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Abstract
UNIVERSITÉ CÔTE D’AZUR

Doctor of Philosophy

Modélisation de Trafic Routier Hétérogène pour Systèmes de Transport Intelligents

by Sosina Mengistu GASHAW

Cette dissertation modélise et analyse les flux de traffic hétérogènes, avec une attention
particulière portée à la circulation de voitures et de deux-roues. L’augmentation du
nombre de congestions de traffic a forcé les personnes désirant se déplacer à se diriger
vers les le deux-roues (appelé ici PTWs = powered two wheelers), comme les motos,
les mopeds et les scooters, du fait de leur facilité de manoeuvre et leur efficacité dans
l’espace. L’augmentation du nombre de PTWs combinée au caractère unique de cer-
taines de leurs fonctionnalités a résulté en un traffic complexe, donc les particularités
sont difficiles à recréer avec les approches de modélisation existantes.

Nous développerons ici un modele analytique permettant de reproduire de manière
pertinente les particularités d’un flux de véhicules mêlant à la fois les voitures et les
deux-roues. Le traffic se décompose en deux classes de véhicules : les PTWs et les
voitures. Les propriétés fondamentales sont déduite en employant une approche "porous
flow". On suppose que la vitesse d’un véhicule d’une certaines classe est dictée par les
propriétés physiques et motrices du véhicule, ainsi que la distribution d’espace vide sur
la route. Nous proposons une méthode d’approximation pour dériver la distribution
d’espace vide.

Dans le but d’explorer plus largement les caractéristiques du flux de traffic notam-
ment requis par les applications de système de transport intelligent (ITS), nous formu-
lons le modèle dans les cadres lagrangien et eulérien. Puis, nous feront appel à une
méthode numérique pour la discrétisation du modèle mathématique.

Se basant sur le modele développé nous analyserons les caractéristiques du flux
de traffic pour en identifier les propriétés les plus importantes qui nous permettrons de
prédire de futures ITS applications et d’organisations du traffic. La possibilité d’appliquer
le modele pour les différentes ITS applications est illustrée par des exemples. Finale-
ment, le modele développé est validé à l’aide de l’outil de microsimulation .

http://
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Abstract
UNIVERSITÉ CÔTE D’AZUR

Doctor of Philosophy

Modeling Heterogeneous Vehicular Traffic for Intelligent Transport System
Applications

by Sosina Mengistu GASHAW

This dissertation models and analyzes heterogeneous traffic flow, with a particular fo-
cus on mixed traffic flow consisting of cars and two-wheelers. The increase in traffic
congestion induces commuters to switch to powered two wheelers (PTWs), i.e. motor-
cycle, mopeds and scooters, because of their high maneuverability and space efficiency.
The growth in number of PTWs, combined with their unique mobility features, results
in complex traffic characteristics which are difficult to recreate with the existing model-
ing approaches.

We develop an analytical model that can accurately reproduce the traffic features
in a mixed flow of cars and PTWs. The traffic stream is decomposed into two vehicle
classes, PTWs and cars. The fundamental properties are derived by employing a porous
flow approach. It is assumed that the speed of a vehicle class is dictated by the physical
and motion properties of the vehicle class, and the distribution of free spaces on the
road. We propose an approximation method to derive the free-space distribution.

In order to explore broader aspects of the traffic flow characteristics, notably re-
quired by intelligent transport system (ITS) applications, we formulate the model in
the Lagrangian and the Eulerian frameworks. Further, we provide a numerical method
for the discretization of the mathematical model.

We analyze the flow characteristics of mixed PTWs and cars traffic and identify im-
portant properties, which give insights for future ITS solutions and traffic policy mak-
ers. The applicability of the model for different ITS applications is illustrated. Finally,
the developed model is validated using a microsimulation tool.

http://
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Chapter 1

Introduction

Facilitating optimal mobility is the core target of several traffic flow related studies. The
increase of road traffic coupled with the limited road infrastructures brings about dif-
ferent traffic problems. In the pursuit of understanding and tackling these problems,
traffic flow models have played an indispensable role. Traffic flow models represent
the traffic dynamics in mathematical equations, Thus giving the capability to analyze
different traffic aspects and to forge operation rules. For example, a traffic control plan
can be induced based on the current (estimated) and the future (predicted) traffic condi-
tions, wherein traffic flow models are employed to estimate and predict the traffic state.
Moreover, having a model that can replicate the real traffic dynamics offers a flexibility
to see beyond what is observed in real situations. This opens a door for innovative and
intelligent mobility solutions.

This dissertation presents the modeling and the analysis of heterogeneous traffic
flow, with a particular focus on mixed traffic flow consisting of cars and Powered Two
Wheelers (PTWs). We develop a model that can recreate the traffic features in mixed
cars and PTWs flow. The model properties are examined qualitatively and quantita-
tively. Furthermore, the traffic flow characteristics that are important for intelligent
transportation system (ITS) application development are investigated.

The next sections are organized as follows. The first section discusses the problem
statement and the motivations (Section 1.1). Section 1.2 and 1.3 present the objectives,
and the methodology applied to achieve the objectives, respectively. Section 1.4 sum-
marizes the major contributions of this dissertation. Finally, Section 1.5 outlines the
organization of the dissertation.

1.1 Background

While owning a car is considered as a social achievement in most of the eastern coun-
tries, drivers in Europe slowly replace them with motorcycles and other types of Pow-
ered Two-Wheelers (PTWs) such as scooters and moped. The shift to two-wheelers
comes from different reasons, with the primary reason being the maneuverability ad-
vantage gained from their compact size. Because of their small size, PTWs can move
between lanes of traffic. Thus, PTWs rider can avoid being stuck in congestion by fil-
tering through traffic lanes. This is seen as a potential means to beat congestion by
commuters that need to pass through the congested traffic, particularly in big cities.

PTWs represent a growing class of traffic, between the year 2002 and 2011 the fleet
of PTWs increased by 17% in Europe (OECD/ITF, 2015). The recent report from Euro-
pean Association of Motorcycle Manufacturers (ACEM) indicates that motorcycle and
moped registration in France went up by 4.1 %, in 2017. Although Europe wide it shows
a 1.6 % decrease. According to the trend, the number of PTWs on the road is expected to
keep growing. However, there are unresolved issues regarding the transport policy to-
ward PTWs. Whether to allow lane splitting or not remains a controversial issue among
policy makers. For example, lane splitting is legal only in some regions of France. No
matter what the rule says, most of the PTWs riders do lane splitting (Aupetit, Espié,
and Bouaziz, 2015). Moreover, despite the advancement in the ITS technologies and
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the availability of remarkable amount of ITS solutions to create a safe and efficient traf-
fic flow, PTWs are not integrated into most of the systems. Integration of PTWs into the
ITS benefits not only PTWs but also all road users.

To clarify the issues regarding what policy should be applied toward PTWs, a thor-
ough research is required. Moreover, it is also essential to facilitate efficient and safe
cohabitation of PTWs with other road users. By this means, the opportunity the shift
to PTWs offers in easing congestion can be utilized fully, without compromising their
safety and affecting other road users. There are some initiatives looking for the best in-
tegration of PTWs to the traffic system. Allowing two-wheelers to use bus lane (York et
al., 2010) is one of the measures. Segregation of PTWs from other traffics (Radin Umar,
Mackay, and Hills, 1995) is also seen as a solution in countries where there are signifi-
cantly high number of PTWs. In the European context, where the proportion of PTWs
is much less than passenger cars, allocating an exclusive road space for PTWs might be
infeasible.

Beside the experimental studies, traffic flow models play a significant role in an-
swering the different questions raised concerning the effective way of integrating PTWs
to the traffic system. Answering these questions in turns helps to devise intelligent
traffic solutions, e.g, traffic control and management solutions. Traffic flow models also
supplement model-based traffic control and management systems with traffic state es-
timation and prediction functionality.

Since the 1950s traffic flow models have been applied to investigate different traf-
fic phenomena. The dynamics in the real traffic flows is replicated by the models
through various representation and approximation methods (S. P. Hoogendoorn and
Bovy, 2001). Depending on the level of detail, the mathematical representations at-
tempt to describe the individual driver or the aggregated flow behaviors. The indi-
vidual driver behaviors are characterized using the ’law of separation’ (Louis A Pipes,
1953) also known as follow-the-leader principles and stochastic parameters. For the
aggregate level description, the well known Lighthill-Whitham-Richards (LWR) model
(Lighthill and Whitham, 1955b; Richards, 1956) approximates the traffic flow with the
method of kinematic wave or motion of fluid. This dissertation applies this LWR
method.

The original LWR model is developed for a homogeneous traffic, where all the vehi-
cles that make up the traffic stream exhibit identical average behavior. However, in real-
ity traffic streams contain vehicles with different physical (length, size) and operational
(speed, acceleration, etc.) characteristics. The heterogeneity of the driver/vehicles char-
acteristics impacts traffic flow properties (Sarvi, 2013; Puppo et al., 2016) at the collec-
tive as well as the individual level. Therefore, for accurate representation of traffic
flows, it is essential to incorporate the heterogeneity aspect. For this reason, the LWR
model is extended by introducing the concept of vehicle classes. The traffic stream is
decomposed into homogeneous sub-streams or vehicle classes. Vehicles in the same
class are assumed to have identical behavior.

The majority of the heterogeneous, also called multi-class, LWR models is formu-
lated to describe the interaction of cars and trucks or vehicle types which have a re-
sembling characteristic, i.e. the distinguishing factors among the vehicle classes are the
maximum speed, the length, the space/time headway, etc. However, the presence of
PTWs, which have a unique maneuverability calls for a different approach to describe
the interaction between vehicle classes and the fundamental traffic properties. PTWs
ride through the space between other vehicles or between vehicles and road boarders.
This maneuvering capability of PTWs permits them to travel at non-zero speed while
other vehicles are stationary. The approximation method used to model traffic flow
containing PTWs, therefore, should reflect these behaviors.

Hence, it is necessary to develop models that can accurately reproduce the mobility
behavior of PTWs and the resulting interaction. Thereby, the models can be employed
for various applications, and also can be utilized as experimentation tool for the evalu-
ation of PTWs related traffic policy and traffic management strategies.
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1.2 Research objective

Understanding the mobility characteristics of traffic flows containing PTWs is a major
step for the inclusion of PTWs in traffic control and management plans, and for the
emergence of other PTW-aware intelligent mobility solutions. Therefore, it is impera-
tive to have analytical models and simulation tools that can replicate the characteristic
of such flows. The objectives of the dissertation are the following:

• Develop an analytical model that can accurately replicate the dynamics of mixed
cars and two-wheeler flows. The model bases on multi-class LWR model. In order
to explore broader aspects of the traffic flow characteristics, we apply the two
different LWR representations, namely the Lagrangian and the Eulerian method.

• Develop efficient and accurate discretization schemes that can approximate the
solution of the model equations.

• Analyze the traffic flow characteristics and identify important properties, which
provide an insight for future mobility solutions and traffic policy maker.

• Study the integration of two-wheelers into traffic management and control sys-
tems.

1.3 Methodology

Traffic flow models are usually developed by introducing different assumptions and
approximation methods, which base on theoretical and empirical foundation. There-
fore, the first step in developing traffic flow model for traffic streams containing PTWs
is to establish the required traffic properties. To that end, the maneuvering features
of PTWs and the collective mobility characteristics of traffic flows consisting of PTWs
and other vehicle types reported in the literature are reviewed, mainly the empirical
observation. From this analysis, we identify the required mobility features. Then, the
identified properties are used to decide the modeling approach.

Traffic flow models can be formulated at different granularity levels, namely micro-
scopic, macroscopic and mesoscopic. The choice of the level of detail depends on the
required application, accuracy level and computational efficiency. In this dissertations,
we aim to develop a model that can describe traffic heterogeneity, computationally ef-
ficient for a large scale analysis of traffic flow properties, and for real-time ITS applica-
tions, and also can allow the tracking of vehicles. For these reasons, the macroscopic
approach, particularly the LWR approach, is selected. In the LWR approach, traffic
heterogeneity can be modeled by decomposing the heterogeneous flow into homoge-
neous sub-flows. Further, the flow equations can be described and solved in Eulerian
or Lagrangian coordinate systems. The Lagrangian description allows the tracking of
vehicles, which makes it useful for cooperative ITS (C-ITS) applications. The Eulerian
description also has advantage in terms of simplicity. Therefore, for traffic efficiency
applications that do not necessitate the tracking of vehicles, the Eulerian method is
preferable. Since each representation has an apparent advantage, we formulate the
model equation in the Eulerian as well as the Lagrangian frameworks.

Besides the flow equation, the fundamental relationship, i.e., speed-density or flow-
density relationship, is the important component of the LWR models. To derive a law
that defines the fundamental relationship, different analogies and approximation meth-
ods are used. According to the identified traffic features in traffic flow containing PTWs,
we evaluate the fundamental relations applied in the existing heterogeneous LWR mod-
els. It is found out that the porous flow analogy is a suitable approach for our interest.
However, the porous flow approach is not well explored. In porous flow approach the
road space is treated as a porous medium, where the pores are the free space between
vehicles, and the vehicles are the solid objects that form the pores. A proper descrip-
tion of pore size (or inter-vehicle spacing) distribution is necessary to formulate the
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fundamental relations. We therefore devise an approximation method to characterize
the porous medium, and determine the inter-vehicle spacing distribution and its pa-
rameters. The distribution parameters are defined based upon a Poisson point process
assumption for geometrical distribution of vehicles. Moreover, the correlation of pore
size distribution with the size of vehicles and the road geometry is integrated. After-
ward, we define the fundamental relationships and analyze the model properties.

Furthermore, the solution of LWR models is approximated by applying a discretiza-
tion scheme. Thus, we develop a discretization scheme for solving the equation of the
model.

The next step is analyzing the model qualitative properties. We check whether the
model is able to capture the required traffic characteristics or not. The model is assessed
with respect to the requirements which are set out based on the traffic features observed
in real-world scenarios. The model is also compared with a model that applies the
porous flow approach.

Moreover, to improve the performance of the model, we conduct a model calibra-
tion and validation process. Due to the lack of real traffic data, synthetic data obtained
from micro-simulation tool Vissim is employed for the model calibration and valida-
tion. In the calibration procedures, first the fundamental curves are derived from the
traffic data. Then, the model parameters are adjusted to fit the curves. Accordingly, we
establish a relation between the traffic composition and the jam densities of the vehi-
cle class. Further, the critical gap is described as a function of the traffic state. In the
validation phase, we evaluate the validity of the proposed pore-size (or inter-vehicle
spacing) distribution. The applicability of the model is also validated by comparing the
prediction and the experimental data.

Afterward, the model is applied to analyze the traffic characteristics that are impor-
tant for ITS application development. In order to develop PTWs-aware ITS applica-
tion, it is crucial to understand the underlying traffic features. We study the impact of
PTWs on road capacity and travel time. Finally, we study the existing traffic control ap-
proaches in the context of adaptive traffic light control and variable speed limit control.
The method to integrate PTWs in such systems is introduced.

The developed model is intended to contribute as an enabler for ’PTW aware’ ITS
solutions and traffic regulations. For example, a variety of traffic control strategies re-
quire traffic flow models to predict the traffic state and make an appropriate control
decision. Employing our model in such system opens a door to the inclusion of PTWs
in traffic control. On the other hand, the model can be used as a framework to as-
sess the optimality of the existing control schemes, including information collection
and computation methods. Moreover, the model can help traffic regulator to determine
collective and class-specific optima and to induce a vehicle class specific flow adjust-
ment. In this way, new traffic regulations adapted to PTWs can be introduced, which in
turn promotes the use of PTWs. Additionally, our model could be applied to design a
smart two-wheeler navigation system which is well aware of PTWs’ capability to move
through congested car traffic and provides a route plan accordingly. The model could
also contribute in the proper integration of PTWs into multi-modal transport planning.
In general, the model plays a role in enabling ’PTW aware’ traffic efficiency related
applications/technologies.

1.4 Contribution

The dissertation contributes to the state-of-the-art in many ways, with the main contri-
butions being:

• A methodology to approximate the fundamental relations.The fundamental rela-
tion is derived based on the porous flow approach, which requires the distribu-
tion of the inter-vehicle spacing and the statistical parameters. A framework to
approximate the inter-vehicle spacing distribution and its parameters is provided.
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• An analytical model for a mixed cars and two-wheelers traffic flow. The model
is formulated in Lagrangian (mesoscopic) as well as in Eulerian (macroscopic)
frameworks. The Eulerian description observes the the traffic phenomena at a
fixed point, whereas the Lagrangian description observes the traffic phenomena
along the trajectory of vehicles. Each representation, therefore, gives different
view of the traffic flow.

• Discretization scheme to approximate the model equations. We develop an ap-
propriate discretization method to solve the solution of the model equation.

• Analysis of different traffic characteristics that are important for the development
of PTWs-aware ITS application. We investigate the characteristics of the mixed
flow of car and PTWs and identify the features that should be considered in the
development of ITS applications.

• Model validation and calibration. The validity of the assumptions used to con-
struct the model, and the capability of the model to reflect the observed behaviors
in mixed flow of car and PTWs are demonstrated using synthetic data from a
micro-simulation tool. Moreover, the model parameters are calibrated.

1.5 Thesis Organization

The remainder of the dissertation is organized in the following manner.
Chapter 2 presents the-state-of-the-art of heterogeneous vehicular traffic flow mod-

eling. This includes the applicability of traffic flow models in intelligent transportation
systems (ITS); the need to shift from homogeneous modeling approach to heteroge-
neous flow modeling; the frameworks of heterogeneous traffic flow modeling at differ-
ent granularity. This dissertation focuses on a particular case of heterogeneous traffic
flow modeling, namely traffic flow containing PTWs. Thus, the specific maneuvering
characteristics of PTWs and the modeling approaches are also presented.

Chapter 3 describes the model development. The requirements of the model are set
out and the interpretation of the requirements in the model development is explained.
The principles employed for the derivation of the fundamental relation, i.e., the in-
teraction between vehicle classes is explained. Furthermore, the formulation of the
flow equations in the Lagrangian and the Eulerian coordinate systems as well as the
discretization methods used to solve the solution of the flow equations are described.
Finally, we present numerical examples to illustrate the validity of the proposed dis-
cretization schemes.

Chapter 4 focuses on the analysis, comparison, calibration and validation of the
model developed in Chapter 3. The mathematical properties of the model is analyzed.
The fundamental relation are examined with respect to the requirements. Moreover,
the model properties are tested and compared against the known realistic traffic char-
acteristics and other models. Using synthetic traffic data, the model parameter are cali-
brated, and the mode is validated.

In Chapter 5, we analyze the important traffic characteristics for ITS application
development. Traffic impacts of PTWs are discussed. Furthermore, the existing ITS
traffic management and control methods are evaluated by considering particular cases,
namely adaptive traffic light and variable speed limit controls. Then, we present a
method to improve the control strategies, and the proposed methods are examined.

Chapter 6 concludes this dissertation by outlining the key findings and recommend-
ing future research directions.
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Chapter 2

Heterogeneous Traffic Flow
Modeling

2.1 Introduction

The increase in vehicular traffic becomes the source of traffic congestion. Several re-
searchers have been seeking for congestion relieving solutions. Congestion mitigation
strategies ranging from road infrastructure and public transport improvement to in-
fluencing and managing traffic behavior have been implemented. To keep pace with
new challenges and opportunities (e.g., emergence of new technologies), congestion
alleviation is still an ongoing issue. Due to the complexity of the problem and the fac-
tors causing it, a comprehensive study is required to understand the causes of different
phenomena and how to create a better situation.

Traffic flow models play an indispensable role for understanding the fundamental
traffic properties and other wide ranges of characteristics, such as the causes and the
dynamics of congestion, and capacity drops. Furthermore, the existence of models that
can reproduce the real traffic behaviors in a reasonable accuracy becomes an enabler for
various types of traffic monitoring, control and management solutions. Beyond repro-
ducing the observed traffic characteristics, with traffic flow models it is also possible
to envision ’what-if’ scenarios and think beyond the existing situations. Traffic mod-
els also serve as a tool for evaluation of traffic planning, infrastructure design, control
measures and traffic policies.

For these reasons, a number of mathematical theories have been developed to de-
scribe the complex characteristics of vehicular traffic flow. The theories are usually
established based on empirical observations and different analogies or assumptions.
The models differ in the scope of their application, the way the flow properties are in-
terpreted and the level of detail in which the traffic dynamics is represented. According
to the level of detail at which the traffic dynamics is described, the models can be cat-
egorized as microscopic, macroscopic and mesoscopic (S. P. Hoogendoorn and Bovy,
2001; Klar, Kühne, and Wegener, 1995).

Microscopic models describe the manner in which drivers follow each other. The
general principle used to represent drivers’ behavior is termed follow-the-leader, which
characterizes how drivers regulate their motion with respect to the leading vehicle.
Broadly speaking, the governing rule for the car-following behaviors can be expressed
either in the form of ’safe distance’ (Louis A Pipes, 1953; Gipps, 1981) or ’stimulus-
response’ (Gazis, Herman, and Rothery, 1961) theories. In the former principle, the
drivers’ motion properties (speed, acceleration) are constrained by the required safe
distance with respect to the preceding vehicle. Whereas, in the latter the response (e.g.,
acceleration/deceleration) of the drivers is triggered by the action of the leading ve-
hicle (e.g., relative speed, relative spacing). The car-following behavior represents the
longitudinal movement of vehicles. There are also lane changing models that describe
the lateral movement of vehicles (Kesting, Treiber, and Helbing, 2007; Gipps, 1986).

The macroscopic representation attempts to characterize the aggregated flow prop-
erties. The traffic flow properties are quantified with macroscopic variables, such as
flow, speed and density. The theory developed by Lighthill and Whitham, and Richards
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(Lighthill and Whitham, 1955a; Lighthill and Whitham, 1955b; Richards, 1956), usually
referred as LWR model, is the foundation for the majority of macroscopic models. In the
theory, the dynamics of traffic flow is described in analogy with one dimensional fluid
motion. The relationship between the macroscopic quantities speed, flow and density
is the other important hypothesis of the LWR model. A lot of other researchers have
also established a functional form for the equilibrium speed-density or flow-density re-
lationship, which is called fundamental diagram/relation (Greenshields, Channing, H.
Miller, et al., 1935; Greenberg, 1959; Louis Albert Pipes, 1966; Underwood, 1961; Del
Castillo and Benitez, 1995; Edie, 1961. Another variant of the macroscopic traffic flow
model is the second order model (two equations model) (Aw and Rascle, 2000; Payne,
1971; M. Papageorgiou, 1983). Instead of the equilibrium speed definitions in the LWR
model, the two-equations model defines a dynamic speed equation. Macroscopic mod-
els are suitable for the dynamic control and traffic condition assessment, e.g., real-time
traffic monitoring, prediction and control.

The other level of traffic flow modeling is the mesoscopic approach. Like the macro-
scopic modeling, vehicles are aggregated according to certain properties, however, the
driving behavior of individual drivers and the interaction between vehicles are explic-
itly expressed with a probability distribution. The models that follow the gas-kinetic
approach fall under this category. The kinetic models express the dynamics of distri-
bution functions (Paveri-Fontana, 1975; Wegener and Klar, 1996; Chowdhury, Santen,
and Schadschneider, 2000).

Most of the existing models are well fit to describe homogeneous traffic situations.
Nevertheless, there is a dissimilarity between vehicles in the traffic flows, and the in-
dividual vehicle’s behavior is influenced by other interacting vehicles. Apparently, the
characteristics in heterogeneous flows diverges from what is observed in homogeneous
cases. With the homogeneous assumption, therefore, it is difficult to observe the impor-
tant traffic phenomena existing in heterogeneous flows. This inability of homogeneous
models to correctly reflect the characteristics in non-homogeneous traffics drives the
emergence of heterogeneous traffic flow models.

This chapter reviews the relevant work on heterogeneous traffic flow modeling. In
Section 2.2, the general overview of intelligent transportation system (ITS), and the
roles of traffic flow model is covered. The next section (Section 2.3) presents the traf-
fic flow modeling approaches at different level of details, namely microscopic, macro-
scopic, and mesoscopic, with more emphasis on macroscopic models. Further, the ex-
tension of the modeling approaches to represent heterogeneous traffic flow is also pre-
sented. The next section focuses on two-wheelers (Section 2.4). We review the observed
traffic characteristics of two-wheelers reported in literature, and based on that we out-
line the important maneuvering features of PTWs that should be included to model
traffic flow containing PTWs. The assumptions and approaches used to translate these
features in microscopic and macroscopic models are discussed. Thereafter, we discuss
the validation and calibration of traffic flow models (Section 2.5). Finally, we end the
chapter with conclusion (Section 2.6).

2.2 ITS applications

ITS aims at realizing a safe, efficient and environment friendly transportation systems,
with the help of advanced technologies. The main players in ITS are users, vehicles and
road infrastructures. By creating a cooperation between these entities, numerous traffic
challenges have been resolved and the operation performance of the transportation
systems has been improved.

To address the multifaceted road safety issues, a range of ITS solutions are avail-
able. Cooperative collision warning (CCW) systems (Misener, Sengupta, and Krishnan,
2005) alert drivers about the potential collision risks, based on the information collected
from surrounding vehicles, road users or road infrastructure. There are various types
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of CCW systems, such as forward (rear end) collision warning (Dagan et al., 2004; Jam-
son, Lai, and Carsten, 2008), intersection collision warning (R. Miller and Huang, 2002;
Dogan et al., 2004), lane change assistance (Habenicht et al., 2011; Dang et al., 2014).
The forward collision warning systems target to prevent vehicles from colliding with
the vehicle in front. This is achieved by monitoring the relative distance and activating
a warning message if the threshold is passed. Likewise, the intersection collision warn-
ing systems trigger infrastructure or vehicle based warning message when a possible
conflict is detected between vehicles crossing intersections from different directions.
The lane change warning systems, on the other hand, assist drivers to perform a safe
lane change. Since drivers may fail to react to the warning messages, collision avoid-
ance systems which combine the CCW systems functionality with intervening system
have been also developed (Doi et al., 1994; Seiler, Song, and Hedrick, 1998). Another
important automated driver assistance system, which provides an automatic longitudi-
nal distance control, is adaptive cruise control (ACC) (Marsden, McDonald, and Brack-
stone, 2001; Ploeg et al., 2011). ACC contributes also to improving traffic efficiency (Van
Arem, Van Driel, and Visser, 2006; Schakel, Van Arem, and Netten, 2010).

Furthermore, ITS applications have played remarkable roles in promoting efficient
use of transport networks. The main objectives of traffic efficiency ITS applications are:
alleviating congestion, minimizing travel time, creating smooth traffic flow, etc. One
way of promoting traffic efficiency is to influence drivers’ behavior by giving real time
traffic information. For this reason, traveler information systems (TIS), which dissemi-
nate information about real time traffic and road conditions, are developed (Adler and
Blue, 1998; Levinson, 2003). Thus, drivers make a pre-route (e.g., departure time and
transport mode) or en-route decisions (e.g., route choice) according to the traffic state
update received from TIS. Moreover, ITS also has introduced smart traffic management
systems (TMS) that control traffic demands. Nowadays, there are numerous advanced
TMS, for example traffic responsive and coordinated traffic signal control for urban
traffic control (Priemer and Friedrich, 2009; Lämmer and Helbing, 2008), ramp meter-
ing (M. Papageorgiou and Kotsialos, 2002) and variable speed limit control (Ghods,
Kian, and Tabibi, 2009) for freeway traffic can be mentioned.

