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ABSTRACT
The demand for data-driven decision making coupled with need to
retain data to meet regulatory compliance requirements has resulted
in a rapid increase in the amount of archival data stored by enter-
prises. As data generation rate far outpaces the rate of improve-
ment in storage density of media like HDD and tape, researchers
have started investigating new architectures and media types that
can store such “cold”, infrequently accessed data at very low cost.

Synthetic DNA is one such storage media that has received some
attention recently due to its high density and durability. In this pa-
per, we investigate the problem of integrating DNA in the database
storage hierarchy. More specifically, we ask the following two
questions: (i) how can database knowledge help optimize DNA en-
coding and decoding? and (ii) how can biochemical mechanisms
used for DNA manipulation be used to perform in-vitro, near-data
SQL query processing?

In answering these questions, we present OligoArchive, an ar-
chitecture for using DNA-based storage system as the archival tier
of a relational database. We demonstrate that OligoArchive can
be realized in practice by building archiving and recovery tools
(pg_oligo_dump and pg_oligo_restore) for PostgreSQL that per-
form schema-aware encoding and decoding of relational data on
DNA, and using these tools to archive a 12KB TPC-H database to
DNA, perform in-vitro computation, and restore it back again.

1. INTRODUCTION
Driven by the promise of data analytics, enterprises have started

gathering vast amounts of data from diverse data sources. How-
ever, recent studies have pointed out that nearly 80% of data is
“cold”, or infrequently accessed, and is growing 60% annually,
making it an ideal candidate for archival using cheaper storage
devices [16]. Unfortunately, this rapid rate of data growth over-
shadows density improvement in traditional storage hardware like
HDDs and tape. Thus, researchers have started exploring the use
of hardware–software co-design techniques using existing storage
media [3, 7, 14], or the use of new storage media that has radically
different density and durability characteristics compared to HDD
and tape [21, 28].

One such storage media that has received attention recently is
DNA [6, 10, 12, 29]. DNA possesses four key properties that make
it relevant for archival storage. First, it is an extremely dense three-
dimensional storage medium that has the theoretical ability to store
455 Exabytes in 1 gram; in contrast, a 3.5” HDD can store 10TB
and weighs 600 grams today. Second, DNA can last several cen-
turies when stored at standard temperature in an anoxic, anhydrous
atmosphere [13, 15]; HDD and tape have life times of five and thirty
years. Third, it is very easy, quick, and cheap to perform in-vitro

replication of DNA; tape and HDD have bandwidth limitations that
result in hours or days for copying large EB-sized archives. The
fourth property is the difference in Kryder’s rate, or the rate at
which media density improves every year. Kryder’s rate is around
10% and 30% for HDD and tape [2, 11, 25]. Thus, if one stores 1PB
in 100 tape drives today, within five years, it would be possible to
store the same data in just 25 drives. As storage space is a premium
commodity in datacenters, using tape for archival storage implies
constant data migration with each new generation of tape. A recent
article summarized the financial impact of such media obsolesence
on the movie industry [22]. DNA does not have this problem as the
Kryder’s rate for DNA is theoretically zero given that the density
of DNA is biologically fixed.

In this paper, we investigate the implications of integrating DNA
in the DBMS storage hierarchy. We present OligoArchive, an archi-
tecture for using a DNA-based storage system as the archival tier of
a relational DBMS. In doing so, we show how database engines and
DNA storage can symbiotically work together to minimize storage
cost and improve processing efficiency. In particular, we show how
(i) database schema awareness can be used to improve density dur-
ing the encoding process, and assist in identifying errors during
the decoding process, (ii) SQL operations that are traditionally ex-
ecuted by the DBMS in-silico can be translated into biochemical
techniques that can be executed in-vitro, thus enabling near-data
query execution directly over DNA. We demonstrate the feasibility
of OligoArchive by building tools for PostgreSQL (pg_oligo_dump
and pg_oligo_restore) that can archive and restore relational data to
and from DNA. Using these tools, we perform wet lab experiments
in which we successfully archive a 12KB TPC-H data from a Post-
greSQL database to synthetic DNA, perform in-vitro computation,
and restore the data back again.

