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Benjamin MAURICE 1, Hervé BREDIN 1, Ruiqing YIN 1, Jose PATINO 3,
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Abstract
This paper describes ODESSA and PLUMCOT submissions to
Albayzin Multimodal Diarization Challenge 2018. Given a list
of people to recognize (alongside image and short video sam-
ples of those people), the task consists in jointly answering the
two questions “who speaks when?” and “who appears when?”.
Both consortia submitted 3 runs (1 primary and 2 contrastive)
based on the same underlying monomodal neural technologies:
neural speaker segmentation, neural speaker embeddings, neu-
ral face embeddings, and neural talking-face detection. Our
submissions aim at showing that face clustering and recogni-
tion can (hopefully) help to improve speaker diarization.
Index Terms: multimodal speaker diarization, face clustering

1. Introduction
This paper describes ODESSA1 and PLUMCOT2 submissions
to Albayzin Multimodal Diarization Challenge 2018 [1]. Given
a collection of broadcast news TV recordings and a list of peo-
ple to recognize (alongside image and short video samples of
those people), the task consists in jointly answering the two
questions “who speaks when?” and “who appears when?”.

While ODESSA submissions are made of the simple jux-
taposition of two monomodal system (audio-only speaker di-
arizaton on one side, visual-only face recognition on the other
side), PLUMCOT runs aimed at showing that face clustering
and recognition can help to improve speaker diarization (and
vice-versa).

Figure 1 provides an overview of PLUMCOT multimodal
pipelines. The upper part corresponds to the face recognition
pipeline described in details in Section 2. The lower part cor-
responds to the speaker diarization pipeline further described
in Section 3. Section 4 describes the proposed multimodal ap-
proaches, depicted by vertical arrows between audio and visual
modalities in Figure 1.

Instead of optimizing audio and visual pipelines separately,
we propose to tune the whole set of hyper-parameters jointly
with respect to the official evaluation metric. This is described
in Section 5. Following sections 7 and 8 introduce the experi-
mental protocol and results on the development set3.

2. Face clustering and recognition
This section describes the building blocks of the “face” part of
our runs. They all rely on the pyannote.video toolkit introduced
in [2]. It mostly consists of three sub-modules: face tracking,
neural face embedding, and face clustering.

1ANR/SNF project ANR-15-CE39-0010
2ANR/DFG project ANR-16-CE92-0025
3Official results on the test set are not available yet.

2.1. Face tracking

After an initial step of shot boundary detection using opti-
cal flow and displaced frame difference [3], face tracking-by-
detection is applied within each shot using a detector based on
histogram of oriented gradients [4] and the correlation tracker
proposed in [5]. More precisely, face detection is applied ev-
ery frame (so every 40ms), and tracking is performed in both
forward and backward directions.

2.2. Face embedding

Each face track is then processed using the ResNet network
with 29 convolutional layers [6] available in the dlib machine
learning toolkit [7]. This network was trained on both Face-
Scrub [8] and VGG-Face [9] datasets to project each face into a
128-dimensional Euclidean space, in which faces from the same
person are expected to be close to each other. Each face track is
described by its average face embedding xface.

2.3. Face clustering

Face tracks are grouped together using agglomerative cluster-
ing. Clustering is initialized with one cluster per face track (de-
scribed by the average face embedding introduced in the pre-
vious section, xk = xface). Then, the following process is re-
peated iteratively until a stopping criterion is reached:

• find the two most similar clusters (i and j) according to
the Euclidean distance dij = d(xi, xj) between their
embedding xi and xj ;

• compute the embedding x of the newly formed cluster as
the weighted average of the embedding xi and xj of the
two merged clusters i and j:

x =
ni · xi + nj · xj

ni + nj
(1)

n = ni + nj (2)

where ni and nj are the total number of face tracks be-
longing to clusters i and j respectively.

This agglomerative process stops when dij is greater than a tun-
able threshold θfc.

