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ABSTRACT

In this paper, we address the fundamental problem of Sparse
Bayesian Learning (SBL), where the received signal is a high-order
tensor. We furthermore consider the problem of dictionary learning
(DL), where the tensor observations are assumed to be generated
from a Kronecker structured (KS) dictionary matrix multiplied by
the sparse coefficients. Exploiting the tensorial structure results in
a reduction in the number of degrees of freedom in the learning
problem, since the dimensions of each of the factor matrices are sig-
nificantly smaller than the matricized dictionary if we vectorize the
observations. We propose a novel fast algorithm called space alter-
nating variational estimation with dictionary learning (SAVED-KS),
which is a version of variational Bayes (VB)-SBL pushed to the
scalar level. Similarly, as for SAGE (space-alternating generalized
expectation maximization) compared to EM, the component-wise
approach of SAVED-KS compared to SBL renders it less likely
to get stuck in bad local optima and its inherent damping (more
cautious progression) also leads to typically faster convergence of
the non-convex optimization process. Simulation results show that
the proposed algorithm has a faster convergence rate and lower
mean squared error (MSE) compared to the alternating least squares
(ALS) based method for tensor decomposition.

Index Terms— Sparse Bayesian Learning, Variational Bayes,
Tensor Decomposition, Dictionary Learning, Alternating Optimiza-
tion

1. INTRODUCTION

In many applications such as Multiple Input Multiple Output
(MIMO) radar [1], massive MIMO channel estimation [2], image
and video processing etc., the received signals are multidimensional
(i.e tensors). Moreover, these signals can be represented as a low
rank tensor. To fully exploit the structure of such signals, tensor de-
composition methods such as CANDECOMP/PARAFAC (CP) [3,4]
or Canonical Polyadic Decomposition (CPD) [5] have been intro-
duced. In this paper, we consider a generalized problem in which
the dictionary matrix can be factorized as a Kronecker product [6],
the received tensor signal Y can be represented as,

y = (A1 ⊗A2....⊗AN )x + w, (1)

where y = vec(Y), ⊗ represents the Kronecker product between
two matrices, vec(·) representing the vectorized version of the ten-
sor or matrix (·), Y ∈ CI1×I2...×IN is the observations or data,
Aj,i ∈ CIj , the factor matrix Aj = [Aj,1, ...,Aj,Pj ] which is un-
known and the tensor product is represented by [[A1, ...,AN ; x]], x
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is the M(=
N∏
j=1

Pj)-dimensional sparse signal and w is the additive

noise. x contains only K non-zero entries, with K << M and thus
the dictionary matrix to be learned allows a low rank representation.
w is assumed to be a white Gaussian noise, w ∼ N (0, γ−1I). To
address this problem when the dictionary matrix is known, a vari-
ety of algorithms such as the orthogonal matching pursuit [7], the
basis pursuit method [8] and the iterative re-weighted l1 and l2 al-
gorithms [9] exist in the literature. The SBL introduced by [10, 11],
is developed around a sparsity-promoting prior for x, whose real-
izations are softly sparse in a sense that most entries are small in
magnitude and close to zero.

CPD can be viewed as a general extension of the singular value
decomposition (SVD) to the high-order tensors, with the difference
that the factor matrices need not be orthogonal. In certain applica-
tions such as wireless channel estimation, these factors have spe-
cific forms such as Vandermonde or Toeplitz or Hankel. To find the
tensor factor matrices, the most popular solution is the ALS [12],
which iteratively optimizes one factor matrix at a time while keep-
ing the others fixed. Most of the existing algorithms [13–17] focus
on either maximum likelihood based schemes, LS or K-SVD algo-
rithms. Knowledge of tensor rank is a prerequisite to implement
these algorithms and it takes large number of iterations for them to
converge. Moreover, classical algorithms ignore the potential statis-
tical knowledge of the factor matrices into account. While we focus
on a Bayesian approach to the estimation of the factor matrices in
this paper, with automatic relevance determination.

1.1. Contributions of this paper

• We propose a novel Space Alternating Variational Estima-
tion based SBL technique with KS dictionary learning called
SAVED-KS, advancing the SAVE methods which we intro-
duced in [18–21] which assumed a known or Khatri-Rao
structured dictionary.

• We also propose a joint VB version for the KS dictionary
matrix factors which has better performance compared to
SAVED-KS, but at the cost of an increase in computational
complexity.