2. BACKGROUND
DNA, or Deoxyribo Nucleic Acid, is a macro-molecule that car-

ries the genetic code required for functioning of all living organ-
ism. Nucleotides are the smaller molecules that form the building
blocks of DNA. There are four types of nucleotides: Adenine (A),
Cytosine (C), Guanine (G), and Thymine (T). Naturally occurring
DNA is structured in the form of a double helix with two strands
of nucleotides. In contrast, DNA used for data storage is a single
stranded sequence of nucleotides, also referred to as an oligonu-
cleotide (oligo), that is synthesized using a chemical process that
assembles the DNA one nucleotide at a time.

DNA has directionality, and the two ends of a strand are referred
to as the 5’ and 3’ ends. The nucleotide sequence encoded in the
DNA is read out by sequencing the oligos. The first step involved
in sequencing is amplifying the concentration of DNA via Poly-
merase Chain Reaction (PCR [4]). The PCR process takes as input



a template DNA strand, a polymerase enzyme, sequencing primers,
and individual nucleotides. Sequencing primers are short strands
of DNA used to indicate the exact beginning and end regions of the
template DNA strand that must be replicated. Based on these guid-
ing sites, the polymerase reads the nucleotide sequence from origi-
nal single-stranded DNA and assembles the individual nucleotides
to produce a complementary, parallel strand.

Following PCR, a DNA sequencer is used to read out the nu-
cleotides. While there are several sequencing techniques, the most
popular method is referred to as “sequencing by synthesis”. At a
very high level, this process also uses the DNA polymerase to syn-
thesize a double stranded DNA from the single-stranded template
similar to PCR. However, the nucleotides used during sequencing
have special terminators that force the polymerase to assemble nu-
cleotides one at a time. The assembled nucleotides are also flu-
oresced such that each nucleotide emits a different color. Thus,
as the polymerase assembles nucleotides, fluorescent microscopy
is used to record the emitted color. A base calling software uses
such color readings to identify each nucleotide. Modern sequenc-
ing techniques can sequence a strand of DNA from both 5’ and 3’
ends. Such an approach, referred to as paired-end sequencing, is of-
ten preferred to single-end sequencing due to the ability to recover
from sequencing errors due to higher coverage (the same oligo is
read multiple times).

In this paper, we investigate using DNA as an archival storage
media for databases based on the assumption that DNA storage
will become cost effective. Such an assumption is not valid today
as DNA synthesis costs approximately one-tenth to one-hundredth
of a cent per nucleotide. Given that a nucleotide can essentially
be treated as a quaternary code with four digits, the maximum in-
formation capacity of a nucleotide is 2 bits. Using $11/TB as an
approximation for the cost of tape circa 2018 [2], DNA storage
is at least seven orders of magnitude more expensive than tape.
However, recent advances in sequencing and synthesis technolo-
gies portend significant improvements in DNA storage. It is well
known that sequencing productivity has already overtaken Moore’s
law [8]. Promising work on new enzymatic synthesis technologies
and parallel array synthesis techniques are expected to also make
large-scale synthesis of oligos affordable in the future [17, 18].

3. OLIGOARCHIVE ARCHITECTURE
Database engines use a three-tier storage hierarchy that consists

of devices with widely varying price/performance characteristics.
The performance tier stores data accessed by high-performance
OLTP and real-time analytics applications. Due to the stringent
latency requirements of these applications, DRAM and Flash Solid
State Storage Devices (SSD) are the typical storage media used in
this tier. The capacity tier stores data accessed by latency-insensitive
batch analytics applications. Hard Disk Drives (HDD) are typically
the storage media of choice for this tier due to their low cost/GB
compared to SSDs. Finally, the archival tier is used to store data
that is accessed very rarely, for example, during security compli-
ance checks, or legal audits. Virtual Tape Libraries (VTL) are the
typical storage media used in this tier due to low cost and higher
durability compared to HDDs.

The OligoArchive architecture alters the DBMS storage hierar-
chy by replacing the tape-based archival tier with a DNA-based
one. In this section, we provide a high-level overview of the di-
vision of labor between the database engine and the DNA storage
device, and the interface that a DNA storage device should expose
to be used in OligoArchive.