FIGURE 2.1: The roles of traffic flow models in ITS applications

ITS applies a wide range of information and communication technologies in order to
solve the transportation problems (Papadimitratos et al., 2009). The emergence of these
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technologies is therefore a key enabler for the advancement ITS applications. In differ-
ent ITS applications, the information exchange between vehicles (V2V) or vehicles and
infrastructures (V2I) relies on communication technologies (Dar et al., 2010; Maimaris
and G. Papageorgiou, 2016). Sensing and data acquisition technologies (Guerrero-
Ibáñez, Zeadally, and Contreras-Castillo, 2018), like sensors, GPS, and loop detectors,
used to to collect information about traffic and road conditions are also the core parts
of ITS. Further, the consolidation and aggregation of traffic information collected from
multiple sources require data processing technologies (El Faouzi, Leung, and Kurian,
2011).

Traffic simulation models are also equally important as the aforementioned tech-
nologies for ITS (Clark and Daigle, 1997). A thorough understanding of the traffic flow
characteristics is essential for devising new ITS applications. Due to the issues related
to cost, safety and security, sometimes it is difficult to evaluate ITS applications in real
scenarios. In such cases, simulation based study is a more convenient and efficient al-
ternative than field experiment. Moreover, traffic flow models are used for traffic state
prediction and estimation in real-time traffic management systems.

2.3 Heterogeneous traffic flow models

In reality, traffic streams are composed of various types of vehicles and drivers. The
term heterogeneous (also called mixed and multi-class) traffic flow is used to indi-
cate this difference in the operating characteristics of vehicles (e.g., physical dimension,
maximum speed, acceleration and deceleration capability) as well as drivers’ behavior.
In heterogeneous traffic flows, because of the difference among vehicles/drivers, under
identical traffic conditions vehicles/drivers behave differently.

Earlier traffic flow models were designed for homogeneous traffic flows, implying
a given characteristic is exhibited by all of the vehicles. However, the homogeneous
assumption neglects the very in-homogeneity of traffic flows, and therefore fails to cor-
rectly describe the real characteristics. It is hardly possible to find a single character-
istic that can represent the diverse behavior of vehicles/drivers in heterogeneous traf-
fic flows. When vehicles with different moving features share a road, vehicles/drives
show a different behavior than in homogeneous flows due to the interaction between
vehicles. Accordingly, there is a disparity in the individual vehicle (microscopic) as
well as the collective (macroscopic) behaviors between homogeneous and heteroge-
neous flows. For example, the study in (Ossen and S. P. Hoogendoorn, 2011) shows
that the car following behaviors of trucks and cars are different. Further, the behavior
of the vehicles appears to be influenced by the lead vehicle type. Similarly, the effect of
the presence of different vehicle types is also revealed in the macroscopic traffic char-
acteristics. The fundamental relation in heterogeneous traffic flow depends on traffic
composition (type and ratio of vehicles) (Wang et al., 2007; Kockelman, 1998). The pres-
ence of heavy vehicles like trucks also causes a reduction in road capacity.

To correctly describe the traffic flow characteristics, it is therefore important to dis-
tinguish between vehicle types and drivers’ behaviors. Treiber and Helbing (Treiber
and Helbing, 1999) show that the scattering phenomenon in fundamental relationship
can be reproduced by integrating traffic heterogeneity in the model. Moreover, includ-
ing the behavior of each vehicle type and the resulting collective traffic characteristics
in traffic models improves the effectiveness of traffic efficiency and safety ITS solutions.

2.3.1 Heterogeneous microscopic traffic models

Microscopic traffic flow models deal with a detailed description of individual vehicle
behavior and the interaction between vehicles. The existing microscopic models try to
develop a governing rule of leader-to-follower interaction (car-following models) and
lane changing rule for multi-lane scenarios (lane changing models). The rules can be
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formulated as a continuous mathematical equation (car-following models) or in dis-
crete time-space format (cellular automata).

2.3.1.1 Car-following models

Driver to driver interaction in a longitudinal movement is often modeled based on car-
following theory, which demonstrates how the follower and the leader vehicles inter-
act with each other (Brackstone and McDonald, 1999). The car-following behaviors are
characterized by microscopic parameters such as distance and time headway, speed,
acceleration, reaction time and location. Based on the hypothesis used for constructing
car-following principles, in broader terms, the existing models can be categorized into
two generic groups, ’safe distance’ and ’stimulus-response’ models.

Safe distance model
The car-following behavior of vehicles in a safe-distance based model is adapted ac-
cording to a safe distance vehicles should keep with respect to the vehicle in front
(Louis A Pipes, 1953; Gipps, 1981). For example, the well known Gipp’s (Gipps, 1981)
model constructs a car following rule on the assumption that drivers set their speed so
that they can stop without colliding when the leader vehicle brakes suddenly. Thus,
the speed choice is constrained by the desired speed of drivers ( f1) and the safe-stop
condition ( f2).

vn(t + τ) = min{ f1, f2} (2.1)

where

f1 = vn(t) + 2.5anτ

(
1− vn(t)

Vn

)(
0.025− vn(t)

Vn

)1/2

f2 = bnτ +
√
(b2

nτ2 − bn[2[xn−1(t)− sn−1 − xn(t)]− vn(t)τ − vn−1(t)2/b2])

The parameters an/bn, τ, v, Vn and s represent, respectively, the maximum acceler-
ation/deceleration, the reaction time, the speed, the desired speed and the effective
length of vehicle. The subscripts n− 1/n denote the leader/follower vehicle.

Stimulus-response model
In stimulus-response based models, the car following behavior of vehicles is governed
by a stimulus-response type relationship. In other words, the reaction of a vehicle is a
function of the stimulus and its sensitivity. The stimulus is often quantified in terms
of relative spacing and/or relative speed, and the decision to accelerate or deceler-
ated is taken as a response. For example, the model developed by the general motors
group (referred as GM model) (Gazis, Herman, and Rothery, 1961) formulates the car-
following rule as

an(t + τ) =
cvn(t + τ)[vn−1(t)− vn(t)]

[xn−1(t)− xn(t)]l
(2.2)

where τ, x, v, a and c stand for reaction delay, position, speed, acceleration and a con-
stant coefficient, respectively. cvn(t+τ)

[xn−1(t)−xn(t)]l
represents the sensitivity to the stimulus,

which is the relative speed. In general form, it can be rewritten:

an(t + τ) = λ∆v(t) (2.3)

Multi-class extension

The car-following models have contributed greatly to a better understanding of traffic
flow dynamics. Nevertheless, the models are mainly designed to represent homoge-
neous traffic flows. For accurate description of traffic flow dynamics, it is imperative
to include in the models the heterogeneity observed in real traffic flows. Several em-
pirical studies have reported the variation in the car-following interaction between dif-
ferent vehicle types (Aghabayk et al., 2011; L. Liu, Zhu, and Yang, 2016; Ossen and
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S. P. Hoogendoorn, 2011; Tordeux, Lassarre, and Roussignol, 2010). The car-following
behaviors such as space headway, time headway and reaction time are observed to
be dependent on the vehicle type and the follower-leader combinations. Furthermore,
the comparison between different car-following models show that the best performing
model differs between vehicle classes (Ossen and S. P. Hoogendoorn, 2011).

However, since the microscopic description represents the individual vehicle behav-
ior, the incorporation of heterogeneity is relatively straightforward, which can be done
either by varying the parameters between vehicle classes (Helbing and Tilch, 1998) or
using different models for each vehicle class (Kesting and Treiber, 2013).

In addition, in multi-lane traffic flow the difference between drivers or vehicle type
causes overtaking, i.e. a faster moving vehicle passes a slower one. For this purpose,
lane-changing models, which are used in conjunction with car-following models, are
introduced (Gipps, 1986; Kesting, Treiber, and Helbing, 2007).

2.3.1.2 Cellular automata model

A cellular automata (CA) approach for modeling traffic flow is first introduced in (Nagel
and Schreckenberg, 1992). In CA models, unlike car-following models, the movement
of vehicles is represented in a discrete way. The space is divided into fixed and identical
sized cells ( 2.2(a)). The speed is also discrete and is expressed as the number of cells a
vehicle advances per unit time step. The update rule defines the movement of vehicles.
A follower vehicle increases its speed from v to v + 1 if v < vmax and the distance to
the leading vehicle is greater than v + 1. Otherwise, if the leader vehicle is located j
cells away and v ≥ j, the follower vehicle reduces its speed to v = j− 1. Further, with a
random probability p each vehicle decreases its speed by one. Subsequently, the vehicle
advances v cells.

Besides its computational efficiency, the CA model proposed by Nagel and Schreck-
enberg (NASC) reproduces important traffic flow behaviors (Nagel and Schrecken-
berg, 1992). Several other CA models have been also developed to incorporate dif-
ferent traffic characteristics such as slow-to-start behaviors (Maerivoet and De Moor,
2005; Barlovic et al., 1998), lane changing behaviors in multi-lane traffic flows (Wagner,
Nagel, and Wolf, 1997; Li et al., 2006). Moreover, the homogeneous CA model is ex-
tended to incorporate different vehicles’ characteristics. In homogeneous CA, vehicles
are assumed to occupy a single cell, and hence the variation in vehicle length is not
considered. The heterogeneous CA applies a finer space discretization ( see FIGURE
2.2(b))and a vehicle can occupy multiple cells (multi-cell). The CA model for hetero-
geneous traffic flow containing cars and trucks is presented in (Yang et al., 2015). The
number of cells a vehicle spans depend on its length. Moreover, the maximum speed
and acceleration are vehicle type dependent.

(A) (B)

FIGURE 2.2: Schematic diagram of CA space discretization (A) homoge-
neous traffic (single cell) (B) heterogeneous traffic (multi-cell)

2.3.2 Heterogeneous macroscopic models

Macroscopic models describe traffic flow behaviors at a collective level. The aggregate
behavior which emerges from the interaction between vehicles is formulated, rather
than the individual vehicle motion. For this purpose, traffic flow is treated in analogy
with one-dimensional fluid motion. Hence, the dynamics of the flow is described by
continuity equations. Average speed, density and flow are the variables that are often
used to represent the traffic flow behavior.
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The fluid approximation of traffic flow reproduces a wide range of interesting traf-
fic phenomena. However, to further improve the description capability and accuracy,
different modifications are applied. Including the various types of traffic flow hetero-
geneity is one the aspects that attracts major attention.

We discuss the extension of the two broadly known macroscopic modeling ap-
proaches, namely LWR and two-equation models, to accommodate traffic heterogene-
ity.

2.3.2.1 Multi-class LWR model

The kinematic wave model developed by (Lighthill and Whitham, 1955a; Lighthill and
Whitham, 1955b; Richards, 1956) is a pioneer macroscopic model. This model is known
as LWR model. The conservation law and the function relation between the traffic flow
variables are the basic elements of the LWR model. The continuity equation which
describes the conservation law is formulated as:

∂ρ(x, t)
∂t

+
∂q(x, t)

∂x
= 0, (2.4)

where ρ is the density (vehicle per unit length) , q is the flow (vehicle per unit time).
The flow and the density are hypothesized to have a functional relationship

q = Q(ρ) (2.5)

Similar relation can also be drawn for speed-density since v = q/ρ. The curve that rep-
resents the speed-density or the flow-density relationship is referred as a fundamental
diagram.

LWR model is able to reproduce a significant amount of real traffic phenomena.
Nevertheless, the model has some limitations. The steady state flow-density assump-
tion leads to infinite acceleration/deceleration when vehicles pass through shocks. The
other drawbacks are the inability to describe the desired speed difference in light traffic
states and the capacity drop in stop-go traffic (Daganzo, 1995).

The recently introduced multi-class version of LWR model extends the original
model to include the heterogeneity among drivers/vehicles. Multi-class LWR model
can describe the desired speed variation and other traffic phenomena that appear due
to the interaction between heterogeneous vehicles, which counteracts the flaws of the
original LWR model.

In multi-class LWR model, road users are distinguished based on drivers’ or vehi-
cle characteristics. Accordingly, the traffic stream is decomposed into sub-streams or
classes, in which vehicles in a class have identical properties. A multiclass LWR model
that takes into account the variation in the desired speed is proposed by (G. Wong and
S. Wong, 2002). They demonstrate that the model can explain traffic phenomena which
the homogeneous LWR is unable to describe correctly, such as the two capacity, hystere-
sis and platoon dispersion. Likewise, a theoretical analysis of a multi-lane and a flow of
two-type of drivers presented in (Daganzo, 2002) illustrates these phenomena. Another
two-class LWR model derived based on the interaction of trucks and cars is presented
in (H. Zhang and Jin, 2002). There are also other similar multiclass models proposed
by different authors (Benzoni-Gavage and Colombo, 2003; S. Logghe and L. Immers,
2003; Chanut and Buisson, 2003; Ngoduy and R. Liu, 2007; S Logghe and L. H. Immers,
2008; J Van Lint, Serge Hoogendoorn, and Schreuder, 2008). These models attempt to
characterize various features in heterogeneous traffic flows. The difference among the
models mainly lies in vehicle class classification method and the fundamental diagram
used to explain the individual vehicle class or the collective flow properties.

Fundamental relation

Multi-class LWR models consist of two or more vehicle classes. All the existing vehicle
classes have an impact on the mobility behavior of a particular class. The speed-density
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relation is used to express this interaction between the vehicle classes, which can be
written in a general form as:

vi = Vi(ρ1, ρ2, ...) (2.6)

There are a number of approaches adopted to drive the fundamental relation for
multi-class flows. We categorize them based on the principle the vehicle classes are
identified and the interaction between them is represented.

Heterogeneous drivers
Daganzo (Daganzo, 1997) presents a representation of the traffic dynamics in multi-lane
two-class flow, where drivers in one class are restricted to particular lanes and drivers in
the other class can travel freely in any of the lanes. Two regimes are identified, namely
1-regime and 2-regime. In 2-pipe regime there is no interaction between the two classes,
thus the speed is a function of the class’s density. On the other hand, in 1-regime drivers
in both classes travel with the same speed, which is a function of the total density.

vi =

{
v(ρi/γi) 2-pipe regime
v(∑i ρi) 1-pipe regime

(2.7)

where γ denotes the fraction of accessible lanes.
A multi-class flow model in (G. Wong and S. Wong, 2002) attempts to reproduce

the variation in the desired speed of drivers. The vehicle classes are grouped based on
their maximum speed. The speed-density relation is formulated in such a way that ve-
hicle classes have different speed for a given traffic condition, and the speed difference
diminishes with the increase in the total density (ρ).

vi = vmax
i exp(−(ρ/ρ0)

2/2) (2.8)

The fundamental diagram properties are shown in FIGURE 2.3(a) and 2.4.

(A) (B)

FIGURE 2.3: Speed-density relation (A) (G. Wong and S. Wong, 2002)
model (B) (J Van Lint, Serge Hoogendoorn, and Schreuder, 2008) model

Passenger car unit
Passenger car unit (PCU) is defined as the number of passenger cars that would pro-
duce a similar effect on the traffic operation to a particular vehicle type. It has been
widely applied for capacity analysis of roads under heterogeneous traffic conditions.
The PCU value reflects the length and the operation capability of non-passenger car
vehicles (Krammes and Crowley, 1986).

For the capacity analysis, the PCU value is used to convert heterogeneous traffic
volumes into equivalent passenger-car-only volume (Krammes and Crowley, 1986). In



2.3. Heterogeneous traffic flow models 15

(A) (B)

FIGURE 2.4: The variation of (A) speed-density and (B) flow-density re-
lation with traffic composition in (G. Wong and S. Wong, 2002) model

the same fashion, the concept of PCU has been implemented in multi-class LWR models
developed for mixed flow of cars and trucks. The models use a constant or a traffic state
dependent PCU value.

Constant PCU
Chanut and Buisson (Chanut and Buisson, 2003) propose a multi-class fundamental re-
lation that satisfies the following properties. In free flow condition, vehicles drive at
their desired speed, and all vehicles have identical speed in the congested state. Vehi-
cle classes are differentiated by their maximum speed and length. The PCU value for
vehicle classes is defined as αi =

Li
Lr

, wherein Li is the length of vehicle class i and Lr is
the length of the reference class (i.e. passenger car). The fundamental relation is given
by:

vi =


ρ

ρcr
vcr + (1− ρ

ρcr
)vmax

i ρ ≤ ρcr

ρjam−ρ

(ρjam−ρcr)ρ∗
qcap ρ > ρcr

(2.9)

ρ = ∑
i

ρi, ρ∗ = ∑
i

ρiαi

where ρcr, ρjam and αi are, respectively, the critical density, the jam density and the PCU
value. qcap denotes the road capacity in PCU. The jam and the critical densities are
optimized with the traffic condition.

ρjam = ρr
jam

ρ

∑i ρiαi
, ρcr = ζρjam, where ζ ∈ [0.2, 0.5], qcap = ρr

crvcr (2.10)

The PCU value is used to incorporate the variation of the jam density and the critical
density (road capacity) with the ratio of trucks. Thus, the fundamental diagram param-
eters are adapted to the traffic composition.

A similar approach is used in (Ngoduy and R. Liu, 2007). The speed-density relation
takes the the form as in equation (2.9), except that ρ = ρ∗ = ∑i ρi.

ρjam = ρr
jam

∑i ρiβi

ρ
, ρcr = ρr

cr
∑i ρiβi

ρ
, qcap = ρcrvcr (2.11)

where βi =
1
αi

.
The fundamental diagrams are shown in figures 2.5(a), 2.5(a) and 2.6.

Traffic state dependent PCU
PCU value for vehicles varies with the traffic conditions (Praveen and Venkatachalam



16 Chapter 2. Heterogeneous Traffic Flow Modeling

Thamizh Arasan, 2013) and the value should be selected depending on the vehicles’
speed, vehicles’ size, headway and other traffic variables (Adnan, 2014). The PCU
value of truck is also reported to increase with traffic volume (Huber, 1982). To inte-
grate this dependence of the PCU value on traffic state, different from (Ngoduy and R.
Liu, 2007; Chanut and Buisson, 2003), (J Van Lint, Serge Hoogendoorn, and Schreuder,
2008) defines traffic state dependent PCU value.

αi =
Li + Tivi

Lr + Trvr
(2.12)

L and T stand for the minimum space gap (i.e. bumper to bumper distance) and time
headway. The speed-density relation has the same formulation as in equation (2.9)
except that ρ in this case equals ρ = ρ∗ = ∑i αiρi.

The fundamental diagram for the model in Chanut and Buisson; Ngoduy and R.
Liu; J Van Lint, Serge Hoogendoorn, and Schreuder is depicted in FIGURE 2.5(a) and
the variation of the fundamental relation with the traffic composition is shown in FIG-
URE 2.6 and 2.7.

(A) (B)

FIGURE 2.5: Speed density relation (A) (Chanut and Buisson, 2003; Ngo-
duy and R. Liu, 2007) model (B) (S Logghe and L. H. Immers, 2008; Qian

et al., 2017) model

(A) (B)

FIGURE 2.6: The variation of (A) speed-density and (B) flow-density re-
lation with traffic composition in (Ngoduy and R. Liu, 2007) model

Scaling factor
The concept of scaling factor can be interpreted as a way of deriving PCU to relate the
homogeneous and the heterogeneous fundamental diagrams of a vehicle class or the
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(A) (B)

FIGURE 2.7: The variation of (A) speed-density and (B) flow-density re-
lation with traffic composition in (Chanut and Buisson, 2003) model

homogeneous fundamental diagrams of vehicle classes. The scale factor is first intro-
duced in (S. Logghe and L. Immers, 2003). The fundamental diagrams of the vehicle
classes are assumed to be a scaled version of each others. For two vehicle classes the
following relation holds

q2(ρ2) = αq1(
ρ2

α
), ρ2,jam = αρ1,jam, ρ2,cr = αρ1,cr (2.13)

The relation in equation (2.13) requires vmax
1 = vmax

2 .
The scaling factor α correlates the two classes. As such, the heterogeneous traffic

flow properties is expressed in terms of the properties of an equivalent homogeneous
flow of one of the vehicle classes. That is, the heterogeneous traffic flow (ρ1, ρ2) takes
the same properties as class 1 flow (ρ1 + ρ1/α).

The same authors (S Logghe and L. H. Immers) later used the scaling factor to drive
the fundamental diagram of a vehicle class in heterogeneous traffic flow condition from
its homogeneous fundamental diagram (S Logghe and L. H. Immers, 2008). Here, the
scaling factor represents the fraction of road space assigned for a vehicle class. The
scaling factor for each class is different and satisfies

∑
i

αi ≤ 1.

For a given mixed traffic condition (ρ1, ρ2, ...), the fundamental diagram for each
class is equivalent to

qi(ρ1, ρ2) = αiqh
i (ρ1/αi) (2.14)

where qh
i is the homogeneous flow. The homogeneous fundamental diagram for each

class is represented by a triangular fundamental diagram.

qh
i (ρ

h
i ) =


ρh

i vmax
i ρh

i ≤ ρh
i,cr

ω(ρh
i,jam − ρh

i ) ρh
i > ρh

i,cr

(2.15)

where the wave speed ω =
ρh

i,crvmax
i

ρh
i,jam−ρh

i,cr
. Each class has a distinct jam density (ρjam), critical

density (ρcr) and wave speed.
For two classes, the heterogeneous speed-density relation is derived using the scal-

ing factor α and the homogeneous fundamental diagram.
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vi(ρ1, ρ2) = vi(ρi/αi) =


vmax

i
ρi
αi
≤ ρh

i,cr

1
ρi

αiqh
i (

ρi
αi
) ρi

αi
> ρh

i,cr

(2.16)

The scaling factor reflects the interaction between vehicle classes at different traffic con-
ditions, therefore the value changes with the traffic state. Three traffic regimes are iden-
tified: free flow, semi-congested and congested. The value of the scaling factors vary
with the traffic regime.

Similarly, Qian et al.(Qian et al., 2017) interpret the scaling factor with perceived
equivalent density. Each vehicle class perceives as the traffic flow consists of only that
type of vehicle class. Thus, the heterogeneous flow is converted to a homogeneous flow
that would result in an equivalent traffic state. The perceived density (ρp) is computed
using a conversion factor (δ), which has an analogy to the theory of PCU.

ρ
p
1 = ρ1 + δ1ρ2 = ρ1/α1

ρ
p
2 = δ2ρ1 + ρ2 = ρ2/α2

(A)
(B)

FIGURE 2.8: The variation of (A) speed-density and (B) flow-density re-
lation with traffic composition in (S Logghe and L. H. Immers, 2008; Qian

et al., 2017) model

Figures 2.5(b) and 2.8 show the properties of the fundamental relation in (S Logghe
and L. H. Immers, 2008; Qian et al., 2017).

Area occupancy
The models in this category describe the mixed traffic properties on the basis of the
space gap between vehicles in free-flow or jam conditions. The sum of space gaps be-
tween vehicles (bumper to bumper) in free-flow or jam condition should be less than
the length of the road. That is, the length (area) occupancy should be less than 1.

H. Zhang and Jin (H. Zhang and Jin, 2002) give a formulation for a group speed that
accounts the variation among vehicle classes. It is written as

v =


∑i vmax

i ρi
∑i ρi

∑i(li + vmax
i τi)ρi < 1

1−∑i ρi li
∑i ρiτi

∑i(li + vmax
i τi)ρi ≥ 1

(2.17)

The vehicle classes have a unique maximum speed (vmax), length (l) and time headway
τ. Hence, the jam and critical densities change with the traffic composition.

Based on the are occupancy in jam state, speed-density relation for each class of a
multi-class flow is derived in (Benzoni-Gavage and Colombo, 2003) as follows.
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vi = vmax
i (1−∑ ρili) (2.18)

Figures 2.9, 2.10, 2.11 illustrate the properties of the speed-density relation in the
models (H. Zhang and Jin, 2002; Benzoni-Gavage and Colombo, 2003).

(A) (B)

FIGURE 2.9: Fundamental relations in (A)(H. Zhang and Jin, 2002) model
(B)(Benzoni-Gavage and Colombo, 2003) model

(A) (B)

FIGURE 2.10: The variation of (A) speed-density and (B) flow-density
relation with traffic composition in (H. Zhang and Jin, 2002) model

(A) (B)

FIGURE 2.11: The variation of (A) speed-density and (B) flow-density re-
lation with traffic composition in (Benzoni-Gavage and Colombo, 2003)

model
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2.3.2.2 Multi-class two-equation models

Two-equation, also called second order models, aim to address the limitations of LWR
model that are related to equilibrium speed-density relation. Instead, the two-equation
models replace it with an equation that describes the average speed dynamics. Based
on car-following theory, different speed dynamics equation are derived (Payne, 1971;
H. M. Zhang, 1998). However, the proposed equations are found not to respect the
anisotropic property of traffic flow, i.e., drivers are only influenced by the front stimuli
Daganzo, 1995. Later, (Aw and Rascle, 2000; H. M. Zhang, 2002) provide an improved
speed dynamic equation

∂v
∂t

+ v
∂v
∂x

= −ρV
′
e (ρ)

∂v
∂x

(2.19)

where Ve(ρ) is the equilibrium speed.
Furthermore, to take into account heterogeneous drivers that have a different speed

dynamics, multi-class second order models are developed (Gupta and Katiyar, 2007;
Tang et al., 2009). The models define the speed equation and conservation equation
for each class. In this way, for the individual vehicle class different parameters can be
specified, for instance class-dependent equilibrium speed-density relation.

2.3.3 Heterogeneous mesoscopic models

Traffic flow models derived from gas kinetic theory are the most popular mesoscopic
representation of traffic flow. Numerous types of kinetic traffic flow models have been
developed (Paveri-Fontana, 1975; Wegener and Klar, 1996; Chowdhury, Santen, and
Schadschneider, 2000). The traffic flow equation describes the dynamics of the phase-
space density f (v, x, t), where f (v, x, t)dvdx represent the number of vehicles at time t
in [x, ∆x] and with speed [v, ∆v].

∂ f
∂t

+ v
∂ f
∂x

=

(
∂ f
∂t

)
int

+

(
∂ f
∂t

)
rel

(2.20)

Different assumptions have been made to determine the interaction (int) and relaxation
(rel) terms (Paveri-Fontana, 1975).

A heterogeneous version of gas kinetic model presented by (S. P. Hoogendoorn and
Bovy, 2000) integrates class specific desired speed and acceleration term that considers
intra-class and inter-class interactions. Another multi-class extension of of gas kinetic
model is also proposed by Helbing, Hennecke, et al. (Helbing, Hennecke, et al., 2001).

2.4 Modeling two-wheelers mobility

2.4.1 Maneuvering behavior of PTWs

PTWs have peculiar mobility features, which are attributed to their compact size. The
standard lane demarcation of roads is designed for vehicles like passenger cars and
other heavy vehicles. These vehicles require a wider lane to operate than PTWs. Con-
sequently, when PTWs share road with other road users, they exhibit a different be-
havior. PTWs traffic behavior has commonality with bicycles traffic. However, unlike
bicycles, PTWs often share road with other vehicles, and their speed is comparable to
cars’ speed. The unique behaviors of PTWs in mixed traffic flow can be summarized as
lane sharing, smaller longitudinal and lateral gap, and travel at non-zero speed while
cars are completely stopped. These behaviors are not mutually exclusive; one has a
consequence on the other.

Lane sharing

PTWs ride through the space between cars or between cars and road borders. This
practice of PTWs is expressed by different terms such as lane sharing, lane filtering,
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FIGURE 2.12: The representation of PTWs maneuvering behaviors

lane splitting, and creeping. Generally, lane splitting and creeping refer to the specific
case where PTWs pass between the rows of stationary traffic (Fan and Work, 2015;
FEMA, 2009; Robertson, 2002). Whereas, lane splitting denotes the condition where
PTWs pass between a moving traffic (FEMA, 2009). Lane sharing is the encompassing
term for lane splitting and filtering (Sperley, Pietz, et al., 2010).

