected grand champion such as minimum gen-
eration number and minimum complexity, and also using a fusion of evaluation metrics
(AUROC, EER, EOC or others).

Observing the sample-by-sample network activity is of key importance to achieve true
explicability which in this thesis was just theoretically rendered feasible by the relatively
low number of connections of the grand champion networks. It would be interesting to
collect statistics on the output scores and finding an interpretable visual representation,
akin to t-Distributed Stochastic Neighbor Embedding (t-SNE) [159], which maps certain
phenomena between input, network inner behaviour and output. Monitoring the gate
activity on a large number of trials and searching for particular trends would also con-
tribute to explicability, since both the output unit and the gate learn their behaviour with
respect to each other and, in the end, only the gate-open samples contribute to the final
score.



Appendix A
Published work

101



Audio Engineering Society

  Convention Paper 9844
Presented at the 143rd Convention

2017 October 18–21, New York, NY, USA
This paper was peer-reviewed as a complete manuscript for presentation at this convention. This paper is available in the AES 
E-Library (http://www.aes.org/e-lib) all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted 
without direct permission from the Journal of the Audio Engineering Society.

A Simplified 2-Layer Text-dependent Speaker
Authentication System
Giacomo Valenti1,2, Adrien Daniel1, and Nicholas Evans2

1NXP Software, Mougins, France
2EURECOM, Biot, France

Correspondence should be addressed to Giacomo Valenti (giacomo.valenti@nxp.com)

ABSTRACT

This paper describes a variation of the well-known HiLAM approach to speaker authentication which enables
reliable text-dependent speaker recognition with short-duration enrollment. The modifications introduced in this
system eliminate the need for an intermediate text-independent speaker model. While the simplified system is
admittedly a modest modification to the original work, it delivers comparable levels of automatic speaker verification
performance while requiring 97% less speaker enrollment data. Such a significant reduction in enrollment data
improves usability and supports speaker authentication for smart device and Internet of Things applications.

1 Introduction

The rapidly-growing smart device market and the explo-
sion of the Internet of Things (IoT) has fueled the need
for low footprint and efficient speaker authentication
solutions, e.g. [1]. Unfortunately, many approaches
to Automatic Speaker Verification (ASV) place un-
realistic demands on enrollment and recognition/test
data [2]. The need for anything more than a few sec-
onds of speech impacts on usability and creates resis-
tance among mass-market users.

ASV research has largely been driven by the Speaker
Recognition Evaluations (SREs) administered by the
US National Institute of Standards and Technology
(NIST)1. These evaluations have typically focused on
enrollment and testing with a duration in the order
of a few minutes. While the SREs have stimulated

1https://www.nist.gov/itl/iad/mig/
speaker-recognition-evaluation-2016

tremendous progress over the last two decades, today’s
state-of-the-art speaker verification technology is often
ill-suited to authentication applications which demand
reliable recognition using utterances with a duration
in the order of a few seconds [3, 4, 5]. With a clearly
different use case scenario, the NIST SREs have also fo-
cused on text-independent recognition, whereas short-
duration recognition generally calls for text-dependent
operation.

State-of-the-art i-Vector and probabilistic linear dis-
criminant analysis (PLDA) techniques are difficult to
apply in text-dependent tasks [6, 7, 8] unless training
data is plentiful [9] and unless impostor trials involve
matching text [10]. Studies reported in [11, 12, 13, 14]
demonstrated that joint factor analysis (JFA) systems
can work well with little enrollment data, however,
even under those conditions, both JFA and PLDA still
rely on prior knowledge of the text content.

Initiatives dedicated to furthering progress in text-
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dependent recognition have gathered pace in recent
years, prominent examples being the release of the
RSR2015 [15] and RedDots [16] databases and associ-
ated evaluation campaigns. The RSR2015 database was
furthermore introduced together with a baseline ASV
system referred to as HiLAM (Hierarchical multi-Layer
Acoustic Model) [6]. It involves a 3-layer approach to
text-dependent speaker modeling. The HiLAM sys-
tem is today a reference approach. Even it, though,
is ill-suited to our target application since it learns an
intermediate text-independent speaker model which in
turn requires significant speaker enrollment data.

We have thus sought to develop an alternative to the
HiLAM system which reduces demands on enrollment
data for a short-duration, text-dependent speaker au-
thentication application. Since the target application
is text-dependent, the aim is to dispense with text-
independent enrollment entirely. While an admittedly
modest modification to the original work, the result is
a simpler two-layer approach which achieves compara-
ble ASV performance with a dramatic reduction in the
need for enrollment data.

The remainder of this paper is organized as follows.
Section 2 describes the RSR2015 database which was
used for all experimental work reported herein. The
original HiLAM baseline system is summarized in Sec-
tion 3 whereas modifications to support short-duration
speaker enrollment are presented in Section 4. A thor-
ough comparison of the two systems performed using
the standard RSR2015 evaluation protocol is presented
in Section 5. Conclusions are presented in Section 6.

2 Database and Protocols

Almost all experimental work undertaken using the
HiLAM system [6, 17, 18] is performed using the
RSR2015 database [15]; the two were released almost
in tandem and the database is distributed with proto-
cols suited to the assessment of HiLAM-based text-
dependent speaker verification systems. The RSR2015
database is one of the most versatile and comprehen-
sive databases for such research. One particular aspect
of RSR2015 which makes it better suited to this work
than the more recent RedDots [19] successor is the
particular speaker/part/session structure illustrated in
Fig. 1. This is described below.

50
BACKGROUND

50
DEVELOPMENT

57
EVALUATION

30
Phonetically 

Balanced 

PASS-PHRASES

13
DIGIT 

SEQUENCES

30
Short 

COMMANDS

TRAIN
{1,4,7}

Device A

TEST

{2,3,5,6,8,9}
Devices B,C

Speakers Parts Sessions
I

II

III

Fig. 1: RSR2015 database partition for male speakers.
The partition is identical for female speakers
but with only 43 speakers in the evaluation set.

2.1 Database

RSR2015 contains speech data collected from both
male and female speakers and is partitioned into 3
evenly-sized subsets whose usual purpose is for back-
ground modeling, experimental development and evalu-
ation. Each subset is comprised of 3 parts: phonetically-
balanced sentences (part I), short commands (part II)
and random digits (part III). Each part contains data
collected in one of nine sessions. Three of these ses-
sions are reserved for training while the remaining six
are set aside for testing. The three training sessions
are recorded using the same smart device (i.e. the same
mobile phone or tablet) whereas the six testing sessions
are recorded using two different smart devices.

Since our target application relates to short-duration
pass-phrases, all experimental work reported in this
paper was performed using part I data consisting of
phonetically-balanced sentences. These are the same
30 Harvard sentences used in the collection of the
better-known TIMIT database [6] which were designed
to give a broad coverage of phonemes in the English
language.

2.2 Training Protocol

Data reserved for background modeling is disjoint from
training and testing data; there is no overlap in terms of
speakers or sentences. Second-layer HiLAM models
(GMMs) are trained with data from all three training
sessions and all 30 sentences, totaling 90 utterances.
Third-layer HiLAM models (HMMs) are trained with
the three training utterances corresponding to each spe-
cific sentence (30 models each adapted from the second-
layer model with three repetitions of each sentence).
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Table 1: The four different trial types used to assess
the performance of a text-dependent speaker
verification system. They involve different
combinations of matching speakers and text.

Trial Type Speaker
Match

Text
Match

Target-Correct (TC) Yes Yes
Target-Wrong (TW) Yes No
Impostor-Correct (IC) No Yes
Impostor-Wrong (IW) No No

Initial experiments reported in this paper were per-
formed using the standard protocols which are dis-
tributed with the RSR2015 database. However, since
the goal of the work reported here is to reduce the quan-
tity of data (number of utterances) needed for speaker
enrollment, subsequent experiments were performed
with subsampled versions of the standard protocols. As
described later, the amount of data used for the learning
of second-layer models is then either reduced (3-layer
system with protocol sub-sampling) or eliminated en-
tirely.

2.3 Testing Protocols

Test results reflect recognition performance estimated
from a large number of single-utterance trials. Test-
ing protocols used for all experiments are the standard
part I testing protocols distributed with the RSR2015
database. All relate to one of the four trial types il-
lustrated in Table 1. Any given trial involves either
a target (model and test utterance correspond to the
same speaker) or an impostor (model and test utter-
ance correspond to different speakers). In addition,
the text content either matches across model and test
utterance (correct) or is different (wrong). This leads
to three testing conditions which assess performance
combining target-correct trials with trials of one mis-
matching combination: target-wrong, impostor-correct
or impostor-wrong (note that target-wrong is therefore
considered an impostor trial). The number of trials
for each type in the standard RSR2015 protocols is
illustrated in Table 2 for development and evaluation
sets. The number of trials for each testing condition
is TC+TW, TC+IC and TC+IW respectively. Finally,
performance is expressed in terms of the equal error
rate (EER).

Table 2: Number of trials for Part I of the RSR2015
database for each of the four trial types illus-
trated in Table 1 and for development (Dev)
and evaluation (Eval) subsets.

Speaker-Text Dev Eval
Target-Correct (TC) 8,931 10,244
Target-Wrong (TW) 259,001 297,076
Impostor-Correct (IC) 437,631 573,664
Impostor-Wrong (IW) 6,342,019 8,318,132
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Text-independent 
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Text-dependent 
Speaker Model

Fig. 2: The original HiLAM system architecture repro-
duced from [17].

3 The HiLAM Baseline

This section describes the original HiLAM architecture
and essential elements of the basic algorithm. Maxi-
mum a posteriori (MAP) adaptation [20] is given par-
ticular attention; its optimization is fundamental to the
simplified version of HiLAM presented later. Also
presented are results for our specific implementation
assessed using the RSR2015 database.

3.1 Architecture and Algorithm

The HiLAM system is a flexible, efficient and com-
petitive approach to text-dependent automatic speaker
verification. The architecture is illustrated in Fig. 2
and is composed of three distinct layers. They rep-
resent (i) a gender-dependent universal background
model (UBM), (ii) a text-independent speaker model
and (iii) a text-dependent speaker model. The first and
second layers take the form of Gaussian mixture mod-
els (GMMs) whereas the third layer is a hidden Markov
model (HMM).

The UBM is trained according to a conventional max-
imum likelihood / expectation maximization crite-
rion [21]. The second layer text-independent speaker

AES 143rd Convention, New York, NY, USA, 2017 October 18–21
Page 3 of 8

104 Appendix A. Published work



Valenti, Daniel, and Evans Simplified 2-Layer Speaker Authentication

model is derived from the UBM via MAP adaptation;
this procedure is described in detail below. Differ-
ent third-layer text-dependent speaker models are then
learned for each sentence or pass-phrase. These take
the form of 5-state, left-to-right HMMs. Each state
of the HMM is initialized with the second layer text-
independent GMM of the corresponding speaker and
then adapted with several iterations of Viterbi realign-
ment and retraining [22]. Each HMM therefore cap-
tures both speaker characteristics in addition to the
time-sequence information which characterizes the sen-
tence or pass-phrase. Full details of the HiLAM system
in addition to the training and testing procedures can
be found in [6].