3.1 Database Engine

DNA 

Synthesizer

PCR 

thermocycler

DNA 

Sequencer

DNA library

DBMS

db_archive

db_restore

1 CODD 0.1

2 GRAY 0.2

DNA storage system

[   Get,

[OID:    GTTCAG]

]

[   Put,

[OID:    GTTCAG],

[value: ATATGTGAGT],

[value: GATGGATCTA]

]

[   [value: ATATGTGAGT],

[value: ATGTGAGT…],    

[value: GATGTATCTA]

[value: GATGGATCTATT]

[value: GATGGATCTA]

]

Figure 1: Database–DNA storage division of labor: The database
system performs conversion between relational data and textual
representation of oligonucleotide sequences. During a put opera-
tion, the DNA storage system synthesizes DNA strands and stores
them in a library. During a get operation, DNA strands are se-
quenced and the reads are returned back. Both synthesis and se-
quencing are error prone as shown by truncated, extended, and er-
roneous reads during a get. The database encoding and decoding
procedure should guarantee recovery despite such errors.

Database engines already have well establish procedures and tools
for archiving data. PostgreSQL, for instance, provides tools pg_dump
and pg_restore that can be used to selectively archive data from a
database installation in a variety of formats. The database engine
in OligoArchive is responsible for providing similar tools for con-
verting data back and forth between the relational on-disk data for-
mat and oligonucleotide sequences. In order to do so, these tools
should take into account several limitations of DNA synthesis and
sequencing during encoding and decoding of data.

Data layout and random access. Due to limitations of DNA
synthesis, the maximum length of each oligo ranges from a few
hundred to a few thousand nucleotides at best. As the amount of
data that can stored per oligo is in the order of a few Kilobits, a sin-
gle archived table will be stored using thousands of oligos. Further,
oligos themselves have no logical addressing like block-based disk
and tape. Thus, addressing information must be encoded together
with the data. Oligos also do not support random access ability, as
it is not possible to resequence just a single oligo. Instead, random
access is achieved by using a library of sequencing primers [6, 20,
29]. With such an approach, a group of oligos that form a logical
unit (for instance, a record, a table, or a database) are associated
with a single sequencing primer from the library of primers. The
encoding procedure that converts relational data into nucleotide se-
quences should add the corresponding primers to each oligo. The
right primer is then used during sequencing to selectively retrieve a
portion of data, thus, providing random access.

Synthesis & sequencing errors. Oligos are synthesized chem-
ically one nucleotide at a time. The probability that a nucleotide
binds to the oligo during the synthesis procedure is called coupling
efficiency. The coupling efficiency of synthesis techniques is re-
lated to the length of the oligos, with longer oligos suffering from
more errors due to low efficiency. Synthesis also produces many
truncated byproducts that are oligos that do not match the synthe-
sis input. During sequencing, these spurious oligos might also be
covered generating invalid data.

The sequencing procedure also introduces errors. The type of
error introduced varies depending on the sequencing technology
used. Short-read sequencers introducing more substitution errors,
where the sequencer reports a wrong nucleotide, and long-read se-
quencers introduce indels, where the sequencer inserts or deletes
spurious nucleotides. While modern sequencing technologies can



provide very high coverage, or error-free reads of oligos, it is well
known that not all oligos get uniform coverage. Some oligos can
be read thousands of times while others may not be sequenced at
all. Thus, the encoder must add error correction metadata that can
be used by the decoder to recover data back despite such errors,
spurious additions and omissions.

Structural complexity. Oligos that contain homopolymer re-
peats (multiple consecutive occurrence of the same nucleotide), or
high GC content (higher Gs and Cs than As and Ts) are known to
amplify both synthesis and sequencing errors. Similar, current se-
quencers are also known to be prone to errors if all oligos in a pool
contain low-complexity regions (same sequence of simple amino
acids) at similar positions. Thus, the encoder should avoid generat-
ing such problematic oligonucleotide sequences.

3.2 DNA Storage System
The DNA storage system plays the role of traditional tape in

OligoArchive in that it is responsible for storage of oligos. We
model the DNA storage device as an object store. Similar to prior
work [6], we assume that the storage device internally consists of
a synthesizer, a PCR thermocycler, and a sequencer as shown in
Figure 1. However, in prior work, the storage device is responsible
for doing both encoding and synthesis during a put operation, and
decoding and resequencing during a get operation.

In OligoArchive, we make a clear division of labor between the
DNA storage device and the database engine. We expect the DNA
storage system only to provide sequencing and synthesis function-
ality. The encoding and decoding of data is done by the database
engine. Thus, the DNA storage device in OligoArchive takes as
an object identifier a DNA sequencing primer that uniquely iden-
tifies a group of oligos. The object retrieved is a file containing
the textual representation of oligonucleotides that encode the data
corresponding to that primer. Internally, the storage system uses
the synthesizer to handle the put operation by using the primer and
payload oligos to generate synthetic DNA. A get operation is han-
dled by the sequencer that uses the primer to filter and extract all
DNA strands that correspond to that primer.