Although lane sharing is not allowed everywhere, it is a commonly observed be-
havior. There are also different rules about when and how PTWs are allowed to do
lane-sharing. An experimental study done in Paris (Aupetit, Espié, and Bouaziz, 2015)
reports that PTWs ride between traffic on average for 72% of their riding time or 77 %
of the traveled distance. PTWs use the spaces between traffic, which are not accessible
by other vehicles, to overtake. Lane sharing often occurs under medium and heavy
traffic conditions. That is, the rate of lane-sharing increases with traffic volume (Ouel-
let, 2012). The width of the free spaces between vehicles and the traffic volume (or the
speed of traffic) are the determinant factors for PTWs riders to engage in lane sharing
or not (Aupetit, Espié, and Bouaziz, 2015). On the other hand, the width of the gaps
between vehicles or between vehicles and road border has a direct relation with the
total lane width. The wider the total lane width is, the higher the chance for PTWs to
find enough space to do lane filtering/splitting (Sperley, Pietz, et al., 2010). The criti-
cal space for lane sharing (filtering) depends on the speed of PTWs (Minh, Sano, and
Matsumoto, 2012), the relative speed to the rest of traffic, and the presence of heavy
vehicles and platoon of PTWs (Vlahogianni, 2014).

Longitudinal and lateral gaps

PTWs, compared to other vehicles, maintain shorter longitudinal and lateral gaps (K.
Wong, LEE, and CHEN, 2016; T.-C. Lee, J. W. Polak, et al., 2012). In car-following
state, drivers follow the leader vehicle at a safe distance in order to avoid collision. The
safe distance depends on the traffic state. Yet, due to their compact sizes PTWs are
able to make lateral movements (e.g., swerving (T.-C. Lee, J. W. Polak, et al., 2012)) to
avoid collision (Walton and Buchanan, 2012). Besides, PTWs have a higher deceleration
capability than passenger cars (T.-C. Lee, J. W. Polak, et al., 2012). Thus, PTWs keep
smaller longitudinal distance to the leader and still mange to avoid collision by braking
or swerving. In the same manner, PTWs do not respect lane demarcations, rather create
a dynamic virtual lane using the space between vehicles. Obviously, the lateral gap
maintained by PTWs is smaller than other vehicles, which respect lane-based discipline.
The lateral gap also has a correlation with the speed of PTWs (K. Wong, LEE, and
CHEN, 2016; Minh, Sano, and Matsumoto, 2012), but the sensitivity to the speed is
less than the longitudinal distance (K. Wong, LEE, and CHEN, 2016). Furthermore,
the differential speed and the type of vehicle alongside influence the lateral distance (C
Mallikarjuna, Tharun, and Pal, 2013).
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Travel speed

At low traffic densities, the interaction among vehicles classes is negligible. Thus, ve-
hicles travel at a speed close to their desired speed. In lane-based heterogeneous traffic
flows, slow moving vehicles (e.g., trucks) may impact the speed of fast vehicles (e.g.,
cars), particularly at medium to high traffic densities. However, PTWs utilize differ-
ent lateral maneuvers to avoid such constraints. For this reason, PTWs have a better
opportunity to travel at a higher speed than cars (T.-C. Lee, J. W. Polak, et al., 2012;
K. Wong, LEE, and CHEN, 2016). The speed of PTWs is dependent on the factors that
influence the lateral/longitudinal gap and the lane sharing behaviors, such as traffic
composition and lane width. The trend of the differential speed between PTWs and
other traffic stream is analyzed in (Rice, Troszak, and Erhardt, 2015; Aupetit, Espié, and
Bouaziz, 2015). Accordingly, the highest differential speed occurs when the other traf-
fic stream is completely stopped. Thanks to their filtering capability, PTWs can have
non-zero speeds while the other vehicles are stopped due to congestion. In general, the
relative speed of PTWs is related to lane changing probability in the other traffic stream.
In other words, the speed difference increases with the decrease of the lane-changing
probability (Aupetit, Espié, and Bouaziz, 2015).

2.4.2 Models for traffic flow including PTWs

There are only a few available models for traffic flow that consists of PTWs and other
vehicle types. The aforementioned driving behaviors of PTWs are different from any
other vehicles types. In addition, the presence of PTWs influences the moving behav-
iors of other vehicles. For instance, since PTWs share a lane with other vehicles, a
vehicle may have more than two leaders. Thus, the conventional car following models
cannot be applied directly. Same lane overtaking is also another phenomenon that is
observed in mixed traffic flows that contain PTWs. To account such properties, special
traffic flow models for PTWs traffic, and heterogeneous traffic flow that include PTWs
are developed.

2.4.3 Microscopic model

Modeling traffic flow containing PTWs is challenging as there are several unique prop-
erties. These properties include, but not limited to, multiple leader, no-lane based
movement and same lane overtaking. In a microscopic approach, the heterogeneity
of driver and vehicle characteristics is modeled by defining different behavioral rules
and parameters, such as longitudinal and lateral movement rule (Pandey, Rao, and
Mohan, 2017), speed choice, lateral and longitudinal headway (Lenorzer et al., 2015),
and reaction time. The parameters and driver behaviors are described differently de-
pending on the interacting vehicle classes (SHIOMI et al., 2012). Space discretization
methods are also introduced to accommodate the lateral movement within a lane and
the variation in vehicle size (Chen et al., 2013; Mathew, Munigety, and Bajpai, 2013).

2.4.3.1 Car-following model

The basic car-following theories base on the assumption of ordered flow of vehicles.
The existence of PTWs, which have a deviant characteristic from car-like behavior, ne-
cessitate modified car-following theories. Traffic features like multiple leader, same-
lane overtaking, and zero-headway are unique to the traffic flows containing PTWs.
A mixed flow of cars and PTWs can be seen as a complete disorder flow like what is
commonly observed in developing countries (V Thamizh Arasan and Koshy, 2005) or a
mixture of ordered (for cars) and disorder (PTWs) flows. Different car-following mod-
els are proposed to characterize the individual vehicle behavior in pure PTWs traffic
and traffic flows including PTWs.

In strip-based car-following model (Mathew, Munigety, and Bajpai, 2013), the lane
is divided into strips, and a lane analogy is applied to the strips. Depending on the
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size, a vehicle may occupy more than one strip. The closest vehicle inside the strip/s
occupied by the follower vehicle becomes the leader. The speed of the follower vehicles
is formulated according to the safe gap theory.

vn = −τb +
√
(τb)2 + vn−1(t− 1)2 + 2bgn−1(t− 1) (2.21)

where τ, b, g are the reaction time, the maximum deceleration and the distance head-

FIGURE 2.13: Illustration of the strip based approach

way, respectively. The distance headway (g) is adapted to the vehicle types in the
follower-leader combination. Besides, the model defines the strip/lane changing rules.
The multi-anticipative approach would be more convenient for strip models, in order
to include the impact of the front vehicles in the same lane but not in the same strips.

T.-C. Lee, J. Polak, and Bell (T.-C. Lee, J. Polak, and Bell, 2009) also develop a longi-
tudinal movement model based on the principle that PTWs either stop at a safe distance
behind the leader vehicle or swerve to the left of the leading vehicle to avoid collision.
The model given in (T.-C. Lee, J. Polak, and Bell, 2009) can be reformulated similar to
equation (2.21). Nonetheless, the value of gn−1 is determined by the choice of PTWs to
swerve or not, i.e, gn−1 for swerving maneuver is less than non-swerving. Instead of
the fixed virtual lanes (strips), the model introduces dynamic virtual lanes, which are
specified by a path choice rule.

Another stimulus-response type microscopic model for pure motorcycle traffic is
proposed in (L. Nguyen, Hanaoka, and Kawasaki, 2012; L. X. Nguyen, Hanaoka, and
Kawasaki, 2014). The model applies a safety level concept to quantify the influence of
the leader vehicle on the follower ( Figure 2.14). The safety area is denoted by a half
ellipse and a rectangle, where the perceived safety level to the leader vehicle in the front
and moving at the side is measured with respect to the ellipse and the rectangular area,
respectively. For selecting a leader PTW or the most influential PTW out of the sur-
rounding PTWs, following angle and route width are used as filtering criterion. Then,
the follower vehicle adjusts its acceleration according to the perceived safety level (SL)
and the relative speed.

a(t + τ) =

SL 1
∆v

(
∆x∆vx
(τv)2 +

∆y∆vy

(w+dy)2

)
∆x ≥ 0

SL 1
∆v

(
∆y∆vy

(w+dy)2

)
−2dx ≤ x < 0

(2.22)

where

SL =

A exp

(
−
(

∆x2

(τv)2
+ ∆y2

(w+dy)2

)
/B
)

∆x ≥ 0

A exp

(
−
(

∆y2

(w+dy)2

)
/B
)

−2dx ≤ x < 0

(2.23)

τ, v, dx, dy stand for the reaction time, the speed, the length and the width of the
follower vehicles, and ∆V is the relative velocity. The semi-major and semi-minor axis
of the ellipse area equal τv and w + dy, respectively. The rectangular safety space has a
length of 2dx and a width of w + dy.

However,
(

∆x2

(τv)2 +
∆y2

(w+dy)2

)
> 1 if the the leader vehicle is outside the half ellipse

area and
(

∆x2

(τv)2 +
∆y2

(w+dy)2

)
≤ 1 otherwise, implying the safety level decreases with the

increase of the distance between the leader and the follower, while the reverse is true
in the real condition.
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FIGURE 2.14: The schematic representation of safety space

The model in (Cho and Wu, 2004) attempts to represent PTWs longitudinal move-
ment as a function of the desired speed and the repulsion force from the leading PTWs.
The model assumes that PTWs interact with the two nearest leading PTWs. Thus, the
repulsion force is a weighting sum of the repulsion from each leading PTW. The weight
is proportional to the lateral distance.

vn(t + τ) = vn,d

1−
2

∑
i

w(yn−i − yn)exp
−λ

vα
n−i(t)

v
n(t)β

(
xn−i−xn−sn

L )γ

 (2.24)

where v, x, y, w denote, respectively, the speed, the longitudinal position, the lateral
position and a weighting factor. The remaining variables L, γ, λ, β, α are the mode
parameters. The model also includes a description for the lateral movement of PTWs.
However, the model is limited to pure PTWs flow and cannot replicate a collision free
flow.

In a similar manner, the social force model proposed in (L. X. Nguyen and Hanaoka,
2011) relates the repulsion force and the desired speed (or acceleration force). These
acceleration and repulsion forces determine the maneuvering behavior of PTWs.

aα(t) = FA
α + ∑

β

FR
αβ + ∑

B
FB + fluctuation (2.25)

The acceleration force FA
α describes the attempt of PTWs to accelerate to the desired

speed. FR
αβ represents the repulsion force from the leading PTWs, that leads in reduction

of the following PTWs speed. Different weight is applied to the repulsion from leading
PTWs within and outside the angle of sight. The repulsion from road border is denoted
by FB.

In addition to the above model, a model that describes the acceleration/deceleration
behavior of PTWs at signalized intersection is proposed in (MINH, SANO, et al., 2007).
An operating zone, which is equivalent to dynamic virtual lane, proportional to the
speed of a subject PTW is applied to characterize the non-lane based moving behavior
of PTWs. Furthermore, a discrete choice method, which is borrowed from pedestrian
modeling (Robin et al., 2009), is also used to represent the maneuvering behavior of
PTWs and car in mixed flows (SHIOMI et al., 2012). A set of discrete choices, that
characterizes the decision of vehicles, are defined. The preference of vehicles to each
alternatives is determined by a utility function.

2.4.3.2 Cellular automata model

The cellular automata model presented in Section 2.3.1.2 considers lane-based hetero-
geneous traffic flow. However, to model traffic flows which include PTWs or any dis-
ordered flows, the update rules and space discretization have to be adapted. In lane-
based CA model, the width of a cell is assumed to be equal to the lane width since there
is no lateral movement within a lane. Nonetheless, to model the side-by-side move-
ment of vehicles and the same lane overtaking, the lane is subdivided into sub-lanes
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(FIGURE 2.15. That is, the space is discretized laterally and longitudinally (Lan and
C.-W. Chang, 2005; Meng et al., 2007; Ch Mallikarjuna and Rao, 2009; Lan, Chiou, et al.,
2010). The number of consecutive lateral and longitudinal cells occupied by vehicles is
determined by the safe lateral and longitudinal space maintained by vehicles and the
cell dimension. In addition to the rule to update the longitudinal movement, a lateral
movement model is added (Lan and C.-W. Chang, 2005; Meng et al., 2007; Ch Mallikar-
juna and Rao, 2009; Lan, Chiou, et al., 2010).

FIGURE 2.15: Heterogeneous CA for a mixed cars and PTWs flow

2.4.4 Macroscopic model

The macroscopic traffic characteristics observed in traffic flow containing PTWs differ
from other heterogeneous traffic flows in many ways. Due to the lane sharing proper-
ties of PTWs, the average speed depends not only on the longitudinal spacing but also
on the lateral spacing. Therefore, the speed-density relation should reflect this prop-
erty. Moreover, when other vehicle classes (e.g., cars) are completely stopped, PTWs
can travel with non-zero speed through the gaps between vehicles. The critical and the
jam densities should be identified for each traffic stream. Most of the existing hetero-
geneous macroscopic model are unable to describe these unique properties or need to
be modified to accommodate the required properties. In this section, we discuss the
approaches applied in macroscopic models for capturing such behaviors.

2.4.4.1 Multiclass LWR model

The principle followed is similar to the heterogeneous LWR model in section 2.3.2.1.
The governing principle is represented using the system equations in equation (2.4-
2.6). However, the speed-density relation are derived in a way that captures the traffic
characteristics resulted from the unique maneuvering behavior of PTWs.

Fundamental relation
Numerous multi-class models are stemmed from the desire to characterize mixed flows
of cars and trucks, which is an ordered flow. For instance, the model in (H. Zhang and
Jin, 2002) formulates a mixed flow of passenger cars and trucks based on their free flow
speed difference. A two-class flow model proposed in (Chanut and Buisson, 2003) dif-
ferentiates vehicles according to their length and speed. Furthermore, the heterogene-
ity among vehicles is modeled in relation to the maximum speed, length and minimum
headway of vehicles in (J Van Lint, Serge Hoogendoorn, and Schreuder, 2008). Despite
providing a separate representation for each vehicle classes, in all these models (Chanut
and Buisson, 2003; J Van Lint, Serge Hoogendoorn, and Schreuder, 2008; P. Zhang et al.,
2006) vehicle classes have identical critical and jam density parameters, but the pa-
rameters are scaled according to the actual traffic state. The multi-class model in (G.
Wong and S. Wong, 2002) extends the LWR model for heterogeneous drivers, by distin-
guishing the vehicle classes by the choice of the speed. The assumption is that drivers
respond in a different way to the same traffic density. Correspondingly, the work in
(Benzoni-Gavage and Colombo, 2003) presents a mixed flow for several populations
of vehicles, where the vehicle classes are differentiated by the maximal speed, and the
equilibrium speed is expressed as a function of total occupied space. The models in (S
Logghe and L. H. Immers, 2008; Qian et al., 2017) derive a multi-class model, based on
the interaction between vehicles classes (trucks and cars) at different traffic conditions.
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However, mixed flows consisting of PTWs yet exhibit distinctive features from the
assumption taken in the aforementioned multi-class models. Their narrow width in-
deed grants PTWs flexibility to share lanes with other vehicles or filter through slow
moving or stationary traffic, requiring traffic stream attributes to be defined differently
from traffic following lane rules (Ch Mallikarjuna and Rao, 2006). Only a few models
exist that attempt to reproduce these unique traffic behaviors. We can categorize the
LWR models for mixed flow of cars and PTWs, based on the principles applied to for-
mulate the speed-density relation, as area occupancy and porous flow approach.

Area occupancy
The model proposed in (Fan and Work, 2015) formulates the speed-density relation fol-
lowing the method in (Benzoni-Gavage and Colombo, 2003). To reproduce the lane
filtering or creeping behavior of PTWs, the model distinguishes the area occupancy, in
which the vehicles come to a complete stop, for each vehicle class. The area occupancy
for PTWs is greater than other vehicles classes, as such the creeping behavior can be
reproduced. The speed-density relation is given as

vi = vmax
i (1− r

rmax
i

) (2.26)

where the area occupancy r = ∑i ρili, and rmax is the maximum area occupancy. The
model captures the basic traffic characteristics. Nevertheless, the area occupancy can-
not reflect all the properties and the interaction between the vehicle classes. For in-
stance, for a given area occupancy when all the vehicles are PTWs or cars, the traffic
condition differs depending on the vehicle class, which can not be identified by the
model. The fundamental diagram is shown in FIGURE 2.16(a). The speed-density
and flow-density variation with traffic composition in the model proposed by (Fan and
Work, 2015) have similar characteristics with (Benzoni-Gavage and Colombo, 2003) (see
FIGURE 2.11).

Porous flow approach
The model proposed by Nair, Mahmassani, and Miller-Hooks (Nair, Mahmassani, and
Miller-Hooks, 2011; Nair, Mahmassani, and Miller-Hooks, 2012) treats the mixed flow
of cars and PTWs in analogy to the flow of fluid through a porous medium. In disor-
dered traffic flows, vehicles do not follow lane demarcation, rather fast-moving vehicles
drive through the free space between vehicles to overtake slow vehicles. To represent
such traffic characteristics, Nair et al. define the average vehicle speed as a function
inter-vehicle gap (pore size) distribution.

vi = v f
i

(
1−

∫ rcr
i

0
f (lp(ρ1, ρ2, ...))dlp

)
+ vr

i

∫ rcr
i

0
f (lp(ρ1, ρ2, ...))dlp (2.27)

where f (lp) and rcr
i denote, respectively, the probability density function of the pore

size distribution and the critical pore size, which is a minimum pore size that allows the
passage of a vehicle class. The average speed is the weighted sum of two speed terms,
free speed (v f

i ) and restrained speed (vr
i ), with the weight factor being the fraction of

accessible and inaccessible pores. Furthermore, the two speeds are defined as

v f
i = vmax

i

(
1−

∫ rcr
i

0
f (lp(ρ1, ρ2, ...))dlp

)α f

, vr
i = vmax

i

(
1−

∫ rcr
i

0
f (lp(ρ1, ρ2, ...))dlp

)αr

(2.28)
The following relation is also specified: αr ≥ αr. Nair et al. (Nair, Mahmassani, and
Miller-Hooks, 2012) employ exponential distribution to characterize the pore size dis-
tribution. ∫ rcr

i

0
f (lp(ρ1, ρ2, ...))dlp = 1− exp−λ(ρ1,ρ2,...)rcr

i (2.29)
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The average pore size 1/λ is given by 1

1/λ = (lmax − lmin)

(
1−∑

i
aiρi

)
+ lmin

where a and ρ are the projected area of a vehicle and the areal density (veh/m2), respec-
tively. lmin, lmax are the distribution parameters.

The fundamental diagram for the model in (Nair, Mahmassani, and Miller-Hooks,
2012; Fan and Work, 2015) is shown in FIGURE 2.16 and 2.17.

(A) (B)

FIGURE 2.16: Speed density relation (A) (Fan and Work, 2015) model (B)
(Nair, Mahmassani, and Miller-Hooks, 2012) model

(A) (B)

FIGURE 2.17: The variation of (A) speed-density and (B) flow-density re-
lation with traffic composition in (Nair, Mahmassani, and Miller-Hooks,

2012) model

1The equation in (Nair, Mahmassani, and Miller-Hooks, 2012) is modified here
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Model Speed function
Heterogeneous drivers

Daganzo, 1997 vi =

{
v(ρi/γi) 2-pipe regime
v(∑i ρi) 1-pipe regime

G. Wong and
S. Wong, 2002

vi = vmax
i exp(−(ρ/ρ0)2/2) ρ = ∑i ρi

PCU

vi =

{ ρ
ρcr

vcr + (1− ρ
ρcr
)vmax

i ρ ≤ ρcr
ρjam−ρ

(ρjam−ρcr)ρ∗qcap ρ>ρcr

ρ = ∑i ρi
Chanut and Buisson,
2003

ρjam = ρr
jam

ρ
∑i ρiαi

ρcr = ζρjam
ρ = ∑i ρi

Ngoduy and R. Liu,
2007

ρjam = ρr
jam

∑i ρi βi
ρ

ρcr = ρr
cr

∑i ρi βi
ρ

J Van Lint,
Serge Hoogendoorn,
and Schreuder, 2008

ρ = ∑i ρiαi

αi =
Li+Tivi
Lr+Trvr

Scaling factor
S Logghe and
L. H. Immers, 2008 vi =

{
vmax

i
ρi
αi
≤ ρh

i,cr
1
ρi

αiqh
i (

ρi
αi
) ρi

αi
> ρh

i,cr

∑i αi ≤ 1.
Qian et al., 2017

Area occupancy

H. Zhang and Jin,
2002

v =


∑i vmax

i ρi
∑i ρi

∑i(li + vmax
i τi)ρi < 1

1−∑i ρi li
∑i ρiτi

∑i(li + vmax
i τi)ρi ≥ 1

Benzoni-Gavage and
Colombo, 2003

vi = vmax
i (1−∑ ρili)

Fan and Work, 2015 vi = vmax
i (1− ∑i ρi li

rmax
i

)

Porous flow
Nair, Mahmassani,
and Miller-Hooks,
2011

vi = v f
i

∫ ∞
rcr

i
f (lp)dlp + vr

i

∫ rcr
i

0 f (lp)dlp

Nair, Mahmassani,
and Miller-Hooks,
2012

v f
i = vmax

i

(∫ ∞
rcr

i
f (lp)dlp

)α f
, vr

i =

vmax
i

(∫ ∞
rcr

i
f (lp)dlp

)αr f (lp) = λ exp−λrcr
i

TABLE 2.1: Summary of the speed-density relation for heterogeneous
traffic flow

2.5 Traffic model calibration and validation

Theoretical traffic flow models are developed by hypothesizing the individual and/or
aggregated driver behavior, which usually base on an empirical observation. To ap-
ply the model for practical application, it is important to compare and analyze their
properties against real data. The calibration and validation procedures are intended to
improve the descriptive accuracy of the models by adapting the assumption and the
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model parameters to the real situations, and testing the models capability to reproduce
the required properties (Rakha et al., 1996). As such, the deviation between the models
and the real traffic situation is reduced.

The complexity and the method of validation and calibration process depend on
the type of the traffic flow model. Microscopic models have large set of parameters,
and some of the parameters are difficult to determine from experimental data (e.g.,
reaction time, sensitivity (Serge Hoogendoorn and R. Hoogendoorn, 2010)). Either ag-
gregated or individual vehicle data is applied to validate and calibrate microscopic
models (Benekohal, 1991; Kesting and Treiber, 2013). For macroscopic models, dif-
ferent techniques are employed for the validation and the calibration. The validation
experiments focus on assessing the accuracy level of the models to predict the targeted
traffic phenomena (e.g., congestion (Spiliopoulou et al., 2014), capacity drop (Monamy,
Haj-Salem, and Lebacque, 2012), etc.). Accordingly, the empirical and the computed
data are compared to quantify the deviation of the model from the real behavior. On
the other hand, the model parameters are optimized to fit the real traffic data in the cal-
ibration process. For LWR models usually the fundamental diagram parameters, such
as jam density, critical density and wave speed (Dervisoglu et al., 2009) are calibrated.
Whereas for the two-equation models the unknown parameters are determined from
empirical data (Cremer and M. Papageorgiou, 1981; Ngoduy and SP Hoogendoorn,
2003).

The traffic data required for the calibration and the validation can be obtained from
different sources. Probe vehicles (floating car data), loop detectors, cameras, and sen-
sors are the widely employed methods. Depending on the required type of data, for
instance, microscopic or aggregated data, any of the data acquisition methods can be
used. Despite the existence of numerous traffic data collection methods, only a few of
them are applicable for the validation of traffic flow containing PTWs. The challenge is
mainly on getting the required traffic parameters and an accurate geo-location of vehi-
cles, specifically PTWs. For example, data collected from sensors like inductive loops
are not sufficient as extrapolation of vehicles spatial location is very difficult, if not im-
possible. Floating Car Data (FCD) could be an efficient method for collecting vehicles’
trajectory data, where smartphones or GPS devices in vehicles continuously send loca-
tion, speed, etc. information. However, the inefficiency of smartphone GPS to produce
the true location of PTWs (Koyama and Tanaka, 2011), and the low penetration rate of
vehicles equipped with an accurate GPS receiver make FCD method less applicable.
Another potential alternative is to use video cameras and to extract the required traffic
data (e.g., vehicle number, vehicle type, location) utilizing image processing techniques
(Ch Mallikarjuna, Phanindra, and Rao, 2009). Given the complexity of data collection,
synthetic data from calibrated commercial simulators like VISSIM can serve as a means
of model calibration and validation tool (Chu et al., 2011). Yet, as the simulator might
be calibrated to a particular scenario, the model validation would be valid only to that
specific scenario.

Furthermore, before using data it is also necessary to undergo a preprocessing in or-
der to extract the important information, which may entail aggregating or re-sampling,
filtering the data and constructing the necessary parameters (Kesting and Treiber, 2013;
Leclercq, 2005).

2.6 Conclusion

Traffic flow models are the major enablers of intelligent transportation systems (ITS).
The models are employed for evaluation, analysis, planning, design, control and a lot of
other applications. Several hypotheses and mathematical formulations are developed
to interpret the observed traffic characteristics.

The models interpret the traffic flow features at different granularity, i.e. micro-
scopic, mesoscopic and macroscopic. Since there is no model that outperforms and fits
for all applications, the choice of a model depends on the requirements, such as level
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of accuracy, computational efficiency, descriptive capability. To boost the models effec-
tiveness to describe realistic traffic features, different extensions and adaptations have
been done. Traffic heterogeneity is one these properties that needs to be included in the
models.

The existing models are extended to describe the heterogeneity among drivers and
vehicle types. Besides, when the existing modeling approach fall short of correctly de-
scribe the traffic features, new approaches are introduced. For instance, heterogeneous
traffic flow are often studied and modeled from the perspective of trucks and cars.
However, the traffic pattern in traffic flows containing PTWs differs from what is ob-
served in car and truck mixed flow. New modeling approaches are therefore required
to characterize traffic flows containing PTWs.

Of the macroscopic models, the LWR model is widely used due to its potential to
express different traffic phenomena. Furthermore, the model can be easily extended to
better reproduce various traffic characteristics. The multi-class extension intended to
characterize heterogeneous traffic flow is recently getting attention. This dissertation
also focuses on the multi-class LWR model.

In the next chapters, we develop and analyze a macroscopic model for traffic flow
consisting of cars and PTWs. The approach used to depict different vehicle character-
istics and the interaction among the vehicle types are presented in detail. The model
properties are analyzed. The model is aimed to be employed to incorporate PTWs into
different ITS applications.
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Chapter 3

Model development

In this chapter, a macroscopic model for a mixed flow of cars and PWTs is presented.
The required properties and the modeling principle are outlined first. The modeling ap-
proach employs the multi-classs LWR framework. Each vehicle class has an indepen-
dent fundamental diagram. The fundamental relations are derived by extending the
principles applied in a porous flow approach (Nair, Mahmassani, and Miller-Hooks,
2011; Nair, Mahmassani, and Miller-Hooks, 2012). The methodology for extracting the
inter-vehicle spacing distribution is introduced. In order to use the model for a variety
of ITS applications, the flow equation is formulated in Eulerian and Lagrangian refer-
ence frames. More specifically, the Lagrangian representation tracks the motion prop-
erty of vehicles along the trajectory, making it suitable for ITS applications that control
and predict the flow properties of vehicles. On the other hand, the Eulerian description,
which analyzes the flow proprieties at a fixed point in space, is convenient for ITS ap-
plications that control and predict traffic flow properties at a fixed location. The applied
discretization schemes to solve the flow equations in the Eulerian and the Lagrangian
representations are also discussed. For the Eulerian representation, the Lax-Friedrichs
scheme is used, whereas a new discretization scheme is introduced for the Lagrangian
representation.