3.2 MAP Adaptation

MAP adaptation is used to obtain the second-layer
GMM from the first-layer UBM. A fundamental param-
eter of the MAP algorithm which governs the degree of
adaptation is the so-called relevance factor, τ . Together
with a probabilistic count of new data ni for each Gaus-
sian component i, it is used to determine an adaptation
coefficient given by:

αρ
i =

ni

ni + τρ (1)

where ρ ∈ {ω,µ,σ} indicates the relevance factor for
the weight, mean or variance parameters of the GMM.
The adaptation coefficients are then used to obtain the
new weight, mean and variance estimates according to:

ω̂i = [αω
i ni/T +(1−αω

i )ωi]γ (2)

µ̂i = αµ
i Ei(x)+(1−αµ

i )µi (3)

σ̂2
i = ασ

i Ei(x2)+(1−ασ
i )(σ

2
i +µ2

i )−µ2
i (4)

where each equation gives a new estimate from a combi-
nation of the respective training data posterior statistics
with weight α and prior data with weight (1−α). T is
a normalization factor for duration effects; γ is a scale
factor which ensures the unity sum of weights. Ei(x)
and Ei(x2) are the first and second moments of poste-
rior data whereas µi and σ2

i are the mean and variance
of prior data, respectively [23].

In our experiments, each stage of adaptation is per-
formed with a common value of τ , and hence α , for

Equations 2, 3 and 4; the use of different values does
not lead to better performance. Two distinct relevance
factors are used at each stage, however: (i) for the
adaptation of the UBM to the GMM, τ1 and (ii) for
the adaptation of the GMM to the HMM, τ2. The first
relevance factor, τ1, acts to balance the contribution of
the UBM and speaker-specific adaptation data to the
parameters of the new speaker model, while the second,
τ2, controls adaptation between the text-independent
and text-dependent speaker models.

3.3 Configuration and Performance

Silence removal is first applied to raw speech signals
sampled at 16 kHz. This is performed according to
ITU-T recommendation P.562 which specifies an ac-
tive speech level of 15.9 dB. In practice this results in
the removal of approximately 36% of the original data.
The remaining 64% is then framed in blocks of 20ms
with 10ms overlap. The feature extraction process is
standard and results in 19 static Mel frequency cep-
stral coefficients (MFCC) without energy (C0). These
are appended with delta and double-delta coefficients
resulting in feature vectors of 57 dimensions.

The number of Gaussian components is empirically op-
timized. The literature shows that higher values (512-
2048) are often used for text-independent tasks [24, 23]
or with systems based on i-Vector and PLDA tech-
niques [10, 25]. In contrast, lower values (128-256) are
typically used in text-dependent tasks and techniques
such as HiLAM [26, 17]. We obtained the best perfor-
mance with 64 Gaussian components.

Results for our implementation of the HiLAM base-
line are presented in Table 3 alongside those presented
in the original work [27]. Results are presented for
male speakers only and for the most challenging IC
impostor condition. While results for our system are
worse than those in the original work, performance is
still respectable, with EERs of less than 2% for both
development and evaluation subsets.

4 Simplified HiLAM

Described in this section are experiments which assess
the necessity of text-independent enrollment and a num-
ber of modifications to the original HiLAM baseline
system which enable competitive performance with

2http://www.itu.int/rec/T-REC-P.
56-201112-I/en
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Table 3: Comparison of results for our implementa-
tion of the HiLAM system with original re-
sults reported in [27]. Results shown for male
speakers in part I of the RSR2015 database
and for the IC impostor condition.

Subset Our
Implementation

Larcher
et al. [27]

Development 1.63% 1.43%
Evaluation 1.81% 1.33%

greatly reduced durations of speaker enrollment data.
Among these modifications is the reduction of the 3-
layer approach to only two layers and associated re-
optimization. The new system learns text-dependent
speaker models using only three training utterances.

4.1 Enrollment Demands

The HiLAM system is well-suited to applications
involving both text-independent and text-dependent
speaker recognition scenarios. Satisfactory perfor-
mance in these two scenarios calls for a large amount
of training data; the original HiLAM system reported
in [6] used 90 utterances for training middle layer text-
independent speaker models.

The need for such an amount of enrollment data can
be impractical, if not unusable in many cases such as
smart device and Internet of Things applications. This
paper extends the past work to address an exclusive text-
dependent scenario which demands far less enrollment
data. The following describes a simplified approach
which eliminates the middle layer entirely and which
delivers competitive text-dependent recognition with
only three training utterances with only modest perfor-
mance degradation.

4.2 Necessity of Text-Independent Enrollment

Our optimization of the original HiLAM system
showed that the best performance is delivered with
comparatively higher and lower values of τ1 and τ2
respectively (see Equation 1). This finding indicates
that only modest adaptation is applied between layers
1 and 2, whereas more significant adaptation is applied
between layers 2 and 3. This then calls into question
the real need for text-independent enrollment or, in
other words, the real need for the middle layer.

Table 4: Performance for different durations of 2nd

layer text-independent training. The last row
shows results for the simplified HiLAM system
with no text-independent training. Results
shown for the RSR2015 development set and
for the IC condition.

Number of utterances EER

3-Layer

90+3 1.63%
60+3 1.66%
30+3 1.62%

3 2.33%
2-Layer 3 1.84%
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Fig. 3: The simplified 2-layer architecture: text-
dependent speaker models are adapted directly
from the UBM.

In order to assess the necessity of text-independent en-
rollment, we conducted a sequence of experiments in
which the number of text-independent utterances used
for layer-two training was successively subsampled
from 90 to 60 and then 30 by taking 2 and 1 training
sessions out of 3, respectively. Results are illustrated
in Table 4. They show that performance remains un-
changed as the quantity of text-independent enrollment
data is reduced from 90 to 30 utterances. This find-
ing suggests that text-independent enrollment may be
unnecessary when the recognition task is ultimately
text-dependent.

4.3 Layer Reduction

Given the observations reported above, we decided
to assess performance when the middle layer, text-
independent enrollment is dispensed with entirely.
Speaker enrollment is then performed in text-dependent
fashion exclusively as illustrated in Fig. 3. Each state
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Table 5: Comparison of results for the original work [27] and those obtained with the simplified system reported
in this paper. Results for male speakers in part I of the RSR2015 database. (Results for each condition
correspond to their combination with TC trials.)

System IC-Dev TW-Dev IW-Dev IC-Eval TW-Eval IW-Eval
Larcher 3-Layer 1.43% 1.00% 0.20% 1.33% 0.66% 0.09%
Valenti 2-Layer 1.84% 1.09% 0.32% 1.24% 0.52% 0.05%

of the HMM speaker model is now initialized using the
UBM instead of the speaker-specific text-independent
GMM. Adaptation is otherwise the same as before and
performed using the same three utterances of the same
sentence. The number of Gaussian components (64) is
left unchanged from the 3-layer implementation (see
Section 3.3) and the single remaining relevance factor
τ (3) is set to the same value of τ2 (see Section 3.2).
These parameters were found to be optimal in the case
of the simplified system.

Results are illustrated in the last row of Table 4. Per-
formance degrades slightly, from an EER of 1.6% for
the baseline 3-layer system to 2.3% when enrollment
is performed with only 3 speaker-specific utterances.
Performance for the reduced 2-layer system improves
slightly to 1.8%. Despite a reduction in enrollment data
in the order of 97%, the increase in error rate is only
0.2%. Such a compromise between performance and
usability would be quite acceptable in many practical
scenarios.

5 Evaluation Results

Results presented above relate to the development set
and the IC condition only. Presented in this section is a
full performance comparison of the original HiLAM ap-
proach in [27] to the simpler 2-layer system presented
in this paper using the full RSR2015 development and
evaluation sets, including the three different test condi-
tions, namely IC, TW and IW.

Results are illustrated in Table 5. The first row indicates
the specific test condition for development (dev) and
evaluation (eval) sets. Results presented in the original
work [27] are illustrated in the second row whereas
those for the new 2-layer system are presented in the
third row. They correspond respectively to the full
enrollment condition (90 text-independent utterances
for layer 2 and 3 text-dependent utterances for layer 3)
and the reduced enrollment condition (3 text-dependent
utterances only). These results confirm the findings

presented above, namely that significant improvements
to usability can be delivered by reducing the demand
for enrollment data with only modest increases in error
rates. Both systems achieve better performance for
the evaluation set than for the development set. While
this finding is counter-intuitive, it is consistent with
other results in the literature, e.g. [15, 17, 26, 27, 28],
one possible explanation for which is differences in
the distributions of recording devices across the two
subsets.

Compared to the original work, performance for the
2-layer system deteriorates for the development set. In
contrast, performance for the evaluation set improves.
This result is particularly encouraging. The drop from
1.33% to 1.24% corresponds to a 7% relative reduction
in the EER and comes with the same 97% reduction
in demand for enrollment data. This is a significant
improvement to usability in the case of text-dependent
recognition.

6 Conclusions

This paper proposes a simplified version of the HiLAM
approach to text-dependent automatic speaker verifica-
tion in order to reduce the demand for speaker enroll-
ment data. Many practical use case scenarios such as
speaker authentication for smart device/home applica-
tions and those in the Internet of Things (IoT) domain
call for enrollment with only a small number of pass-
phrase repetitions. Experimental work presented in
the paper questions the necessity of text-independent
enrollment used in the conventional HiLAM system
in the case that the ultimate recognition task is text-
dependent in nature. Results produced using a pub-
licly available, standard database and protocols show
that text-independent, middle-layer enrollment impacts
unnecessarily on usability. The paper shows that the
middle layer of the HiLAM system and, hence, text-
independent enrollment can be dispensed with entirely.
Speaker enrollment is then performed using only three
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repetitions of a given sentence or pass-phrase in a sim-
plified two-layer approach. Since the collection of
enrollment data is one of the most invasive and inconve-
nient tasks from the end user perspective, the usability
of the new system improves greatly on the previous 3-
layer HiLAM baseline system. The proposed approach,
admittedly a modest modification of the original sys-
tem, delivers largely comparable levels of automatic
speaker verification performance with a 97% reduction
in enrollment data.
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Abstract
In the context of automatic speaker verification it is well known
that different speech units offer different levels of speaker
discrimination. For short-duration, text-dependent automatic
speaker recognition, a user’s pass-phrase bears influence on
how reliably they can be recognized; just as is the case with text
passwords, some spoken pass-phrases are more secure than oth-
ers. This paper investigates the influence of text or phone con-
tent on recognition performance. This work is performed using
the shortest duration subset of the standard RSR2015 database.
With a thorough statistical analysis, the work shows how signif-
icant reductions in error rates can be achieved by preventing the
use of weak passwords and that improvements in performance
are consistent across disjoint speaker subsets. The ultimate goal
of this work is to develop an automated means of enforcing the
use of stronger or more discriminant spoken pass-phrases.
Index Terms: speaker recognition, text-dependent, short dura-
tion performance evaluation

1. Introduction
The performance of automatic speaker verification (ASV) tech-
nology is now sufficient to support mass-market, consumer ap-
plications [1]. Most of these, for instance smart phone, smart
service applications and those within the sphere of the Internet
of Things (IoT), call for short-duration enrolment and recog-
nition, implying text-dependent recognition. While gaining
momentum since the release of the RSR2015 [2] and Red-
Dots [3] corpora, research in this area lags behind that in text-
independent recognition.