4. DNA DATA STORAGE
In this section, we will focus on the database extensions re-

quired for implementing the OligoArchive architecture. We use
PostgreSQL as the target database. Thus, we will describe the inter-
nals of pg_oligo_dump and pg_oligo_restore, the utility programs
we developed to archive data from a PostgreSQL database.

4.1 Pg_oligo_dump: Encoding data
pg_oligo_dump uses a pipeline of several stages to transform re-

lation data stored in a database into synthesizable oligonucleotide
sequences as shown in Figure 3.

Extraction and preprocessing. The first stage in the pipeline
uses existing support functions in PostgreSQL to extract the data
out of the database. Once extracted, dictionary encoding is applied
to convert variable length string fields into fixed length integers.
In addition to compressing data, this process reduces the record
length, making it possible to pack multiple records in a single oligo.

DNA data representation. In the second stage, we use the ap-
proach proposed by Goldman et al. [12] to convert the data into
oligonucleotide sequences. In this approach, relational data is first
converted using a Huffman code into a sequence of ternary digits
in base3 format. Each ternary digit is then mapped to a nucleotide
using a rotating code. This use of such data representation has been
shown to avoid several structural complexity issues like homopoly-
mer repeats and high GC content mentioned in Section 3.
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Figure 2: Stages in the data encoding pipeline: Figure shows how
a relational tuple is encoded into oligonucleotide sequences. First,
dictionary compression is applied to string fields. Second, Huff-
man coding is used to convert data into trits. Third, a rotating
code is used to convert trits into nucleotides. Finally, identifica-
tion (tableID in green), error detection (parity in red) and correc-
tion (reverse-completed mirror) metadata is added together with the
primers (blue).

Schema-aware encoding. While the data representation tech-
nique is similar to Goldman et al., we differ in the way we drive
the encoding process. All current approaches to DNA storage, in-
cluding the work from Goldman et al., are application agnostic.
Thus, they work on binary blobs with no inherent structure. As
we mentioned earlier, each oligo is limited to a length of few hun-
dred nucleotides due to synthesis limitations. Thus, each blob is
broken into several chunks, and each chunk is encoded in a single
oligo. As oligos cannot be explicitly addressed, current approaches
also embed addressing information in each oligo in order to iden-
tify the index of the chunk in the original blob. Assuming 2 bits per
nucleotide, if each oligo has L nucleotides, N nucleotides are re-
served for storing addressing information, where N is log4K given
K, the number of segments. Thus, as K increases, the number of nu-
cleotides available for storing data decreases. For instance, assum-
ing an oligo length of 150 nucleotides, storing 1TB of data requires
using 17 nucleotides per oligo for storing addressing information.

We avoid addressing by exploiting database knowledge to per-
form schema-aware encoding. Each table in a relational database
has clearly defined primary keys that can uniquely identify records.
Thus, if we encode data such that each oligo maps to a record, no
additional addressing information is needed as the logical infor-
mation already provides structure. However, tables also vary with
respect the number of columns and record sizes. Thus, for some
tables, it might be possible to encode more than one record in an
oligo, while for others, a record might be too large to fit in a single
oligo. Thus, our encoding scheme treats these cases separately.

The encoder first performs a preanalysis to find the maximum
record size for any given table. Each table is assigned a unique ID
which is encoded in all oligos belonging to that table using three
nucleotides. We use three nucleotides as the TPC-H database we
encode has nine files, namely, eight tables and one dictionary. For
tables with records that fit in a single oligo, the encoder iterates
over the records and greedily groups records such that all grouped
records fit in a single oligo. Thus, a record never crosses an oligo
boundary and these tables do not need any further addressing infor-
mation. For tables with records that are too large to fit in a single
oligo, the encoder performs vertical fragmentation by decomposing
the table into column sets, and stores one column set per oligo. In
order to match a column set with its peers during data restoration,
the encoder also adds the primary key column to each column set.



This encoding reduces the addressing overhead from log4K, where
K is the number of segments, to log4C, where C is the table cardi-
nality. Finally, for the dictionary, the encoder uses the traditional
approach by breaking it into chunks that are explicitly indexed.