• We also discuss the local identifiability using the non-
singularity of the Fisher information matrix (FIM) for KS
DL in a SBL setting.

• Numerical results suggest that the proposed solution has a
faster convergence rate (and hence lower complexity) than
(even) the classical ALS and furthermore has lower recon-
struction MSE in the presence of noise.

In the following, boldface lower-case and upper-case characters
denote vectors and matrices respectively. The operators tr(·), (·)T ,
(·)∗, (·)H , ‖·‖ represents trace, transpose, conjugate, conjugate



transpose and Frobenius norm respectively. A complex Gaussian
random vector with mean µ and covariance matrix Θ is distributed
as x ∼ CN (µ,Θ). diag (·) represents the diagonal matrix cre-
ated by elements of a row or column vector. The operator < x >
or E(·) represents the expectation of x. All the random vari-
ables are complex here unless specified otherwise. We represent
N⊗
j=1

Aj = A1 ⊗ A2 ⊗ ... ⊗ AN . IN represents the identity ma-

trix with dimension N . We define the unfolding operation on an
N th order tensor Y = [[A1, ...,AN ; x]] as [12] (Y(n) is of size

In ×
N∏

i=1,i 6=n
Ii below),

Y(n) = AnX(n)(AN ⊗AN−1...An+1 ⊗An−1...⊗A1)T .
(2)

2. HIERARCHICAL PROBABILISTIC MODEL

In the following sections, we represent (3) using the tensor de-
composition properties from [12]. Let Yi1,...,iN represents the
(i1, i2, ..., iN )th element of the tensor and y =
[y1,1,...,1, y1,1,...,2...., yi1,i2,...,iN ]T , then it can be verified that
[22, 23],

y = (A1 ⊗A2...⊗AN )x + w = (

N⊗
j=1

Aj)x + w, (3)

where we denote A =
N⊗
j=1

Aj . Since the sparsity measure (number

of nonzero components) of x is unknown and the following VB-SBL
algorithm performs automatic rank determination. In Bayesian com-
pressive sensing, a two-layer hierarchical prior is assumed for the x
as in [10]. The hierarchical prior is chosen such that it encourages
the sparsity property of x. x is assumed to have a Gaussian distri-
bution parameterized by α = [α1 α2 ... αM ], where αi (which
is a real quantity) represents the inverse variance or the precision

parameter of xi, p(x/α) =
M∏
i=1

p(xi/αi) =
M∏
i=1

CN (0, α−1
i ). Fur-

ther a Gamma prior is considered over α, p(α) =
M∏
i=1

p(αi/a, b) =

M∏
i=1

Γ−1(a)baαa−1
i e−bαi . The inverse of noise variance γ is also

assumed to have a Gamma prior, p(γ) = Γ−1(c)dcαc−1
i e−dγ . Now

the likelihood distribution can be written as,
p(y/x,A, γ) = (2π)−NγNe−γ||y−Ax||2 . (4)

We emphasize that the presented algorithm do not exploit parametric
forms, because those parametric forms are uncertain. For eg., con-
sidering the massive MIMO channel estimation problem [24], the
array response at the mobile station (MS) is not exploitable. Even
the array response at the base station (BS) will typically require cal-
ibration to be exploitable. Doppler shifts are clear Vandermonde
vectors. Delays could be more or less clear, if one goes to frequency
domain in OFDM, and one only takes into account the range of sub-
carriers for which the Tx/Rx filters can be considered frequency-flat.
Then over those subcarriers, it’s also Vandermonde. We consider
Aj,i = [1 aHj,i]

H and further aj,i is unconstrained and deterministic
(in all the Vandermonde cases, it is perfect, or in all cases of phasors).
Assuming first entry to be 1 is even better than ‖Aj,i‖ = 1 because
‖Aj,i‖ = 1 still leaves a phase ambiguity. With first entry= 1, the
factors are unique, up to permutation in the sum of terms. It is to be
noted that one major difference compared to the DL for Khatri-Rao
structured matrix factors as looked upon in our paper [21] is that, we
avoid considering a discretized dictionary and instead the sparsity
for x comes from considering the cases of multi-paths with same
delay having different AoA or AoDs.