The seminal work in [4] investigated differences in recog-
nition performance at the speaker level, characterising four dif-
ferent speaker classes referred to as Doddington’s menagerie.
Later work in [5] investigated the influence on performance
of specific training utterances. This work aimed to go beyond
Doddington’s menagerie and to investigate the role of phonetic
content on ASV performance. With substantial variation in per-
formance being observed, this raises the question of exactly
what speech content is most relevant for speaker discrimination.

The work in [5] was extended in [6] which analysed the
idiosyncratic information contained in French vowels. While
perhaps offering greater insights relevant to the forensic branch
of speaker recognition in terms of explaining results, the work
points towards a mechanism for the selection or weighting of
the most discriminant speech components for speaker mod-
elling and recognition [7].

Most of the past work detailed above focuses on text-
independent recognition where the tradition of speaker recogni-
tion evaluation (SRE) campaigns administered by the National
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Figure 1: RSR2015 Database partition for male speakers. The
partition is identical for female speakers but with 43 speakers
in the evaluation set instead of 57.

Institute of Standards and Technology (NIST) generally dictates
relatively long-duration training and testing. When speech data
is plentiful, phonetic variation is naturally normalised to some
extent. This is not the case for short-duration training and test-
ing where speech data is sparse. In this case, phonetic variation
can have a significant impact on recognition performance [8, 9].
Herein lies the contribution of our research.

This paper investigates the influence of text content on
short-duration, text-dependent speaker recognition. The aim is
to assess the variability in recognition performance and to de-
termine the extent to which such variability is consistent across
speakers. This work calls for a thorough statistical analysis
which is reported here.

The remainder of this paper is organised as follows. Sec-
tion 2 expands on the motivation for this work and identifies
the database and protocols used for it. Section 3 describes the
ASV system and results. The statistical analysis of command
strength is described in Section 4.

2. Database and protocols
This section describes the database and text-dependent ASV
system used for the work reported in this paper.

2.1. Database

The ultimate goal of this work is to develop a system to detect
and prevent automatically the use of weak spoken passwords.
Such a system would necessarily draw upon the use of speech
data collected from other speakers; the only speaker-specific
data available at enrolment would be one, or a small number
of repetitions of the speaker’s chosen password.
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Table 1: The four possible kinds of trials for a text-dependent
speaker verification system. They involve different combina-
tions of matching speakers and text.

Match Speaker Text
Target Correct (TC) Yes Yes
Target Wrong (TW) Yes No
Impostor Correct (IC) No Yes
Impostor Wrong (IW) No No

As a consequence, weak passwords are thus assumed to be
universally weak, that is to say not specific to a given speaker.
Required to support this work then, is a corpus collected from
different speakers with multiple repetitions of the same set of
sentences. The so-called sly impostor subset and associated
protocol of the RSR2015 database [10] is ideally suited and is
used for all work reported in this paper. The RSR2015 database
partition is illustrated in Fig. 1. The sly impostor condition in-
volves matched content impostor trials, sometimes referred to
as the impostor-correct (IC) condition. This is one of four pos-
sible trials illustrated in Table 1.

The RSR2015 database contains phonetically-balanced
sentences (part I), short commands (part II) and random digit
trials (part III) (see Fig. 1). Since the target application of this
work involves short spoken passwords, all experiments reported
here are based upon the short commands condition (part II)
where utterances contain in the order of 0.5 seconds of speech.

2.2. Protocols

As illustrated in Fig. 1, there are 50 male and female speakers in
the background subset and 50 male and female speakers in the
development subset. The evaluation subset is comprised of 57
male speaker and 43 female speakers. Each speaker provides
recordings in 9 sessions. Data collected from 3 of the 9 ses-
sions are set aside for training while the remaining 6 are used
for testing. When experimenting on Part II, only Part I data is
used for the learning of background information and there is no
overlap between speakers or phrases between the data used for
background modelling and that used for training and testing.

The sly impostor subset of Part II of the RSR2015 corpus
contains 8990 TC (target) and 440510 IC (impostor) trials for
the development set and 10250 TC and 574000 IC trials for the
evaluation set. These numbers differ slightly from those re-
ported in [11]1. Since the literature focuses on results for the
phonetically-balanced pass-phrases of Part I – this is the stan-
dard protocol distributed with the RSR2015 database – this pa-
per also reports results for the same standard protocol. The Part
I protocol dictates speaker-specific models which are trained
with all 30 pass-phrases across the 3 training sessions, giving
a total of 90 utterances. Speaker and pass-phrase models are
trained with 3 utterances.

3. ASV system
Reported here is the ASV system architecture including details
of the modelling and features together with results. While the
contribution of this paper is not linked to advances in ASV tech-
nology, results are included as a means of illustrating perfor-
mance relative to the state of the art.

1The authors became aware of the standard protocols for RSR 2015
Part II only after most of the work reported here was already completed.

Table 2: Comparison of results for Part I of the RSR2015
database. Results shown for our implementation of the HiLam
system with original results reported in [12]. Results are re-
ported in terms of EER.

Speaker set Ours Larcher et al. [12]
Part I Development 1.74% 1.43%
Part I Evaluation 1.93% 1.33%

UBM

GMM

HMM
State 

1

HMM
State 

2

HMM
State 

3

HMM
State 

4

HMM
State 

5

Gender-dependent
Universal 
Background Model

Text-independent 
Speaker Model

Text-dependent 
Speaker Model

Figure 2: HiLam system architecture, reproduced from [10].

3.1. Architecture

The baseline text-dependent ASV system used for all work
reported in this paper is our own implementation of the so-
called HiLam system originally reported in [11]. As illustrated
in Fig. 2, the system is comprised of 3 layers: (i) a gender-
dependent universal background model (UBM); (ii) speaker-
specific Gaussian mixture models (GMMs) and (iii) speaker-
and-text-specific hidden Markov models (HMMs).

The speaker-specific GMM model is obtained from the
maximum a posteriori (MAP) adaptation of the UBM. The for-
mer is text-independent and does not model any time-sequence
information; this is reflected only in the lower text-dependent
level. Each HMM state is initialised with the same, second-
level GMM model before Viterbi realignment and retraining.
The full HiLam training and testing procedures are described in
the original work [11].

In our implementation, GMM models have 64 components.
MAP adaptation is applied with relevance factors of 19 and 3
for the second and third layers respectively. Scores are con-
ventional log-likelihood ratios calculated between the claimed
model and the UBM.

3.2. Feature extraction

The original RSR speech files are pre-processed with silence re-
moval, by calculating the speech active level as recommended
in ITU-T P.56 and by thresholding at 15.9 dB. This typically
labels in the order of 64% of data for further processing; the
remaining high-energy speech data is then frame blocked into
20ms frames with 10ms overlap. Standard MFCC features are
then extracted in the usual way. They are comprised of 18 coef-
ficients, without C0, which are appended with deltas and double
deltas to produce features of 54 coefficients.

3.3. Performance

Table 2 shows a comparison of ASV results obtained with our
implementation of the HiLam system with those reported in
the original work [12] for Part I (phonetically-balanced pass-
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Figure 3: Impostor (solid red) and target (blue dashed) score
distributions and EER thresholds (green vertical lines). Plots
illustrated separately for all commands trials (top) and for 3
command-specific trials.

phrases). Results are reported in terms of EER. All results cor-
respond to the IC condition and show a respectable level of per-
formance; our results are only marginally worse than those re-
ported in [12].

4. Statistical analysis of password strength
Both speaker characteristics and text content influence ASV
score distributions. Example target and impostor distributions
are illustrated in the top row of Fig. 3. Accept and reject de-
cisions are made according to a global threshold illustrated by
the vertical green line between the modes of each distribution.
The amount of overlap between the two will then determine
the global EER. The threshold is an inevitable compromise be-
tween the ‘inner’ target and impostor distributions related to
an array of different factors, e.g. speaker-dependency, device-
dependency and, in this case, text-dependency.

In the case of the IC condition, the influence of text is quan-
tifiable from the target and impostor score distributions for sub-
sets of same-text trials. These distributions are referred to as
text-dependent distributions and the corresponding distribution
overlap as the text-dependent overlap. As illustrated in Fig. 3
for commands 35, 51 and 54 of the RSR2015 database there
is thus a text-dependent EER obtained with a text-dependent
threshold for each command. The global EER is thus affected
by both the text-dependent overlaps and the variation in the text-
dependent thresholds. In contrast, text-dependent EERs are af-
fected only by the text-dependent overlaps.

The following sections describe a statistical analysis that il-
lustrates the potential to improve ASV performance through the
selection of strong spoken sentences. It furthermore demon-
strates that the notion of password strength is consistent across
disjoint sets of speakers.

4.1. Variable strength command groups

The following describes a process to rank commands in terms
of strength. This is needed in order to simulate a text-dependent
ASV system that would eventually include password strength

recommendation. On the assumption that a strong password is
characterised by a relatively small text-dependent overlap, com-
mands are first ranked by decreasing text-dependent EER. This
process is performed separately for the development and evalu-
ation sets thus yielding two rankings. From each of these rank-
ings, groups of commands are formed by selecting 10 with the
closest strength starting at every rank position, thereby produc-
ing 21 groups in total. The first group is comprised of the 10
weakest commands ranked #1 to #10, the second group is com-
prised of those ranked #2 to #11 and so on until the last group
which contains the 10 strongest commands ranked #20 to #30.
It is stressed that, while the groups obtained for the development
and evaluation sets are similar, they are not identical.

4.2. Sampling distribution of the EER

ASV performance is assessed independently for each group in
terms of the global EER (encompassing all commands in each
group). The significance of the difference in recognition perfor-
mance obtained for each group is measured with the following
bootstrapping procedure [13].

For each group, a thousand populations of 30 commands
are generated by picking at random from the 10 commands in
the group. This procedure is known as resampling with replace-
ment [13]. Each resampling of 30 commands out of 10 pro-
duces a population whose size is the same as that of the full
dataset in terms of the number of trials. Each of these sam-
pled populations yields an EER value which is computed from
the target and impostor trials of the 30 commands of the pop-
ulation. These 1000 EERs form a sampling distribution of the
global EER for each group.

The sampling distributions were visually inspected for nor-
mality, allowing for 95% confidence intervals of 1.96 times the
standard deviation of the distribution, thereby removing 2.5%
of the observations at each end of the distribution. This inter-
val around the mean EER of the distribution has a high prob-
ability of encompassing the true value of the EER for each
group. Differences in performance obtained for groups with
non-overlapping confidence intervals can hence be considered
as being statistically significant.