Error correction metadata. After data has been encoded, the
encoder also adds additional metadata for error correction. The
encoder adds a parity nucleotide to each oligo to detect errors that
might have been introduced during the synthesis or sequencing pro-
cess. To recover from such errors, the encoder also mirrors each
oligo by duplicating and reverse complementing it (reversing the
order and switching Gs/As with Ts/Cs and vice versa). As we show
later, this coverage was sufficient to guarantee full recovery in our
experiments. Finally, sequencing primers are added to either end
of each oligo and the oligo string is written out to a file.

4.2 Pg_oligo_restore: Decoding data
Pg_oligo_restore starts with two files containing all the paired-

end reads produced by the sequencer of the DNA storage system.
First, it uses well-known algorithms for merging the forward and
reverse reads into a single consensus read-assembly file [30]. For
each oligo in the read assembly file, it performs a validity check
based on the expected oligo length and parity, and removes invalid
oligos. As pg_oligo_encode stores each oligo twice both in forward
and reverse complemented form, pg_oligo_restore attempts to pair
each oligo with its reverse complement, discarding oligos that do
not have a corresponding pair. It groups oligos into bins based on
their table ID and processes each table separately depending on the
type of encoding used.

For each oligo, the rotating code is used to convert nucleotides
into ternary trits in base3 format, and the Huffman code is used
to restore back data. For tables with records spanning multiple
rows, the primary key field in each column set is used to combine
them back into a single record. In doing so, pg_oligo_restore uses
schema information to identify the correct ordering of column sets.
The dictionary is recovered by assembling the chunks in the correct
order based on the indexing information. Finally, pg_oligo_restore
uses the dictionary to restore back the originally record with vari-
able length string fields, and uses existing data importing facilities
available in PostgreSQL to import data back into the database.

5. IN-VITRO QUERY PROCESSING
So far, we investigated extensions to the database engine for en-

abling encoding and decoding of data on DNA. However, DNA,
and the mechanisms used to manipulate it, have also been used for
computation in a handful of case studies, e.g., for the Hamiltonian
path problem [1] or the strategic assignment problem [27]. Some
efforts have even tried to replicate logical gates using DNA poly-
merase [5] to build a transcriptor (biological transistor) to build
DNA chips for general purpose computing (within cells). DNA,
as a computing medium, does not provide any fundamentally new
computational capability, nor is manipulation of one oligionucelotide
particularly fast. Its promise, however, lies in the unprecedented
parallelism, i.e., in working on countless oligos in parallel.

In this, work we explore processing data directly in the DNA
storage by realizing SQL operations using molecular biology tech-
niques. More precisely, with the help of PCR, DNA nucleases [24]
and overlap-directed DNA assembly methods, we can execute se-
lection, projection as well as joins on the records encoded as oli-
gos. The sensitivity of these molecular biology techniques is suf-
ficient to perform operations on single oligos in a background of
billions of irrelevant oligos. PCR (and similar isothermal ampli-
fication methods), for example, can detect single DNA sequences
in a background of 100ng of irrelevant DNA sequences [19]. De-
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Figure 3: Encoding of an attribute of a database record as oligo.

pending on how the data is encoded as oligos, this means that PCR
can find a single record of a few Bytes in a database of 46 TB (as-
suming two bits encoded with one nucleotide). Thus, in the context
of DNA storage and relational query processing, using DNA com-
puting promises to perform operations orders of magnitude faster
thanks to the unprecedented parallelism compared to traditional
computing.

Pushing down operations to DNA storage can deplete the oli-
gos. However, using in vitro amplification methods (such as PCR
amplification) DNA can efficiently and cheaply be replicated on a
massive scale.

5.1 Selection & Projection
Selection. Given our encoding of database records as oligos we

can use PCR to find a specific record based on its attribute(s), i.e.,
we can essentially execute a point query. As discussed previously,
the primers are used to indicate the exact beginning and end regions
of the DNA strand that will be amplified during PCR. If we can
encode the attribute we want to use in the query as amplification
primers and flank the remaining attributes with them, we can use
PCR and subsequently sequencing to execute a point query as only
the oligos matching the primers will be read during sequencing.

PCR, however, is not a precise operation and a primer may also
amplify DNA sequences that are significantly similar, but not iden-
tical, to the target sequence. Key to successfully performing a se-
lection thus is the design of the encoding of attribute values (and
the matching primers). Hence we need to use a different method
than the one described in Section 4 to encode attribute values that
will enable us to selectively retrieve records.