2.1. Variational Bayesian Inference

The computation of the posterior distribution of the parameters is
usually intractable. In order to address this issue, in variational
Bayesian framework, the posterior distribution p(x,α, γ,A/y) is
approximated by a variational distribution q(x,α, γ,A) that has the
factorized form:

q(x,α, γ,A) = qγ(γ)
M∏
i=1

qxi(xi)
M∏
i=1

qαi(αi)
N∏
j=1

Pj∏
i=1

qaj,i(aj,i).

(5)Variational Bayes compute the factors q by minimizing the Kullback-
Leibler distance between the true posterior distribution p(x,α, γ,A/y)
and the q(x,α, γ,A). From [25], The KL divergence minimization
is equivalent to maximizing the evidence lower bound (ELBO) [26].
Doing this in an alternating fashion for each variable in θ leads to (a
more detailed discussion in our paper [18]),

ln(qi(θi)) =< ln p(y,θ) >k 6=i +ci,

p(y,θ) = p(y/x,α, γ,A)p(x/α)p(α)p(γ),
(6)

where θ = {x,α, γ,A} and θi represents each scalar in θ. Here
<>k 6=i represents the expectation operator over the distributions qk
for all k 6= i.

3. SAVED-KS SPARSE BAYESIAN LEARNING

In this section, we propose a Space Alternating Variational Estima-
tion (SAVE) based alternating optimization between each elements
of θ. For SAVE, not any particular structure of A is assumed, in
contrast to AMP which performs poorly when A is not i.i.d or sub-
Gaussian. Based on a quadratic loss function, the Bayesian esti-
mator of a parameter is the posterior mean; we therefore define the
variational Bayesian estimators of parameters θ as the means of the
variational approximation to the posterior distribution. The joint dis-
tribution can be written as,

ln p(y,θ) = N ln γ − γ ||y −Ax| |2+
M∑
i=1

(
lnαi − αi|xi|2

)
+

M∑
i=1

((a− 1) lnαi + a ln b− bαi)

+(c− 1) ln γ + c ln d− dγ + constants.

(7)

In the following, cxi , c
′
xi , cαi , cγ , caji etc. represents normalization

constants for the respective pdfs.
Update of qxi(xi): Using (6), ln qxi(xi) turns out to be quadratic in
xi and thus can be represented as a Gaussian distribution as follows,
Note that we split Ax as, Ax = Cixi + Cixi, where Ci repre-
sents the ith column of A, Ci represents the matrix with ith column
of A removed, xi is the ith element of x, and xi is the vector without

xi. In fact, we can represent Ci = (
N⊗
j=1

Aj,pji). To show the rela-

tion to the columns of the KS factor matrices (p1, p2, ..., pN ) which

generates Ci, i = 1+
N∑
k=1

(pk−1)Jk, Jk =
k+1∏

m=N,m 6=i
Pm, PN+1 =

1. So we denote Aj,pji as the column vector from Aj which gen-
erates Ci. From the property of the Kronecker products [22] that
(A ⊗ B)(C ⊗ D) = AC ⊗ BD, we can verify that ‖Ci‖2 =

(
N⊗
j=1

Aj,pji)
H(

N⊗
j=1

Aj,pji) =
N∏
j=1

∥∥Aj,pji

∥∥2. Clearly, the mean

and the variance of the resulting Gaussian distribution becomes,
σ2
i = 1

<γ>
N∏

j=1
<
∥∥∥Aj,pji

∥∥∥2>+<αi>

, < xi >=

x̂i = σ2
i ((< CH

i > y− < (CH
i Ci) >< xi >) < γ >,

(8)

where x̂i represents the point estimate of xi and Âj,i = [1 < aHj,i >

]H , < aj,i > being the mean of aj,i which follows from the below



derivation for aj,i. Also, note that in < (CH
i Ci) >, there are cross

terms of the form <
N∏
j=1

AH
j,piAj,pk >, i 6= k which can be written

as =
N∏
j=1

< AH
j,pi >< Aj,pk > because of the independence of the

approximate distribution q of each columns of the factor matrices.
Update of qaj,i(aj,i): Here we go back to the tensor representation.