The chapter is organized as follows: first the required model properties, related to
the fundamental relation, are presented (Section 3.1). Then, we describe the method
applied to interpret the interaction between vehicle classes (Section 3.2). Afterward,
we describe the derivation of the flow equation in the Lagrangian and the Eulerian
reference frames, and the corresponding numerical schemes (Section 3.3 and 3.4). Nu-
merical examples are presented in Section 3.5. We finally conclude with summary and
conclusion (Section 3.6).

3.1 Model requirements

Without of loss of generality, the discussion on the model development focuses on two-
populations flow, specifically cars and PTWS. Based on the maneuvering characteristics
of PTWs mentioned in Section 2.4.1, the following model properties are established.

1. There are four traffic regimes, free-flow, semi-congested, congested and creeping.
In free-flow regime both vehicle classes travel at their desired speed. The semi-
congested state represents the situation where PTWs can travel at their desired
speed but cars cannot. In congestion state, the speeds of both vehicle classes re-
duce with increasing density. The creeping regime denotes the traffic condition in
which cars are completely stopped but PTWs can travel at non-zero speed.

2. Requirement 1 implies that vehicle classes should have different critical as well as
jam (maximum) densities.

3. The difference in the physical dimension (length and projected area) and the max-
imum speed of vehicles should be included.

4. The equilibrium speed should be defined uniquely for each vehicle class density.
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FIGURE 3.1: Example fundamental relation that satisfies the require-
ments

5. The equilibrium speed should have a correlation with the road geometry (width
or number of lanes).

Requirement 1 and 2 are deduced from the fact that PTWs are able to do lane sharing
or overtake in the same lane. Thereby, PTWs can get enough space to keep their desired
speed while cars slow down due to congestion. Likewise, PTWs can also drive between
stopped cars. These behaviors result in the four traffic regimes, and the difference in
the critical and the jam densities of the two classes.

The requirement related to the maximum speed (requirement 3 ) is set to allow vehi-
cle classes to choose their free-flow speed independently. Further, including the differ-
ence in the physical dimension of the vehicle classes is important in order to determine
the free road space and its accessibility to a given vehicle class.

Requirement 4 describes that a pair of vehicle classes densities defines a unique
traffic state and thus a unique equilibrium speed.

The last requirement (requirement 5) is intended to capture the fact that PWTs find
more space to practice lane-sharing in multi-lane road space than in one-lane road
space. Therefore, the speed of vehicles should be influenced by the number of lanes
(or road width).

3.2 Fundamental relation

In this section, we derive the fundamental relation for a mixed cars and PTWs traffic
(i.e. two vehicle classes), according to the requirements listed in the previous section.

The fundamental relation describes the interaction between vehicles within the same
class and with other vehicle classes. The flow and the average speed of each vehicle
class depend on the density of all vehicle classes. Therefore, the class-specific equilib-
rium flow-density and speed-density relations can be expressed as

qi = Qi(ρ1, ρ2) (3.1)

vi = Vi(ρ1, ρ2) (3.2)

where the variables q, ρ and v represent, respectively, the flow (vehicles per unit time),
density (vehicles per unit length) and average speed (distance per unit time).

To express the equilibrium relation as a function of the density of each vehicle class,
the speed law is derived under the framework of the porous flow theory (Nair, Mah-
massani, and Miller-Hooks, 2011). In porous flow theory, it is assumed that the speed
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of vehicles is determined by the vehicle properties and the distribution of the pore size.
The pore size defines the gap between the vehicles. The pore size distribution, i.e. the
distribution of the gap between vehicles, depends on the traffic volume and the traffic
composition. For vehicles to be able to pass through a given pore, the pore size should
be greater than the minimum acceptable pore size. Throughout the dissertation, the
term ’critical pore size’ or ’critical gap’ is used to indicate the minimum acceptable pore
size, which is denoted by rcr. The speed function is then can be formulated as:

vi = vmax
i (1− F(rcr

i )) (3.3)

F(rcr
i ) is the cumulative density function of the pore size distribution, which is equiva-

lent to the fraction of inaccessible free space.

F(rcr
i ) =

∫ rcr
i

0
f (lp)dlp,

∫ ∞

0
f (lp)dlp = 1 (3.4)

We assume that the critical pore size is similar within a vehicle class but differs across
the vehicles classes. Further, the critical pore size is assumed to be constant, later this
assumption will be relaxed.

3.2.1 Determination of spacing distribution

A curve fitting technique is employed to characterize the inter-vehicle spacing distribu-
tion. Through the curve fitting procedures a standard distribution that fits best to the
observation is selected.

In order to determine the inter-vehicle spacing distribution, simplifying assump-
tions are applied. First, the whole road space is considered as a single unit, i.e. vehicles
can occupy any position on the road. The Pores are the free space between vehicles, and
vehicles and road boundaries. Then, the vehicles are assumed to be distributed on the
road space according to the Poisson point process. Empirical evidence also supports
the Poisson point process assumption for spatial distribution of vehicles (Jiang et al.,
2016), though limited to light traffic conditions. The vehicles are represented by circu-
lar shapes, note that the circular shape assumption does not change the distribution of
the inter-vehicle spacing qualitatively.

FIGURE 3.2: Example of the road space and vehicles’ spatial distribution

Furthermore, Delaunay triangulation is used to define the spacing between vehicles,
on the assumption that Delaunay triangle edge length represents the size of the spacing
(FIGURE 3.3).

To obtain the probability density function, vehicles are distributed in the domain
uniformly and independently according to Poisson point process with intensity λ, where
λ is the number of vehicles per unit area. In other words, given the density of each ve-
hicle classes, vehicles are placed uniformly and independently without overlapping in
a two-dimensional finite space, with intensity λ = ρ1 + ρ2. Here, ρ1 and ρ2 represent
PTWs’ and cars’ areal density, i.e. vehicles per unit area, respectively. The Delaunay
triangulation is constructed over the center of vehicles (see FIGURE 3.3), and the trian-
gles edge length data from multiple simulation runs is used to estimate the probability
density function (Figure 3.4).
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FIGURE 3.3: The implementation of Delaunay triangulation to define
pore size

FIGURE 3.4: The obtained probability density function for different
traffic compositions.

The parameters of the pore size distribution are estimated based on the statistical
properties of Poisson point process. Let lp be the edge length of a Delaunay triangle,
then the mean values are given by (Miles, 1970)

E(lp) =
32

9π
√

λ
, E(l2

p) =
5

πλ
(3.5)

where λ is intensity (density) of the Poisson point process distribution.
We convert these formulations to our problem where we have circles, instead of

points. When the points are replaced by circles (small circles for PTWs and large circles
for cars), edge length measured for points is reduced by the sum of the radius of the
circles the two end points of the edge are connected to. For instance, an edge connecting
PTWs and cars is reduced by R1 + R2, where R1 and R2 are the radius of the circles
representing PTWs and cars respectively.

FIGURE 3.5: Delaunay triangle edges length for circles.
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In accordance with the mean length of the Delaunay traingle edge over points, we
define for circles as (FIGURE 3.5):

E[lc] = E[lp]− 2(R1 p1 + R2 p2), (3.6)

E[l2
c ] = E[l2

p]− 2E[lp] (2(R1 p1 + R2 p2)) + (2(R1 p1 + R2 p2))
2 , (3.7)

where p1 is probability for an edge to touch PTWs, and p2 for cars. The probabilities
are expressed in the form

pi =
ρi

ρ1 + ρ2
, i = 1, 2 (3.8)

Therefore, equation (3.6) becomes

E(lc) =
32

9π
√

ρ1 + ρ2
− 2(R1ρ1 + R2ρ2)

ρ1 + ρ2
. (3.9)

The standard deviation and variance are the same for the case of points (σ2
p) and

circles(σ2
c ), thus

σ2
c = σ2

p = E(L2
p)− E(Lp)

2 ≈ 3
π2(ρ1 + ρ2)

. (3.10)

The above equations provide the parameters for the distribution function of inter-
vehicle spacing. To determine a theoretical probability density function (PDF) that best
fits the observed PDF, we use MATLAB’s curve fitting tool, and the goodness of the fit is
measured by R-square, sum of squared errors (SSE) and root mean square error (RMSE)
values.

We consider left-truncated normal, log-normal and exponential as candidate dis-
tributions to characterize inter-vehicle spacing. The distributions are chosen based on
qualitatively observed similarity on the shape of PDF curve. Besides, the exponential
distribution is recommended in (Nair, Mahmassani, and Miller-Hooks, 2012) to charac-
terize the inter-vehicle spacing distribution.

The comparison between the three selected theoretical distribution functions is shown
in FIGURE 3.6. Based on the goodness of the fit results ( see TABLE 3.1) left-truncated
normal (LT-Normal) distribution conforms better to the estimated PDF than the other
distributions. Further, it can be noted that the negative exponential assumption taken
in (Nair, Mahmassani, and Miller-Hooks, 2012) is not fitting well.

SSE R-square RMSE SSE R-square RMSE
ρ1 = 0.01, ρ2 = 0.01 ρ1 = 0.05, ρ2 = 0.02

LT-normal 0.24 0.955 0.0069 0.97 0.938 0.0139
Log-normal 0.809 0.851 0.0127 2.67 0.831 0.023
Exponential 2.17 0.602 0.0208 4.05 0.744 0.028

ρ1 = 0.02, ρ2 = 0.05 ρ1 = 0.1, ρ2 = 0.01
LT-normal 3.21 0.853 0.025 1.46 0.993 0.017
Log-normal 5.51 0.748 0.033 4.07 0.813 0.028
Exponential 3.93 0.82 0.028 5.39 0.753 0.032

TABLE 3.1: Goodness of the fit measures obtained from the fitting exper-
iments for different theoretical distributions.

Therefore, we assume that the spacing distribution follows the left-truncated normal
distribution, having the form

fpTN(lp) =

0 lp < 0
fp(lp)∫ ∞

0 fp(lp)
lp ≥ 0

where fp =
1√

2πσc
exp
−(lp − E(lc))2

2σ2
c

. (3.11)
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(A) Fitting plot for ρ1 = 0.01, ρ2 = 0.01, v/m2 (B) Fitting plot for ρ1 = 0.05, ρ2 = 0.02, v/m2

(C) Fitting plot for ρ1 = 0.02, ρ2 = 0.05, v/m2 (D) Fitting plot for ρ1 = 0.1, ρ2 = 0.01, v/m2

FIGURE 3.6: Comparison of estimated probability distribution function
and fitting theoretical distributions for different vehicles composition

The inter-vehicle spacing distribution is dependent on the width (or the number of
lanes) of the road space. This becomes more significant at lower traffic densities (see
FIGURE B.3 in Appendix B ). The shape of the inter-vehicle spacing distribution re-
mains the same, but the parameters change. To include this property, the mean inter-
vehicle spacing is redefined based on the E(lc) formula in equation 3.7 as

E(l∗c ) = E(lc)

(
1− 1

wαρ

)
(3.12)

where w stands for the width of the road space. The parameter αρ is expressed in rela-
tion to the traffic intensity so that the effect of road width diminishes with the increase
of the traffic density (see FIGURE 3.7).

αρ =
1

1− (ρ1a1 + ρ2a2)
(3.13)

where ρ and a denote, respectively, the density in vehicle per unit square and the
projected area of a vehicle.

For the determination of the pore size, all the vehicles are distributed randomly.
However, unlike PTWs, car drivers tend to respect lane demarcation. In what follows
below, we relax the random assumption for cars by restricting the location of cars within
the lanes only (FIGURE 3.8(b)). It appears that the probability density function obtained
is almost similar to the disordered case (FIGURE 3.9).
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FIGURE 3.7: Example mean inter-vehicle spacing (E(l∗c )) and road
width relationship, where LTC and HTC represent light traffic condi-
tion (ρ1 = 0.04veh/m2, ρ2 = 0.08veh/m2) and heavy traffic condition

(ρ1 = 0.08veh/m2, ρ2 = 0.12veh/m2, respectively)

(A)

(B)

FIGURE 3.8: Spatial distribution of vehicles in 2-lane road (A) disordered
flow (B) semi-disorder flow where cars travel within the lane only and

PTWs can occupy any position on the road
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FIGURE 3.9: Probability density function produced from the two setting
in 3.8

3.2.2 Speed function

Using the PDF function in equation (3.11), the speed-density relationship in equation (3.3)
is re-written as

vi = vmax
i

(
1−

∫ rcr
i

0
fpTN(lp)dlp

)
, (3.14)

The limitation of equation (3.14) is that, because of the property of normal distribu-
tion function, the speed becomes zero only at infinite density, as for the speed function
used in (Nair, Mahmassani, and Miller-Hooks, 2012). In attempt to overcome this infi-
nite jam density, we have distinguished the jam area occupancy for the two classes, and
the speed values are normalized to zero at the jam area occupancy. Beside the consider-
ation of vehicles size, we selected the jam area occupancies for the two classes in such a
way to allow filtering of PTWs through completely stopped cars traffic (Fan and Work,
2015). We distinguish the maximum total occupied area, which is the extreme total oc-
cupied areas corresponding to the null speed of a vehicle class, for the two classes in
such a way that

V2(a2
max) = 0, V1(a2

max) > 0, V2(a1
max) = V1(a1

max) = 0, a2
max < a1

max (3.15)

where V2, V1, a2
max and a1

max represent the speed of cars, the speed of PTWs, the max-
imum total occupied area of cars and the maximum total occupied area of PTWs, re-
spectively. Accordingly, when the total area occupied by vehicles equals a2

max, while
the average speed of PTWs is greater than zero, the cars completely stop. Due to this,
PTWs can move through jammed car until the total area occupied by vehicles reaches
to a1

max. On the grounds of the relation in equation (3.15) and some realistic conditions
(see Appendix B.1), we approximate the jam area occupancy, i.e. ρ1a1 + ρ2a2, to 1 for
PTWs and to 0.85 for cars, where ρ, a stand for density (veh/m2) and projected area of
vehicles (m2), respectively.

Further modification is applied to the speed function in order to comply with trian-
gular fundamental diagram theory, that is presence of two regimes, specifically, conges-
tion and free flow regime (Gordon F Newell, 1993). In free flow there is no significant
drop of average speed with the increase of density. However, beyond some critical den-
sity value, the average speed of vehicles decreases with density increase. Therefore, we
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(A) Car speed at different density of PTWs. (B) PTWs speed at different cars density values.

FIGURE 3.10: Speed Vs total occupied area (∑ ρ1 A1 + ∑ ρ2 A2), where
ρ1 A1 and ρ2 A2 are area projected on the road by PTW and car,

respectively.

adjust the speed functions to:

v1 = min
{

v1
max, Cv1vmax

1

(
1− 1

N1

∫ rcr
1

0
fpTN(l)dl

)}
, (3.16)

v2 = min
{

v2
max, Cv2vmax

2

(
1− 1

N2

∫ rcr
2

0
fpTN(l)dl

)}
, (3.17)

where Ni is a speed normalization factor and Cv is a scaling factor so that vi equals the
free flow speed at critical density in the presence of traffic of vehicle class i only.

The critical pore size depends on the traffic situation and the interacting vehicle
classes (Ambarwati et al., 2014). The critical pore size accepted by vehicles when trav-
eling at higher speed is larger than the critical pore size at lower speeds. To reproduce
the critical pore size - speed proportionality (Minh, Sano, and Matsumoto, 2012), for
example, we can formulate the critical pore size as:

rcr
i = rcr

min + r ∗ (1− (ρ1 ∗ a1 + ρ2 ∗ a2)),

where rcr
min is the minimum critical pore size and r denotes the difference between the

maximum and the minimum critical pore size. As such, the critical pore size increases
with increasing speed or with decreasing vehicle class densities, which is in agreement
with the gap acceptance theory.

To evaluate the impact of the critical pore on the speed function, we compare the
result for a constant critical pore size, and a critical pore size scaled according to the
actual traffic. As depicted in FIGURE 3.11, the critical pore size doesn’t change the
qualitative behavior of our fundamental diagram. Since the critical pore size does not
have any qualitative implication, for simplicity we use a constant value.

After all the modifications, the speed-density relation look as shown in FIGURE 3.10.
Different from the existing models which describe traffic composition in terms of to-
tal area/space occupancy (Nair, Mahmassani, and Miller-Hooks, 2012; Fan and Work,
2015; Benzoni-Gavage and Colombo, 2003), one of the key characteristics of our speed
model is that it captures well the variation in traffic composition as the speed is ex-
pressed as a function of the density of each vehicle class. Specifically, for a given area
occupancy, depending on the proportion of the vehicle classes, the speed value varies.
For instance, for a given area occupancy, the higher the percentage of PTWs the higher
becomes the number of vehicles, and the average pore size shrinks. In turn, the speed
value decreases. The general properties of our speed model are summarized as follows:

1. A unique speed value is associated with a given total density and traffic compo-
sition.
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FIGURE 3.11: Speed vs total occupied area for constant critical pore size
(r2

c = 3m) and a variable critical pore size (r1
c ) with the following param-

eters rmin
c = 3m and r = 2m.

2. In free flow, vehicles move at constant (maximal) speed.

3. In congestion, speed decreases with increase of density.

4. Speed depends on the densities of the two vehicle classes and their proportion.

5. For the same occupancy area (total area occupied by vehicles) the more the share
of PTWs is, the lower becomes the speed, which is the main property missed by
multi-class models that define the speed function in terms of area occupancy.

6. Each class has a different fundamental relation

7. Each class has a distinctive critical and jam densities parameters.

None of the models known to us satisfies all the aforementioned properties, although
there are models that satisfy a few of them. Property (3), (4) and (6) are common to most
of multi-class LWR models. Nonetheless, models that describe speed as a function of
total occupied space (Benzoni-Gavage and Colombo, 2003; Fan and Work, 2015; Chanut
and Buisson, 2003; Nair, Mahmassani, and Miller-Hooks, 2012) do not satisfy property
(1). While (J Van Lint, Serge Hoogendoorn, and Schreuder, 2008) satisfies property (1)
and (Fan and Work, 2015) satisfies property (7), property (5) is unique to our model.

3.3 Flow equation

In the LWR model, traffic flow is assumed to be analogous to one-directional fluid mo-
tion. The motion of vehicles is governed by the conservation law, which is described
using a system of differential equations. A Fixed or moving coordinate system is em-
ployed to describe the flow equation, which are named Eulerian or Lagrangian coor-
dinates, respectively (see FIGURE 3.12). The two representations have different ad-
vantages. The Eulerian coordinate system is a simpler method. Yet, the Lagrangian
representation has advantages in terms of computational efficiency and accuracy.

In regards to ITS applications, the the Lagrangian method follows vehicles, hence
allows to study traffic phenomena at a finer detail. Moreover, with Lagrangian repre-
sentation different traffic phenomena, which are difficult to study using the Eulerian
method, can be studied, e.g., trajectory of vehicles. For the purpose of utilizing the ben-
efits of both coordinate system, we formulate the flow equation in both representations.

3.3.1 Eulerian representation

The conservation law in Eulerian representation says that with no entering or leaving
vehicles the number of vehicles between any two points is conserved. The variables
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(A) Eulerian fixed coordinates (B) Lagrangian moving coordinates

FIGURE 3.12: A schematic of Lagrangian and Eulerian approachs

are density, flow and average speed. In multi-class modeling, vehicles with identical
characteristics are grouped into a class and a conservation law applies to each class. For
two vehicle classes the conservation equation is written as

∂ρi(x, t)
∂t

+
∂qi(x, t)

∂x
= 0, i = 1, 2, (3.18)

where ρi and qi denote density and flow of class i, respectively. The class specific flow,
speed and density are related by the equation

qi(x, t) = ρi(x, t)vi(x, t), i = 1, 2. (3.19)

The equilibrium speed vi for the individual vehicle class i is a function of the densities
of both classes and satisfies the following conditions:

vi = Vi(ρ1, ρ2), ∂1Vi(ρ1, ρ2) ≤ 0, ∂2Vi(ρ1, ρ2) ≤ 0, (3.20)

where ∂1Vi(ρ1, ρ2) and ∂2Vi(ρ1, ρ2) denote ∂Vi(ρ1,ρ2)
∂ρ1

and ∂Vi(ρ1,ρ2)
∂ρ2

, respectively. The inter-
action among vehicle classes is captured through the equilibrium speed. Moreover, the
equilibrium speed is uniquely defined for all points of the space

S = {(ρ1, ρ2) : ρ1 <= ρ
jam
1 (ρ1, ρ2), ρ2 <= ρ

jam
2 (ρ1, ρ2)} (3.21)

where ρ
jam
1 (ρ1, ρ2) and ρ

jam
2 (ρ1, ρ2) are the jam densities of vehicle class 1 (PTWs) and 2

(cars), respectively.

3.3.2 Lagrangian representation

In Lagrangian systems, the LWR model is formulated in (n, t) coordinate system (Leclercq,
Jorge Andres Laval, and Chevallier, 2007). Cumulative vehicle count (n) is found to be
more suitable for certain traffic flow analysis (Gordon F Newell, 1993; Ni, 2007), and
also makes it easier to establish a connection between follow-the-leader and LWR mod-
els (Gordon Frank Newell, 2002). For a mixed traffic of cars and trucks, the Lagrangian
formulation is given in (Leclercq and Jorge A Laval, 2009; Femke van Wageningen-
Kessels, H. Van Lint, et al., 2010).

From an application standpoint, the Lagrangian representation is convenient to an-
alyze vehicle-specific data such as trajectories and travel times. Using the spacing and
speed data collected from probe vehicles together with the traffic flow model formu-
lated in Lagrangian coordinate, traffic state can be estimated accurately (Yuan, JWC
Van Lint, et al., 2012). Moreover, in hybrid traffic flow models, the Lagrangian repre-
sentation is used in conjunction with the Eulerian representation (Leclercq, 2007).

The mathematical form of the conservation law in Lagrangian coordinates depends
on the chosen coordinate system. Here, we take (n, t) coordinate system. Moreover,
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there are two methods that are used to represent multi-class flows in Lagrangian coor-
dinates.

In the first method, there are separate Lagrangian coordinates for each vehicles
class (N-Lagrangian reference frames (N-LRFs)). On contrary, in the second method
(1-Lagrangian reference frames (1-LRFs)) there is one Lagrangian reference frame that
moves with one of the selected vehicle class. Thus, for the other vehicle classes the con-
servation equation is derived based on this Lagrangian reference frame. In a situations
where tracking of each vehicle is needed (e.g for class specific controls (Yuan, FLM van
Wageningen-Kessels, et al., 2011)) N-LRFs is suitable. Otherwise, 1-LRF is a computa-
tionally efficient approach, for instance to investigate the impact of PTWs on cars flow,
or vice versa.

3.3.2.1 N-Lagrangian reference frames

Here, since we have two vehicle classes, there are two LRFs (i.e. N=2). By taking spac-
ing and speed as state variables, the conservation equation in (n, t) coordinate system
is written as (Leclercq, Jorge Andres Laval, and Chevallier, 2007):

∂si(x(t), t)
∂t

+
∂vi(n, t)

∂n
= 0 i = 1, 2 (3.22)

and
s =
−∂x
∂n

, ρ =
−∂n
∂x

= 1/s (3.23)

where s and v denote, respectively, the average spacing and the speed associated to a
group of vehicle/s labeled n. The vehicle groups are labeled in time order. The con-
versation equation applies for each vehicle class. Moreover, the grouping of vehicle
and the labeling of vehicle groups is done separately for each vehicle class. This repre-
sentation also takes an assumption that vehicles in a group neither disband or merge
with other groups. Class specific speed-spacing fundamental relation has the following
form:

vi = Vi(s1, s2) (3.24)

The speed-spacing fundamental diagram (FD) for PTWs and cars are shown in FIG-
URE 3.13. As illustrated in the figures, the fundamental diagram for each class changes
with the spacing/density of the other vehicle class.

(A) (B)

FIGURE 3.13: Speed-spacing fundamental diagram (a) for Cars (b) for
PTWs, V1,max = V2,max = 20 m/s
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3.3.2.2 1-Lagrangian reference frame

In the above multi-class Lagrangian conservation equation, individual vehicle class has
a separate labeling (cumulative vehicle count). (Femke van Wageningen-Kessels, H.
Van Lint, et al., 2010) proposed an alternative formulation, where the Lagrangian coor-
dinates move with a reference vehicle class and only vehicles of this class are counted.
In other words, the evolution of traffic state variables of the carrier vehicle class and the
other vehicle classes being carried inside is tracked.

The motion of the reference (carrier) class is governed by:

∂sr(x(t), t)
∂t

+
∂vr(n, t)

∂n
= 0, (3.25)

For the remaining vehicle classes:

∂sr/so

∂t
+

∂ ((vr − vo)/so)

∂n
= 0, (3.26)

or equivalently it can be formulated in non-conservative form

∂so

∂t
+

so

sr

∂vo

∂n
− vo − vr

sr

∂so

∂n
= 0

where the subscript r and o refer to, respectively, the reference vehicle class and the
other vehicle classes.

In the conservation equation given above, the traffic state variables are spacing (s)
and speed (v). When density (ρ) is used instead of spacing, the flow equation takes the
following form.

∂(1/ρr)

∂t
+

∂vr

∂n
= 0 (3.27)

∂(ρo/ρr)

∂t
+

∂(ρo(vr − vo))

∂n
= 0 (3.28)

where ρr > 0 always.

3.4 Discretization scheme

A discretization (numerical) scheme is applied to approximate the solution of LWR
model. That is, the continuity equations in equation (3.18), (3.22), (3.25) and (3.26), in
conjunction with the fundamental relationship, need to be solved numerically. In the
general discretization approach, the space (or vehicles) and time domain are divided
into grid cells (or platoons) and time intervals, respectively.

The discretization schemes to solve the flow equation in the Eulerian and the La-
grangian representations are presented as follows.

3.4.1 Eulerian formulation

For the Eulerian representation, we apply a conservative finite volume method to ap-
proximate the numerical solution. In the approximation, the spatial domain is divided
into equal grid cells of size ∆x, and at each time interval ∆t the density value in the
domain is updated according to the conservation law. Rewriting in the integral form, it
becomes

d
dt

∫ xi+1/2

xi−1/2

ρ(x, t)dx = q(ρ(xi−1/2, t))− q(ρ(xi+1/2, t)) (3.29)
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Integrating equation (3.29) in time from tn to tn+1 = tn + ∆t, we have∫ xi+1/2

xi−1/2

ρ(x, tn+1)dx =
∫ xi+1/2

xi−1/2

ρ(x, tn)dx

+
∫ tn+1

tn
q(ρ(xi−1/2, t))dt−

∫ tn+1

tn
q(ρ(xi+1/2, t))dt. (3.30)

After some rearrangement of equation (3.30), we obtain an equation that relates cell
average density ρn

j update with average flux values at the cell interfaces.