To enable in-vitro operation over data, we encode each attribute
of a record in a separate oligo. In each oligo we encode the ta-
ble and attribute name, the record ID (the primary key), the at-
tribute value, as well as error detection and correction codes (Reed
Solomon). Given the restriction on the length of oligos, and the rel-
ative length of the first two fields (table and attribute name as well
as the record ID), we calculate a fixed length hash code of either
field and encode this using a method similar to Church [18] which
encodes two bits as one nucleotide.

While encoding the attribute value, we need to make ensure that
similar values of the same attribute are encoded to produce substan-
tially different sequences so that the imprecise molecular cloning
techniques that we use to perform an in-vitro join (described be-
low) do not end up matching spurious records. To do so, we use
the encoding outlined before but we further calculate the checksum
of the attribute value using SHA3 and encode it as well. To then
make similar attributes encodings substantially different, we split
this encoding of an attribute a as well as the checksum c separately
into subsets (a1, a2, a3, . . . and c1, c2, c3, . . . ) and interleave one
with the other (resulting in a1, c1, a2, c2, a3, c3, . . . ). Thanks to
the avalanche effect of SHA3 (and other cryptographic functions)
— small differences in input value lead to considerable differences
in the checksum — the resulting sequence will be substantially dif-
ferent, even if the attribute values are similar.

Finally, we calculate the Reed Solomon Code error correction
code over the fields as well as the attribute value, encode it and
wedge it in between the encoded field and value pairs. Figure 4
illustrates the complete structure of an oligo encoding one attribute
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Figure 4: DNA assembly used to splice/join oligos encoding
database records.

of a record, with the hash code of the fields on the left, attribute
value on the right, and error correction metadata in the middle.

Projection. Given how short the oligos encoding records are, the
overhead of sequencing unneeded attributes from oligos does not
introduce undue overhead. To implement projection, we thus use
PCR to amplify and retrieve specific attributes (as before). These
PCR products are sequenced to perform the projection in silico.

5.2 Join
Performing a join on records encoded in DNA can be accom-

plished using molecular cloning techniques as well. At their core,
molecular cloning or DNA assembly methods cut and anneal single-
stranded DNA sequences where the sequence of their nucleotides
is exactly complementary. Cells use these mechanisms to defend
against viruses, and to repair broken DNA molecules, while bi-
ologists have re-purposed the natural enzymes involved to create
synthetic DNA sequences encoding complex biological behavior.

Multiple overlap-directed DNA assembly methods exist [9], but
on a conceptual level they work similarly: two single-stranded DNA
molecules are spliced together if they match, i.e., if subsequences
of nucleotides are complementary. This mechanism allows us to
implement an efficient equi-join if the attribute values are the same
(and are encoded equally) and their DNA sequences are thus com-
plementary. Overlap-directed DNA assembly processes have a sim-
ilar specificity as PCR does and can thus join two records/oligos in
a background of Terabytes of data.

Figure 4 illustrates the join based on DNA assembly. Two records
represented by two oligos (different colors of the different parts of
the oligos indicate different values of the fields) are, if the attributes
match, spliced together. PCR is then used to amplify the result of
the join before it is sequenced. Only annealed/joined oligos are am-
plified as we use the ends of the single oligos (the pink and purple
ends) as primers for PCR.

Similarly to PCR, encoding the attributes must be done such that
similar, but non-identical, values result in considerably different
DNA sequences. We therefore use the same encoding of join at-
tributes as before to avoid spurious values from being joined. Such
approximate joins can be an interesting approach for applications
other than equi-joins, but they require further research.

6. EXPERIMENTAL EVALUATION
To demonstrate the feasibility of OligoArchive, we performed an

end-to-end experiment where we archived data from a PostgreSQL
v10.3 database to synthetic DNA and restore it back again. In this
section, we provide details about various experimental stages to-
gether with preliminary results that show that DNA can indeed be
integrated into the database storage hierarchy.