2.4. Face recognition

While a perfect face clustering should lead to a perfect (visual)
diarization error rate, the actual metric used in the Albayzin
Multimodal Diarization Challenge assumes that only a limited
list of T target persons should be returned by the system. Enrol-
ment data is provided for each target, containing approximately
10 pictures and one short video sample showing their face.
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Figure 1: Pipeline used for PLUMCOT submissions (p = primary, c = contrastive).
θ• and λ• are jointly-optimized hyper-parameters.

One can then assign each cluster to the closest target t∗ by
comparing the cluster embedding x to each target embedding
xt computed as the average embedding extract from all their
enrolment pictures:

t∗ = argmint∈{1...T}d(x, xt) (3)

In case d(x, xt∗) is greater than a tunable threshold θfa, the
cluster is decided to be a non-target person and therefore not
returned by the system. This approach is denoted by pface in
Figure 1 and constitutes the “face” part of PLUMCOT primary
submission and of all ODESSA submissions.

A variant of this cluster-wise face recognition approach is
to perform recognition directly at the level of face tracks (i.e.
without prior face clustering). This variant is denoted by c2face

in Figure 1 and constitutes the “face” part of PLUMCOT con-
trastive submission #2.

3. Speaker diarization
This section describes the building blocks of the “speaker” part
of PLUMCOT runs. They all rely on the speaker diarization
approach introduced in [10].

3.1. Speech turn segmentation

All submission share a same speech activity detection (SAD)
system proposed in [11]. SAD is modeled as a supervised bi-
nary classification task (speech vs. non-speech), and addressed
as frame-wise sequence labeling tasks using bi-directional
LSTM on top of MFCC features. For SCD, two systems were
explored: the first one named uniform segmentation which
splits the speech parts into 1s segments, the second one using
the system proposed by [12]. Similar to SAD, SCD is mod-
eled as a supervised binary sequence labeling task (change vs.
non-change).

3.2. Speaker embedding

The embedding architecture used is the one introduced in [2]
and further improved in [13]. In the embedding space, using
the triplet loss paradigm, two sequences xi and xj of the same
speaker (resp. two different speakers) are expected to be close to
(resp. far from) each other according to their angular distance.
The embeddings are trained on the Voxceleb corpus.

3.3. Speech turn clustering

As proposed in [10], we use Affinity propagation (AP) algo-
rithm [14] to perform clustering of speech turns. AP does not
require a prior choice of the number of clusters contrary to other
clustering methods. All speech segments are potential cluster
centers (exemplars). Taking as input the pair-wise similarities
between all pairs of speech segments, AP will select the exem-
plars and associate all other speech segments to an exemplar. In
our case, the similarity between ith and jth speech segments
is the negative angular distance between their embeddings. AP
has two hyper-parameters: preference θsc and damping factor
λsc.

3.4. Re-segmentation

A final re-segmentation step is performed to refine time bound-
aries of the segments generated in the clustering step. It uses
Gaussian mixture models (GMM) to model the clusters, and
maximum likelihood scoring at feature level. Since the log-
likelihoods at frame level are noisy, an average smoothing
within a 1s sliding window is applied to the log-likelihood
curves obtained with each cluster GMM. Then, each frame is
assigned to the cluster which provides the highest smoothed
log-likelihood.



4. Multimodal fusion
This section describes our attempts at improving speaker di-
arization with face clustering, and vice versa. Those two ap-
proaches were respectively submitted as PLUMCOT primary
run (4.1) and PLUMCOT first contrastive run (4.2).

4.1. Improving speaker diarization with face clustering

Let us assume that there areN speakers according to speaker di-
arization, andM persons according to face clustering (or recog-
nition). Let K ∈ RN×M be the co-occurrence matrix of the
output of both pipelines: Kij is the overall duration in which
speaker i ∈ {1 . . . N} is speaking and person j ∈ {1 . . .M} is
visible.