ρn+1
i = ρn

i −
∆t
∆x
[
Fn

i+1/2 − Fn
i−1/2

]
, (3.31)

where Fn
i+1/2 is an average flux value at the cell interface x = xi+1/2:

Fn
i+1/2 = F (ρn

i , ρn
i+1), where F is the numerical flux function. (3.32)

Accordingly, equation (3.31) rewrites

ρn+1
i = ρn

i −
∆t
∆x
[
F (ρn

i , ρn
i+1)−F (ρn

i−1, ρn
i )
]

. (3.33)

In the absence of a general Riemann solver, numerical methods for multi-class LWR
model, based on a generalization of the cell transmission model (CTM), supply and de-
mand functions for each vehicle class have been introduced in (FLM van Wageningen-
Kessels, 2013; Fan and Work, 2015). However, these algorithms are computationally ex-
pensive to implement in our case due to the lack of an analytical expression for comput-
ing the numerical flux. Therefore, we have opted for the Lax-Friedrichs scheme (LeV-
eque, 1992), which is easier to implement and gives a good accuracy at sufficiently
refined meshes. The numerical flux function is therefore given by

F (ρi, ρi+1) =
1
2
(q(ρi) + q(ρi+1)) +

α

2
(ρi − ρi+1), (3.34)

where α is the numerical viscosity satisfying the condition α ≥ Vmax = max{vmax
1 , vmax

2 }.
The space and time steps ∆x and ∆t are selected to meet Courant, Friedrichs and Lewy
(CFL) condition, which is a necessary condition for a numerical method to achieve sta-
bility and convergence. Therefore, ∆t is chosen to satisfy ∆t ≤ ∆x/Vmax, due to the
bounds on the eigenvalues derived in Section 4.1.

3.4.2 Lagrangian formulation

The discretization of the Lagrangian formulation is done by dividing the n (vehicle
count) domain into platoons of size ∆n. Then, the average spacing and the position of
the platoons is updated at each time step ∆t.

3.4.2.1 N-Lagrangian reference frames

To discretize the N-LRF formulation in equation (3.22), we apply the upwind method
introduced by (Leclercq and Jorge A Laval, 2009). The n domain is subdivided into ∆n
sized clusters of vehicles (cells), which is done separately for each vehicle class. An
approximation of the average spacing s over each cluster is updated at each time step
∆t.

st+∆t
i = st

i −
∆t
∆n

(Vi+1/2 −Vi−1/2) (3.35)

where Vi+1/2 and Vi−1/2 are the fluxes (speeds) at the boundaries of cell i.

Vi+1/2 = V(s1,i, s2,i, ...), Vi−1/2 = V(s1,i−1, s2,i−1, ...)
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Therefore, equation (3.35) becomes

st+∆t
i = st

i −
∆t
∆n

(V(s1,i, s2,i, ...)−V(s1,i−1, s2,i, ...) (3.36)

which is similar to the direct difference approximation of the conservation equations.
To obtain a stable solution ∆t should be restricted to Courant-Friedrichs-Lewy (CFL)
condition, i.e.

∆t ≤ ∆n
max(λ)

where λ is the wave speed in vehicles per unit time.
For each vehicle class, clusters do not overlap each other. However, clusters of dif-

ferent vehicles class may overlap or occupy the same position. For example, in FIGURE
3.14 the second cluster of vehicle class 1 overlaps with two clusters (2 and 3) of the other
vehicle class. To compute V(s1,i, s2,i), we need to approximate s2,i value in cluster i of
vehicle class 1.

s(1)2,i =
∆n1s1,i∫ X(i−1)

X(i)
1

s2(x)dx

where s2(x) is a function describing the average spacing s of class 2 as a function of
location x. For the general case,

s(j)
c,i =

∆njsj,i∫ X(i−1)
X(i)

1
sc(x)dx

c = 1, 2, ... (3.37)

where j and c denote, respectively, the vehicle class cluster i belongs to and the other
vehicle classes. For j = c, the integration is reduced to ∆nj, thus s(j)

c,i = ∆sj,i.
Alternatively, each vehicle class can keep tracking the average spacing of the other

vehicle classes inside the clusters of that vehicle class. In another words, a similar ap-
proach for 1-Lagrangian reference frame presented in Section 3.4.2.2 is applied.

For example, the average spacing of vehicle class 1 is updated according to the rule

st+∆t
1,i = st

1,i −
∆t
∆n

(Vi+1/2 −Vi−1/2) (3.38)

Then, the average spacing of class 2 vehicles inside the clusters of vehicle class 1 is
updated following (

s1,i

s2,i

)t+∆t

=

(
s1,i

s2,i

)t

− ∆t
∆n

(V2,i+1/2 −V2,i−1/2) (3.39)

st+∆t
2,i =

st+∆t
1,i(

s1,i
s2,i

)t+∆t (3.40)

Similar procedures are employed for the other classes as well.
Following the definition of the flux (speed) at the boundary, the trajectory ( position)

X of each cluster can be updated using

X(i, t + ∆t) = X(i, t) + ∆t ∗V(s1,i, s2,i, ...) (3.41)

3.4.2.2 1-Lagrangian reference frame

In this approach, vehicles of the reference class are clustered into ∆n sized groups.
Then, the average spacing s of each vehicle class over the clusters of the reference class
is updated at each time step ∆t.
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FIGURE 3.14: n-t domain discretization, separate coordinate for each ve-
hicle class

For the reference class (r), the average spacing is updated following equation (3.36),
and the trajectory is updated according to equation (3.41).

The average spacing of the other vehicle classes is updated according to:(
sr,i

so,i

)t+∆t

=

(
sr,i

so,i

)t

− ∆t
∆n

(Vo,i+1/2 −Vo,i−1/2) (3.42)

where Vo,i±1/2 are the fluxes (speeds) at the cell boundaries. We give the definition of
the fluxes based on the physical principle, which leads to the conservation law (see
Appendix B.2).

When the speed of the reference class is always higher than the other classes (vr >
vo), the direction of the fluxes is to the left. Thus,

Vo,i+1/2 =
vr,i − vo,i

so,i

Vo,i−1/2 =
vr,i−1 − vo,i−1

so,i−1

(3.43)

On the other hand, if (vr < vo), the direction of the fluxes is to the right (see FIGURE
3.15). This suggests that the fluxes should be defined as

Vo,i+1/2 =
vr,i+1 − vo,i+1

so,i+1

Vo,i−1/2 =
vr,i − vo,i

so,i

(3.44)

However, the flux definition in equation (3.44) is restricted to the situation where the
fluxes through the edges are non-zero, i.e. vo,i+1 > vr,i and vo,i > vr,i−1.

FIGURE 3.15: The direction of fluxes through the edges of the cluster
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(A) (B)

FIGURE 3.16: Speed-density relation for the case (a) maximum speed of
Cars is greater than PTWs (b) maximum speed of PTWs is greater than

cars, density of PTWs ρ1 = 0.2veh/m

For traffic flow consisting of PTWs and cars, if the reference class is PTWs and PTWs
have a higher free flow speed than cars (FIGURE 3.16(b)), the flux definition in equation
(3.43) applies. Nonetheless, if the free flow speed of car is higher than PTWs (FIGURE
3.16(a)), whichever class is the reference class, we have both conditions, i.e. vr > vo and
vo > vs, depending on the traffic state. For this reason, we give a general definition for
the fluxes, which applies irrespective of the order of the vehicle classes speeds.

Condition 1: If vr,i < vo,i,
Vehicles of class o can enter from cluster i + 1 to i, at the boundary i + 1/2, only if
vr,i < vo,i+1. Vehicles of class o can enter from cluster i to i− 1, at the boundary i− 1/2,
only if vr,i−1 < vo,i. At the same time, class o vehicles in cluster i − 1 may enter to i if
vr,i−1 < vo,i−1. Accordingly, the flux at the boundaries are defined as:

Vo,i+1/2 = min
(

0,
(vr,i − vo,i+1)

so,i+1

)
Vo,i−1/2 = min

(
0,
(vr,i−1 − vo,i)

so,i

)
−min

(
0,
(vr,i−1 − vo,i−1)

so,i−1

) (3.45)

Condition 2: If vr,i > vo,i,
At the boundary i + 1/2, class o vehicles leave cluster i with a flux of (vr,i−vo,i)

so,i
. In addi-

tion, class o vehicles from i + 1 may enter to i if vo,i+1 > vr,i. At the boundary i− 1/2,
class o vehicles from i− 1 can enter to i only if vr,i−1 > vo,i−1. Accordingly, the flux at
the boundaries are defined as:

Vo,i+1/2 =
(vr,i − vo,i)

so,i
−max

(
0,
(vr,i − vo,i+1)

so,i+1

)
Vo,i−1/2 = max

(
0,
(vr,i−1 − vo,i−1)

so,i−1

) (3.46)

Thus, equation (3.45) and (3.46) can be used to discretize equation (3.26).

3.5 Numerical Test

In this section, we evaluate the developed discretization schemes. To test the validity
and accuracy of the discretization schemes, we compare the numerical results obtained
with the Eulerian approach and the two Lagrangian methods.

3.5.1 Test setup

For the simulation experiment, the parameters in TABLE 3.2 are used.
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TABLE 3.2: simulation settings

Maximum speed of cars 15m/s
Maximum speed of PTWs 20m/s
vehicle cluster size 7.5 vehicles
Time step 0.125 s
Space steps (Eulerian) 10m
Road length 3000m
lane width 3.5 m
Number of lanes 1
Simulation time 45s

Lax-friedrich discretization scheme is employed to solve the Eulerian conservation
equations. We assume identical initial densities for the two vehicle classes, i.e. cars
(ρ2) and PTWs (ρ1), where ρ1 = ρ2 = 0.15 veh/m, for x ∈ [0, 1400 m] and ρ1 = ρ2 =
0.3 veh/m, otherwise.

3.5.2 Results

The evolution of the initial density as described by the Eulerian and the Lagrangian
approaches is presented in FIGURE 3.17. For the 1-LRF approach we consider two
cases by changing the reference class. Lag. 1 stands for the result when PTWs are the
reference class, and Lag. 2 stands for the results when cars are the reference class. Lag.
3 represents the result obtained from n-LRF approach. In these cases, the fundamental
diagram takes the shape in FIGURE 3.16(b).

The density wave of PTWs and cars at time t = 40 s are depicted in FIGURE 3.17(a)
and 3.17(b), respectively. As can be seen, the results are close to each other except the
difference at the upstream and the downstream shock fronts. With this, we can prove
the validity of the proposed discretization scheme for the case where the slower vehicle
is the reference vehicle class (shown by Lag. 2).

Furthermore, the comparison of the two Lagrangian methods (1-LRF and N-LRFs) is
presented in FIGURE 3.18. The density waves for cars and PTWs are shown in FIGURE
3.18(b) and 3.18(a). The figures illustrate that N-LRFs (Lag. 3) produces a more accurate
result than 1-LRF (Lag. 1 and Lag. 2) approach. Specifically, at the high density to low
density and low density to high density transition points numerical error are observed
for the case of Lag. 1 and Lag. 2.

From the result one can deduce that, of the two multi-class Lagrangian represen-
tation methods, the N-LRFs approach produces a more accurate result than the 1-LRF
approach. However, N-LRFs method is computationally less efficient. Because, beside
updating the traffic state of the clusters of each vehicle class, it is also required to ap-
proximate the average spacing of the other vehicle class in the clusters of a given vehicle
class.

We also test the proposed generic discretization scheme, for 1-LRF. For this exper-
iment, we consider the fundamental digram in FIGURE 3.16(a), and the maximum
speed of cars= 20 m/s and the maximum speed of PTWs= 15 m/s. The rest simu-
lation parameters and the initial density are identical to the the previous experiments.
The evolution of cars and PTWs density waves is shown in FIGURE 3.19. According to
the result obtained, the evolution is correctly described by the proposed scheme. This
proves that the developed discretization scheme can produce the density evolution cor-
rectly.

The developed general discretization method for 1-LRF approach not only applies
for a mixed flow of cars and PTWs, but also for any type of multi-class flow.
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(A) PTW density wave

(B) Car density wave

FIGURE 3.17: The Lagrangian representations, when PTWs are the ref-
erence class ( Lag. 1) and cars are the reference class (Lag. 2), vs. the

Eulerian representation
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(A) PTW density wave

(B) Car density wave

FIGURE 3.18: The comparison between the two Lagrangian methods,
(Lag. 1, Lag.2 ) represent the 1-LRF approach and (Lag. 3) represent the

n-LRF approach.
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FIGURE 3.19: The density waves of PTWs (upper subplot) and cars
(lower subplot), result produced using the general discretization scheme

for 1-LRF approach

Microscopic description in Lagrangian representation

In this experiment, we apply the Lagrangian representation to track individual vehicle.
The movement of vehicles is governed by the macroscopic rules.

In continuum flow model, ∆n can take any positive value. However, a follow-the-
leader type flow is observed when ∆n = 1. In the discretization scheme, grouping is
done per vehicle classes base, which perfectly works for traffic flows obeying lane dis-
cipline. However, when we have two-wheelers, which do not respect such an ordered
flow, a special treatment is required. The reason is that, in the discretization, clusters
of the same vehicle class are not allowed to overlap or occupy the same position. Con-
sequently, the parallel movement of two-wheelers cannot be modeled properly. Thus,
we integrate the side-by-side movement of two-wheelers by introducing sub-lanes. It
is also assumed that, PTWs stay in the lane, i.e. there is no (sub-) lane change. Accord-
ingly, two-wheelers in a sub-lane adhere to the follow-the-leader principle (see FIGURE
3.20).

FIGURE 3.20: The schematic of sub-lane in Lagrangian representation,
one-lane road and two sub-lanes for PTWs

X(i, t + ∆t) = X(i, t) + ∆t ∗V (3.47)

The location of the vehicles is updated following equation (3.47). With this approach,
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the behavior of each vehicle class can be analyzed at a fine-grained level. Further, ad-
ditional vehicle (or vehicle class) specific rules also can be incorporated, making it a
suitable and efficient solution for dealing with cooperative intelligent transport system
(C-ITS) applications.

For th experiment, to track the interaction between vehicle classes at different traffic
situations, a traffic light is located at 400 m, which stays red for the period t ∈ [0, 40 s].
PTWs have two sub-groups (sub-lanes), and the clustering of each sub-groups is done
separately. As can be observed from the overlapping trajectories of PTWs, by introduc-
ing sub-lanes the side by side movement of PTWs, in the same lane, can be reproduced
(see the red and the black trajectory lines). Nevertheless, since the macroscopic laws
are applied to define the microscopic movement of vehicles, some of the properties
may not be described correctly. For example, PTWs are segregated into sub-lanes in
order to avoid the overlap of vehicles in the same sub-lane. However, the macroscopic
law allows the abreast movement of PTWs, thus the trajectory of PTWs in the same
lane may overlap when the leader PTWs completely stops (see FIGURE 3.21, the two
black trajectory line overlap around location≈ 110 m, time≈ 20 s). In fact, the required
behavior can be produced by integrating new rules, beside the macroscopic law.

FIGURE 3.21: Trajectories of vehicles, two sub-lanes for PTWs

Tracking the trajectory of individual vehicle is one of the capabilities of the La-
grangian representation, which is impossible with the Eulerian method.

3.6 Summary and conclusion

In this chapter, a macroscopic model for traffic flow consisting of cars and PTWs is
developed. The model follows the kinematic (LWR) theory, which treats traffic flow in
analogy to the motion of fluid. The required model properties are set out. We apply an
approach that leads to recreating the needed properties.

The interaction between the two vehicle types and the motion properties of each
vehicle are modeled in the framework of fluid flow in porous medium. The road space
is considered as a porous medium, wherein, intuitively, the vehicles are the solid par-
ticles that form the pores and the pores are the inter-vehicle spacing. We introduce
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an approximation method to characterize the inter-vehicle spacing distribution. The
distribution is determined by fitting the actual inter-vehicle spacing distribution with
standard distributions. Truncated normal distribution is found to be best fitting distri-
bution. We drive a formulation for the estimation of the distribution parameters. The
parameters definition effectively captures the variation in traffic composition and road
width or number of lanes.

The fundamental relation (speed-density) for each vehicle class is given by

vi = min
{

vi
max, Cvivmax

i

(
1− 1

Ni

∫ rcr
i

0
fpTN(lp)dlp

)}
,

Where fpTN is the truncated normal distribution function, which represents the inter-
vehicle spacing distribution.

fpTN(lp) =

0 lp < 0
fp(lp)∫ ∞

0 fp(lp)
lp ≥ 0

where fp =
1√

2πσc
exp
−(lp − E(lc))2

2σ2
c

.

The parameter of the distribution function are defined as follows:

E(lc) =

(
32

9π
√

ρ1 + ρ2
− 2(R1ρ1 + R2ρ2)

ρ1 + ρ2

)(
1− 1

wαρ

)
αρ =

1
1− (ρ1a1 + ρ2a2)

σ2
c =

3
π2(ρ1 + ρ2)

.

To incorporate different vehicle types in the model, we apply the multi-class LWR
modeling approach. The vehicles are grouped into classes based on their physical and
maneuvering characteristics. The equation for the motion of vehicles is formulated with
respect to a fixed reference frame, Eulerian, and a moving reference frame, Lagrangian.

The representation of the flow equation in the Eulerian coordinate system is written
as:

∂ρi(x, t)
∂t

+
∂qi(x, t)

∂x
= 0, i = 1, 2,

The representation of the flow equation in the Lagrangian coordinate system is written
into two different forms.

• The N-LRF approach, wherein there is one reference frame for each vehicle class,
writes as:

∂si(x(t), t)
∂t

+
∂vi(n, t)

∂n
= 0 i = 1, 2

• The 1-LRF approach, wherein the flow equation is derived according to a refer-
ence frame that moves with the reference vehicle class, writes as:

Reference vehicle class (r)-:
∂sr(x(t), t)

∂t
+

∂vr(n, t)
∂n

= 0,

The rest vehicle classes (o)-:
∂sr/so

∂t
+

∂ ((vr − vo)/so)

∂n
= 0,

A discretization scheme to approximate the solution of the flow equation is devel-
oped. The scheme is established based on the physical principles. The developed nu-
merical schemes are validated numerically. Furthermore, we show the microscopic de-
scription in the Lagrangian representation, based on the macroscopic behavioral laws.
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The discretization method for the Eulerian representation has the following form:

ρn+1
i = ρn

i −
∆t
∆x
[
F (ρn

i , ρn
i+1)−F (ρn

i−1, ρn
i )
]

.

F (ρi, ρi+1) =
1
2
(q(ρi) + q(ρi+1)) +

α

2
(ρi − ρi+1),

The discretization methods for the Lagrangian representation:

• The N-LRF approach is described by:

st+∆t
i = st

i −
∆t
∆n

(V(s1,i, s2,i, ...)−V(s1,i−1, s2,i−1, ...))

The average spacing of the other vehicle class (c) inside the cluster (i) of a given
vehicle class j is approximated by:

s(j)
c,i =

∆njsj,i∫ X(i−1)
X(i)

1
sc(x)dx

c = 1, 2, ...

• The discretization scheme for the 1-LRF approach is written as:

Reference vehicle class (r)-: st+∆t
i = st

i −
∆t
∆n

(V(s1,i, s2,i, ...)−V(s1,i−1, s2,i, ...)

The rest vehicle classes (o)-:
(

sr,i

so,i

)t+∆t

=

(
sr,i

so,i

)t

− ∆t
∆n

(Vo,i+1/2 −Vo,i−1/2)

I f vr,i < vo,i,

Vo,i+1/2 = min
(

0,
(vr,i − vo,i+1)

so,i+1

)
Vo,i−1/2 = min

(
0,
(vr,i−1 − vo,i)

so,i

)
−min

(
0,
(vr,i−1 − vo,i−1)

so,i−1

)
I f vr,i > vo,i,

Vo,i+1/2 =
(vr,i − vo,i)

so,i
−max

(
0,
(vr,i − vo,i+1)

so,i+1

)
Vo,i−1/2 = max

(
0,
(vr,i−1 − vo,i−1)

so,i−1

)
In the next chapter (Chapter 4), we analyze the model properties. Furthermore, the
qualitative behavior of the model is assessed against the realistic traffic phenomena.
The model parameters are refined and the model is validated.
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Chapter 4

Model analysis and comparison

This chapter presents the analysis of the model properties. The developed model is
evaluated against the requirements set out in Chapter 3. Furthermore, the mathematical
property of the model is analyzed. To verify the qualitative characteristics of the model,
we compare the model with similar models, as well as we test the model behavior
against the known real-world traffic phenomena.

For the model development different assumptions and approximation methods are
introduced. In order to validated the assumption and improve the descriptive capabil-
ity of the model, the model is calibrated and validated. Due to the lack of real data that
can be used for the calibration and validation of the model, we utilize synthetic data
obtained from Vissim. In the calibration process, the model parameters are adapted to
represent the observed traffic characteristics. The validation phase is intended to in-
vestigate the validity of the assumptions and the applicability of the model. For the
validation, the model parameters optimized in the calibration phase are employed. We
use different data for the calibration and the validation of the model.

The chapter is organized as follows. In the first section (Section 4.1), the mathemat-
ical properties of the model is presented. Then, in the next section (Section 4.2) ), the
property of the fundamental diagrams in relation to the model requirements in Chapter
3 is analyzed. Section 4.3 describes the verification of the model, as well as the com-
parison with other models. The calibration and validation of the model is discussed in
Section 4.4. Finally, Section 4.5 concludes the chapter.

4.1 Mathematical properties of the model

To describe the solution of the system equations (3.18)-(3.20) in terms of wave motion,
the jacobian matrix Dq of q = (q1, q2) should be diagonalizable with real eigenvalues,
in another words, the system has to be hyperbolic. We can prove the hyperbolicity by
showing that the system is symmetrizable, i.e. there exists a positive-definite matrix S
such that SDq is symmetric (see (Benzoni-Gavage and Colombo, 2003)).

Re-writing the system in the form:

∂ρ

∂t
+ Dq(ρ)

∂ρ

∂x
= 0,

where

ρ =

[
ρ1
ρ2

]
and q(ρ) =

[
ρ1v1(ρ)
ρ2v2(ρ)

]
,

the Jacobian matrix of q(ρ) is given by:

Dq(ρ) =


∂(ρ1v1)

∂ρ1

∂(ρ1v1)
∂ρ2

∂(ρ2v2)
∂ρ2

∂(ρ2v2)
∂ρ1

 =

 ρ1∂1 (v1) + v1 ρ1∂2 (v1)

ρ2∂1 (v2) ρ2∂2 (v2) + v2
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For ρ1 > 0, ρ2 > 0,

S =


1

ρ1∂2(v1)
0

0 1
ρ2∂1(v2)

 (4.1)

is a symmetrizer of Dq, thus the system satisfies the hyperbolicity condition.

The eigenvalues of the Jacobian representing information propagation (characteris-
tic) speed are given by:

λ1,2 =
1
2

[
α1 + α2 ±

√
(α1 − α2)2 + 4ρ1ρ2∂2(v1)∂1(v2)

]
,

where
α1 = ρ1∂1(v1) + v1, α2 = ρ2∂2(v2) + v2.

Following (Benzoni-Gavage and Colombo, 2003, Proposition 3.1) it is possible to show
that

λ1 ≤ min{α1, α2} ≤ min{v1, v2} and min{v1, v2} ≤ λ2 ≤ max{v1, v2}, (4.2)

where, we have taken λ1 ≤ λ2.
The proof in (Benzoni-Gavage and Colombo, 2003) assumes that V1 > V2 to exclude

the degenerate case, when V1 = V2. However, Zhang et al. (P. Zhang et al., 2006) also
studied the properties of a similar model as in (Benzoni-Gavage and Colombo, 2003),
but here for a generic speed function which is expressed as a function of total density,
i.e. vi = vi(ρ), where ρ = ∑i ρi. Accordingly, it is proved that for v1 < v2 < v3.... < vm,
the eigenvalues are bounded such that λ1 < v1 < λ2 < v2 < λ3 < ...vm − 1 < λm < vm
(refer (P. Zhang et al., 2006, Theorem 3.1, Lemma 2.2, Lemma 2.3)).

Due to the complexity of the dependency of the speed function on vehicle class
densities, we could not follow a similar analytical approach. Nonetheless, we have
checked the validity of this relationship, i.e. λ1 < v1 < λ2 < v3 < λ3 < ...vm − 1 <
λm < vm, using a graphical analysis, by taking a specific case where v1 > v2 is not true
in all permissible traffic states. In our model, v1 > v2 is not always satisfied when the
maximum speed of cars is higher than PTWs’. Hence, for the test, the maximum speed
of cars is set to be greater than the maximum speed of PTWs.

Let λ1 = min {λ1, λ2} and λ2 = max {λ1, λ2}, if the relation λ1 < min {v1, v2} <
λ2 < max {v1, v2} holds, then max {v1, v2} − λ2 > 0, min {v1, v2} − λ2 < 0 and
min {v1, v2} − λ1 > 0.

FIGURE 4.1(a) shows that max(v1, v2)− λ2 > 0, implying λ2 < max(v1, v2). From
FIGURE 4.1(b) it can be learned that min(v1, v2) − λ2 < 0, thus min(v1, v2) < λ2.
FIGURE 4.2 shows that min(v1, v2) − λ1 > 0 over all point in S = {ρ1, ρ2}, thus
λ1 < min(v1, v2).

(A) max(V1, V2)− λ2
(B) min(V1, V2)− λ2

FIGURE 4.1: Evaluation of the maximum characteristics speed over a
point in S = {ρ1, ρ2}, Here V1 = 22m/s and V2 = 27m/s
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(A) min(V1, V2)− λ1

FIGURE 4.2: Evaluation of minimum characteristics speed over a point
in S = {ρ1, ρ2}, Here V1 = 22m/s and V2 = 27m/s

The results from the graphical analysis strongly suggest that the relation in equation
(4.2) is valid for our model, which confirms that in the model no wave travels at a higher
speed than the traffic and thus the wave propagation speed is finite.

4.2 Fundamental relation

In the formulation of the mode, Chapter 3, list of model requirements are specified.
Here, we assess the model, specifically the fundamental relation, with respect to these
requirements.

The first requirement states that there should be four traffic regimes, i.e. free-flow,
semi-congested, congested and creeping. This requirement is satisfied by the model,
since different jam and critical densities are specified for PTWs and cars (refer FIGURES
4.3).

(A) (B)

FIGURE 4.3: The four traffic regimes , (A) Speed-density relation (B)
Flow-density relation, where ρT = ρ1 + ρ2

The other requirement of the fundamental relation can be restated as: the model
should be able to describe the variation in vehicles classes maximum speed and physi-
cal dimension (length and projected area). These variations are included in the speed-
density relation (see equation (3.14)). Thusly, this requirement is also satisfied.

Requirement 5 relates to the relation of speed of vehicles and road width. In the
speed-density relationship, the density of vehicles is expressed in vehicles per unit
square since in situation where vehicles do not respect lane discipline the ’areal density’
is more descriptive than the ’linear density’. Therefore, the road section is considered
as a single unit. The fundamental relations are often established on a per-lane bases.
However, we explicitly integrate the road width (see equation (3.12)). The reason is
that, for instance vehicles filtering between rows of traffic find more space in multi-lane
scenarios than single lane cases. This requirement is also satisfied by the model (Figure
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4.4). Unlike the ordered flow, for N lane scenarios the jam densities (ρN
j ) have the fol-

lowing relation with the one-lane (ρ1
j ) case: ρN

j > Nρ1
j . The same applies for the critical

densities.

(A) Cars (B) PTWs

FIGURE 4.4: The variation of the fundamental relation with road width

The other requirement states that the equilibrium speed should be defined uniquely
for each traffic composition. This requirement is also satisfied as the speed depends on
each class density. FIGURE 4.5 shows the variation in speed-density and flow-density
with traffic composition, i.e. with the change of the density of vehicle class 1 (ρ1). The
models that describe the speed-density relation as a function of area occupancy can
not capture these properties (e.g., (Nair, Mahmassani, and Miller-Hooks, 2012; Fan and
Work, 2015))

(A) Cars (B) PTWs

FIGURE 4.5: Speed versus total occupied area for cars at different traffic
composition

4.3 Model comparison and verification

The verification experiments are intended to evaluate the developed model against the
model in (Nair, Mahmassani, and Miller-Hooks, 2011), which follows the same ap-
proach, and the required qualitative behaviors.