6.1 Encoding and Synthesis
Due to economic considerations, we limited ourselves to a TPC-

H SF 10−4 dataset. The input data consists of 44 records stored
across eight tables with a total size of 12KB. After loading the data
into a PostgreSQL database, we use pg_oligo_dump to generate
oligos of 138 nucleotides each. Of the 138 nucleotides, data is en-
coded in 91 nucleotides and the remainder is used by 5’ and 3’
primers that use 26 and 21 nucleotides respectively. Table 1 shows
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Figure 5: Sequencing coverage: Figure shows the number of times
each oligo is read perfectly in our sequencing experiment.

the input cardinalities and the number of oligos generated for each
table. The records from the first five tables fit in a single oligo
which pg_oligo _dump generates in addition to its reverse comple-
mented copy. Nation table is an example where pg_oligo_dump
was able to pack multiple records in a single oligo, and lineitem
table represented the case where each record was too large to fit
in one oligo and was thus partitioned into two columnsets. In ad-
dition, we also encoded the string dictionary which generated 346
oligos, and two images (for other experimental purposes) to gener-
ate 1547 oligos. Thus, we synthesized a total of 1941 oligos of 150
nucleotides covering 12KB of TPC-H data and two images. The
resulting dried down oligo pool had a weight of 103ng.

Table Cardinality #oligos
customer, part, orders, supplier, region 1 2

partsupp 4 8
nation 25 16

lineitem 6 24

Table 1: Input cardinality and oligo counts for TPC-H tables.

6.2 Sequencing and Restoration
The synthesized oligos were prepared for sequencing by ampli-

fication via PCR using 10ng of the pool. Illumina NextSeq 500
platform was used for resequencing the library which produced 625
million reads. An analysis of these reads revealed that only 2 mil-
lion of these reads were error free reads, indicating the existence
of large number of errors in the sequencing process. On analyzing
the reads, we found the existence of low nucleotide diversity across
reads, particularly in the metadata region of oligos, contributed to
an increase in sequencing errors. In order to improve diversity, we
repeated sequencing with PhiX spike-in. Figure 5 shows the se-
quencing depth, or the number times each oligo is covered, across
the 1941 sequences for both cases, with and without PhiX. Clearly,
the PhiX spike-in substantially improves the overall quality of reads
as evidenced by 10× to 100× improvement in oligo coverage. Sec-
ond, as expected, coverage is heavily skewed. While some oligos
are nearly hundreds of thousands of times, there is one oligo which
was covered only 60 times with PhiX and just once without PhiX.

Table 2 shows additional statistics about each stage of the post-
processing phase for the sequencing run with spike-in. Sequencing
produced an intial set of 388 million reads. Filtering these reads
based on length (91nt) and quality (no spurious base calls) pro-
duced 87 million reads. Filtering further based on file id produced
19 million reads corresponding to the Postgres oligos, 65 million
for the images, and 3 million reads with invalid file id due to synthe-



sis or substitution errors. Filtering these unique reads based on the
pairing requirement as explained in Section 4.2 produced 43,925
unique reads. After performing parity and decode validation, we
finally retained 1,281 reads. Although these reads cover the orig-
inal 404 oligos, we had several erroneous reads that were minor
variations of the original oligos with nucleotide substitutions. In
spite of such errors, schema information was used to easily identify
erroneous data and perform a full recovery and restoration of the
original database automatically.

Stage #Reads
Initial 388M

Length & quality filter 87M
ID filter 19M

Pair filter 43,925
Parity filter 23,409

Decode filter 1,281

Table 2: Post-processing statistics.
Although we were able to fully recover all data using our decoder

due to very high sequencing coverage, further analysis is required
to understand the scalability of our decoding process for both larger
database sizes, and lower degrees of sequencing coverage. For in-
stance, consider the oligo that was covered only once in the se-
quencing run without PhiX. Had that oligo not been covered during
sequencing, our decoder would have failed to automatically recover
the data as it eliminates oligos that do not have a matching pair.
On analyzing the reads, we found that the reverse complemented
pair of this oligo was covered 1700 times. Thus, manual introspec-
tion would have still been able to recover the data. However, such
human-in-the-loop techniques do not work at scale. Thus, we are
investigating the use of clustering algorithms for grouping oligos
into similar sets and developing consensus based on approximate
string matching. An interesting twist in our case is the fact that we
can apply schema-aware clustering algorithms to group records or
attributes compared to prior work that uses schema-agnostic ones
to cluster raw reads [23].

6.3 In-vitro Query Processing
In the following we describe the experiments for selection and

join push down to DNA.
Selection. In the selection experiment, we want to study the

sensitivity of the method, i.e., given a query with high selectivity,
can we find and retrieve the matching oligo(s)?