For simplicity, we define Vj =< X(j) >< (
1⊗

k=N,k 6=j
Ak)T >

,Wj =< X(j)(
1⊗

k=N,k6=j

Ak)T(
1⊗

k=N,k 6=j

Ak)∗X(j)H >. The vari-

ational approximation for the vector aj,i results in,

ln qaj,i(aj,i) = − < γ ><
{
‖Y − [[A1, ...,AN ; x]]‖2

}
>

(a)
= −

< γ > tr
{
−Y(j)VH

j AH
j + AjVjY

(j) + AjWjA
H
j

}
+ caji

(9)
In (a), we used the fact that [12] ‖A‖2 = tr{A(k)(A(k))H} for
a tensor A and further we denote AN ⊗ ...Aj+1 ⊗ Aj−1... ⊗

A1 =
1⊗

k=N,k 6=j
Ak. In (9), tr{AjWjA

H
j } can be written as,

tr{Aj,iWjA
H
j,i}+ “terms independent of aj,i”, which gets simpli-

fied as tr{Wj} ‖aj,i‖2 + “others”. Finally, the mean (< aji >=
âji) and covariance (Υj,i) of the resulting Gaussian distribution can
be written as (after expanding Vj ,Wj),

âji = (bj)1, bj = (Y(j) < X(j) >< (
1⊗

k=N,k 6=j
Ak)T >)i,

Υj,i = βj,iI, βj,i = tr{(
1⊗

k=N,k 6=j
< AT

kA∗k >) < X(j)HX(j) >},

(10)
where (·)i represents the ith column of the matrix (·) and (bj)1
represents the vector formed by all the elements except the first one
of the vector bj . For the computation of the elements of the matrix
< X(j)HX(j) >, the diagonal elements contain terms of the form
< |xl|2 > the expressions for which are provided below in (11).
The non-diagonal terms contain terms of the form < xlxk >, l 6= k
which gets simplified due to the independence of the corresponding q
distributions,< xlxk >= x̂lx̂k. Also, we can write< ‖Aj,i‖2 >=
1 + ‖âj,i‖2 + βj,iIj , which gets used in (8).

Update of qαi(αi), qγ(γ): The variational approximation leads
to the Gamma distribution for the qαi(αi) and qγ(γ), which are pa-
rameterized by it’s mean. The detailed derivation for this is omitted
here, since it is provided in our paper [18]. The mean of the Gamma
distribution for qαi(αi), qγ(γ) is given by,

< αi >=
a+ 1

2

(<|xi|2>+ b)
, < γ >=

c+N
2

(<

∥∥∥∥∥y− (
N⊗

j=1
Aj)x

∥∥∥∥∥
2

>+ d)

,

(11)
where, < ‖y − (

N⊗
j=1

Aj)x‖2 >= ‖y‖2 − 2yH(
N⊗
j=1

< Âj >

)x̂ + tr((
N⊗
j=1

< AH
j Aj >)(x̂x̂H + Σ)),Σ = diag (σ2

1 , ..., σ
2
M ),

x̂ = [x̂1, x̂2, ..., x̂M ]H . and< |xi|2 >= |x̂i|2 + σ2
i ,. From (8), it

can be seen that the estimate x̂ converges to the L-MMSE equalizer,
x̂ = (AHA+ 1

<γ>
Σ−1)−1AHy. This version of the SAVE where

each columns of the factor matrices are updated independently is
called as SAVED-KS (SAVE with KS Dictionary learning).

3.1. Joint VB for KS Dictionary Learning

In this section, we treat the columns of the factor matrix Aj jointly
in the approximate posterior using VB. We also define for the con-
venience of the analysis, Aj = [1 AH

1,j
]H , where A1,j represents

all other rows except the first and 1 represents a column vec-
tor (of size Pj) with all ones. ln qAj (Aj) = tr{−Y(j)VH

j AH
j −

AjVjY
(j)H+AjWjA

H
j }+cAj ,Defining Bj as with the first row

of (Y(j)VH
j ) removed. So tr{−Y(j)VH

j AH
j } =

M∑
i=1

(Y(j)VH
j )1,i+

tr{BjA
H
1,j
}, (Y(j)VH

j )1,i represents the (1, i)th element of the
matrix. Now expanding the term AjWjA

H
j = [1 AH

1,j
]HWj[1 AH

1,j
]

which simplifies ln qAj(Aj) as, ln qAj (Aj) =< γ > tr{BjA
H
1,j
}+

< γ > tr{A1,jB
H
j }− < γ > tr{A1,jWjA

H
1,j
}. This corresponds

to the functional form of a circularly-symmetric complex matrix nor-
mal distribution [27]. This can be represented for a random matrix
X ∈ Cn×p as p(X) ∝ exp(−tr{Ψ−1(X−M)Hφ−1(X−M)}),
which is denoted as CMN (X | M,φ,Ψ). Thus the varia-
tional approximation for A1,j gets represented as CMN (A1,j |
Mj , IM ,Ψj).