4.3.1 Pore size distribution verification

Here, we verify the pore size distribution against the results in (Nair, Mahmassani, and
Miller-Hooks, 2011), which are produced by determining the cumulative distribution
of the pore size from the average of multiple simulation outcomes. We expect that the
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vehicle spacing distribution we propose yields qualitatively the same result as the result
obtained from the multiple simulation runs. To derive the pore size distribution, we
have introduced simplification assumptions which are not used in (Nair, Mahmassani,
and Miller-Hooks, 2011). The impact of these assumptions on the model behavior can
be grasped through the qualitative comparison between the results from our model and
(Nair, Mahmassani, and Miller-Hooks, 2011).

Therefore, we reproduce the result in (Nair, Mahmassani, and Miller-Hooks, 2011)
following the same approach used in the paper. In Nair’s approach, for each configura-
tion, the fraction of accessible pores is determined by running multiple simulation run,
where vehicles are randomly placed in the domain (without overlapping), and then the
probability of finding a pore greater than the critical pore size is determined from this
configuration. However, at high density it may not be possible to find a solution within
a reasonable amount of time. In these cases, the author proposed to adjust the pore
space distribution to reflect ’unplaced vehicles’. But, nothing is mentioned in the paper
the way the pore space distribution can be adjusted. Thus, we applied our own method
for adjusting the pore size distribution. For a given total number of vehicles, first the
fraction of accessible pores (Fc) is determined according to the ‘placed vehicles’. If all
the vehicles cannot be placed within the time limit set, FC will be reduced by a ratio of
total number of ‘placed vehicles’ to total number of vehicles (see FIGURE 4.6).

FIGURE 4.6: The setting used for the extraction of the inter-vehicle spac-
ing distribution

For the sake of comparison, we use similar loading profile and simulation param-
eters. With normal profile, the interaction of the two classes under uninterrupted flow
conditions is studied, while a traffic flow with disruption is studied in queue profile.
The maximum speed is set to V1 = 80 km/hr for PTWs and V2 = 100 Km/hr for cars.
The simulation is done for 300 s on the space domain x ∈ [0, 3000 m], and with ho-
mogeneous initial density of ρ1(x, 0) = 0, ρ2(x, 0) = 0. We also set ∆x = 100 m and
∆t = 2.5sec. For both experiments the upstream inflow is set to:

F1(0, t) =

{
0.5 veh/sec for t ∈ [100 s, 200 s],
0 otherwise,

F2(0, t) =

{
0.5 veh/sec for x ∈ [0 s, 200 s],
0 otherwise,

and we give absorbing boundary conditions downstream, so that the vehicles leave
freely.

From FIGURE 4.7, it can be observed that PTWs traffic density wave moves faster
than cars. Due to this, although PTWs start behind, they move past cars traffic and
leave the simulation domain faster. At t = 250 s, all PTWs have overtaken cars. Both
models behave similarly except small quantitative changes.

The result in FIGURE 4.8 represents the interrupted scenario, where for t ∈ [0 s, 250 s]
the flow is blocked at the mid of roadway (at 1500 m). Important properties observed
from the results are: PTWs are able to move to the front of the queue passing stationary
cars (from t = 200 s to t = 250 s), thus, when the blockage is removed, PTWs clear
first. In this scenario, a big quantitative divergence is observed between the two mod-
els, particularly when the queue is formed. In our model, we defined jam densities for
each class and the speed function is scaled to reach zero at the jam densities (Section
3.2.2, FIGURE 3.10). But, this modification is not applied to the speed function in Nair’s
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FIGURE 4.7: Normal profile, traffic density waves of cars and PTWs at
different time steps. (PTW-1, Car-1) and (PTW-2, Car-2) represent result

form our model and Nair’s model, respectively.

model, see FIGURE 4.9. The difference between the speed values becomes more signifi-
cant at the higher densities. The resulting quantitative change mainly happens because
of the speed difference. Otherwise, both models are quantitatively similar.

The results in figures 4.7 and 4.8, have almost the same qualitative properties as the
results in (Nair, Mahmassani, and Miller-Hooks, 2011), confirming the validity of the
assumptions made to establish the distribution function of inter-vehicle spacing.

4.3.2 Verifying model properties

In this section, the capability of our model to reproduce the observed macroscopic phe-
nomena of a mixed flow of PTWs and cars is evaluated. The following two well-known
features (Fan and Work, 2015) are used as a benchmark to evaluate our model.

• Overtaking- when the traffic volume is high, cars start to slow down. However,
PTWs remain unaffected or less affected by the change in traffic situation, as they
can ride between traffic lanes. As a consequence, PTWs travel at higher speed,
and overtake slow moving cars.

• Creeping- when cars are stopped at traffic signals or because of traffic jams, PTWs
can find a space to filter (creep) through stationary cars and move ahead.

In addition, a comparison with the models in (Benzoni-Gavage and Colombo, 2003) and
(Fan and Work, 2015), hereafter referred as N-pop and creeping respectively, is presented
along with the verification of our model, porous G. The two models are chosen for the
comparison because the creeping model is proved to reproduce these phenomena and
the N-pop applies a similar modeling approach with creeping.

For creeping and overtaking experiments, the parameters in TABLE 4.1 are chosen.
The jam density refers to the maximum area occupancy, which equals to ρ1a1 +

ρ2a2 for porous G model and ρ1l1 + ρ2l2 for the other models, where vehicles come to a
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FIGURE 4.8: Queue profile, traffic density waves of cars and PTWs at
different time steps. (PTW-1, Car-1) and (PTW-2, Car-2) represent result

form our model and Nair’s model, respectively.

(A) Car speed at different density of PTWs (B) PTWs speed at different cars density
values.

FIGURE 4.9: Speed Vs total occupied area (∑ ρ1 A1 + ∑ ρ2 A2) Nair’s
model (Nair, Mahmassani, and Miller-Hooks, 2011), where ρ1 A1 and

ρ2 A2 are area projected on the road by PTW and car, respectively.

complete stop state. The simulation is done on a road of length 50 m and ∆x = 0.0 5m
and ∆t is selected according to CFL condition.
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PTW Car
Vehicle length (m) 1.5 3
Vehicle radius (m) 0.75 1.5
Max. speed (m/s) 1.8 1
Jam density porous G 1 0.85
Jam density creeping 1.8 1
Jam density N-pop 1 1

TABLE 4.1: Simulation Parameters

4.3.2.1 Creeping experiment

A signalized intersection is employed for testing creeping. In the simulation, PTWs
start behind the cars traffic and cars traffic have concentrated close to the traffic signal,
so that PTWs arrive after most of the cars reached a complete stop. The simulation is
done for 200 s and starts with initial densities

ρ1(x, 0) =

{
0.25 for x ∈ [1 m, 21 m],
0 otherwise,

ρ2(x, 0) =

{
0.25 for x ∈ [31 m, 50 m],
0 otherwise.

The inflow and the outflow at the boundaries are set to zero. At the time PTWs start
catching up cars traffic (FIGURE 4.10(a)), most of the cars are at stationary state (see
FIGURE 4.10(a) lower subplot space location 45− 50 m). However, as shown in FIGURE
4.10(b), PTWs maneuver through those stationary cars and reach the front of the queue
for the case of creeping and Porous G models. For the N-pop model, the PTWs traffic
stays behind the cars since both classes have the same jam density. Table 4.2 shows the
average speeds of PTWs and cars in a particular location at time t = 50 s. As can be
observed from the speed values, unlike N-pop model, in the other two models PTWs
have a non-zero speed value even though cars are at a complete stop state. The results

(A) Density profiles at time t=10s. (B) Density profiles at time t=200s.

FIGURE 4.10: Creeping experiment density-space diagram, upper
subplot for PTWs and lower subplot for cars.

Creeping Porous G N-pop
V1 0.2179 0.6349 0
V2 0 0 0

TABLE 4.2: Speed values extracted at time t = 50sec and position x =
39.15m

from the creeping experiment show similar behavior to the situation we may observe in
real scenarios, i.e. PTWs seep through cars queue to reach the head the queue, both for
Porous G and Creeping models. However, for the N-pop model, PTWs remain behind car
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traffic queue. Thus, only the first two models are able to produce this predominantly
observed phenomenon of mixed traffic flow of cars and PTWs.

4.3.2.2 Overtaking experiment

For the overtaking scenario, the cars traffic is placed ahead of PTWs.
The simulation starts with the initial state where:

ρ1(x, 0) =

{
0.3 for x ∈ [1 m, 20 m],
0 otherwise,

ρ2(x, 0) =

{
0.3 for x ∈ [15 m, 34 m],
0 otherwise.

The inflow at the upstream boundary is set to zero, and vehicles are allowed to leave
freely at the downstream boundary. For this experiment, we consider two cases one
when free flow speed of PTWs is higher than cars and the other when cars take the
higher free flow speed. The occurrence of overtaking is evaluated by inspecting the
evolution of traffic densities of the two classes. Overtaking is said to happen when the
density waves of the two classes come to the same level in space and one of the two go
past the other, i.e the tail end of one class is before the other.

(A) Density profiles at time t=2sec. (B) At time t=18sec, overtaking in Porous G

(C) At ime t=38sec, overtaking in Creeping. (D) At time t=80sec, overtaking in N-pop.

FIGURE 4.11: Overtaking experiment density-space diagrams, upper
subplot for PTWs and lower subplot for cars, free flow speed of

V1 = 1.8m/s greater than V2 = 1m/s. The dashed lines stretching from
upper subplot to the lower connect the tail of the density profiles for

cars and PTWs’ traffic and the spacing between the two lines indicates
the distance gap after PTWs overtake.

As FIGURE 4.11 depicts, when free flow speed of PTWs is greater than cars, PTWs
overtake cars in all the three models. In Porous G model overtaking is observed at
around time t = 18 s (FIGURE 4.11(b)), and for Creeping and N-pop models overtaking
happens at t = 38 s (FIGURE 4.11(c)) and t = 80 s (FIGURE 4.11(d)), respectively.

The simulation results in FIGURE 4.12 correspond to the case where free flow speed
of cars (V2 = 1.8) is greater than free flow speed of PTWs (V1 = 1.5). As shown, in the
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two models, Porous G and Creeping, overtaking is observed. In Porous G model over-
taking happens around time t = 26 s (FIGURE 4.12(b)) and at time t = 40 s (FIGURE
4.12(c)) for Creeping. Nonetheless, N-pop model fails to reproduce overtaking. At time
t = 52 s for N-pop the tail end of PTWs traffic is around location x = 26 m whereas for
cars traffic it is around x = 41 m (FIGURE 4.12(d)), which is far behind.

(A) Density profiles at time t=2sec. (B) At time t=26sec, overtaking in Porous G.

(C) At time t=40sec, overtaking in Creeping. (D) At time t=52sec, N-pop.

FIGURE 4.12: Overtaking experiment density-space diagrams, upper
subplot for PTWs and lower subplot for cars, free flow speed of

V2 = 1.8m/s greater than V1 = 1.5m/s.

According to what is illustrated in figures ( FIGURE 4.11 and 4.12), all the three
models are able to show the overtaking phenomenon when PTWs free flow speed is
higher than cars. Further, for Porous G and Creeping models overtaking happens in the
case where free flow speed of cars is higher than PTWs’ as well.

In N-pop model, unlike the other two models, overtaking never happens unless car
free flow speed is higher. This can be explained using a particular instance in FIG-
URE 4.13. As shown in the figure, in Creeping and Porous G models there exist a region
where the speed of PTWs is greater than cars despite the free flow speed choice.

In conclusion, the model verification results validate that our model (Porous G) can
reproduce the required creeping and overtaking phenomena.The Creeping model also
satisfies all these properties. Yet, this model has a limitation, as occupied space is a mere
factor that determines the speed and the variation in the composition of vehicles has no
influence as long as the occupied space is the same (see Section 3.2.2, FIGURE 3.10).
The N-pop model, however, lacks the creeping behavior and overtaking is conditioned
by the free flow speed of PTWs.



4.4. Model calibration and validation 65

FIGURE 4.13: Speed vs. total number of vehicles plot, when free flow
speed of PTWs less than cars and cars account to 80% of the total traffic,
upper subplot Porous G, middle subplot Creeping, lower subplot N-pop.

4.4 Model calibration and validation

The model is validated against the desired qualitative behaviors. Yet, to accurately re-
produce the real traffic situation, adjusting the model parameters is imperative. For
the calibration and validation process, trajectory data for each vehicle class at differ-
ent ranges of traffic densities is required. In addition, for non-lane based traffic the
influence of the road geometry is significant, thus information about the roadway such
as lane width, number of lanes, etc is necessary. Although there are widely available
methods to collect vehicles’ trajectory data, only a few of them are applicable for the
required calibration and validation experiments. The challenge is mainly in getting the
required traffic parameters and accurate geo-location of vehicles, specifically for PTWs.
For example, data collected from sensors like inductive loops are not sufficient as ex-
trapolation of vehicles spatial location is very difficult, if not impossible. Floating Car
Data (FCD) could be an efficient method for collecting vehicles’ trajectory data, where
smartphones or GPS devices in vehicles continuously send location, speed, etc. infor-
mation. However, the inefficiency of smartphone GPS to produce the true location of
PTWs (Koyama and Tanaka, 2011) and the low penetration rate of vehicles equipped
with an accurate GPS receiver make FCD method less applicable. Another potential
alternative is to use video cameras and to extract the required traffic data (vehicle num-
ber, vehicle type, location, etc.) utilizing image processing techniques (Ch Mallikarjuna,
Phanindra, and Rao, 2009). Given the complexity of data collection, calibrated com-
mercial simulators like Vissim can serve as a means of model calibration. We therefore
utilize the data from Vissim simulation model for the model calibration and validation
process.
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4.4.1 Vissim simulation

Vissim is a microscopic simulation platform that can reproduce a realistic traffic flows
and operations (Fellendorf and Vortisch, 2010). With Vissim, the movement of different
types of vehicles (e.g., cars, trucks, powered two-wheelers, etc.) and pedestrians can be
studied. The car-following behavior of vehicles is modeled according to Wiedemann
model. There are also model for the lateral and the lane-changing behaviors. Vissim can
also model the lane sharing or same lane overtaking behaviors found in non-lane bound
traffic flow. Moreover, the models are calibrated. In addition, Vissim can generate
various aggregated or raw data evaluation results, such as floating car data, travel time
information, delay.

To generate the data required for the model calibration and validation, we apply
the following simulation settings. Two vehicle types are defined, motorcycle (PTWs)
and cars. Vissim allows to define vehicle type dependent driving behaviors and model
parameters. In our case, PTWs and cars have different car-following parameters and
driving behaviors. PTWs can overtake in the same lane but not cars. Cars are dot
overtake in the same lane but can take any lateral position within the lane.

The data is collected on a two-lane road network of length 1.5 km and the width of
the traffic lanes are 3.5 m. There are three links, but the data collection is cried out at
link 2. The schematic representation of the road netwok is shown in FIGURE 4.14. The
vehicle specific parameters used for the simulation are presented in Appendix C.

FIGURE 4.14: Schematic representation of the road network

The simulations are carried out for one hour period, however the data collection
starts at 300 s.

4.4.2 Analyzing the data

The collected floating car data contains the following information: time step, vehicle
ID, vehicle type, rear and front coordinates, speed, link and lane number, etc. To use
the data for the calibration of the fundamental diagrams, the density, flow and average
speed information has to be extracted from the data.

To derive the density we use the following equation.

ρ =
∑i niti

lT
=

∑N
n=1 tn

lT
(4.3)

where l, tn and T are, respectively, the length of the road section, the time spent by a
vehicle in the section and the observation period, which in our case equals 6 min
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The average speed, which is the space mean, is derived as follows:

v =
∑N

n=1 dn

∑N
n=1 tn

(4.4)

where tn is time spent by a vehicle in the section and dn is the distance traveled in the
duration of tn.

The flow can be derived from the flow, density and speed relationship. Thus, the
flow becomes:

q =
∑N

n=1 dn

lT
(4.5)

The speed-density and flow-density relations, for different ratio of PTWs, obtained
from the simulation data are shown in FIGURE 4.15.

FIGURE 4.15: The Flow-density curve for PTWs and cars, at the traffic
composition of [10% PTWs− 90% cars] and [20% PTWs− 80% cars]

Furthermore, to extract the inter-vehicle spacing or pore size information from the data,
we apply the following procedure. First, the coordinates of the center of vehicles is
computed from the rear and front coordinates. Then, using Delaunay triangulation the
distance between vehicles is measured. Note that, since the Delaunay triangulation is
performed based on the center coordinates, the triangle edges may cross more than two
vehicles. In this case the triangle edge is removed. FIGURE 4.16 shows the schematic
representation of the pore size measurement.

4.4.3 Model calibration

The purpose of the calibration procedure is to adjust the fundamental diagrams pa-
rameters for the two vehicle classes. In particular, the searched parameters are the jam
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FIGURE 4.16: Schematic representation of the pore size measurement
method

densities, the critical pore size and the scaling factor of the model. For the jam den-
sities, curve fitting is utilized while the other parameter are calibrated by employing
an iterative search of the parameters until a good fitting curve to the observation is
obtained.

The jam densities are dependent on the traffic composition. Therefore, it is neces-
sary to establish relationship between the jam and critical density parameters, and the
traffic state. Hence, we first establish a relation between the jam density of each class
and the traffic composition. Matlab curve fitting is employed to find an equation that
relate the jam densities and the traffic composition. Accordingly, we obtain the follow-
ing equation.

ρjam,n = ρ0
jam,n − 0.33ρo (4.6)

where ρ0
jam,n is the jam density of vehicle class n when the density of the other vehicle

class is zero. This value is determined for each vehicle class based on the fundamental
relation in FIGURE 4.18. The obtained ρ0

jam,n values for cars and PTWs are, respectively,
400 veh/km and 2000 veh/km.

For the critical pore size, we start with the equation that relates the critical pore size
with the traffic state.

rcr
n = wn + α ∗ (1− (ρ1 ∗ a1 + ρ2 ∗ a2)) (4.7)

where wn is the width of the vehicles and ρ1 ∗ a1 + ρ2 ∗ a2 is the total sum of the projected
area of class 1 and class 2 vehicles. From the iterative search, α = 4 and α = 4.5 for
PTWs and cars, respectively, are accepted for all tested cases. Similarly, the scaling
factors are also determined, which equal 3.5 for PTWs and 2 for cars.

The Fundamental relation curves obtained from the Vissim simulation data and the
fitted curves after calibrating the model parameters are shown in FIGURE 4.17 and
FIGURE 4.18.

The calibrated parameters are used in the next model validation procedure.
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(A)

(B)

FIGURE 4.17: The estimated and measured (A) flow–density relationship
(B) speed–density relationship
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(A)

(B)

FIGURE 4.18: The estimated and measured speed–density relationship
(A) for cars (B) for PTWs, when the fraction of the other vehicle class is

zero
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4.4.4 Validation

In this section, we validate the pore size distribution. Further, by using the calibrated
parameters, the applicability of the model is validated.

Spacing distribution

The model is founded on the assumption that the traffic flow behavior can be charac-
terized using the inter-vehicle spacing distribution. Thus, the accuracy of the model
highly depends on how precisely the inter-vehicle spacing distribution is estimated.
The inter-vehicle spacing distribution, therefore, has to be validated. The validation of
the spacing distribution process involves, for different traffic compositions and densi-
ties, collecting position information of vehicles, measuring spacing between vehicles,
estimating statistical parameters of inter-spacing (mean, variance) and curve fitting ex-
periments.

Inter vehicle spacing distribution is analyzed for different traffic compositions. Three
distributions, namely exponential, log-normal and truncated normal, are tested. The
goodness of the fit measurements and the fitting curves are shown in TABLE 4.3 and
FIGURE 4.19, respectively.

(A) Fitting plot for
ρ1 = 0.001, ρ2 = 0.025, v/m2

(B) Fitting plot for
ρ1 = 0.0052, ρ2 = 0.0565, v/m2

(C) Fitting plot for ρ1 = 0.013, ρ2 = 0.021, v/m2 (D) Fitting plot for ρ1 = 0.001, ρ2 = 0.01, v/m2

FIGURE 4.19: Fitting of theoretical distributions with the observed
distribution, for different vehicles composition

According to the results, log-normal fits better in the three of cases studied. How-
ever, truncated normal distribution fits better for the case ρ1 = 0.1 veh/m2, ρ2 =
0.01 veh/m2. Although, log-normal fits better in most of the cases, the goodness of
fit measure for truncated normal is close to log-normal. From these observations, we
can see that truncated-normal distribution can give a good estimate in most of the cases,
but at higher traffic densities log-normal gives a better estimate.
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SSE R-square RMSE SSE R-square RMSE
ρ1 = 0.001, ρ2 = 0.025 ρ1 = 0.0052, ρ2 = 0.057

LT-normal 0.217 0.9584 0.0047 19.5 0.641 0.0442
Log-normal 0.0413 0.9921 0.0020 7.89 0.854 0.0281
Exponential 2.068 0.605 0.0144 47.15 0.1324 0.068

ρ1 = 0.013, ρ2 = 0.021 ρ1 = 0.1, ρ2 = 0.01
LT-normal 0.303 0.942 0.0055 0.0586 0.9688 0.0024
Log-normal 0.051 0.99 0.0023 0.250 0.866 0.005
Exponential 1.4 0.732 0.012 0.756 0.597 0.0087

TABLE 4.3: Goodness of the fit measurements for different theoretical
distributions.

We check also the formulation used to estimate the parameters of the distribution.
It appears that the formulation for the estimation of the distribution parameters gives
a good approximate of the observed parameters.

Applicability of the model

This section presents the validation of the applicability of the developed model. The
calibrated parameters are applied in the model. We use different simulation data for
the validation, but obtained from similar simulation setting. The measured average
speed is computed over 30 s period. The applicability of the model to correctly predict
the observed average speed is evaluated.

Figures 4.20 and 4.21 show the observed and the estimated average speed. The first
one represents the result for light traffic condition and the later one is for higher traffic
densities. As can be seen, there is a good matching between the curves representing the
estimated and observed average speed. However, there are also wider gaps between
the two observations around 5 min, 19 min and 40 min.

FIGURE 4.20: The observed and estimated average speed over a time
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FIGURE 4.21: The observed and estimated average speed at higher traffic
densities (cars average speed)

4.5 Summary and conclusion

In this chapter, we study the qualitative and quantitative behaviors of the developed
heterogeneous traffic flow model. The mathematical properties of the model, which is
related to the characteristics speed, is analyzed. The characteristics speed are proved,
analytically and numerically, to be bounded by the vehicles speed.

Furthermore, the model is assessed with respect to the following required features
of the fundamental relation. The first requirement is the speed-density and flow density
relations should be uniquely defined for each permissible vehicle class density. There
should also exist four traffic regimes that describe the total traffic flow state. At free
flow state, both vehicle classes are in free flow state. In semi-congested state, PTWs
are in free flow state but cars are congested. In congested state, both vehicle classes
are congested but travel at different speeds. The fourth traffic regime, which is the
creeping phase, describes the traffic situation where PTWs can travel at non-zero speed
while cars are completely stopped.

The fundamental relation is derived in Chapter 3 based on the porous flow ap-
proach. The pore size distribution is one of the important feature of the model, which
we determine by applying different approximation methods. We compare our model
with Nair’s model (Nair, Mahmassani, and Miller-Hooks, 2011), which follows the
same approach but obtains the pore size distribution from multiple simulation runs.
In a mixed cars and PTWs flow, overtaking and creeping are the commonly observed
traffic phenomena. We evaluate our model, also compare with other two models, with
respect to these two traffic features.

Moreover, the calibration and validation of the model is performed using the traf-
fic data obtained from a micro-simulation model Vissim. The fundamental curves are
derived from the traffic data, and the model parameters are adjusted to fit the curves.
Accordingly, we establish a relation between the traffic composition and the jam densi-
ties of the vehicle classes. Further, the acceptable critical gap is described as a function
of the traffic state. In the validation phase, first the validity of the proposed inter-vehicle
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spacing or pore size distribution is checked. The results show that the proposed distri-
bution, i.e. truncated normal distribution, fits well in most of the cases but log-normal
fits better at higher traffic densities. Further, the applicability of the model is evaluated
by comparing the estimated and the measured average speed. The model is able to
reproduce the evolution of the average speed correctly. However, the model should be
further analyzed using wide ranges of traffic conditions.

In the following section, the model is applied to analyze the traffic characteristics
that are important for ITS application development.
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Chapter 5

Perspectives for future ITS
applications

ITS applications have contributed a lot in creating a safe and efficient transportation
system. However, for the effectiveness of the applications, all types of transport modes
have to be incorporated.

The use of PTW is growing world wide, due to the many advantages they offer.
To benefit from the mobility opportunities offered by the shift to PTWs, it is necessary
to make the transportation system adapted to PTWs. The specific behaviors of PTWs
have to be considered during the development of ITS applications. For example, traffic
management strategies in response to certain conditions, such as traffic jams and inci-
dents, have to be optimized to PTWs. Otherwise, it might become counterproductive to
ensuring efficient road use. Moreover, traffic information systems, like jam ahead indi-
cation and routing information, have to be adapted to vehicle types as a congested road
for cars may not be necessarily congested to PTWs. The benefit of optimizing ITS appli-
cations to PTWs specific behaviors is two fold. It not only results in a safe and efficient
road use but also encourages the use of PTWs, which in turn improves mobility.

In some cities, electrical scooter sharing initiatives are proposed, e.g., scoot (Co-
hen and Shaheen, 2018), for drivers to switch transportation modes when reaching city
centers. Yet, major user acceptance of PTWs in future traffic will not success unless
PTW-aware Cooperative Intelligent Transport Systems (C-ITS) technologies are avail-
able. First and foremost, safety technologies, such as cooperative lane merging or PTWs
approach indications, are required, considering the high vulnerability level of PTW. But
also, emerging traffic efficiency technologies, such as PTW-aware traffic monitoring,
traffic light management, adaptive speed limits and advanced navigation technologies,
are expected to provide a major impact on future urban and suburban traffic conges-
tion. Despite the advancement of ITS systems and applications for cars, little has done
to integrate PTWs into the systems (Barmpounakis, Vlahogianni, and Golias, 2016). Un-
derstanding the mobility characteristics and the impact of PTWs is the first step toward
the integration of PTWs to the ITS systems.

In this chapter, we use the model developed in Chapter 3 to study the impact of
PTWs and to assess the existing traffic management trends from the context of traffic
flow containing PTWs. More specifically, in Section 5.1 the impact of PTWs on road
capacity and travel time is presented. Section 5.2 describes traffic control systems and
the adaptation to the specific needs and behaviors of PTWs.

5.1 Traffic impact analysis

The traffic impact analysis targets to assess the potential improvements in traffic mo-
bility obtained from growing use of PTWs. Identifying the opportunities leads to the
introduction of new innovative smart city applications. Furthermore, it gives the nec-
essary information on how transport policies, mobility plan, traffic management, etc.
should be shaped to benefit from the opportunities. Thus, the section here explores the
impact of PTWs on traffic flow and road capacity. First, we analyze the role of PTWs, at
different penetration rates, in minimizing congestion by substituting some of the cars
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with PTWs. Then, we investigate the benefit of the mode shift to PTWs in the reduction
of travel time.

5.1.1 Road capacity

Road capacity, which is also called critical density, is defined as the maximum volume
of traffic that corresponds to the maximum flow rate. Above the road capacity, traffic
flow enters congestion state and the flow of vehicles decreases with the increase in
traffic volume. In mixed traffic flow, the road capacity varies depending on the total
density and the traffic composition. Here, the role of PTWs in reducing congestion is
evaluated. For the comparison, the flow-density plot for different ratios of PTWs is
presented in FIGURE 5.1. The following simulation parameters are used to produce
the results. The maximum speed of cars is V2 = 100 km/hr, maximum speed of PTWs
is V1 = 80 km/hr, and we consider a single lane one-way road with a carriage width of
3.5 m.