We use two different records/oligos from the supplier table, one
in low concentration (a few of the same oligo) and one in high
as well as increasing concentration (massive number of the same
oligo). We add the high concentration to emulate the background,
i.e., irrelevant records that do not match the query (ideally these
would be different oligos but encoding the whole of the doing so is
costly). We encode the two records with the approach discussed in
Section 5. The resulting linear oligos are then amplified using PCR.
We used Nanopore sequencing [26] (see Appendix A for the pro-
tocol) to read out a specific oligo encoding the partkey attribute of
the partsupp table in a background of random oligos (same length).

Join. In the join experiment we combine matching oligos, i.e.,
records with the same attributes, against a background of oligos
with randomised sequences. As we are interested in the sensitiv-
ity of the method, we use few matching oligos in massive counts
as well as increasing number of non matching ones. More specif-
ically, we perform a join between one oligo/record from the parts
and partsupp tables using the scheme described in section 5. The

Figure 6: Oligo join sensitivity: specific oligo amplification diluted
at different ratios in a background of random oligos. Amplification
bands can be seen up to 10−5 dilution, meaning that two specific
oligos are annealed/joined in a background of 105 random oligos.

background oligos had the same length together with the same ta-
ble and attribute names, however the primary key, error correction
and the fixed length hash value were randomised (by ordering these
positions as degenerate nucleotides). The initial annealing reac-
tion was conducted using known primers that specifically anneal to
each other (namely oligos encoding the partkey attributes of both,
the partsup and parts table) combined in a mixture with a pool of
primers with randomized bases. The protocol of the experiment is
summarised in Appendix A.

The results of the sensitivity analysis are shown in Figure 6 illus-
trated by gel electrophoresis (after the amplification step). As the
figure shows, the join result can be seen up to a dilution of 10−5

meaning that one pair of matching oligos joins in a background of
105 irrelevant or non-matching oligos. Using Nanopore sequenc-
ing (the detailed protocol is in Appendix A), we have also been
able to read out the correct join results by sequencing from the join
reaction.

7. CONCLUSION
Driven by recent advances in the biotechnology industry, com-

puter architects have recently argued that time is ripe for integrating
biomolecules as an integral part of system design [6]. In this paper,
we take the first step from the perspective of data management sys-
tems towards this goal by presenting OligoArchive–an architecture
for using DNA as the archival tier of a relational DBMS. Our exper-
iments show that it is not only feasible to archive and restore data
using synthetic DNA, but also exploit database knowledge for opti-
mizing the encoding and decoding process, and even execute SQL
operations directly over DNA. In doing so, we set the stage for a
new breed of data management systems that are not just biological
inspired, but biologically powered.
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APPENDIX
A. EXPERIMENTAL PROTOCOL JOIN

Primers were annealed to one another and extended in a single 20
µL reaction. This mixture consisted of 13 µL of Milli-Q water, 4 µL
HF Buffer, 0.0 - 0.9 µL of each specific primer pair (parts-partkey,
parts-partkey-RC, partsup-partkey and partsup-partkey-RC), 0.0 -
0.9 µL of each random primer pair (parts-random and partsup-random)
and 0.2 µL of Phusion polymerase. The reaction was performed in
an Applied Biosystems Veriti 96 well thermal cycler, programmed
for denaturation at 98 °C for 30 seconds, cooled down to 63 °C
over 1 hour, and annealed at 63 °C for 10 mins, followed by exten-
sion at 72 °C for 15 mins. We added random primers in varying
proportions (summing to 0.9 µL) to test sensitivity. All primers and
dNTPs are from 10 µM stock.

The product of the annealing reaction was then used in the subse-
quent amplification step, using the primers partsup-amp and parts-
amp. The 20 µL mixture consisted of 8.4 µL Milli-Q water, 4 µL
HF buffer, 0.4 µL dNTPs, 5 µL PCR mixture from the annealing
step, 1 µL of partsup-amp, 1 µL of parts-amp, and 0.2 µL of Phu-
sion polymerase. The thermal cycler was programmed at 98 °C for
initial denaturation, followed by 30 cycles of the following: denat-
uration at 98 °C for 10s, annealing at 61.5 °C for 30s and elongation
at 72 °C for 15s. This was then followed by 10 minutes of a final
extension at 72 °C.

Oxford Nanopore DNA sequencing was carried out according to
the manufacturer’s instructions, following the 1D amplicon/cDNA
by ligation protocol using the SQK-LSK109 sequencing kit. The
only change made was the omission of the NEBNext FFPE DNA
Repair Buffer, which was replaced by Ultra II End-prep reaction
buffer, and the NEBNext FFPE DNA Repair Mix, which was re-
placed by nuclease free water.