The bootstrapping procedure is applied using four combi-
nations of different ranking and trial sets: (i) ranking and trials
both for the development set, (ii) ranking and trials both for the
evaluation set, (iii) ranking for the development set and trials for
the evaluation set, and (iv) ranking for the evaluation set and tri-
als for the development set. Combinations (iii) and (iv) are nec-
essary in order to illustrate whether or not command strength
is consistent across disjoint speaker sets. Statistics obtained for
combinations (i) and (ii) are depicted in Fig. 4(a) and 4(b) by
solid symbols in each plot. Statistics obtained for combinations
(iii) and (iv) are depicted by unfilled symbols.

4.3. Isolating the influence of overlap

ASV performance estimated for each group is the consequence
of the variation in text-dependent overlaps and text-dependent
thresholds in each group. To illustrate the dependence on over-
lap in isolation from threshold effects, the experiments de-
scribed above are repeated with all trial scores normalised ac-
cording to the text-dependent threshold. The text-dependent
EER for each command is then obtained with a score thresh-
old of zero. Results for this experiment are reported in Fig. 4(c)
and (d).
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Figure 4: ASV performance with (c,d) and without (a,b) text-
dependent threshold adjustment. Each point represents the
mean EER over 1000 resamplings of 30 commands chosen with
replacement among the 10 commands of each sub group. The
horizontal lines in (a,b) represent the baseline performance of
the system for both sets with all 30 commands.

4.4. Results interpretation

When using their own ranking, EER results for both the devel-
opment and evaluation sets show significant decreases as the
group contains increasingly stronger commands – solid-symbol

plots in Fig. 4(a) and 4(b). When using threshold-adjusted
scores (solid-symbol plots in Fig. 4(c) and 4(d), decreases are
strictly monotonic. This observation confirms that the spread of
text-dependent thresholds also affects performance.

Other observations concern results for cross-set rankings
– unfilled-symbol plots in Fig. 4(c) and 4(d). Rankings made
on the development set translate well to the evaluation set and
vice-versa. For the evaluation set, results illustrated in Fig. 4(a)
show that only 6 groups have an EER which is not signifi-
cantly different to the overall EER (4.89%). For the develop-
ment set, results illustrated in Fig. 4(b) show only 4 groups with
a non-significantly different overall EER (5.83%). The signifi-
cant global decrease in EER (albeit non-monotonic) shows that,
with negligible differences in ranking, some commands are con-
sistently ‘weak’ across different speakers. According to these
results, a system including a password strength acceptance cri-
terion could halve the error rate by choosing stronger sentences
over weaker ones (from 5.34% to 2.67% on the development
set, and from 6.28% to 3.32% on the evaluation set). Finally, we
note that the visible offset of the evaluation set EERs is inherent
to the RSR2015 database and consistent with results presented
by others [11, 12].

The factors responsible for the ranking of command
strength are not addressed in this paper, thus a solution to iden-
tify automatically weak short sentences is left for future work.
Some intuitive, high-level observations are nonetheless offered.
Consistent to both development and evaluation sets is the higher
ranking of longer duration sentences. This is not surprising.
Other observations are more intriguing. While commands such
as ‘Turn on light’, ‘Watch Cartoon’ and ‘Volume Down’, all
of similar duration, all perform well across both subsets, oth-
ers of similar length such as ‘Door Open’, ‘Volume up’ and
‘Aircon off’ performed poorly across both subsets. Given the
similar duration, it is assumed that the first three commands
have more discriminative phonetic content. ‘Volume up’ and
‘Volume down’ vary only by the last two phonemes but are
ranked among the weakest and strongest commands respec-
tively. These observations are consistent with the discrimina-
tive power of nasal sounds studied in [7]. Clearly these factors
warrant further attention in future work.

5. Conclusions and future work
This paper investigates short-duration, text-dependent auto-
matic speaker authentication. The contribution relates to a thor-
ough statistical analysis of the influence of text content on com-
mand strength. This not only influences the optimum system
threshold, but also the degree of overlap between target and im-
postor score distributions. As a result, some spoken commands
are stronger than others.

In order to examine the impact of text on the overlap be-
tween target and impostor score distributions and hence ASV
performance, the influence of the threshold is compensated for
a posteriori. Automatic means to compensate or normalise for
this influence is an issue for future work. The ranking of com-
mands according to their strength reveals considerable differ-
ences in their impact on system performance. The next stage
of this work is to develop an automatic means of identifying
weaker spoken short sentences. The intention is to develop such
a system for a real-use case scenario in which the user of an
ASV system may be encouraged to use a strong spoken sen-
tence, namely one which offers a high level of discrimination
among different speakers.
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Abstract
The state-of-the-art in automatic speaker verification (ASV) is
undergoing a shift from a reliance on hand-crafted features
and sequentially optimized toolchains towards end-to-end ap-
proaches. Many of the latest algorithms still rely on frame-
blocking and stacked, hand-crafted features and fixed model
topologies such as layered, deep neural networks. This paper
reports a fundamentally different exploratory approach which
operates on raw audio and which evolves both the weights and
the topology of a neural network solution. The paper reports
what is, to the authors’ best knowledge, the first investigation of
evolving recurrent neural networks for truly end-to-end ASV.
The algorithm avoids a reliance upon hand-crafted features and
fixed topologies and also learns to discard unreliable output
samples. Resulting networks are of low complexity and mem-
ory footprint. The approach is thus well suited to embedded
systems. With computational complexity making experimen-
tation with standard datasets impracticable, the paper reports
modest proof-of-concept experiments designed to evaluate po-
tential. Results equivalent to those obtained using a traditional
GMM baseline system and suggest that the proposed end-to-
end approach merits further investigation; avenues for future
research are described and have potential to deliver significant
improvements in performance.

1. Introduction
Deep learning approaches to automatic speaker verification
(ASV) have emerged in recent years and are now at the state
of the art. Deep learning techniques have been explored in
the context of: feature extraction [1, 2]; the learning of pos-
teriors in a joint factor analysis framework [3]; the extraction
of phonetically-aware frame posteriors as a replacement for the
universal background model in an i-vector framework [4]; an
alternative to i-vectors within a probabilistic linear discrimi-
nant analysis (PLDA) framework [5]; the estimation of hidden
Markov model state posterior probabilities [6, 7]; PLDA back-
end scoring [8].

A common characteristic to the above works is the use of
deep learning techniques as a means of replacing specific, and
often single elements of a more complex toolchain. While it has
demonstrated the benefit of deep learning, this work may not be
capitalizing on the true potential whereby deep learning is ap-
plied in a so-called end-to-end approach; current techniques,
e.g. [9], still rely on hand-crafted features or pre-determined
topologies whereas evolutive learning techniques can facilitate

This work was completed while A. Daniel was still at NXP Semi-
conductors.

the application of neural networks to raw inputs and automati-
cally optimize the topology according to the task at hand.

A growing number of attempts have been made to over-
come the reliance on hand-crafted features. Most operate on
spectral representations, e.g. [10, 11, 12]. While spectral repre-
sentations stem from a linear transformation of the raw audio,
and thus serve as an equivalent representation, these solutions
still rely upon the frame-blocking of speech signals into fixed-
length windows. While recurrent neural networks, e.g., long
short-term memory (LSTM) architectures, can exploit speech
dynamics [13], frame-blocking remains a perhaps-questionable
constraint. In this sense, the avoidance of frame-blocking may
offer some potential to improve on current approaches. While
the literature shows successful attempts to apply deep learning
techniques to raw audio, e.g. [14, 15, 16, 17, 18], these works
relate to speech and emotion recognition in addition to spoofing
detection. To the best of the authors’ knowledge, there is no
equivalent work in ASV.

Also characteristic to almost all attempts to use deep learn-
ing for ASV is the use of pre-determined topologies, namely
topologies chosen manually and empirically optimized. Most
deep learning solutions involve a layered, hierarchical ap-
proach [19, 20] in which the number of layers, their connectivity
(local or full), the number of units per layer and their activation
function (linear, rectified, etc.) are all predetermined. Research
from beyond the field of speech processing, e.g. [21], suggests
that the use of pre-determined topologies may be a limitation.
Studies related to image classification, for example, show that
topologies can be learned automatically [22], albeit still in hier-
archical fashion.

Solutions to these limitations are already available. A par-
ticular class of techniques known as topology and weight evolv-
ing artificial neural networks (TWEANNs) [23] use genetic
learning algorithms to optimize not only the weights of a net-
work but also its topology. This paradigm embraces the princi-
ples of natural evolution and selection and allows connections
between any units, thereby completely avoiding the notion of
hierarchical layers.

Motivated by recent work on evolving recurrent neural net-
works for audio processing and classification [24], by the in-
creasing popularity of end-to-end learning [9, 19, 25, 26] and
to address the limitations of hand-crafted features and pre-
determined topologies, this paper reports what is believed to
be the first application of TWEANNs to ASV. The approach
operates directly on unprocessed, raw audio which is treated
subsequently by evolving network structures before final classi-
fication, making for a truly end-to-end pipeline.

Accordingly, the objective of the work presented in this
paper was not to outperform the existing state of the art, but
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Figure 1: An illustration of one iteration of evolution: the per-
formance of each network in a population is assessed by the
means of a fitness function and the best individuals are selected
to form a new generation of networks.

more specifically to investigate the longer term potential of the
idea. The paper reports investigations with a particular form of
TWEANN algorithms known as neuroevolution of augmenting
topologies (NEAT) [27].

With the computational complexity of the algorithm far
exceeding that of the established approaches to ASV (train-
ing only), experimentation with standard databases is currently
impracticable. Implementation of the approach using efficient
graphics processors is also far from being straightforward. In
order to assess the potential of the idea, the paper reports mod-
est proof-of-concept experiments designed to evaluate potential.
The authors fully accept that the statistical significance afforded
by such analysis is limited. With the algorithm representing
something of a departure from current research directions and
with results showing potential, the authors have elected to sub-
mit, admittedly early, the idea to the scrutiny of the scientific
community.

Section 2 introduces the NEAT algorithm and its applica-
tion to acoustic signals. Section 3 describes its adaptation and
additional developments which are necessary such that the al-
gorithm can be applied successfully to the ASV task. Experi-
ments and results are described in Section 4. Conclusions are
presented in Section 5.

2. Neuroevolution of augmenting topologies
The NEAT algorithm was introduced by Stanley and Miikku-
lainen in 2002 [27]. This section describes the main ideas be-
hind the original work and then its previous application to audio
classification problems.

2.1. Original algorithm

At a higher level, NEAT is a classical neuro-evolution algorithm
which evolves a population of solutions (networks or individu-
als) according to an iterative process and a defined fitness func-
tion. Each iteration produces a new generation of solutions and
the fitness function controls which among them serve as a basis
to produce the next generation of solutions as shown in Fig 1.