PTWs stay in free flow state for longer ranges of densities than cars, because of their
ability to ride in between other vehicles. The flow-density diagram, which is depicted in
FIGURE 5.1(b), shows the variation of the maximum flow rate and the critical density
of the two classes. FIGURE 5.1(a) shows the total flow rate against the total volume
of vehicles. The total flow rate describes the number of vehicles that leave a given
point per unit time, which is equal to the sum of the flow rates of PTWs and cars. As
FIGURE 5.1(a) illustrates, increasing the fraction of PTWs from 0% to 10% results in a
9.3% improvement of the road capacity and 2.74% increase of the maximum flow rate.

% of PTWs Critical density Maximum flow
(veh/km) (veh/hr)

0 43.1 4248
10 47.1 4320
25 58.1 4608
35 72.1 4896
50 116.1 6084

TABLE 5.1: The change in critical density (veh/km per unit lane width)
and the maximum flow rate (veh/hr/lane) at different ratios of PTWs

The results in FIGURE 5.1 and TABLE 5.1 point up that the shift to PTWs indeed
helps to improve road capacity. Besides, the variation in the reaction of the two vehi-
cle classes for a given traffic situation calls new methods for traffic management and
monitoring.

5.1.2 Travel time

Here, we analyze how replacing some of the cars with PTWs improves travel time,
based on the instantaneous travel time analysis. The instantaneous travel time (iTT) is
computed on the assumption that vehicles travel through the considered road section
at a speed profile identical to that of the present local speed, and it is formulated as:

tinst =
n

∑
i=1

∆x
v(xi, t)

, (5.1)

where n is the number of cells and ∆x is the mesh size. The experiment is done under
the following simulation setup: road length of 500 m, ∆x = 10 m, free flow speeds
V1 = V2 = 80 km/hr and the simulation is run for 80 s. A homogeneous initial total
density of ρ1(x, 0) + ρ2(x, 0) = 0.1 for x ∈ [0, 500 m] is set. The result in FIGURE 5.2
is produced by computing the instantaneous travel time every 0.02 s. According to
the result, a 12.4% reduction in the average travel time is obtained even at the lowest
penetration of PTWs (10%). The table in FIGURE 5.2 below presents the iTT values
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(A) Total flow rate vs. total density,the
connecting dashed lines show the maximum

flow rate and the corresponding road capacity.

(B) Flow-total density diagram, upper subplot
for cars and lower subplot for PTWs.

FIGURE 5.1: Flow-density diagram, for different penetration rates of
PTWs.

averaged over the whole simulation period, for different traffic compositions, and the
improvement in the average travel time. According to these results, in addition to the
reduction in the average travel times, with the increase in modal shift to PTWs, cars
travel at a high speed for longer time. Certainly, the results show that PTWs help in
maintaining reliable and reduced travel times.

% of cars average Improv.
PTWs travel time (%)

0 41.6
10 36.45 12.4
20 32.74 21.3
30 30 27.9
40 28 32.7
50 26.68 35.9

FIGURE 5.2: The change in travel time of cars for different penetration
rate of PTWs.

5.2 Assessing traffic control systems

This section assess the ITS traffic control strategies with respect to the traffic character-
istics in cars and PTWs mixed flow. For the study, two traffic control methods, namely
adaptive traffic light control and variable speed limit control, are selected.

5.2.1 Adaptive traffic light control

An adaptive signal control (ASC) approach dynamically optimizes traffic signal plan
according to the traffic condition in real time. Constantly gathered data is used to detect
traffic demand variation, and to determine the appropriate offset, green split and cycle
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length. Due to its traffic responsive nature, ASC surpasses the limitation of the conven-
tional pre-calculated signal control methods, which rely on historical data. However,
the efficiency of adaptive control scheme is limited by the way the traffic flow character-
istics is interpreted. Traffic flow characteristics such as traffic arrival, queue formation
and dissipation patterns are the main factors that regulate ASC operation.

Most of the existing adaptive signal controllers are designed for lane-disciplined
cars traffic flows. Thus, the operation of ASC is adapted to the traffic characteristics of
the lane disciplined flows. This assumption is challenged by the unique traffic flow be-
haviors appearing as a consequence of the growing use of PTWs. The queue formation
and dissipation pattern of PTWs significantly differs from cars. For instance, during
queue formations in mixed traffic conditions, PTWs tend to move to the head of the
queue by filtering through the queue of other vehicles, giving them the opportunity
to leave the queue before other vehicles. Besides, thanks to their high maneuverability,
PTWs altogether depart from the queue in a very short time. Therefore, ASC operations
based on the knowledge of cars traffic flow can not anticipate this early departure and
thus produce a sub-optimal signal plan.

In this section, we analyze the queue build-up and dissipation process in mixed
traffic flows consisting of PTWs and cars, and devise an effective adaptive signal con-
trol techniques to integrate PTWs in ASC signal plans. We consider adaptive traffic
light controllers which allocate green phase lengths according to the variation of traffic
volumes (Zhou et al., 2010; Faye, Chaudet, and Demeure, 2012). That is, the green time
length is determined based on the volume (number) of vehicles in the queue. Adjust-
ing the green phase length according to the traffic demand (i.e. traffic volume) allows
to avoid over/under-allocation of green periods. As pointed earlier, the existing adap-
tive traffic controllers determine the green length on the knowledge of cars traffic flow,
thus the effectiveness of the control scheme is affected by the presence of vehicles with
divergent moving behaviors, like PTWs. We show the effect of neglecting the unique
characteristics of PTWs on the effectiveness of ASC operation. Further, the benefit of
accommodating these unique properties is illustrated.

5.2.1.1 Queue dynamics

Understanding the queue dynamics is a basic procedure for the optimization of traffic
signal plan in adaptive schemes. The queue dynamics describes the behavior of vehi-
cles in the queuing process and the pattern they leave the queue. In the mixed flow
of PTWs and cars, PTWs lane-sharing behaviors allow them to advance to the front
of the queue. In consequence, PTWs dissipate from the queue before other vehicles.
The queue dissipation pattern can be illustrated considering the maximum flow rate at
which vehicles leave the stop line, called saturation flow rate. For the case of homo-
geneous traffic flow, the reached saturation flow rate is fairly constant. However, in
mixed flow the property is different.

To study the queue dynamics and identify the possible influences on the existing
traffic signal operation, we perform simulation experiments. We consider the following
simulation scenario: a single-lane isolated intersection with road segment length of
510 m and width of 3.5 m, and a free flow speed of 80 km/hr is chosen for both cars
and PTWs. The road segment is divided into cells of size ∆x = 5 m, and the solution
is updated at each time step ∆t, which is chosen according to the CFL condition ∆t ≤
∆x/ max (Vi). The traffic light is located at 500 m, and the red light is active between
t ∈ [0, 60 s]. A fixed total arrival rate of 2 veh/s is set for time t ∈ [0, 50 s], and the
arrival rate is zero for the rest of the simulation times. The arrival rate for each vehicle
class is determined from their proportion. Accordingly, the queue dissipation behavior
is studied with a gradual increase of PTWs ratio as well as the queue clearance time is
analyzed with respect to the traffic composition.

TABLE 5.2 shows the clearance time (CT), denoting the time needed to clear vehicles
from the queue. The influence of PTWs on intersection clearance time is illustrated
by varying the fraction of PTWs. According to the results, the intersection clearance
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time, which is the maximum of the clearance times of the two vehicle classes, decreases
with the increase of the ratio of PTWs. This is further shown by examining the queue
formation and discharging behaviors. FIGURE 5.3 shows the queue dynamics, for each
vehicle class, when the ratio of PTWs is 25%. The lane sharing capability of PTWs
grants them to concentrate close to the stop line (FIGURE. 5.3(a)) and dissipate from
the queue at higher saturation flow rate (see FIGURE. 5.3(c)).

Ration of PTWs(%) CT of Cars CT of PTWs Relative Error

0 34.74 - -
15 30.99 13.57 +10.8%
25 28.13 14.02 +19.01%
35 25.43 14.17 +26.79%
50 21.23 14.47 +38.89%
75 14.47 14.77 +57.47%
100 - 14.92 +57.04%

TABLE 5.2: The change in the clearance time with the ration of PTWs

(A) (B)

(C)

FIGURE 5.3: (A) The density profile immediately before traffic light
turns red, (B) The evolution of queue length, and (C) The saturation

flow rate, traffic proportion [25% PTWs, 75% Cars]

To explain this from the context of adaptive traffic light operation, let’s consider an
ASC that counts the number of vehicles in the queue and estimates the queue clearance
time correspondingly. Thus, regardless of the proportion of PTWs, the clearance time
would be estimated to 34.74 s (see TABLE 5.2) on the assumption of pure cars traffic,
resulting in overestimation of clearance time. Moreover, the relative change of the ac-
tual CT and estimated CT, i.e. Estimated CT- Actual CT

Actual CT , shown in TABLE 5.2 depicts that the
estimation error increases with the increase of PTWs ratio. Due to CT overestimation,
a longer green time is assigned, which causes unnecessary delay on vehicles waiting in
the queue of the adjacent intersections.
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The introduction of an advanced stop line for PTWs has been proposed as a strategy
to facilitate PTWs mobility at traffic signals (Allen, Bygrave, and Harper, 2005). For
traffic lights with advanced stops, we evaluate the clearance time and the discharging
behavior, by performing similar experiments. In the simulation, the stop line for cars is
located 10 m upstream from the traffic light. The results in FIGURE 5.4 and TABLE 5.3
illustrate that the measured relative CT error is higher than the case for the intersection
without advanced stop line.

Ration of PTWs(%) CT of Cars CT of PTWs Relative Error

0 35.34 - -
15 31.14 13.57 +11.89%
25 28.43 14.02 +19.54%
35 25.73 14.17 +27.18%
50 21.53 14.47 +39.08%
75 14.62 14.77 +58.63%

TABLE 5.3: The change in clearance time with ration of PTW, at traffic
light with advanced stop line

(A) (B)

(C)

FIGURE 5.4: Traffic light with advanced stop line (A) The density profile
immediately before the traffic light turns red (B) The evolution of queue
length (C) saturation flow rate, traffic proportion [25% PTWs, 75% Cars]

Given the queue formation and dissipation patterns of PTWs, another alternative to
estimate the CT is by excluding PTWs, i.e. considering only the number of cars in the
queue to determine the clearance time. Obviously, the estimated CT is below the actual
CT. Yet, the divergence from actual CT is lower than the case where all vehicles in the
queue are counted (TABLE 5.4).

Both counting all the vehicles and counting only cars in the queue result in the clear-
ance time estimation errors. However, the estimation error for the latter case is smaller,
particularly for low PTW penetration rates. Nevertheless, either way the performance



5.2. Assessing traffic control systems 81

of the ASC is affected as vehicles in the adjacent intersection are forced to wait for more
time due to over estimation of the green time in the first case or some vehicles are forced
to wait for more than one cycle to clear from the queue in the latter case.

Ration of PTws(%) Estimated CT Actual CT Relative Error (%)

0 34.74 34.74 0%
15 29.63 30.99 -4.58%
25 26.33 28.13 -5.69%
35 22.88 25.43 -11.18%
50 17.77 21.23 -19.47%

TABLE 5.4: The estimated and the actual clearance time, when PTWs
are excluded from CT computation

5.2.1.2 Optimization approach

We consider an adaptive signal control in an isolated intersection that adjusts the green
time duration according to the upstream traffic demand. The ASC is assumed to mea-
sure queue length in number of vehicles queued at the intersection. The information of
queue length can be gathered using connected vehicle technologies or detectors. The
green time duration is set for a time sufficient to clear all queued vehicles. Accordingly,
the queue clearance time or the green time is computed from the number of queued
vehicles and the saturation flow rate (SF), ignoring the start-up loss time at the very
beginning of the green time.

However, for the mixed flow of cars and PTWs, the individual vehicle class sat-
uration flow rate is subjected to change, depending on the traffic composition. The
variation in the saturation flow rate can be seen in FIGURE 5.3(c). As can be seen,
the saturation flow rate of cars at the former green time period is lower than the latter
period. The flow-density relation shown in FIGURE 5.5 also explains the dependency
of the maximum flow rate or saturation flow rate on the density of the other vehicle
class. Therefore, the saturation flow rate for each vehicle class varies with the traffic
composition.

FIGURE 5.5: The variation in flow-density and the maximum flow of
cars with PTWs density (veh/m2).

For the purpose of estimating the saturation flow rate in a less complex way, we
develop a passenger car unit (PCU) for PTWs. The total SF rate is, therefore, expressed
in PCU. The objective here is to find the PCU values for PTWs so that the total saturation
flow rate can be expressed with a constant value regardless of the traffic composition.
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Hence, the PCU value of PTWs is expressed according to the following equation.

PCUPTWs =
SF0 − SFcar

SFPTW
(5.2)

where SF0 is the maximum flow rate for pure cars traffic, and SFcars and SFPTWs are the
current saturation flow rate of cars and PTWs, respectively.

The results from the simulation runs with different PTWs ratio is used to estimate
PCUPTWs (hereafter referred as PCU) values. A result from one example scenario,
where we have a similar simulation setting as the previous experiments except here
the red time is set to 80 s, is shown in FIGURE 5.6. As depicted in the figure, the PCU
values for the first 1 s of the green time decrease sharply and remain constant (≈ 0.19)
until the saturation phase ends. The later sharp increases are related to the end of satu-
ration phase, which is not important for our analysis. The result shows that when the
ration of PTWs is less than 100%, the PCU value is more or less constant regardless of
PTWs proportion, except the fluctuations for very short period at the very beginning of
the green time. FIGURE 5.7(b) shows the flow of individual class (veh/s) and the total
saturation flow rate in PCU/s. As illustrated, by using the PCU value the variation
in the total saturation flow rate is hidden, making it easier for queue clearance time
prediction.

FIGURE 5.6: The change in passenger PCU value of PTWs over the
green time duration

(A) The flow of individual vehicle class in
veh/s (B) The total flow in PCU/s

FIGURE 5.7: The saturation flow rate when vehicles discharge from the
queue

Therefore, we can use the estimated saturation flow rate expressed in PCU per unit
time to determine the green time duration. On the assumption of instantaneous transi-
tion to SF state, the green time needed to clear the vehicles in the queue is formulated
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as follows:
Tcl =

PCU ∗ N1 + N2

SFb
(5.3)

where N1 and N2 represent the number of PTWs and cars in the queue, respectively.
With this formulation we integrate the flow behavior of PTWs and minimize the over/under
estimation of the green time.

5.2.1.3 Evaluation

The performance of the proposed green time optimization method is evaluated by com-
paring with the no-optimized approach. For the simulation, we use the scenario shown
in FIGURE 5.8. The length of each intersection approach is 505 m and the stop lines are
located at a distance of 5 m upstream. Vehicles inflow rate of 1.3 veh/s and 0.7 veh/s is
set for cars and PTWs, respectively. The evolution of the total number of vehicles at the
two intersection approaches is assessed and the average delay is measured accordingly.
The average delay is determined from the average number of vehicles unable to move
to the next cell in one simulation step (Pohlmann and Friedrich, 2010). The green time
duration for each approach is decided based on the traffic situation. However, for the
first signal phase, intersection approach 1 (R1) and intersection approach 2 (R2) starts
with green phase and red phase, respectively, where this state lasts for 60 s.

FIGURE 5.8: Simulation experiment scenario

The evolution of the number of vehicles at the first intersection approach is pre-
sented in FIGURE 5.9. From the results, it can be observed that the queue length for the
non-optimized approach is higher than the optimized approach, which is resulted from
the long green time duration. The delay averaged over the simulation time is shown
in TABLE 5.5. According to the results, our proposed green time computation method
gives a better output in terms of the average delay.

FIGURE 5.9: The evolution of the total number of vehicles in the queue
over the simulation time, at the 1st intersection approach
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Non-optimized Optimized

R1 42.59 29.36
R2 46.34 34.8

TABLE 5.5

5.2.2 Variable speed limit control

Variable Speed Limit (VSL) control is one of the widely implemented traffic control
strategies (Carlson et al., 2010), and it has showed a promising potential in creating sta-
ble flow (Lin, Kang, and G.-L. Chang, 2004), improving safety (Abdel-Aty, Dilmore, and
Dhindsa, 2006; C. Lee, Hellinga, and Saccomanno, 2004) and mitigating pollution (Zeg-
eye et al., 2009). Depending on the objectives, VSL can be applied in different ways. A
VSL intended to reduce speed variations aims at avoiding the occurrence of congestion
(Smulders, 1990) or traffic safety issues (Abdel-Aty, Cunningham, et al., 2008) due to
speed inhomogeneity. Another application of VSL is to manage congestion at freeway
bottlenecks, for example at lane merge locations or lane blocking incidents. By regu-
lating the flow rate upstream of the bottleneck with VSL, traffic delay can be reduced
(Lin, Kang, and G.-L. Chang, 2004; Hadiuzzaman, Qiu, and Lu, 2012). Similarly, VSL is
implemented to control the upstream propagation of shock wave (Andreas Hegyi, De
Schutter, and J. Hellendoorn, 2005; A Hegyi and SP Hoogendoorn, 2010). In essence,
the speed is controlled in such a way to reduce inflow to the congestion area so that the
congestion dissolves rapidly.

Most of the existing VSL control systems are designed for homogeneous traffic, i.e.
the traffic flow is assumed to be composed of vehicles with identical characteristics. In
reality, traffics comprise vehicles with varied physical and maneuvering characteristics.
The collective traffic flow dynamics is the result of the property of the individual ve-
hicle class and the interaction among the classes. Moreover, each class has a different
effect on the traffic flow characteristics. Thus, applying indistinguishable control and
management actions in such heterogeneous conditions limits the efficiency of the con-
trol system because, first, the system fails to predict the traffic state accurately. Second,
identical control action is applied irrespective of the impact the vehicle classes have
on the traffic flow. There are only very few studies addressing control strategies for
heterogeneous traffic flows.

For traffic flows consisting of cars and trucks, attempts have been made to incor-
porate the difference between vehicle types. To take into account the heterogeneity of
traffic flow, mutli-class model-based freeway traffic control is introduced in (S. Liu, H.
Hellendoorn, and De Schutter, 2017; Pasquale et al., 2016). Similarly, Deo, De Schut-
ter, and Andreas Hegyi (Deo, De Schutter, and Andreas Hegyi, 2009) propose a model
predictive (MPC) ramp metering and VSL control that utilizes a multi-class model and
show the performance improvement obtained by incorporating the heterogeneity in the
prediction model. A multi-class model based route guidance presented in (Schreiter et
al., 2012) further shows the advantage of adapting a class specific controls.

The aforementioned studies address the multi-class aspect in the context of slow
moving trucks and fast moving cars. Despite having different length and speed, cars
and truck have similar driving characteristics. The driving dynamics and characteris-
tics of PTWs are however largely different, as they may share the same lane or filter
through rows of traffic. Although lane filtering by PTWs is not legally accepted every-
where due to safety concerns, it is a common practice on most of the European roads.
Because of these unique maneuvering behaviors, PTWs uniquely impact traffic flows
and also have a fully different perception of traffic conditions from cars (e.g. a road
jammed for cars may not be necessarily jammed for PTWs (see FIGURE 5.10(a)).

PTWs represent a growing class of traffic, between the year 2002 and 2011 the fleet
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of PTWs increased by 17% in Europe (OECD/ITF, 2015). The ability of PTWs to ride be-
tween lanes of traffic contributes to congestion reduction and cutting travel time (Yper-
man, 2011; Wigan, 2002). Nonetheless, unless PTWs are included in VSL and other
traffic control systems, the control action could impair the potential benefits. Besides,
given the high vulnerability of PTWs, safety issues should be taken into account. For
instance, VSL control is often implemented to manage congested or close to congestion
traffic situations. In moderate to high traffic levels, PTWs highly engage in lane filtering
(Ouellet, 2012; Sperley, Pietz, et al., 2010), which is one of the factors that increase the
risk of accident. PTWs appear to be traveling faster than other vehicles (Ouellet, 2012)
while accidents occur during lane filtering events. For this reason, the speed control
decisions have to be adjusted in order not to further escalate accidents that arise from
the speed difference. To ensure efficient and safe operation accordingly, it is important
to integrate PTWs in the control systems.

In this section, we propose a VSL control for PTW and cars, following a Model
Predictive Control (MPC) approach. The VSL system determines the speed limit for
each vehicle type based on traffic efficiency and safety objectives, namely minimizing
the total travel time, and minimizing the speed difference between PTWs and cars. The
proposed control system uses the Lagrangian representation of the developed model as
a traffic state prediction model. We choose the Lagrangian representation because of the
flexibility it gives to apply vehicle group/platoon based speed limitation. We analyze
the vehicle class specific control approach with simulation experiments. The advantage
of class-specific control is discussed by comparing with no-control and single control
cases.

5.2.2.1 Methodology

We consider a VSL system that regulates the incoming traffic to minimize congestion.
The system predicts the onset of congestion and a proper speed limit is selected to avoid
the occurrence of congestion. In an inevitable situation, the propagation of congestion
to the upstream direction is suppressed through VSL.

The traffic flow is composed of two vehicle classes, PTWs and cars. The two vehicle
classes have different maneuvering behaviors, e.g. PTWs filter between lanes, maintain
smaller gaps, etc. Hence, the two classes perceive the traffic conditions differently, the
speed-density relation of the two classes shown in FIGURE 5.10(a) illustrates this. Fur-
thermore, the traffic properties, like the capacity flow, the critical and jam density, for
each vehicle class vary with the traffic composition (see FIGURE 5.10(b)).

(A) Speed-density relationship (B) Flow-density diagram for cars, with
different proportions of PTWs

FIGURE 5.10: The fundamental properties of the traffic flow

Under this kind of traffic flow applying identical speed limit for each vehicle class
may impact the traffic flow efficiency. As there may be conditions where PTWs should
be controlled, at certain traffic conditions the impact of two-wheeler is minimal and im-
posing a speed limit is unnecessary (FIGURE 5.11(a)). Depending on the proportion of
PTWs, the impact they have on escalating congestion varies. For example, when there is
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a high number of PTWs, in the event of congestion, PTWs can filter between slow mov-
ing cars and enter to the congested area ( FIGURE 5.11(b)). Thereby, the outflow from
the congested area for cars decreases, which in consequence prolongs the time required
to resolve the traffic jam. Nevertheless, at low proportions of PTWs, imposing a speed
limit on PTWs has an insignificant impact to the congestion clearance/minimization,
rather it may increase travel time of PTWs and apparently PTW riders less like be obe-
dient to the speed limit. Moreover, the decision of the speed limit should take into
account safety issues since the speed difference between the two vehicle classes could
possibly increase the risk of accident.

(A) Small number of PTWs (B) Large number of PTWs

FIGURE 5.11: An illustrative example of traffic conditions at different
PTWs proportion

Therefore, we apply vehicle class specific variable speed limit that takes into account
traffic efficiency and safety objectives. Different from the common link-based controls,
we implement a platoon-based speed limit.

The proposed MPC based variable speed control has two basic building blocks, a
multi-class prediction model, and a multi-objective and class specific control algorithm.
The control action produced by the control algorithm depends on the measured current
traffic state and the future traffic state anticipated by the prediction model.

5.2.2.2 Lagrangian Prediction Model

The Lagrangian representation of the developed model is used to describe the dynamics
of the traffic flow. We recall the model discussed in Chapter 3. In one-reference frame
Lagrangian representation, the flow equation for the reference class is given by:

∂sr(x(t), t)
∂t

+
∂vr(n, t)

∂n
= 0 (5.4)

The flow equation for the other vehicle class is written

∂sr(x(t), t)/so(x(t), t)
∂t

+
∂ ((vr(n, t)− vo(n, t))/so(n, t))

∂n
= 0, (5.5)

where s and v represent, respectively, the average spacing and the average speed of
vehicle group n. The fundamental speed-spacing (density) relation ( FIGURE 5.10(a))
is expressed as a function of the density of each vehicle class, i.e.

vi = Vi(s1, s2, ...) = Vmax
u (1− Fi(s∗1 , s∗2 , ...)) (5.6)

where Vmax is the free flow speed and Fi(ρ1, ρ2, ...) represents the proportion of inacces-
sible free space for vehicle class i . The detailed description of the speed function can
be found in Section 3.2.2.

FIGURE 5.12: The representation of the proposed VSL control
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In Lagrangian discretization, rather than dividing the road stretch into segments,
the vehicles are grouped into i = 1, ..., N clusters (see FIGURE 5.12). Since the one-
reference frame Lagrangian representation is applied here, the cluster is formed accord-
ing to one of the vehicle class (the reference vehicle class). We takes cars as a reference
vehicle class.

Assuming number of vehicles in the clusters remains unchanged, i.e there are no
on and off ramps, the evolution of the traffic flow for cars is formulated in Lagrangian
coordinates as follows (Hereafter, unless specified, index 1 and 2 denote car and PTWs
vehicle classes, respectively).

s1,i(k + 1) = s1,i(k)−
∆t
∆n

(v1,i(s1,i(k), s2,i(k))− v1,i−1(s1,i−1(k), s2,i−1(k))) (5.7)

Where i, ∆n, respectively, denote the cluster index, the number of cars in a cluster. k
denotes the time step counter and it has the following relation with the simulation time
t and the model update time step ∆t, t = k∆t.

The average spacing (s) of PTWs inside the clusters of cars is written as.(
s1,i

s2,i

)
(k + 1) =

(
s1,i

s2,i

)
(k)− ∆t

∆n
( f2,i+1/2(k)− f2,i−1/2(k)) (5.8)

where f2,i+1/2 and f2,i−1/2 are the flow rates of PTWs at cluster i boundaries. 1
s2,i

= n2
s1,i∆n ,

substituting this into equation (5.8), we obtain

n2,i(k + 1) = n2,i(k)− ∆t( f2,i+1/2(k)− f2,i−1/2(k)) (5.9)

The flows at the boundaries are defined as follows:

I f v1,i < v2,i,

f2,i+1/2 = min
(

0,
(vr,i − vo,i+1)

so,i+1

)
f2,i−1/2 = min

(
0,
(vr,i−1 − vo,i)

so,i

)
−min

(
0,
(vr,i−1 − vo,i−1)

so,i−1

)
I f v1,i > v2,i,

f2,i+1/2 =
(vr,i − vo,i)

so,i
−max

(
0,
(vr,i − vo,i+1)

so,i+1

)
f2,i−1/2 = max

(
0,
(vr,i−1 − vo,i−1)

so,i−1

)
The simulation time step ∆t should be restricted to Courant-Friedrichs-Lewy (CFL)
condition, i.e.

∆t ≤ ∆n
max(λ1, λ2)

(5.10)

where λ stands for information propagation speeds (vehicle per second).
In the presence of on and off ramps, the equations for the reference class can be

formulated following (Femke van Wageningen-Kessels, Yuan, et al., 2013). For PTWs,
vehicle class equation (5.8) is rewritten as:(

s1,i

s2,i

)
(k + 1) =

(
s1,i

s2,i

)
(k)− ∆t

∆n
( f2,i+1/2(k)− f2,i−1/2(k)− r2(x(i), k) + l2(x(i), k))

(5.11)
r2(x(i)) and l2(x(i)) are the the on ramp and off ramp PTWs’ flows rate at the location
x of cluster i, respectively.
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5.2.2.3 MPC-based VSL Controller

The variable speed limit control problem is solved in model predictive control (MPC)
scheme. The MPC approach implements a receding optimization strategy. At each time
instant, an optimal control sequence is solved over the prediction interval [kcTc, Tc(Np +
kc − 1)], where Np is the Prediction horizon.