The main intuition motivating this approach arises from the
following observation about broadcast news videos: most of the
time, the camera is pointing at the current speaker. Therefore,
the proposed approach simply updates each speaker cluster by
assigning them to the most co-occurring face cluster:

i← argmaxj∈{1...M}Kij (4)

Thanks to the joint optimization (described in Section 5) of
stopping criteria for both face clustering and speaker diariza-
tion, we anticipate that this approach will “choose” to favour
smaller (but purer) speaker clusters than the purely monomodal
speaker diarization pipeline. A speaker divided into several
small clusters may then be merged back together thanks to (a
hopefully better) face clustering and Equation 4.

4.2. Filtering face detection with speech activity detection
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Figure 2: Face tracks within long non-speech regions (red) are
removed.

Our face detection and tracking module tends to detect lots
of non-target faces, leading to a huge amount of false alarms
(e.g. in crowds, in credits at the end of TV shows, etc.). As
depicted in Figure 2, we propose a very simple solution to this
problem: filtering face tracks in long non-speech regions.

5. Hyper-parameters joint optimization
As mentioned in Section 4.1, the various modules of PLUM-
COT runs are jointly optimized. For instance, the “speaker”
part of PLUMCOT primary run is the combination of two mod-
ules with their own set of hyper-parameters: face clustering (θfc)
and speaker diarization (θsc and λfc). Instead of tuning the for-
mer for optimal face clustering performance and the latter for
optimal speaker diarization separately, the whole pipeline (in-
cluding the assignment step described in Equation 4) is jointly
optimized.

Practically, we use the Covariance Matrix Adaptation Evo-
lution Strategy minimization method [15] available in the
chocolate library4 to automatically select the set of hyper-

4chocolate.readthedocs.io

parameters that minimizes the speaker diarization error rate for
“speaker” part and the face diarization error rate for “face” part.

6. Submissions
Figure 1 summarizes the primary and two contrastive runs of
the PLUMCOT consortium. All of them have been introduced
in the previous sections of this paper.

The ODESSA consortium mostly focused on the
monomodal speaker diarization aspects of the task. Therefore,
ODESSA submissions to the “speaker” part of the multimodal
diarization challenge rely on the same systems used for its
open-set submissions to the speaker diarization challenge: the
fusion at similarity-level of various speech turn representation
(such as neural embeddings and binary keys). More informa-
tion can be found in [16]). All three ODESSA submissions use
the same “face” part as PLUMCOT primary submission.

7. Experimental protocol
7.1. RTVE2018 corpus

The RTVE2018 dataset is a collection of diverse TV shows
aired between 2015 and 2018 on the public Spanish National
Television (RTVE). The development subset of the RTVE2018
database contains one single 2 hours show “La noche en 24H”
labeled with speaker and face timestamps. It also contains 11
additional files (for a total duration of 14 hours) labeled with
speaker timestamps only. Enrollment files for the target persons
are also provided: they consist of a few pictures and one short
video for each target.

The evaluation set contains 3 videos files of almost 2 hours
each of TV shows labeled with speaker and face timestamps.
However, at the time of the submission of this paper, we have
no result on the test set so we are not reporting results on this
test set.

7.2. Evaluation metric

The evaluation metric used for this task is the diarization error
rate (DER) defined as follows:

DER =
false alarm + missed detection + confusion

total
(5)

where false alarm is the duration of non-speech incorrectly clas-
sified as speech, missed detection is the duration of speech in-
correctly classified as non-speech, confusion is the duration of
speaker confusion, and total is the total duration of speech in the
reference. Note that this metric does take overlapping speech
into account, potentially leading to increased missed detection
in case the speaker diarization system does not include an over-
lapping speech detection module. DER is a standard metric for
evaluating and comparing speaker diarization systems but it can
also be applied for face clustering by replacing speech turns by
face tracks.

7.3. Implementation details

7.3.1. Face clustering and recognition

As already stated in Section 2, we use the pre-trained face de-
tector and face embedding available in dlib library [7], wrapped
in our pyannote.video toolkit5. All hyper-parameters of the face

5github.com/pyannote/pyannote-video



clustering and recognition pipeline are jointly optimized in or-
der to minimize the (face) diarization error rate on the only an-
notated video of the RTVE2018 development set provided by
the organizers of the challenge.