At a lower level, however, NEAT is quite unique. One cru-
cial aspect centers around the incremental evolution of struc-
ture. Even if the algorithm does not incorporate an explicit
measure of complexity, networks tend to remain comparatively
simple in structure compared to deep neural network solutions.
Topologies are augmented iteratively in order to introduce di-
versity through the addition of new nodes and connections

WEIGHT
MUTATION

ADD-NODE
MUTATION

CROSSOVER

Figure 2: Mutation of weight (here symbolized by connection
thickness), node adding and crossover: the three forms of net-
work evolution.

thereby following a complexifying principle. This is achieved
through the usual biological analogies of mutation and cross-
over. These processes, in addition to that of weight mutation,
are illustrated in Fig. 2.

NEAT provides an elegant and efficient solution to a num-
ber of previously identified technical challenges such as the per-
mutations problem [28]. These are addressed through the in-
troduction of a genotype direct encoding scheme that features
historical markings which track structural augmentations (see
Fig. 3). Historical markings also serve a crucial purpose when
performing crossover, as they provide a systematic means to
align genes. Topology diversity is ensured by speciation, an-
other biological analogy which protects structural innovation
(i.e. by selecting the fittest networks within the same species).

With TWEANNs, weight and structural changes occur at
random (within set boundaries) during evolution through
mutation. The fitness function is an evaluation metric that
aims to reward network changes which lead to improved
performance. Hence the optimization process is not based
on gradient descent and back-propagation, but instead con-
sists in evaluating each network in the population according
to the fitness function. To do so, training inputs are pro-
cessed through the network exactly as they would be during
inference, thereby yielding output values that serve to eval-
uate the network fitness. Then the best performing (i.e., the
fittest) networks of the current population are selected to
produce offspring for the next generation.

Since its conception, NEAT has been applied successfully
to a multitude of tasks such as bipedal locomotion [29] and au-
tomated computer game playing [30]. NEAT continues to at-
tract attention; shortly before the submission of this article, the
authors became aware of recent, successful attempts to utilize
NEAT for audio-related tasks such as audio effect creation [31]
and sound event detection [32]. In view of the computational
demands, however, in the former work NEAT was applied us-
ing a variety of classic spectral/cepstral frame-based features
instead of raw audio, while the latter used wavelet representa-
tions.

2.2. Application to audio classification

Whereas the use of some form of frame-blocked spectral or
filter-bank representation is characteristic to all previous work,
Daniel [24] reported the first application of NEAT to audio clas-
sification which operates directly on time-domain inputs. NEAT
is applied with networks constrained to a specific input/output
setup and propagation scheme. As illustrated in Fig. 4, inputs
consist of one or more streams of raw audio. Each stream is
mapped to an input unit and is propagated through the network
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Figure 3: A NEAT genotype is a direct and self-contained tex-
tual representation of a unique network, which contains (as
in nature) more information than that which can be observed
in the resulting structure. Figure reproduced with permission
from [27].

sample-by-sample with one activation step for every sample.
An additional bias unit is set and held to unity. Network out-
puts consist of one or more score units whose outputs yd are
multiplied by the output of a binary gate unit yr . Except for
the score and gate output units, which have identity and binary
step activations respectively, all units have rectified linear acti-
vation functions. The rate of the output (of any unit) is identical
to that of the input, hence the networks perform one activation
step per sample (see Fig. 4). In fact, the score output can be
viewed as a new audio signal, the result of the network learning
and applying to the input a transformation defined by the class
to which the input belongs. The gate will thus evolve to dis-
card output scores which are deemed to be unreliable, so that
the network places emphasis on samples that are most helpful
to discriminate between different audio classes. Alternatively,
the gate can be replaced by a reliability output yielding a non-
negative, non-binary weighting factor yr . The operation of the
gate/reliability output is similar in principle to that of atten-
tion mechanisms [33] which have been applied previously to
speech recognition [34]. For each time sample i, the weighted
mean over K samples of the product of yd and yr yields final
weighted score yw:

yw[i] =

∑K−1
j=0 yd[i− j]× yr[i− j]

∑K−1
j=0 yr[i− j]

(1)

The behavior of each network is assessed according to a
generic squared-error-based fitness function F :

F (yw, g) = 1/

[
1 +

N−1∑

i=0

(g[i]− yw[i])
2

]
(2)

which reflects the distance between N weighted scores yw and
a ground truth signal g of classification labels, e.g. 0 or 1, mak-
ing for a supervised approach. Connections can be made freely
between any pair of units. As a result, evolved networks may
contain cyclical unit connections (e.g. units connected to them-
selves or to other units which influence their input). This clas-
sifies NEAT structures as recurrent neural networks.

3. End-to-end automatic speaker
verification

This section reports the application of NEAT to conceive a truly
end-to-end ASV system. In the work of [24], all networks are
constrained to share the common setup and propagation scheme

illustrated in Fig. 4: there is one input stream, one bias, one
output stream and a binary gate. The process described in Sec-
tion 2.2 is applied to generate networks which distinguish be-
tween a given target speaker and a set of background speak-
ers. Each iteration of the algorithm corresponds to one indepen-
dent evolutionary process applied in speaker-dependent fashion.
This process will produce a population of increasingly discrim-
inative, speaker-dependent networks.

The evolutionary process is driven according to a new fit-
ness function which is introduced below. Also described in this
section is a mini-batch procedure which was found to be ben-
eficial to the evolution process. Specific training and testing
procedures are also presented.

3.1. Fitness function

The fitness function in Eq. 2 does not necessarily reward separa-
tion between class distributions, but rather proximity to ground
truth scores (e.g. 0 and 1). This behaviour becomes an evi-
dent problem when, after several generations, the two classes
have only a minimal degree of overlap: a distance-based fitness
function would reward a network that pushes the bulk of the
distributions farther apart, without necessarily correcting previ-
ous classification errors; conversely, a network which fully sep-
arates classes but which produces noisier distributions would
be attributed less reward than another network which produces
pure Gaussian, but slightly overlapped distributions. An early
search for an alternative, better suited to classification tasks
such as ASV, investigated a fitness function based on the equal
error rate (EER). The EER, though, only reflects the reliability
of a classifier at a single operating point, i.e., a fixed thresh-
old. The area under the receiver operating characteristic curve
(AUROC), in contrast, gives a measure of reliability which is
independent from the operating point; it reflects the probabil-
ity that the network will give a randomly chosen target sample
a higher score than a randomly chosen impostor sample [36].
With notably better results, all work reported in this paper was
performed by replacing Eq. 2 with an AUROC function calcu-
lated using the trapezoid rule [37].

3.2. Mini-batching

Inspired by a similar approach used in the stochastic gradient
descent algorithm [38] to avoid over-fitting and convergence
to local-optima, training is performed with a mini-batch pro-
cess. The mini-batch process ensures that each generation of
networks is trained using a different subset of data. This strat-
egy promotes novelty during evolution since the training ob-
jective is changed every iteration. The same strategy also en-
courages generalization, namely networks which perform well
across inter-session data. Finally, mini-batching also helps to
reduce computational demands.

Each mini-batch consists of a fraction Mt of total target
data and a fraction Mi of total impostor data. By way of
example, with Mt=Mi=100%, every training iteration is per-
formed using the same data; there is no mini-batching. With
Mt=Mi=50%, training data is randomly shuffled and parti-
tioned into two mini-batches. They are used in two subsequent
iterations after which this process is repeated.

3.3. Training

The initial generation contains a population of 150 minimal,
perceptron-like networks, each of which is configured accord-
ing to the setup described in Section 2.2. The network weights
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are randomly initialized and constrained within a [−4, 4] range.
Audio signals are normalized to within [-1, 1] in order to pre-
vent saturation. This is more likely when using rectified lin-
ear activation functions as opposed to sigmoids, as in the orig-
inal work. Rectified linear activation functions were found to
be more efficient while giving similar performance. Every net-
work in a given population is trained with the same mini-batch
of data. Data containing either target or impostor speech is pre-
sented to each network in the form of non-contiguous segments
of K samples. The system assigns to each segment a weighted
mean score corresponding to yw[K − 1] in Eq. 1. Networks are
reset after the processing of each segment.

The fitness of each network is then determined according
to the AUROC metric described in Section 3.1. The fittest net-
works of the population are then used to produce the next gen-
eration according to the procedure outlined in Section 2. The
evolutionary process is applied iteratively until the fitness has
converged.

Fig. 5 illustrates the evolution in fitness over 200 genera-
tions for an arbitrary target speaker. Each point on the graph
corresponds to the population’s fittest network for that genera-

tion. The solid blue profile illustrates evolution for the training
procedure described above. Its non-monotonic nature is due
to mini-batching; the data used at each iteration is different.
The dashed red profile shows evolution with no mini-batching
(Mt=Mi=100%); data used at each iteration is the same, hence
the monotonic profile. While reducing processing time, mini-
batching also results in faster learning.

3.4. Network selection for evaluation

Once training is complete, it is necessary to select and eval-
uate the single best network. First, the 10 best networks of
each generation are identified according to the AUROC fitness
function. Second, the performance of each of the 10 best net-
works from each generation is reassessed using the full train-
ing set. Since it gives a more intuitive interpretation of perfor-
mance in a practical application, selection is performed using
the application-neutral EER metric. The network which pro-
duces the lowest EER among the 10 is designated as the gen-
eration champion. Finally, the generation champion associated
with the lowest EER is designated as the grand champion, and
selected for evaluation. Evaluation is performed using an inde-
pendent test set.

Aside from the fitness function and minor differences,
this setup is also adopted in our own ongoing work in anti-
spoofing [35].

4. Experiments
This section describes experiments which aim to test the poten-
tial of the end-to-end ASV system described in section 3.

4.1. Baseline system

The baseline system is a standard 64-component Gaussian mix-
ture model (GMM) system [39]. Features are standard 19th or-
der Mel-scaled frequency cepstral coefficients (MFCCs). These
are appended with delta and double-delta parameters thereby
giving features of 57 coefficients. Speaker models are derived
from the maximum a posteriori adaptation of a universal back-
ground model (UBM). Scores are log-likelihood ratios given the
speaker model and the UBM.
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Table 1: Results for the GMM and end-to-end systems in terms
of EER for the training and test set for the two target speakers.

GMM Baseline End-to-end system

Training Test Training Test

Speaker #1 0% 9.52% 0.79% 5.30%
Speaker #2 0% 6.90% 0.98% 9.44%

4.2. NXP database and experimental protocols

Experimentation with standard NIST Speaker Recognition
Evaluation (SRE) datasets [40], RSR [41] or RedDots [42] are
currently impracticable on account of computational complex-
ity. Being consistent with the objective to evaluate the potential
of the algorithm, the paper reports a set of proof-of-concept ex-
periments using a non-standard, proprietary database of speech
signals collected from 10 male speakers. Text content consists
of 10 of the 30 Harvard sentences which comprise the TIMIT
database [43]. Each speaker provides approximately 5-6 min-
utes of speech which is recorded in 9 sessions over the course
of one month. Recordings were collected in a quiet office with
a laptop at a sampling rate of 16 kHz and 16-bit precision. Ut-
terances were normalized by the active speech level estimated
according to the ITU-T P.56 standard [44].