Mj = Â1,j =< γ > BjΨj , Ψj = (< γ > Wj)
−1 (12)

Note that vec(A1,j) ∼ N (vec(Mj),Ψj ⊗ IM ), so the terms of the
form < ‖Aj,i‖2 > in (8) becomes, < ‖Aj,i‖2 >= 1 + ‖Mj,i‖2 +
(Ψj)i,i. (Ψj)i,i is the ith diagonal element of Ψj and Mj,i rep-
resents the ith column of Mj . Also, we can represent AH

j Aj =

11H + MH
j Mj + (Ij − 1)Ψj .

For our proposed SAVED-KS, it is evident that we do not need
any matrix inversions compared to [28,29]. Update of all the variable
x,α, γ involves simple addition and multiplication operations. We
also introduce the following notations, xi− = [x1...xi−1]T ,xi+ =
[xi+1...xM ]T .
Algorithm 1 SAVED-KS SBL Algorithm
Given: y,A, Ij , Pj ∀j.
Initialization: a, b, c, d are taken to be very low, on the order of
10−10, thus p(αi) ∝ α−1

i , p(γ) ∝ γ−1 which corresponds to a
non-informative Jeffrey’s prior [30]. α0

i = a/b,∀i, γ0 = c/d and
σ2 ,0
i = 1

||C0
i ||2γ0+α0

i

,x0 = 0. Random initialization for the dictio-

nary matrix Aj ∼ CN (0, I).
At iteration t+ 1 (superscript t is used to denote the iteration stage),

1. Update σ2 ,t+1
i , x̂t+1

i ,∀i from (8) using xt+1
i− and xti+.

2. Update Ât+1
j,i ,Υj,i ∀i, j from (10) or Ât

j ,Ψj from (12).

3. Compute < x2 ,t+1
i > from (11) and update αti, γ

t+1.

4. Continue steps 1− 4 till convergence of the algorithm.

4. IDENTIFIABILITY OF KS DICTIONARY LEARNING

The local identifiability (upto permutation ambiguity) of the KS DL
is ensured if the FIM is non-singular [31]. We can write Aj,i =

F
(i)
j θj , θj = vec(Aj) and F

(i)
j = [0Ij×Ij(i−1) IIj 0Ij×Ij(Pj−i)]

and we define Fr =
⊗

pji,∀j
F

(pji)

j , r =
N∑
j=1

(pji − 1)Jj + pNi, Jj =

N∏
r=j+1

Pr . We observe that we can separate the contributions

of θ and x in (3) as, y = (

M∑
r=1

xrFr)︸ ︷︷ ︸
F(x)

(

N⊗
j=1

θj)︸ ︷︷ ︸
f(θ)

+w. Writing



ln p(y,θ,x) = ln p(y/x,α, γ,A) + ln p(x/α)p(α)p(γ), it is
clear that the FIM can be split as FIM = FIMy +FIMprior . For
FIMy , extending the derivation of the CRB for the KS dictionary
matrices in [31] to the high-order tensor SBL case, we define the
Jacobian matrix of S = F(x)f(θ) as,

J(θ,x) = [J(θ) J(x)], J(θ) = [J(θ1) .....J(θN)] where,
J(θj) = F(x)(θ1 ⊗ ...IIjPj ....⊗ θN),

J(x) = [ F1(
N⊗
j=1

θj), ...., FM(
N⊗
j=1

θj)) ].

(13)We define Γ = diag (α). Further, the FIM for the case of SBL can
be written as,
FIM =

E(γ)J(θ)HJ(θ) 0 0 0
0 E(γ)J(x)HJ(x) + E(Γ) 0 0
0 0 a E(Γ−2) 0
0 0 0 (N + c− 1) E(γ−2)


(14)Here, γJ(x)TJ(θ) = 0, since x is zero mean. Further using

the expression for the inverse of the block FIM above, for non-
singularity, J(θ) should be full rank. For the FIM analysis, we
assume that the support (no. of non-zero elements of x) is known,
then E(γ)J(x)HJ(x) + E(Γ) and aE(Γ−2) becomes invertible

if
N∏
j=1

Ij > K. Assuming
N∏
j=1

Ij >
N∑
j=1

(Ij − 1)Pj (Ij − 1 since

the columns are scaled to make the first entry 1), i.e. no. of de-

grees of freedom in the dictionary <
N∏
j=1

Ij , then it is clear FIM is

non-singular. Another remark is that here we consider only single
measurement vector case and it is evident from the FIM expression
that it can be non-singular even in this case under certain conditions
on the dimensions of the KS factor matrices. We also observe that
identifiability results for a mix of structured (Vandermonde matri-
ces) and unstructured KS matrices for 3−way tensors are discussed
in [32]. Note that algorithms which deal with KS dictionary matrices
are very recent and fundamental limits of the estimation accuracy
for such systems in a minimax setting can be seen in [33].