7.3.2. Speaker diarization

Feature extraction. All modules in the speaker diarization
pipeline share the same feature extraction step: 19 MFCC coef-
ficients (with their first and second derivatives, and the first and
second derivatives of the energy) are extracted every 10ms on a
25ms windows. The only exception is the re-segmentation step
that does not use any derivative.
Segmentation. Both speech activity and speaker change de-
tection modules are trained with the Catalan broadcast news
database from the 3/24 TV channel proposed for the 2010 Al-
bayzin Audio Segmentation Evaluation [17]. We use the exact
same configuration as the one described in [10]: stacked bi-
directional LSTMs and multi-layer perceptron on 3.2s sliding
windows.
Speaker embedding. Speaker embeddings are trained using
VoxCeleb1 dataset [18]. We use the exact same architecture
as the one used in [13] (stacked bi-directional LSTMs on a 3s
window) and the training process introduced in [19] (triplet loss
with angular distance).
Speaker diarization pipeline. Once every module is trained,
hyper-parameters of the speaker diarization pipeline are jointly
optimized in order to minimize the diarization error rate on the
development set (dev2) of RTVE2018 corpus provided by the
organizers of the challenge.

8. Results and discussion
Table 1 summarizes the performance of each submission on the
development set. Official results on the test set were not avail-
able at the time of writing the paper.

Consortium Run Speaker Face
PLUMCOT primary 6.86 28.15

contrastive 1 10.59 28.15
contrastive 2 10.68 31.01

ODESSA primary 7.21 28.15
contrastive 1 9.29 28.15
contrastive 2 11.46 28.15

Table 1: Diarization error rate on the development set

Comparing “speaker” parts of PLUMCOT primary run
(DER = 6.86%) and constrative run #1 (DER = 10.59%) shows
that speaker diarization can be greatly improved when guided
by face clustering: this amounts to a relative improvement of
35%. Face clustering also helps significantly for face recogni-
tion: it is improved from DER = 31.01% for track-wise face
recognition (c2face) to DER = 28.15% for cluster-wise face
recognition (pface).

There are no difference between face primary run and con-
strative run #1 maybe because during the long silence founded
faces were already deleted with the recognition threshold θfa
with the enrollment data.

While cluster-wise face recognition (DER = 28.15%, pface)
is better than raw face clustering (DER = 46.02%, not shown
in Table 1) for the “face” part, the latter does lead to bet-
ter “speaker” performance than the former when jointly opti-
mized with the speaker diarization pipeline (pspeaker gets DER =

6.86% while c2speaker only gets DER = 10.68%). This shows the
benefit of the joint optimization of hyper-parameters: a better
“face” system does not necessarily lead to a better multimodal
“speaker” pipeline.

As described in details in [16], ODESSA “speaker” primary
run is the combination at similarity level of three different rep-
resentations (x-vector trained on NIST SRE data, triplet loss
embedding trained on VoxCeleb and binary key). This complex
system reaches a performance of DER = 7.21% which is still be-
low the simpler multimodal PLUMCOT primary run (that com-
bines triplet loss speaker embedding and neural face embed-
ding) with DER = 6.86%. One could hope that combining both
approaches would help us get even closer to perfect diarization.

9. Conclusion and future work
We have conducted experiments on monomodal face clustering
and speaker diarization and shown an improvement of the re-
sults when we combine them into a multimodal approach. It has
also been shown that combining two monomodal approaches
tuned separately does not automatically lead to the best results:
one should rather tune them jointly using a global optimization
process.

While results of the multimodal approaches are promising,
there is still room for improvement. In particular, we plan to
investigate the use of the talking-face detection approach intro-
duced in [20] to improve the module in charge of mapping face
clusters with speaker clusters.

Finally, we would like to highlight the fact that the code
for most monomodal building blocks is available for other re-
searchers to use67.
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