For the sake of minimizing the computation complexity, a control horizon Nc ≤
Np is selected. Consequently, from the control horizon onward the control variable
becomes constant. Then, only the first values of the control sequences is applied to the
system, and the horizon is moved to the future by Tc step.

We implement a general control frame work similar to (Caligaris, Sacone, and Siri,
2007), where vehicle class specific speed control is applied.
The control variables for N number of clusters and two vehicle classes is written as:

vctrl
1 (k) = [vctrl

1,1 (k), ..., vctrl
1,N(k)]

vctrl
2 (k) = [vctrl

2,1 (k), ..., vctrl
2,N(k)]

uctrl(k) = [vctrl
1 (k), vctrl

2 (k)]T

and the state variables, i.e. the spacing and the speed

s1(k) = [s1,1(k), ..., s1,N(k)]

s2(k) = [s2,1(k), ..., s2,N(k)]

v1(k) = [v1,1(k), ..., v1,N(k)]

v2(k) = [v2,1(k), ..., v2,N(k)]

Then, the state equation becomes

x(k) = [s1(k), s2(k), v1(k), v1(k)]T

x(k + 1) = f (x(k), uctrl(k))

In other words, the traffic state at time k + 1 is a function of the traffic state and
the control input, which is the speed limit, at time k. When the speed limit control is
applied, the speed for each vehicle class becomes

Vu,i = min{vu,i, (1 + αi)vctrl
u,i } (5.12)

vu,i is the desired speed derived from the fundamental relation and αi is the driver non-
compliance factor, i.e. the disobedience of drivers to the speed limit. The equation
in equation (5.12) implies that at 100% compliance, vehicles may drive lower than the
speed limit due to the traffic condition, but the maximum speed is limited to vctrl

u,i .

Objective function

Given the initial conditions, the control objective is to minimize the total time spent
(TTS) by all vehicle classes in the freeway mainline via the adjustment of the speed
limit. Moreover, we include a safety objective that minimizes the speed difference (SD)
between vehicle classes. Thus, our objective function has the following form.

J = αTTS

Np

∑
kc=1

N

∑
i=1

(n1,i(kc) + n2,i(kc))∆t+ αSD

Nc

∑
kc=1

N

∑
i=1

(
vctrl

1,i (kc)− vctrl
2,i (kc)

v f
1 − v f

2

)2

, v f
1 − v f

2 6= 0

(5.13)
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Where n1,i and n2,i are number of class 1 and class 2 vehicles, respectively. Correspond-
ingly, vctrl

1,i (kc), vctrl
2,i stands for the speed limit of class 1 and 2. The weighting factors for

TTS, αTTS, and SD, αSD, are tuned depending on the the control policy.

Constraints

The control variable is constrained by the following conditions: The difference between
the speed limits in a consecutive control steps should be less than the maximum al-
lowed speed change, which is related to the deceleration/acceleration capability of the
vehicle class and safety.

∆vctr
u,i <= vmaxdi f f

u (5.14)

The control speed for each class u should be bounded by the minimum speed limit
and the free flow speed of the respective class.

vctrl
u,i ∈ [vmin

u , vmax
u ] (5.15)

5.2.2.4 Evaluation

In order to evaluate the performance of the proposed VSL control, we compare results
from the following three approaches. No control: no speed limit is imposed on any
of the two vehicle classes; Single control (1-VSL): the speed limit applies only for cars;
Class specific control (2-VSL): separate speed limit for cars and PTWs, which is the
proposed approach.

Simulation setup

FIGURE 5.13: Simulation scenario, freeway link

The proposed vehicle class specific VSL control scheme is evaluated in the follow-
ing simulation scenario. We consider a 3 km long freeway link with no off-ramp and
on-ramp. At the initial state, congestion is created at the middle section of the freeway
segment and we have a free flow condition in the upstream and the downstream di-
rections (FIGURE 5.13). The VSL is applied to control the flow in the upstream of the
congested section. The initial densities are given in TABLE 5.6. The initial densities
are chosen such that free-flow conditions are created upstream and downstream of the
central location, where we create congestion. The value of the initial densities at the up-
stream free-flow region are changed so that to increase PTWs proportions and thereby
have a significant effect.

TABLE 5.6: Initial densities (veh/m), ρ1 for cars and ρ2 for PTWs

Location [0-1500 m] [1500-2500 m] [2500-3000 m]
ρ1 0.18 0.45 0.2
ρ2 0.14 0.2 0.1

In the optimization, the control speeds (vctrl
1,i and vctrl

2,i ) are chosen from the discrete
set of VSLs specified for each vehicle class, where vctrl

1,i ∈ {15, 12, 9, 6} and vctrl
2,i ∈

{20, 17, 14, 11}. Furthermore, the speed difference between two consecutive speed lim-
its is constrained to 3 m/s(≈ 10 km/hr). For the traffic simulation, the Lagrangian
coordinate moves with cars and the platoon/cluster size equals ∆n = 50. The MPC
parameters are set to the following values, Nc = 3 (1.5 min), Np = 5 (2.5 min), Tc =
30s (Tc = 36(∆t). The value of Np is to the time needed by cars to cross the road seg-
ment in free-flow condition. The implemented MPC generates possible sequences of
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vctrl
1,i , vctrl

2,i combinations from the discrete speed sets, which conform to the constraints
specified, and search for the sequence that optimize the objective function.

The performance of the proposed VSL is investigated by comparing results from the
three different VSL control scenarios. First, no VSL control is applied, and the improve-
ment obtained from the VSL control is evaluated with respect to this uncontrolled case.
Total time spent (TTS) by vehicles is used as a metric for the evaluation. Furthermore,
we study two VSL control cases. In the first case, the control speed is derived and ap-
plied only for cars (Hereafter we call it 1-VSL), whereas in the second case a specific
VSL is applied for the individual vehicle class (Hereafter we call it 2-VSLs). The first
case answers the question whether we need to have VSL control for PTWs or not. On
the other hand, the later case provides an insight on the benefit/need of having VSL
control for PTWs.

Simulation results

Uncontrolled case

The evolution of cars densities and speed in uncontrolled case is presented in FIG-
URE 5.14(a) and FIGURE 5.14(b), respectively. As illustrated by the figures, the conges-
tion propagates backward (from 1500 m to 500 m) and the effect linger for long time.
We show the results for cars only because they are more affected by the congestion and
the backward propagation of the congestion is more visible.

(A) Density profile (B) Speed profile

FIGURE 5.14: Evolution of the traffic densities and speed for cars under
uncontrolled case

Single control (1-VSL)

In this case, we apply a VSL control for cars only. The speed limitation applies only to
the platoon upstream of the congested area. The density and speed evolution of cars
are shown in FIGURE 5.15. In addition, the speed limits over the simulation period are
shown in FIGURE 5.16, no speed limit is imposed on PTWs. As reported by the result,
the backward congestion propagation is suppressed. Furthermore, a 3.01% (relative
change) improvement in the TTS is obtained. However, as illustrated on FIGURE 5.18,
a speed difference between 10-14 m/s is created between cars and PTWs, which creates
dangerous overtaking situations.

Class specific control (2-VSLs)

In this experiment, similar to the previous ones, the VSL is imposed only to the vehicles
upstream of the congested area. But, we have a VSL specific to each vehicle class. The
speed and densities evolution cars are shown in FIGURE 5.17 and FIGURE 5.19 respec-
tively. In addition to the TTS minimization, we add the minimization of the speed dif-
ference in the objective function, the weighting factors αTTS, αSD set to 1. From the fig-
ures in FIGURE 5.17, it can be seen that the congestion propagation is suppressed. We
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(A) Density profile (B) Speed profile

FIGURE 5.15: Evolution of the traffic densities and speed for cars under
1-VSLs

FIGURE 5.16: Time evolution of the speed limit for cars (1-VSL)

achieve 3.12% improvement on the TTS, compared to the uncontrolled case. Compared
to 1-VSLs, the TTS is reduced by 0.115%. However, a major improvement is obtained
in terms of minimizing the speed difference between cars and PTWs. FIGURE 5.18 de-
picts the speed difference between PTWs and cars during 1-VSLs and 2-VSLs controls.
What we can observe is that the speed difference between cars and PTWs is minimized
in the 2-VSLs since the speed limits are optimized considering the speed difference.

(A) Density profile (B) Speed profile

FIGURE 5.17: Evolution of the traffic densities and speed for cars under
2-VSLs

The results represent what we observe at the selected traffic proportion and condi-
tion. However, we have noticed also for lower proportions of PTWs, if the speed limit is
optimized to minimize TTS only, 1-VSLs and 2-VSLs produce identical results. The rea-
son for this is that PTWs have insignificant impact and imposing speed limit on PTWs
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FIGURE 5.18: Speed difference incurred by VSLs for cars and PTWs in
(1-VSL) and 2-VSLs controls

(A) Speed limits for cars (B) Speed limits for PTWs

FIGURE 5.19: Speed limits evolution over the simulation time -2-VSLs

neither improve the TTS of cars nor the TTS of the collective traffic. In this case, the
advantage with 2-VSLs is the possibility to control the speed difference between cars
and PTWs, and thereby to minimize accident risks.

In general, the results show 1-VSLs and 2-VSLs control have almost the same effect
in regards to minimizing TTS. Nonetheless, the 2-VSLs is able to minimize the speed
difference between PTWs and cars, thus potential accident situations, and this at no
impact on TTS compared to 1-VSLs. Implementing a VSL control for both cars and
PTWs creates a more efficient mobility and conjointly reduce accident opportunities.
Therefore, vehicle-class based optimization is beneficial from both traffic efficiency and
safety aspects.

The proposed variable speed limit control strategy notably illustrates the need to
optimize speed differences in a multi-class VSL between PTW and cars to keep the
peculiar advantage of PTWs and yet to mitigate safety risks between the two vehicle
types.

5.3 Summary and conclusion

The growing use of PTWs has brought opportunities and at the same time challenges.
The shift to PTWs can help in easing congestion. However, the peculiar maneuvering
feature of PTWs pose a challenge on the integration of PTWs into the transport system.
Despite the advancement of smart traffic management and control systems, little has
done to integrate PTWs to these systems. The growing penetration of PTWs added to
their vulnerability and unique maneuverability demands for the integration of PTWs
to C-ITS systems. In this chapter, the developed heterogeneous traffic flow model is
applied to study the traffic characteristics that are important to integrate PTWs into the
ITS.
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In heterogeneous traffic flow the road capacity depends on traffic composition. We
analyzed the variation of the capacity with the ratio of PTWs. It appears that with in-
crease of the ratio of PTWs the road capacity increases. This emphasizes the advantage
of the shift to PTWs in minimizing traffic congestion. The travel time of PTWs and cars
is also assessed. The results show that PTWs have shorter travel time than cars in all the
times. The capability of PTWs to filter between traffic lanes grants them an advantage
to experience a shorter travel time. This is important properties that should be consid-
ered in the development ITS applications for PTWs, e.g., in multi-modal transport and
optimal route planning. Furthermore, PTWs have a different perception of the traffic
state than cars, for example a congested state for cars doe not necessary implies the
same for PTWs. Traffic information systems, such as traffic jam indication, should also
take into account this variation.

Moreover, the existing traffic control approaches are evaluated taking adaptive traf-
fic light and variable speed limit control systems as an examples. We develop a method
to integrate PTWs into the systems. The integration of PTWs is found to improve the
efficiency of the systems. The implication of the variable speed limit control approach
to traffic safety is also pointed out.
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Chapter 6

Conclusion

This dissertation focuses on the development and analysis of a traffic flow model that
can accurately capture the traffic features in a mixed flow of cars and PTWs. The ob-
jective is to develop a model that can be applied in a wide range of ITS applications.
We find out that multi-class LWR approach is suitable for our purpose. LWR models
are efficient for analytical and theoretical analysis of traffic phenomena at large-scale.
Their computational efficiency makes LWR models also preferable for real-time ITS
applications. Moreover, the possibility to represent the traffic flow in Eulerian and La-
grangian frameworks allows to study the traffic flow from two different observation
points. In the Eulerian representation, the flow is analyzed with respect to a fixed ref-
erence point. On the other hand, the Lagrangian representation tracks the trajectory of
vehicles, which permits to study the traffic flow at a finer level of detail, but still using
the macroscopic laws.

This chapter summarizes the main research contributions of the dissertation and
suggests future research directions.

6.1 Research contributions

Model development

The Multi-class LWR modeling approach decomposes the heterogeneous traffic flow
into homogeneous sub-flows or vehicle classes. Different approximation methods and
analogies are introduced to represent the interaction between the vehicle classes. In this
dissertation, the porous flow method is employed, which treats the flow of vehicles in
analogy with the flow of a fluid in a porous medium. Transforming the concept to traffic
flow modeling, the road space is considered as the porous medium where the pores
represent the inter-vehicle spacing. This approach reflects the maneuvering behavior
of disordered traffic flows, such as mixed cars and PTWs flow.

In order to use the porous flow approach for traffic flow modeling, it is essential
to characterize the inter-vehicle spacing (or the pore size) distribution. Here, we in-
troduce a new method for the determination of the pore size distribution (Chapter 3).
Furthermore, it is also important to derive the parameters of the distribution. For this
reason, we estimate the parameters of the distribution by approximating the spatial
distribution of vehicles with a planar Poisson point process. We find out that the pore
size distribution better fits with truncated normal distribution. The parameters of the
truncated distribution are defined uniquely for each vehicle class density. The relation
of the distribution parameters and the road width is also included in the parameters
definition.

The flow equation is described in Lagrangian and Eulerian frameworks. In the Eu-
lerian representation, the movement of vehicles is expressed with respect to a fixed
reference frame. Whereas, the Lagrangian representation describes the flow equation
with respect to a reference frame that moves with vehicles. The two representations
provide different views of the traffic phenomena. For applications that use traffic data
collected along the trajectory of vehicles, e.g, floating car data, the Lagrangian model
is more convenient. The Eulerian model is suitable for application developed to utilize
Eulerian measurements, e.g, data from loop detectors and cameras.
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Discretization scheme

We developed a numerical scheme to solve the flow equations represented in the La-
grangian and the Eulerian frameworks. The Lax-Friedrichs discretization scheme is
applied for the Eulerian representation (Chapter 3). For the Lagrangian representation,
we develop a new discretization scheme. The scheme is derived based on the under-
lying traffic characteristics in traffic flow consisting of cars and PTWs, particularly we
look at the average speeds of the vehicle classes at different traffic states. We prove that
the discretization method leads to the conservation equation. Further, the developed
discretization method is evaluated numerically. We compare the result from the Eule-
rian and the Lagrangian discretization methods. The results show that the Lagrangian
method produces an accurate description.

Model validation and calibration

The developed model is calibrated and validated using synthetic data obtained from
a micro-simulation tool. In the calibration process, the parameters of the fundamental
diagrams are adjusted to fit the observation. For the calibration, a trial-error method
is applied. We calibrate the jam density of each vehicle class, which is expressed as
a function of the traffic composition. Further, the critical pore-size (gap) is calibrated.
The critical pore size is expressed as a function of the traffic state and the width of
vehicles. In the validation process, the inter-vehicle spacing (or pore size) distribution
is validated. Using the calibrated parameters, the applicability of the developed model
is validated. The simulation results closely replicate the observed average speed.

Model application

ITS has a potential to benefit PTWs in so many ways. However, the effort made to in-
tegrate PTWs into the intelligent transportation systems is relatively insufficient, and
the existing ITS applications for PTWs are designed mainly to mitigate safety issues. In-
deed, addressing safety challenges is essential, but solving other traffic problems is also
important. The developed model can contribute as enabler for PTWs-aware ITS appli-
cation and traffic regulations. In general, the model can be utilized for the following
purposes:

• For analyzing the traffic characteristics in a mixed car and PTWs flow.

• For the evaluation of different traffic policies.

• For the development of PTW-aware traffic management and control ITS applica-
tions.

In this dissertation, we analyze the impact of PTWs on road capacity and travel time.
Understanding these behaviors is crucial to identify the opportunity PTWs provide to
the traffic flow. As such, the traffic management or control strategies can be adapted
to the prevailing traffic patterns. The mode shift towards PTWs has a contribution in
relieving congestion. For proper utilization of this benefit, the use of PTWs has to be
encourage in different ways, e.g., by including PTWs in multi-modal transport plan-
ning systems. PTWs experience a shorter travel time than cars because of their ability
to filter between traffic to escape congestion. The developed model can be applied to
design a smart two-wheeler navigation system which is well aware of PTWs’ capability
to move through congested car traffic and provides a route plan accordingly.

We also study the operation of adaptive traffic light control systems and show how
the efficiency of the system can be improved by integrating PTWs into the system. Fur-
thermore, we developed a vehicle-classed based variable speed limit control system.
We illustrate the advantage of optimizing the speed limit to the maneuvering behavior
of PWTs to enhance the flow efficiency as well as traffic safety.
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6.2 Future research direction

In this section, we recommend directions for future research. We discuss the two as-
pects of the model, the theoretical model development and the model validation and
calibration.

The model is developed based on the requirements set out on the fundamental re-
lations. However, the requirements has to be further refined to include other empirical
observations. Explicit identification of the behavior rule for the two vehicle classes is
also important. One can argue that the rule applied to describe PTWs is insufficient to
represent the traffic characteristics of cars. Having a complete list of the individual ve-
hicle class characteristics and interaction between them helps to include detailed traffic
flow characteristics, thereby improving the model.

Another aspect is the simplification of the speed function. The complexity of the
speed function hinders to analyze the mathematical properties of the model in detail.
For this reason, using alternative formulation or simplifying the speed function is rec-
ommended. The porous flow method interestingly can describe the traffic patterns in
mixed car and PTWs flow. Nevertheless, introducing a new approach to character-
ize the inter-vehicle spacing would add improvement. No distribution can describe the
inter-vehicle spacing at all traffic states. Combining different distributions increases the
complexity of the model, rather finding an alternative way to define the inter-vehicle
spacing is preferable.

It is also important to investigate the model properties with a higher number of
vehicle classes, that have different characteristics. Explicit consideration of the behav-
ior of non-lane based and lane-following vehicles would also be useful for the model
improvement.

For model calibration and validation, we employed data from a micro simulation
tool. However, the procedures are limited to a simple case study. Moreover, although
there is an advantage in using simulation tools in terms of flexibility and the possibility
to study a wider range of scenarios, synthetic data are not sufficient to observe all real-
world traffic behaviors. The challenge of getting real mobility traces remains an issue.
Nonetheless, an exhaustive model validation/calibration should be done using real
traffic data.
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Appendix A

The parameters used For the
fundamental diagrams

Common parameters

vmax
1 =70km/hr, vmax

2 =65km/hr, qcap=7500 veh/hr
l1=3m, l2=5m

Units* Speed(v)=km/hr, Flow(q)=veh/hr
Density(ρ)=veh/m, T=s, l=m

Model Parameters
G. Wong and S. Wong, 2002 ρ0=0.08
Chanut and Buisson, 2003 ρr

jam=1/3, ρr
cr=0.15, Vc = 50, α1=1, α2=5/3, ζ=0.5

Ngoduy and R. Liu, 2007 ρr
jam=1/3, ρr

cr=0.15, Vc = 50, α1=1, α2=5/3
J Van Lint,
Serge Hoogendoorn, and
Schreuder, 2008

ρr
jam=1/3, ρr

cr=0.15, Vc = 50, T1=1.2, T2=1.8

S Logghe and L. H. Immers,
2008; Qian et al., 2017

rh
1,cr=0.04, rh

2,cr=0.1,ρjam = 0.2

H. Zhang and Jin, 2002 τ1 = 0.5, τ2=1
Benzoni-Gavage and
Colombo, 2003
Fan and Work, 2015 rmax

1 =1.8, rmax
2 =1

Nair, Mahmassani, and
Miller-Hooks, 2012

αr = α f = 1, lmax=3, lmin = 0.01, rcr
1 = 0.75, rcr

1 = 2,

a1 = 1.125, a2 = 8

TABLE A.1: Parameters used to reproduce the fundamental diagrams in
Chapter 2
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Appendix B

Model development

B.1 Pore size distribution

(A)

(B)

FIGURE B.1: Vehicle distribution in two different settings (A) Disordered
flows (B) Semi-ordered flows, ρ1 = 0.05veh/m2, ρ2 = 0.1veh/m2

FIGURE B.2: Probability density functions extracted from the settings in
FIGURE B.1
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The variation of pore size distribution with traffic road width

(A)

(B)

FIGURE B.3: Example of the variation in probability density function
with road width (number of lanes)(A) Lower traffic densities (ρ1 =
0.01veh/m2, ρ2 = 0.04veh/m2) (B) Higher traffic densities (ρ1 =

0.05veh/m2, ρ2 = 0.1veh/m2)

Determination of the maximum area occupancy

We have distinguished the maximum total occupied area, which is the extreme total
occupied areas corresponding to the null speed of a vehicle class, for the two classes in
such a way that

We chose the value for the maximum total occupied area of cars on the basis of
the following assumption: when we have car only traffic, jamming occurs at the point
where Lc ∗ Nc = n ∗ L, here Lc, Nc, L, n denote length of car, number of cars, length of
the road segment and number of lanes, respectively. Accordingly, the number of cars at
the jammed condition equals Nc = n∗L

(Lc)
. Dividing the total area of cars to total area of

the road segment, we can get the fraction of area occupied by cars.

Ac
max =

Nc ∗ Ac

n ∗W ∗ L
,

where W is the width of a single lane road and Ac is area of a car. Substituting Nc with
n∗L
(Lc)

, A=
max

Ac
(Lc)∗W . In our case, Ac = π ∗ rc

2 and Lc = 2 ∗ rc, where rc is the radius for
cars. Taking rc = 1.5 and W = 3.2, at the jammed condition the total area occupied



B.2. Lagrangian discretization method 103

equals ≈ 0.79. However, for mixed cars and PTWs traffic, in a single lane three PTWs
can move side by side, and even if the total area occupied equals ≈ 0.79 there might be
a space for cars. Thus, to take into account this situation we allowed the value to be a
bit higher than the computed value, i.e. 0.85.

B.2 Lagrangian discretization method

The discretization scheme introduced in section 3.4.2.2 leads to the conservation law.
We show here the derivation of the conservation law from the discretization method.

FIGURE B.4: Vehicle grouping according vehicle class 2 (cars), for the
case ∆n = 1

For the reference class,

(sr,i)
t+∆t ∆n = (sr,i)

t ∆n− vt
r,i∆t + vt

r,i−1∆t (B.1)

(sr,i)
t+∆t − (sr,i)

t

∆t
= −

vt
r,i − vt

r,i−1

∆n
(B.2)

when ∆t→ 0, ∆n→ 0, equation (B.2) becomes

∂sr

∂t
+

∂vr

∂n
= 0 (B.3)

If the relation vr > vo holds always, then, for the non-reference class the conservation
law is derived from the discretization scheme as follows:

Nt+∆t
o,i = Nt

o,i +

(
vr,i−1 − vo,i−1

so,i−1

)t

∆t−
(

vr,i − vo,i

so,i

)t

∆t (B.4)

Equation (B.4) implies that the number of other class vehicle in the cluster i of the ref-
erence class changes by the number of vehicles entering from cluster i-1 and leaving
cluster i to i+1.

No,i = ∆n
sr,i

so,i
(B.5)

Substituting N in equation (B.4) with equation (B.5),

∆n
(

sr,i

so,i

)t+∆t

= ∆n
(

sr,i

so,i

)t

+ ∆t

((
vr,i−1 − vo,i−1

so,i−1

)t

−
(
(vr,i − vo,i)

so,i

)t
)

(B.6)


(

sr,i
so,i

)t+∆t
−
(

sr,i
so,i

)t

∆t

 = −


(

vr,i−1−vo,i−1
so,i−1

)t
−
(
(vr,i−vo,i)

so,i

)t

∆n

 (B.7)

Rearranging, and ∆t→ 0, ∆n→ 0 the conservation equation is obtained.

∂ (sr,i/so,i)

∂t
+

∂ ((vr,i − vo,i)/so,i)

∂n
= 0 (B.8)
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If the relation vr < vo holds always, then, for the non-reference class the conservation
law is derived from the discretization scheme as follows:

Nt+∆t
o,i = Nt

o,i +

(
vo,i+1 − vr,i

so,i+1

)t

∆t−
(

vo,i − vr,i−1

so,i

)t

∆t (B.9)

Equation (B.9) implies that the number of other class vehicle in the cluster i of the ref-
erence class changes by the number of vehicles entering from cluster i+1 and leaving
cluster i to i-1.

Substituting N in equation (B.9) with equation (B.5),

∆n
(

sr,i

so,i

)t+∆t

= ∆n
(

sr,i

so,i

)t

+

(
vo,i+1 − vr,i

so,i+1

)t

∆t−
(

vo,i − vr,i−1

so,i

)t

∆t (B.10)

∆n
(

sr,i

so,i

)t+∆t

= ∆n
(

sr,i

so,i

)t

+ ∆t
((

vo,i+1

so,i+1
− vo,i

so,i

)
−
(

vr,i

so,i+1
− vr,i−1

so,i

))t

(B.11)

From equation (B.2) we can get

vr,i−1 = ∆n
∆sr,i

∆t
+ vr,i (B.12)

Substituting equation (B.12) into equation (B.11)(
sr,i
so,i

)t+∆t
−
(

sr,i
so,i

)t

∆t
=

(
vo,i+1
so,i+1
− vo,i

so,i

)
∆n

− vr,i

1
so,i+1
− 1

so,i

∆n
+

1
so,i

∆sr,i

∆t
(B.13)

∆ (sr/so)

∆t
=

∆ (vo/so)

∆n
− vr

∆ (1/so)

∆n
+ 1/so

∆sr

∆t
(B.14)

∆t→ 0, ∆n→ 0

∂ (sr/so)

∂t
− ∂ (vo/so)

∂n
+ vr

∂ (1/so)

∂n
− 1/so

∂sr

∂t
= 0 (B.15)

∂so

∂t
+ so/sr

∂vo

∂n
− vo − vr

sr

∂so

∂n
= 0 (B.16)

equation (B.16) and equation (B.8) are equivalent.
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Appendix C

VISSIM simulation

The following setting are used for Vissim simulation.

C.1 Vehicles parameter

TABLE C.1: Vehicles parameters

Max. speed length Width

Cars 70km/hr 4.012m 1.852m
PTWs 60 km/hr 2m 0.848m

C.2 Parameter for Wiedemann model and Later distance

TABLE C.2: The parameters of the car following model (Wiedemann 99)

CC0 CC1 min. lateral distance
Driving Standing

Cars 0.8m 0.5s 0.6m 0.2m
PTWs 0.4m 0.25s 0.3m 0.1m
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List of publications

1. Gashaw, S., Goatin, P. and Härri, J., 2018. Modeling and analysis of mixed flow
of cars and powered two wheelers. Transportation research part C: emerging
technologies, 89, pp.148-167

2. Gashaw, S., Härria, J. and Goatin, P., 2017. Adaptive Traffic Signal Control Un-
der Mixed Traffic Condition. International Scientific Conference on Mobility and
Transport, Munich, Germany

3. Gashaw, S., Härri, J. and Goatin, P., 2018. Lagrangian formulation for mixed traffic
flow including two-wheelers. The 21st IEEE International Conference on Intelli-
gent Transportation Systems, Maui, Hawaii, USA

4. Gashaw, S., Goatin, P. and Härri, J., 2017. Modeling and analysis of mixed flow
of cars and powered two wheelers. 96th Annual Meeting of the Transportation
Research Board, Washington DC, USA. (presentation only)

5. Gashaw, S., Goatin, P. and Härri, J., 2019. Variable Speed Limit Control for Mixed
Powered Two-Wheelers and Cars Traffic. 98th Annual Meeting of the Transporta-
tion Research Board, Washington DC, USA. (accepted for presentation)
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