4.1. Identifiability for mix of parametric and non-parametric
KS factors
We briefly outline the results for the case of mixture of para-
metric and non-parametric KS factors. We assume that the pa-
rameters Aj , j = 1, ..., P, P < N are Vandermonde matrices
parameterized by the spatial response φj,l, l = 1, ..., Pj and
Aj,l = [1 eigj(φj,l) .... ei(Ij−1)gj(φj,l)]T , i =

√
−1, where for

e.g. gj(φj,l) = π sin(φj,l) and angles are sufficiently separated
such that each of the columns Aj,l becomes linearly independent.
This corresponds to the case of antenna array response for ULA or
frequency response parameterized by a delay. Further vectorizing
θj = vec(φj,1, ..., φj,Pj ), so the degrees of freedom reduces to Pj
instead of IjPj for the unstructured case. So, ∀j = 1, ..., P,

J(θj) = Fpa(x)(θ1 ⊗ ...EjAjFj ...θP ⊗ θP+1....⊗ θN),
(15)

where Fpa(x) has the same expression as F(x) with F
(i)
j , ∀j =

1, .., P becomes a matrix with all ones of size Ij × Ij , Ej =
diag (0,1, ..., (Ij − 1)) and Fj = i diag (g′j(φj,1), ..., g′j(φj,Pj )).
Thus for parametric factors, J(θj) becomes a vector of size

∏
j

Ij ×

Pj . The identifiability conditions can be restated as, assuming
N∏
j=1

Ij >
P∑
j=1

Pj +
N∑

j=P+1

(Ij − 1)Pj , i.e. no. of degrees of freedom

in the dictionary <
N∏
j=1

Ij , then it is clear FIM is non-singular.
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5. SIMULATION RESULTS

In this section, we present the simulation results to validate the per-
formance of our SAVED-KS SBL algorithm (Algorithm 1) com-
pared to state of the art solutions. For the simulations, we consider a
3−D tensor with dimensions (4, 4, 4) and the number of non-zero
elements of x or the rank of the tensor (no of non-zero elements
of x) is fixed to be 4. All the elements of the dictionary matrix
A1,A2,A3 and non-zero elements of x are generated i.i.d complex
Gaussian, CN (0, 1) and the singular values are modified to convert
the matrices such that they have a particular condition number (= 2).
This is done to ensure that the system identifiability is not affected
by the Krushkal ill-conditioning [12]. Normalized Mean Square Er-
ror (NMSE) is defined as NMSE = 1

M
||x̂− x| |2, x̂ represents

the estimated value, NMSEdB = 10 log 10(NMSE). In Fig-
ure 1, we depict the normalized MSE (NMSE) performance of our
proposed SAVED-KS algorithm with the classical ALS algorithm
which doesn’t utilize any statistical information about the dictionary
or sparse coefficients. Our SAVED-KS algorithm has much better
reconstruction error performance compared to the ALS [12] and our
joint VB version performs better than the SAVED-KS version, but
comes with a higher computational complexity due to the matrix in-
version. It is clear from Figure 2 that proposed SAVE approach has
a faster convergence rate than the ALS.

6. CONCLUSION

We presented a fast SBL algorithm called SAVED-KS, which uses
the variational inference techniques to approximate the posteriors of
the data, hyper-parameters and the factor matrices of the dictionary.
We showed that the proposed algorithm has a faster convergence rate
and better performance in terms of NMSE than even the state of the
art ALS solutions for dictionary learning. Possible extensions to the
current work might include: i) Convex combination of structured
and unstructured KS factor matrices, for e.g., DoA response close-
ness to the vandermonde. ii) Asymptotic performance analysis and
mismatched Cramer-Rao bounds [34] for the SAVED-KS algorithm.
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