Among the 10 speakers, 2 are enrolled as targets. The train-
ing set consists of 6 of the 10 sentences uttered by the target
speaker and the first 5 impostors. The test set consists of the
other 4 sentences uttered by the target speaker and the remain-
ing 3 impostors, thus achieving considerable phonetic separa-

tion between sets. Total target training data amounts to approx-
imately 3.5 minutes of speech per speaker. Total impostor train-
ing data is in the order of 14 minutes duration.

For the end-to-end system, target data is partitioned into
two mini-batches (Mt=50%). Since impostor data is more
plentiful, it is partitioned into five mini-batches (Mi=20%) and
used as background data for the baseline system. The average
training recording is 3.25 seconds long. For the assessment
and testing of both systems, one trial corresponds to one entire
recording. Accordingly, K is set to 3.25×16000 = 52000 sam-
ples for training, and to each trial length at testing. Audio
files used by the GMM system are preprocessed with silence
removal. This step is not performed for the end-to-end system.

4.3. End-to-end system: augmentation and generalization

The training process took 17 and 13 hours for speaker 1 and
2, respectively, on an 8-core CPU running at 3.5 GHz. Several
NEAT parameters influence the training time, e.g. without mini-
batching, and with an otherwise identical setup, training takes
several days.

Results obtained according to the evaluation procedure de-
scribed in Section 3.4 are depicted in Fig. 6. Results are il-
lustrated independently for the two target speakers and for 500
generations. The solid magenta (dark) profile in each plot shows
the EER obtained by each generation champion assessed us-
ing the training data. EER profiles exhibit the expected evolu-
tion trend, namely a steady decrease from above 30% to less
than 5% within 150 generations. The lowest EERs obtained
by grand champion networks are 0.79% for speaker 1 (genera-
tion 329) and 0.98% for speaker 2 (generation 464) marked by
black dots. Solid yellow (light) profiles show EERs for genera-
tion champions assessed on test data. As expected, performance
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on independent data is worse. Nonetheless, the selected grand
champions are among the best performing networks on test data.

A summary of performance for both GMM and end-to-end
systems is presented in Table 1. For the latter, results for both
train and test datasets concern the grand champion network se-
lected for each speaker. For the test set, grand champions yield
EERs of 5.30% and 9.44%, whereas the GMM system deliv-
ers EERs of 9.52% and 6.90%. The gates of the grand cham-
pion networks prune an average of 46% of output data (in both
speech and non-speech intervals) — the average for speaker 1
is 40% whereas that for speaker 2 is 53%. This percentage is
consistently higher than than for the GMM system for which si-
lence removal prunes an average of 35% of data. The effective
behaviour of the gate was observed on a just few trials, depict-
ing a periodic opening and closing as opposed to an energy- or
amplitude-related activation. These findings show that (i) the
performance of the end-to-end system is competitive with that
of the GMM system and (ii) the two systems exploit data in a
different way.

The upper green dashed profiles in Fig. 6 show the num-
ber of connections of each generation champion. As evolu-
tion proceeds, networks are steadily augmented with new nodes
and connections. In general, network augmentations cause de-
creases in EERs for the training set, with 112 and 138 connec-
tions for speaker 1 and 2 grand champions, respectively. These
networks are orders of magnitude less complex than usual, deep
layered structures (c.f. ∼ 200k connections for the most com-
pact model reported in [20]). Networks with such a reduced
parameter space are inherently less prone to over-fitting since
they do not have the capacity to learn a direct input-output cor-
respondence.

5. Conclusions and future work
This paper reports an end-to-end approach to automatic speaker
verification (ASV) based on the neuroevolution of augment-
ing topologies (NEAT) algorithm. In contrast to the existing
state of the art, the proposed algorithm avoids the use of hand-
crafted features by processing raw audio and optimizes network
weights and topologies in an entirely end-to-end fashion. Less
complex topologies with a low memory footprint are well suited
to embedded implementations. While reporting results for two
speakers is not sufficient—and was neither intended—to pro-
vide a statistically reliable comparison between two systems,
the proposed end-to-end approach is found to be at least com-
petitive with a GMM baseline system.

These findings suggest that the end-to-end approach mer-
its further attention and experimentation with larger, standard
datasets. This work will require the reduction of computa-
tional efficiency; computational demands of the current algo-
rithm make larger-scale experimentation impracticable.

In addition to the investigation of efficient implementations
which exploit hardware acceleration, future work should con-
sider non-binary gates for soft, rather than hard weighting of
output score samples, and experimentation with longer duration
training and testing. This work may well bring improvements in
end-to-end system performance and/or expose application set-
tings for which the proposed approach may excel.
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Abstract
Research in anti-spoofing for automatic speaker verifica-

tion has advanced considerably in the last three years. Anti-
spoofing is a particularly difficult pattern classification problem
since the characteristics of spoofed speech vary considerably
and can never be predicted with any certainty in the wild. The
design of features suited to the detection of unpredictable spoof-
ing attacks is thus a staple of current research. End-to-end ap-
proaches to spoofing detection with exploit automatic feature
learning have shown success and offer obvious appeal. This pa-
per presents our efforts to develop such a system using recurrent
neural networks and a particular algorithm known as neuroevo-
lution of augmenting topologies (NEAT). Contributions include
a new fitness function for network learning that not only results
in better generalisation than the baseline system, but which also
improves on raw performance by 22% relative when assessed
using the ASVspoof 2017 database of bona fide speech and re-
play spoofing attacks. Results also show that mini-batch train-
ing helps to improve generalisation, a technique which could
also be of benefit to other solutions to the spoofing detection
problem.

1. Introduction
Automatic speaker verification (ASV) [1, 2] offers a convenient,
reliable and cost-effective approach to person authentication.
Voice-based authentication is nowadays used in a plethora of
logical and physical access scenarios, e.g. for telephone bank-
ing or for smartphone logon [3]. Despite the success, vulner-
abilities to spoofing (also known as presentation attacks) give
reason for caution. Without adequate countermeasures, fraud-
sters can manipulate the normal operation of an authentication
system by masquerading as genuine users and hence gain unau-
thorised access to protected resources or services. Vulnerabili-
ties to presentation attacks are clearly inadmissible; in addition
to the immediate security concerns, they undermine confidence
in ASV technology.

It is known that ASV systems can be vulnerable to spoof-
ing attacks in the form of impersonation, synthetic speech, con-
verted voice and replay [4]. Impersonation (the imitation of a
target speaker by another person) requires a certain skill and
is generally considered to pose only a modest risk [5]. While
the threats posed by synthetic speech and converted voice are
potentially severe, given that their implementation requires spe-
cialist expertise, the actual risk may be relatively low. Replay
attacks arguably present the greatest threat. Replay attacks in-
volve the (surreptitious) capture and subsequent playback to
the ASV system of a speech sample captured from a genuine
speaker/user. The threat and risk posed by replay attacks is

significant: replay attacks can be mounted easily with widely
available, consumer-grade audio recording and playback de-
vices (e.g. smart phones) and can be especially difficult to dis-
tinguish from genuine, bona fide speech samples.

Efforts to develop spoofing countermeasures, also known
as presentation attack detection (PAD) systems, are now well
under way; the study of spoofing countermeasures for ASV is
today an established area of research [6]. The first competi-
tive evaluation, namely the ASV spoofing and countermeasures
(ASVspoof) challenge [7], was held in 2015. It promoted the
development of countermeasures to protect ASV from voice
conversion and speech synthesis attacks. The second edition
of ASVspoof held in 2017 switched focus to the mitigation of
replay attacks [8, 9, 10], the focus in this paper.

The many submissions to the ASVsoof 2017 challenge can
be classified into one of two different approaches. The first set
of approaches involves the combination of hand-crafted features
with generative classifiers such as Gaussian mixture models
(GMM) and i-vectors/PLDA systems, e.g. [11, 12, 13, 14, 15,
16, 17, 18]. The second of approaches explored the use of dis-
criminative classifiers such as support vector machines (SVMs)
and deep neural networks (DNNs) [13, 16, 19, 17, 20, 21, 18].

Deep learning techniques, in particular, proved to be espe-
cially successful, with five of the top ten performing systems
submitted to the ASVspoof 2017 challenge employing some
form of automatic feature learning and/or classification1. The
work in [16] used convolutional neural networks for the auto-
matic learning of features from magnitude spectrograms with a
combination of convolutional and recurrent layers in an end-to-
end solution.

End-to-end approaches to anti-spoofing have obvious ap-
peal. In more traditional fields of speech processing, such as
ASV, there is a substantial body of knowledge that has been
acquired over decades of research. This knowledge has been
exploited to design extremely effective hand-crafted features.
Even in the case of ASV, though, automatic approaches to fea-
ture learning are bringing advances in performance [22]. Re-
search in anti-spoofing is comparatively embryonic. The his-
tory of benchmarking evaluations spans only three years and
the quest for better-performing, hand-crafted features is a staple
of current research [1]. That the natural variation in spoofing
attacks is so great makes hand-crafted feature design especially
difficult. In the absence of an extensive body of background
knowledge or proven features, and with the availability of large
datasets of spoofed speech, automatic feature learning and end-
to-end solutions present an opportunity to fast track progress.

1A summary of top submissions is available at http://www.
asvspoof.org/slides_ASVspoof2017_Interspeech.
pdf
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Figure 1: Mutation of weight (here symbolized by connection
thickness), node adding and crossover: the three forms of net-
work evolution. Figure reproduced from [24].

Motivated by the obvious appeal, by recent work in a sim-
ilar direction [23] and by the success of the same technique for
automatic speaker recognition [24], we have explored a partic-
ular approach to automatic feature learning in a truly end-to-
end solution to anti-spoofing. It is based upon a class of algo-
rithms known as topology and weight evolving neural networks
(TWEANNs), specifically the neuroevolution of augmenting
topologies (NEAT) algorithm proposed in [25]. The novel con-
tributions in this paper are four-fold: (i) we present the first ap-
plication of neuroevolutive learning to the anti-spoofing prob-
lem; (ii) we propose a fitness function that is better adapted to
audio classification problems; (iii) we demonstrate the merit of
automatic learning and end-to-end optimisation in tackling the
so-called generalisation problem, namely solutions that do not
generalise well to test data containing spoofing attacks different
to those encountered in training and development, and (iv) we
demonstrate that the proposed approach not only improves on
generalisation, but that it also brings a significant improvement
to the ASVspoof 2017 baseline results.

The remainder of the paper is organised as follows. Sec-
tion 2 provides an overview of the NEAT algorithm and de-
scribes recent work that facilitates its application to audio clas-
sification tasks. Section 3 introduces a new fitness function tai-
lored to the anti-spoofing problem. Experimental setup and re-
sults are the focus of Sections 4 and 5. Conclusions and ideas
for future research are presented in Section 6.

2. NEAT
This section introduces the neuroevolution of augmenting
topologies (NEAT) algorithm and describes its application to
acoustic signals and their classification. Also described is a
modification to the fitness function which was found to give
better performance when NEAT was applied to audio classifi-
cation tasks. The focus of this section is on past work. New
contributions are the focus of Section 3.

2.1. Original work

The NEAT algorithm was introduced by Stanley and Miikku-
lainen in 2002 [25]. In similar fashion to other topology
and weight evolving neural network (TWEANN) approaches,
NEAT is a particularly elegant algorithm which exploits the ap-
peal of both genetic algorithms and neural networks. The NEAT
algorithm is initialised with a pool of candidate networks, all
potential solutions to a given classification task. Inputs may
be data samples or features whereas outputs are some form of
score. The pool of networks evolves iteratively over many iter-
ations, with the pool of networks within one iteration forming a
generation of solutions. At each iteration, networks can mutate
through the addition of new nodes or connections, the modifi-
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Figure 2: A NEAT genotype is a direct and self-contained tex-
tual representation of an unique network, which contains (as
in nature) more information than that which can be observed
in the resulting structure. Figure reproduced with permission
from [25].

cation of connection weights or upon a crossing over of a pair
of different networks (see Fig. 1).

In order to avoid confusion, it is stressed that TWEANNs
make no use of backpropagation or gradient descent algo-
rithms during training. Networks evolve only as a result of
mutation according to the processes illustrated in Fig. 1. A
measure of performance is required to control network se-
lection and evolution. Performance is gauged according to
the fitness function.

Since NEAT operates on a set of minimal initial structures
and augments complexity gradually at each generation in or-
der to solve the problem in hand, even fully evolved networks
tend to be considerably less complex than typical deep neural
network solutions. The relatively simple structure of NEAT net-
works means that they are well suited to embedded applications.

Network characteristics are described in the form of a geno-
type with direct encoding. The genotype is a compact rep-
resentation of the structure (units and connections) and asso-
ciated parameters (weights). The information encoded within
identifies a unique individual (see Fig. 2). The chronological
sequence of structural changes that occur between generations
are recorded in the form of historical markings. In resolving
the so-called structure permutation problem [26] they provide
an elegant means of representing gene alignment which dictates
which networks among a population are compatible for cross-
over.

Evolution is controlled according to the concept of so-
called fitness. The fitness function is used to determine which
networks within a current generation will contribute to form the
next generation of networks (see Fig. 3). Fitness is evaluated
according to the similarity between classification results with
the labels from suitable quantities of training data. The NEAT
algorithm is hence a form of supervised learning.

Structural innovation is fuelled by protecting a proportion
of networks within a population that may not have the high-
est fitness. These networks may nonetheless have potential to
produce better performing networks in later generations. This
is achieved by clustering the population of networks into sets
of species according to a measure of compatibility encoded in
the genotype. At every iteration, all networks within the new
population are assigned to the species with which they are most
compatible. In the event that one or more networks are incom-
patible with the current set of species, then a new species is
created. The best individuals belonging to each species are then
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Figure 3: An illustration of one iteration of evolution: the per-
formance of each network in a population is assessed by the
means of a fitness function and the best individuals are se-
lected to form a new generation of networks. Figure reproduced
from [24].

selected, meaning networks compete for the best fitness within
a niche. This concept of speciation serves to protect novelty and
diversity within the population which hence has greater poten-
tial as a whole to solve the problem in hand.

NEAT has been applied successfully to a multitude of tasks
such as bipedal locomotion [27], automated computer game
playing [28], as an approach to general acoustic classifica-
tion [29], audio effect generation [30] and sound event detec-
tion [31]. The work in [29] was the first to apply NEAT to the
classification of raw audio.

2.2. Application to raw audio

A high-level overview of the framework proposed in [29] by
which NEAT can be applied to the processing and classifica-
tion of raw audio signals is illustrated in Fig. 4. Inputs con-
sist of a bias unit (set to unity) and an input unit which is fed
sample-by-sample by a raw audio signal. The latter is prop-
agated through the network at one activation step per sample.
There are two output units, a gate unit yr and a score unit yd,
each of which produce one output sample per input sample. The
network topology between inputs and outputs is of the form il-
lustrated in Fig. 1. It is naturally recurrent in nature; there is
no notion of hierarchical layers and no restrictions on links be-
tween units. With the exception of score and gate output units
which have identity and binary step activation functions respec-
tively, all units have rectified linear activation functions.

Connections can be made freely between any pair of units.
As a result, evolved networks may contain cyclical unit con-
nections (e.g. units connected to themselves or to other units
which influence their input). This classifies NEAT struc-
tures as recurrent neural networks.

The product of the gate and score output units is averaged
over K samples2, thereby producing a weighted score yw:

yw[i] =

∑K−1
j=0 yd[i− j]× yr[i− j]

∑K−1
j=0 yr[i− j]

(1)

where i is the sample index and where the gate output yr is
the weight. As proposed in [29], the weighting produced by

2The work in [29] proposed a flexible streaming/segmental or file-
based approach were the value of K is adjusted accordingly. All work
reported in this paper relates to a file-based processing approach where
K is set to the number of samples in a file.

the gate can be continuous, or may be constrained to a binary
weighting {0,1}. While the behaviour of the gate is learned
automatically, it will act naturally as a form of attention mech-
anism [32, 33], i.e. to emphasise the most salient output scores.

2.2.1. Fitness estimation

As in the original work, network performance is measured
through a fitness function. The fitness function is key since it is
used as a factor in the control of the evolutionary process. The
work in [29] used a generic squared-error-based fitness function
defined according to:

F = 1/

[
1 +

N−1∑

i=0

(g[i]− yw[i])2
]

(2)

where g is a ground truth signal of classification labels, e.g. 0
and 1. The summation over N reflects the difference between
labels and averaged scores, i.e. the inverted error gives a mea-
sure of reliability, or fitness.

Our own investigations using the NEAT algorithm for an
automatic speaker recognition task [24] showed that the fitness
function in Eq. 2 is not sufficiently informative as a means of
guiding evolution. Eq. 2 reflects the average proximity of net-
work scores to ground truth labels, rather than classification
reliability. The latter is often measured with the application-
neutral equal error rate (EER). Use of the EER was also found
to be sub-optimal; it reflects the reliability of a classifier at a
single operating point, i.e., a fixed threshold.

Being independent to a specific operating point, the receiver
operating characteristic (ROC) profile is a more informative
measure of classifier reliability. ROC profiles may be reduced to
a single scalar by measuring the so-called area under the ROC
(AUROC) [34]. The AUROC is well tailored to classification as
it is proportional to the ability of a classifier to attribute higher
scores to positive trials than to negative trials. The work in [24]
reports the replacement of Eq. 2 with an AUROC function cal-
culated using the trapezoid rule [35].

2.2.2. Mini-batching

Mini-batch training can be used [24] to manage computational
effort and to avoid over-fitting. Mini-batching is employed in
a similar manner as with the stochastic gradient descent algo-
rithm [36] whereby each iteration of training is performed with
different batches of data, each a subset of the training partition.
The learning of each generation with a different subset of train-
ing data promotes network novelty, reduces computation and
encourages the evolution of networks that will have better po-
tential to generalise well to unseen data.

The work in [24] defines a pair of mini-batch parameters
Mt and Mi. They represent the fraction of available target and
impostor data used for each step for the mini-batch training of
an automatic speaker verification system. As an example, the
setting of both parameters Mt=Mi=100% is equivalent to no
mini-batching, with every generation being fed with the full par-
tition of training data. In contrast, the setting of Mt=Mi=50%
implies two mini-batches each comprising half of the available
target and impostor training data. In this case, the composition
of the mini-batches is reset and re-partitioned at random for ev-
ery other generation.

Given the focus of this paper upon anti-spoofing rather than
automatic speaker verification, notations Mt and Mi are re-
placed with Mb (bona fide speech) and Ms (spoofed speech).
This notation is adopted throughout the remainder of this paper.
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Figure 4: End-to-end setup and propagation scheme for audio classification. Figure reproduced from [24].

3. End-to-end anti-spoofing
This section describes the adaptation of the NEAT approach to
the anti-spoofing problem. It encompasses the novel contribu-
tions claimed in this paper. These comprise a new fitness func-
tion which was found to give improved performance in the case
of anti-spoofing, in addition to training and optimisation (net-
work selection) procedures.

3.1. Ease of classification3

Experiments to evaluate the performance of NEAT for anti-
spoofing using the previously reported fitness functions [29, 24]
showed a tendency to oscillate around local optima, namely net-
works in subsequent generations that correct previous classifi-
cation errors while introducing new ones. Such oscillations can
be avoided by using an enhanced fitness function which rewards
progress rather than raw performance. Progress infers better
networks which correct previous classification errors without
introducing new ones.

An expression for fitness which rewards progress requires
the definition of a measure of segment (file) classification ease.
Intuitively, this is proportional to how high or how low is the
score for segment s compared to the average impostor (spoofed)
or target (bona fide) scores respectively; For every network n
and bona fide segment s with score θs, the classification ease is
given by:

ls,n ← 1− #{spoofed segments with score > θs}
#{spoofed segments} (3)

where the right-most term is akin to the false acceptance rate
for the given threshold. Conversely, for every spoofed segment
with score θs, the classification ease is given by is given by:

ls,n ← 1− #{bona fide segments with score < θs}
#{bona fide segments} (4)

where the right-most term is now akin to the false rejection rate
for the given threshold. A pooled measure of the classification

3The EOC fitness function was developed in collaboration with
Adrien Daniel while he was employed at NXP Semiconductors.

ease may then be obtained by averaging the classification ease
over the number G of networks in the population:

ps ←
∑

n ls,n

G
(5)

where ls,n is set according to Eqs. 3 or 4 depending on whether
segment s is a bona fide or spoofed respectively. A measure of
network fitness F is then estimated across all segments accord-
ingly to:

F =

∑
s ls,n(1− ps)∑

s(1− ps)
(6)

where (1 − ps) acts to weight the contribution of the classifi-
cation ease for segment s, and network n. This approach to
fitness estimation is from here on in referred to as the ease of
classification (EOC).

According to Eq. 6, the correct classification of segments
that were already correctly classified by networks in an earlier
generation thus contributes little to the estimation of fitness for
networks in the subsequent generation; there is little reward for
learning what was already known by an earlier generation. The
EOC approach to fitness estimation steers evolution to classify
correctly a diminishing number of difficult segments.

3.2. Training

The size of each population is fixed across generations and set
to 150 networks. The algorithm is initialised (generation zero)
with 150 minimal perceptron-like networks, all of which share
the common setup described in Section 2.2. All input signals
are normalised to within a range of [-1,1]. The choice of recti-
fied linear unit activation functions results in faster processing,
but also increases the chances of saturation. The random initial-
isation of weights within a [−4, 4] range was found to manage
the risk of saturation.

Experiments were conducted with both AUROC (Sec-
tion 2.2) and EOC (Section 3.1) fitness functions, with and with-
out mini-batching. Audio signals containing either bona fide or
spoofed speech are fed to each network segment-by-segment
(file-by-file) and the network is trained in order to distinguish
between the two. The AUROC fitness function is evaluated with
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Figure 5: An illustration of fitness evolution for the fittest net-
work of each generation when using AUROC (top) and EOC
(bottom) fitness functions. The dashed red profiles illustrates the
fitness evolution with mini-batch training whereas the mostly-
monotonic blue profiles shows the fitness without mini-batch
training.

K in Eq. 1 set to the number of samples in each file. All net-
works are reset after the processing of each file.

At each iteration (generation), a subset of the fittest (best
performing) networks among each species is determined and
used to evolve the next generation of networks according to the
procedure outlined in Section 2.1. Evolution proceeds either
until the fitness converges or until a pre-determined maximum
number of generations is reached.

Fig. 5 depicts the improvement in network fitness (verti-
cal axis) over 200 generations (horizontal axis). Illustrated is
the evolution in fitness for four different configurations: the
two fitness metrics AUROC and EOC, both with and without
mini-batch training (Mb = 25% and Ms = 33%). Each
point on each profile shows the fitness of the single, fittest net-
work among the 150 in the population. In both graphs the
dashed red curves relate to mini-batch training. Neither profile
is monotonic since the data changes at each generation. Con-
versely, solid blue curves show fitness without mini-batch train-
ing (Mb =Ms = 100%), hence the largely monotonic profiles
(the fitness of EOC optimised networks is not strictly monotonic
on account of the different weights applied to each segment dur-
ing fitness estimation, as described in Section 3.1).

Profiles in Fig. 5 show that mini-batching is of more benefit
when used with the EOC fitness function. Changes in training
data can be interpreted as optimisation towards a moving target.
This fuels novelty instead of over-fitting to a fixed training set.
These observations would suggest a potential for better gener-
alised spoofing detection. It should be noted, however, that the
final objective is not higher fitness for training data, but the clas-
sification reliability assessed using test data.

3.3. Testing

Networks with high measures of fitness may not necessarily be
those which give the best performance in terms of the spoofing
detection EER. This is especially true when using mini-batch
since one random subset of training data could be fortuitously
easier than another subset (or indeed the full set). In addi-

tion, measures of fitness derived using the EOC fitness function
may not be especially well correlated with classification perfor-
mance; increases in EOC reflect the learning of new information
rather than raw performance.

As a result, the fittest network identified from training may
not be that which gives the lower EER. In order to observe the
evolution in classification performance, the 10 best networks of
each generation identified using the fitness function are evalu-
ated using development data and with an EER metric.

The single network with the lowest EER within each group
of 10 is named the generation champion and the overall lowest
EER network among the set of generation champions is denoted
the grand champion. The latter is selected for testing/evaluation
where it is used without further modification.

4. Experimental setup
This section describes the database, protocol and metric used
for all experiments reported in this paper. Also described is
the baseline system and specific configuration details for the
proposed end-to-end approach to anti-spoofing.

4.1. Database, protocol and metric

Experiments were performed using Version 2.04 of the
ASVspoof 2017 database [37]. The database originates from
the RedDots database5 which was collected by volunteers from
across the globe using mobile devices, in the form of smart-
phones and tablet computers. While the RedDots database
was collected to support research in text-dependent automatic
speaker verification, the ASVspoof 2017 database was adapted
from it in order to support research in anti-spoofing. It contains
sets of bona fide (genuine) and replayed speech [38, 39, 9]. In
order to simulate replay spoofing attacks, the bona fide partition
of the ASVspoof 2017 database was replayed and then recap-
tured using a variety of different loudspeakers and recording
devices in heterogeneous acoustic environments.

The standard protocol relates to a partition of the database
into training, development and evaluation subsets, details of
which are presented in Table 1. The three subsets are mutu-
ally disjoint in terms of speakers and of data collection sites.
Experiments reported in this paper were performed with the ex-
tended protocol whereby both training and development were
performed with pooled training and development partitions
(train+dev). The evaluation subset contains data collected us-
ing 57 replay configurations, 49 of which differ to those used
in the collection of the training and development subsets. Dif-
ferences in replay detection performance between the train-
ing/development and evaluation subsets serve to gauge the gen-
eralisation of spoofing countermeasure solutions.

The ASVspoof 2017 evaluations assessed the performance
of spoofing countermeasures in isolation to automatic speaker
verification. The standard metric is the application-independent
equal error rate (EER). It is used for all assessments reported in
this paper.

4.2. Baseline

The ASVspoof 2017 Version 2.0 database was released in or-
der to correct data anomalies detected subsequent to the offi-
cial evaluation. Being released in 2018, the only published re-

4http://dx.doi.org/10.7488/ds/2301
5https://sites.google.com/site/

thereddotsproject/
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Table 1: Statistics of the ASVspoof 2017 database version 2.

Subset
# # replay # replay # utterances

spk sessions configs bona fide replay
Training 10 6 3 1507 1507
Devel. 8 10 10 760 950
Eval. 24 161 57 1298 12008
Total 42 177 61 3566 14466

sults relating to Version 2.0 are those for the official ASVspoof
2017 baseline system6. It uses a constant Q cepstral coefficient
(CQCC) [40, 41] frontend and a traditional Gaussian mixture
model (GMM) back-end [42, 43]. Classifier scores are com-
puted as the log-likelihood ratio for the test utterance given bona
fide and replayed speech models. This paper considers only the
extended protocol baseline for which training and development
are performed using pooled training and development dataset
(train+dev). Baseline results for the extended protocol are pre-
sented to the top of Table 2.

4.3. End-to-end anti-spoofing

The end-to-end algorithm described in this paper was applied
to distinguish between bona fide and spoofed speech. All net-
works are configured according to the common setup described
in Section 2.2 and as depicted in Fig. 4. Experiments were con-
ducted with four different configurations comprising AUROC
(Section 2.2.1) and EOC (Section 3.1) fitness functions with and
without mini-batch training (Section 2.2.2). Configurations in
which mini-batch is adopted are labeled with m (see Table 2).
Each configuration was run for 500 generations.

When applied, mini-batch training is performed with bona
fide speech partitioned into four mini-batches (Mb=25%) of
approximately 17 minutes each. Spoofed data is partitioned
into three mini-batches (Ms=33%), approximately 21 minutes
each. The discrepancy between bona fide and spoofed speech
is due to the greater variation in spoofed speech, the reliable
modelling of which requires greater quantities of data in each
batch.

Once the training of a generation is completed, the perfor-
mance of networks for that generation is assessed according to
the procedure described in Section 3.3. This assessment is per-
formance using pooled training and development partition data
(see Section 4.1).

5. Experimental results
This section describes experimental results, starting with an il-
lustration of the evolutionary behaviour of the end-to-end ap-
proach to spoofing detection and then an assessment of perfor-
mance in terms of the EER. Also discussed here is the behaviour
of the gate.

5.1. Evolutionary behaviour

An illustration of the evolutionary behaviour of the end-to-end
approach to spoofing detection is illustrated in Fig. 6. Two
profiles show the evolution in EOCm (top blue profile) and
the number of network node connections (green profile) of the
EOC-fittest. The lower magenta profile shows the EER for the

6http://www.asvspoof.org/data2017/baseline_
CM.zip

Table 2: End-to-end spoofing detection performance for the
ASVspoof 2017 database version 2 and extended protocol.

Train+Dev Eval

Baseline 0.14% 23.4%
AUROC 20.9% 28.2%

AUROCm 27.4% 24.2%
EOC 20.3% 19.2%

EOCm 18.7% 18.2%

champion of each generation (the generation champions) esti-
mated using training/development The single network selected
for the testing/evaluation is that which produces the lowest EER
for the training/development data (orange dot). This network is
designated as the grand champion network.

The fitness is seen to increase gradually as the end-to-end
approach to anti-spoofing learns to discriminate between bona
fide and spoofed speech, gradually increasing network com-
plexity as it proceeds. Improvements in fitness are largely ac-
companied by decreases in EER. After approximately 350 it-
erations, the EER seems to converge, with the best performing
network being that from the 484th generation and having 198
connections.

5.2. Spoofing detection performance

Results are presented in Table 2 for the baseline systems and the
for the end-to-end system with AUROC and EOC fitness func-
tions, with and without mini-batching (denoted by subscript
m). Results for the EOC fitness function are either similar to
or better than those for the AUROC fitness function. Mini-
batching appears to offer inconsistent results for the AUROC
fitness function; performance degrades for train+dev. but im-
proves for evaluation. For the EOC fitness function, improve-
ments are consistent across the two sets.

Of particular interest is the stability or generalisation
achieved by the end-to-end system. Performance for the base-
line system is seen to degrade substantially between the two sets
(train+dev and evaluation). In contrast, the best results achieved
with the end-to-end approach using the EOC fitness function
and mini-batch training is not only substantially better, but also
consistent across the two disjoint data sets (18%).

5.3. Gate operation

The gate acts to identify salient information in the network out-
put. This is a form of an attention mechanism. As such, it is
of interest to investigate its behaviour. Even so, the gate oper-
ates on the output stream rather than the input stream. Coupled
with the recurrent nature of the network which maps inputs to
outputs, this impedes a straightforward interpretation of its be-
haviour; it is difficult to interpret gate behaviour at the output
with respect to the acoustic stream at the input.

Our investigations thus far show that the gate generates a
somewhat periodic signal during both speech and non-speech
intervals. This would indicate that information during both are
of use to the detection of replay spoofing attacks. Further ana-
lysis would involve a deeper examination of how to link gate
behaviour at the output to information at the input. This study
is left for future work.
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Figure 6: Evolution of 500 generations with an EOC fitness function with mini-batch training. The upper blue profile shows the EOC-
derived fitness of the fittest network in each generation. The highest fitness is obtained in generation 490. The green profile is the
complexity (number of connections) in each network. The lower magenta profile is the EER of generation champions estimated using
pooled training and development data. It reaches a minimum value in generation 484 (marked by an orange dot). This is the grand
champion network that is chosen for testing on the evaluation set.

6. Conclusions and future work
This paper reports a truly end-to-end approach to the problem
of spoofing detection. End-to-end techniques that avoid a re-
liance upon hand-crafted features are assumed to offer better
potential for spoofing detection, and especially generalisation
when the cues indicative of spoofing can vary considerably and
are largely unpredictable in practice. The paper show how the
neuroevolution of augmenting topologies can be applied suc-
cessfully to this task. Critical to performance is the proposed
progress-rewarding fitness function which steers the evolution-
ary process progressively towards the reliable classification of
a diminishing number of difficult trials. Coupled with a mini-
batch training procedure, this particular quality of the proposed
solution preserves generalisation.

Results for the ASVspoof 2017 Version 2.0 database show
improvements to both generalisation and raw performance.
Equal error rates for the end-to-end approach represent a 22%
relative reduction compared to the baseline system. A particu-
larly appealing feature of the end-to-end approach is the gate,
which acts as a form of in-built attention mechanism which
serves to distinguish the most reliable information in the net-
work output. This aspect of the end-to-end solution requires
further investigation in order to interpret its behaviour with re-
spect to information present in the acoustic input. The findings
of such a study, while left for further work, will help to de-
termine precisely what information helps most to differentiate
between bona fide and replayed speech.
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